混凝土第4章解析

合集下载

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算
则按构造要求配置箍筋,否则,按计算配置腹筋
计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆

是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1

建筑材料第04章 混凝土配合比设计作业及答案解析

建筑材料第04章 混凝土配合比设计作业及答案解析
石子:碎石,粒径5mm~20mm,级配合格,表观密度为 2700kg/m3; 水:自来水。
试设计该混凝土的初步配合比。
解:(1)确定配制强度
当fcu,k C60时
fcu,0 fcu,k 1.645 40 1.645 5 48.23MPa
(2)确定水胶比
对于碎石混凝土: a 0.53,b 0.20
查附表4,当水胶比为0.4时,砂率为31.5%;当水胶比为0.5时,砂率为34.5%。 采用插值法计算得出当水胶比为0.48时,砂率为33.9%
(6)采用质量法计算砂石用量
C0 S0 G0 W0 0c
S0 S0 G0
SP
406
S0
G0
195
2400
S0 S0 G0
33.9%
Mx =3.1~3.7粗砂; Mx =2.3~3.0中砂; Mx =1.6~2.2细砂; 该砂为中砂,级配不合格
2.采用32.5级普通硅酸盐水泥、碎石和天然砂配制混凝土, 制作3块标准立方体试块,养护28d,测得的破坏荷载分别 是140kN、135kN、142kN。试求该混凝土28d的立方体 抗压强度。(提示:荷载需要求平均值)
S0 610 Kg, G0 1189 Kg
(7)确定配合比 质量表示:水泥406kg、砂610kg、石子1189kg、水195kg 质量比:水泥:砂:石子:水=1:1.5:2.93:0.48
a3 47 / 500 100 9.4
a2 43 / 500 100 8.6 a4 191 / 500 100 38.2
a5 102 / 500 100 20.4
a6 82 / 500 100 16.4
(2)累计筛余计算:
A1 a1 5.4
A2 a1 a2 14

《建筑材料》第四章混凝土解析

《建筑材料》第四章混凝土解析

按使用功能不同,分为结构用混凝土、道路 混凝土、水工混凝土、耐热混凝土、耐酸混凝土 及防辐射混凝土等;
按施工工艺不同,又分为喷射混凝土、泵送 混凝土、振动灌浆混凝土等。
★混凝土的特点: 可塑性好、性能可调、可用钢筋增强、耐久 性好、原材料来源丰富; 但自重大、呈脆性、施工过程影响因素多。
本章内容
粗骨料中含泥量和泥块含量应符合表4.10的 规定。
表4.10 含泥量和泥块含量(GB/T 14685—2001)
项目
含泥量(按质量计)(%) 泥块含量(按质量计)(%)
Ⅰ类 <0.5
0
指标 Ⅱ类 <1.0 <0.5
Ⅲ类 <1.5 <0.7
3) 针片状颗粒含量
卵石和碎石颗粒的长度大于该颗粒所属相应 粒级的平均粒径2.4倍者为针状颗粒;厚度小于平 均粒径0.4倍者为片状颗粒(平均粒径指该粒级上、 下限粒径的平均值)。
砂的粗细程度用细度模数Mx表示,其计算式
如下:
Mx
( A2
A3
A4 A5 100 A1
A6 ) 5A1
建筑用砂按细度模数分为粗、中、细三种规
粗砂:3.7~3.1 中砂:3.0~2.3 细砂:2.2~1.6。
砂的颗粒级配用级配区表示,以级配区或级 配曲线判定砂级配的合格性。对细度模数为3.7~ 1.6的建筑用砂,根据600μm筛的累计筛余百分率 分成3个级配区,见表4.2。
1区
0 10~0 35~5 65~35 85~71 95~80 100~90
2区 累计筛余百分率(%)
0 10~0 25~0 50~10 70~41 92~70 100~90
3区
0 10~0 15~0 25~0 40~16 85~55 100~90

4 钢筋混凝土受弯构件正截面承载力计算解析

4 钢筋混凝土受弯构件正截面承载力计算解析
M u Tz
0或 MC 0 M u Cz

4.3 建筑工程中受弯构件正截面承载力计算
第4章 钢筋混凝土受弯构件正截面承载力计算 简化计算法(等效矩形应力图、规范法) 基本假定:
x=b xc
fc
C= fcbx
M
混凝土合力不变(大小)
混凝土合力矩不变(和作 用点不变)
Ts=fy As
c c 0时, c f c 1 1 0 c 0时, c f c
n

c
c 0 u
fc
0 0.002 0.5( fcu,k 50) 105 0.002
cu 0.0033 ( fcu,k 50) 10 0.0033
第4章 钢筋混凝土受弯构件正截面承 载力计算
Strength of Reinforced Concrete Flexual Members
第4章 钢筋混凝土受弯构件正截面承载力计算
本章重点
受弯构件正截面受力破坏的三个阶段和三种破坏形态、 计算基本假定、正应力分布特征和极限承载力计算 单筋矩形截面、双筋截面和T形截面正截面承载力计算 公式和适用条件;
1 f c b h0 f y As
2 2 M M u 1 f cbh0 (1 0.5 ) s 1 f cbh0
f y As h0 (1 0.5 ) f y As s h0
令:s (1 0.5 ) 0.5
4.2 受弯构件正截面的受力特性
材料力学中纯弹性的受弯构件
钢筋混凝土构件?
平截面假定
4.2 受弯构件正截面的受力特性
第4章 钢筋混凝土受弯构件正截面承载力计算 4.2.1受弯构件正截面抗弯性能的试验研究

混凝土课后答案第4章概要

混凝土课后答案第4章概要

4-1、一钢筋混泥土矩形截面梁截面尺寸b × h= 250mm ×500mm ,混泥土强度等级C25, HRB335级钢筋,弯矩设计值M=125KN ·m ,试计算受拉钢筋截面面积,并绘制配筋图。

『解』(1)先假定受力钢筋按一排布置,a s =35mm 0h =h —a s =500—35=465mm查附表1—2、2—3、表4—2、4—4得:1α=1.0 , c f =11.9 N/2mm , y f =300N/2mm , b ξ=0.550s α=210c M f bh α=6212510250465 1.011.9⨯⨯⨯⨯=0.1943查附表4—1得ξ=0.2177<b ξ=0.550 (2)所需纵筋面积S A :S A =ξ0bh 1cyf f α=0.2177⨯250⨯465⨯1.011.9300⨯=10042mm S A ≥min ρbh=0.2%⨯250⨯500=2502mm选用418,S A =10172mm ,一排可以布置的下,因此不要必修改0h(3)绘配筋图:4-2、一钢筋混泥土矩形截面梁截面尺寸b ×h= 200mm ×500mm ,弯矩设计值M=120KN ·m ,混泥土强度等级C25,试计算下列三种情况纵三向受力钢筋截面面积As :(1)当选用HPB235级钢筋时,(2)改用HRB335钢筋时;(3)M=180KN ·m 时。

最后,对三种结果进行比较分析。

『解』先假定受力钢筋按一排布置,a s =35mm0h =h —a s=500—35=465mm(1)当选用HPB235钢筋时:查附表1—2、2—3、表4—2、4—4得:1α=1.0 , c f =11.9 N/2mm , y f =210N/2mm , b ξ=0.614s α=210c M f bh α=6212010200465 1.011.9⨯⨯⨯⨯=0.2330所需纵筋面积S A :S A =ξ0bh 1cyf f α=0.2330⨯200⨯465⨯1.011.9200⨯=14192mm S A ≥min ρbh=0.2%⨯200⨯500=2002mm(2)当选用HRB335钢筋时:查附表1—2、2—3、表4—2、4—4得:1α=1.0 , c f =11.9 N/2mm , y f =300N/2mm , b ξ=0.550s α=210c M f bh α=6212010200465 1.011.9⨯⨯⨯⨯=0.2330查附表4—1得ξ=0.2692<b ξ=0.550 所需纵筋面积S A :S A =ξ0bh 1cyf f α=0.2330⨯200⨯465⨯1.011.9300⨯=9932mm S A ≥min ρbh=0.2%⨯200⨯500=2002mm(3)当选用HPB235钢筋M=180 kN ·m 时:查附表1—2、2—3、表4—2、4—4得:1α=1.0 , c f =11.9 N/2mm , y f =210N/2mm , b ξ=0.614s α=210c M f bh α=6218010200465 1.011.9⨯⨯⨯⨯=0.350查附表4—1得ξ=0.4523<b ξ=0.614 所需纵筋面积S A :S A =ξ0bh 1cyf f α=0.4523⨯200⨯465⨯1.011.9210⨯=23842mm S A ≥min ρbh=0.2%⨯200⨯500=2002mm(4)当选用HRB335钢筋M=180 kN ·m 时:查附表1—2、2—3、表4—2、4—4得:1α=1.0 , c f =11.9 N/2mm , y f =300N/2mm , b ξ=0.550s α=210c M f bh α=6218010200465 1.011.9⨯⨯⨯⨯=0.350所需纵筋面积S A :S A =ξ0bh 1cyf f α=0.4523⨯200⨯465⨯1.011.9300⨯=16692mm S A ≥min ρbh=0.2%⨯200⨯500=2002mm(5)分析:当选用高级别钢筋时,y f 增大,可减少S A ;当弯矩增大时,S A 也增大。

混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算

混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算

◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理

混凝土第4章习题解答

混凝土第4章习题解答

第4章习题解答(4.1)已知:钢筋混凝土简支梁,截面尺寸为b×h=200mm×500mm,a s=40mm,混凝土强度等级为C30,剪力设计值V=140KN,箍筋为HPB300,环境类别为一类,求所需受剪箍筋。

解:(一)查表获得所需参数:查附表2-3、2-4可得:f c=14.3N/mm2,f t=1.43N/mm2查附表2-11可得:f yv=270N/mm2(二)计算A sv1:ℎw=ℎ0=h−a s=460mm⇒ℎwb=460200=2.3<40.25βc f c bℎ0=0.25×1×14.3×200×460=328900N≈328.9KN>V=140KN0.7f t bℎ0=0.7×1.43×200×460≈92.1KN<V=140KNV=0.7f t bℎ0+f yv A svsℎ0⇒A svs=(V−0.7f t bℎ0)f yvℎ0=(140000−0.7×1.43×200×460)270×460⇒A svs≈0.386mm取s=200mm⇒A sv=200×0.386=77.2mm2选用两肢箍,A sv1=A sv2=38.6mm2(三)配箍:选用A8@200,A sv1=50.3mm2>38.6mm2ρsv=nA sv1bs=2×50.3200×200≈0.25%>ρmin=0.24f tf yv=0.24×1.43270≈0.13% s=200mm≤s max=200mm(4.2)已知:梁截面尺寸同上题,但V=62KN及V=280KN,应如何处理?解:(一)当V=62KN时:1) 配箍:ℎ0=h−a s=460mm0.7f t bℎ0=0.7×1.43×200×460≈92.1KN>V=62KN⇒仅需构造配箍令s=300mm≤s max=300mm选用两肢箍,ρsv=nA sv1bs =2×A sv1200×300=ρmin=0.24f tf yv=0.13%⇒A sv1=39mm2选用A8@300,A sv1=50.3mm2>39mm2(二)当V=280KN时:(二)计算A sv1:ℎw=ℎ0=h−a s=460mm⇒ℎwb=460200=2.3<40.25βc f c bℎ0=0.25×1×14.3×200×460=328900N≈328.9KN>V=280KN0.7f t bℎ0=0.7×1.43×200×460≈92.1KN<V=280KNV=0.7f t bℎ0+f yv A svsℎ0⇒A svs=(V−0.7f t bℎ0)f yvℎ0=(280000−0.7×1.43×200×460)270×460⇒A svs≈1.513mm取s=100mm⇒A sv=100×1.513=151.3mm2选用两肢箍,A sv1=A sv2=75.7mm2(三)配箍:选用A10@100,A sv1=78.5mm2>75.7mm2ρsv=nA sv1bs=2×78.5200×100≈0.785%>ρmin=0.24f tf yv=0.24×1.43270≈0.13% s=100mm≤s max=200mm(4.3)已知:钢筋混凝土简支梁,截面尺寸为b×h=200mm×400mm,混凝土强度等级为C30,均布荷载设计值q=40KN/m,环境类别为一类,求截面A、B左和B右受剪钢筋。

混凝土结构第四章

混凝土结构第四章

二、斜截面受剪破坏的三种主要形态
斜拉破坏
剪压破坏
斜压破坏
4.2 斜截面受剪承载力计算
一、斜截面的受剪机理
梁的弯剪区段发生剪压破坏时,无腹筋梁斜截面上的抗 力有: ①剪压区混凝土承担的剪力Vc和压力C; ②骨料咬合力Va; ③纵向钢筋的销栓力Vd; ④纵向钢筋的拉力T。
一、斜截面的受剪机理
梁的弯剪区段发生剪压破坏时,有腹筋梁斜截面上除存 在上述抗力外,还有腹筋的抗剪承载力。 梁中配置腹筋,可有效地提高斜截面的受剪承载力。 (1) 腹筋的作用 斜裂缝出现以前,腹筋作用很小; 斜裂缝出现以后,腹筋作用增大。 斜截面上的剪力主要有: ① 腹筋直接受剪Vsv和Vsb; ② 腹筋限止斜裂缝的开展, Va Vsv 提高Vc; Tsb ③ 腹筋减小裂缝宽度,提高Va; T
第四章 受弯构件斜截面承载力计算
2.斜裂缝分类: (1)弯剪斜裂缝:在M和V的共同作用下,首先在梁的下部产 生垂直裂缝,然后斜向上延伸,是一种较为常见的裂缝。 特点:裂缝下宽上窄。 (2)腹剪斜裂缝:当梁承受的剪力较 大,或者梁腹部较薄时,首先在截面 中部出现斜裂缝,然后向上、向下 延伸。 特点:裂缝中间宽两头窄。
c
0
M u TZ Tsb Zsb Vsvi Z vi
i 1 n
Vc
C
Vsv
n——与临界斜裂缝相交的箍 筋根数。
T Vu
Vsb
Tsb
三、斜截面受剪承载力的计算公式
(2) 腹筋的作用 梁发生剪压破坏时,与临界斜裂缝相交的箍筋能达到屈服强 度。对弯起钢筋不一定屈服。 (3) 剪跨比的考虑 仅对承受集中荷载或以集中荷载为主的矩形截面独立梁考虑 剪跨比(=a/h0)的影响。其余情况不考虑。

混凝土第4章习题解答

混凝土第4章习题解答

For personal use only in study and research; not forcommercial useFor personal use only in study and research; not forcommercial use第4章习题解答(4.1)已知:钢筋混凝土简支梁,截面尺寸为b×h=200mm×500mm,a s=40mm,混凝土强度等级为C30,剪力设计值V=140KN,箍筋为HPB300,环境类别为一类,求所需受剪箍筋。

解:(一)查表获得所需参数:查附表2-3、2-4可得:,查附表2-11可得:(二)计算:取选用两肢箍,(三)配箍:选用A8@200,(4.2)已知:梁截面尺寸同上题,但V=62KN及V=280KN,应如何处理?解:(一)当V=62KN时:1) 配箍:仅需构造配箍令选用两肢箍,选用A8@300,(二)当V=280KN时:(二)计算:取选用两肢箍,(三)配箍:选用A10@100,(4.3)已知:钢筋混凝土简支梁,截面尺寸为b×h=200mm×400mm,混凝土强度等级为C30,均布荷载设计值q=40KN/m,环境类别为一类,求截面A、B左和B右受剪钢筋。

图1 习题4.3图解:(一)求剪力设计值:梁的剪力图见图2,由剪力图可知:,左,右图2 剪力图(二)验算截面尺寸:属厚腹梁左右截面尺寸满足要求。

(三)确定箍筋数量:1)截面A:须按计算配箍仅需按构造配置箍筋。

选用双肢箍A6@200(s=s max),,可以。

2)截面B左:左须按计算配箍左取选用双肢箍,选用A8@200(s=s max),,可以。

3)截面B右:仅需按构造配置箍筋右选用双肢箍A6@200(s=s max),,可以。

(四)最后配箍:在AB跨,选用双肢箍A8@200;在外伸跨,双肢箍A6@200。

(4.4)已知:钢筋混凝土简支梁,混凝土强度等级为C30,均布荷载设计值q=50KN/m,环境类别为一类,试求:(1)不设弯起钢筋时的受剪箍筋;(2)利用现有纵筋为弯起钢筋,求所需箍筋;(3)当箍筋为A8@200时,弯起钢筋应为多少?图3 习题4.4图解:(一)求剪力设计值:梁的剪力图见图4,由剪力图可知:图4 剪力图(1)不设弯起钢筋时的受剪箍筋:一)验算截面尺寸:属厚腹梁截面尺寸满足要求。

混泥土结构(第四版)第四章答案

混泥土结构(第四版)第四章答案

第4章 受弯构件的斜截面承载力4.1钢筋混凝土简支梁,截面尺寸mm mm h b 500200⨯=⨯,mm a s 35=,混凝土为C30,承受剪力设计值N V 5104.1⨯=,环境类别为一类,箍筋采用HPB235,求所需受剪箍筋。

解:查表得:2/3.14mm N f c =、2/43.1mm N f t =、2/210mm N f yv =(1)验算截面尺寸mm h h w 465355000=-==4325.2200465<==b h w ,属于厚腹梁 混凝土为C30,故取0.1=c β0.25N V N bh f c c 1400003324754652003.140.125.00=>=⨯⨯⨯⨯=β 截面符合要求。

(2)验算是否需要按计算配置箍筋V N bh f t <=⨯⨯⨯=9309346520043.17.07.00故需要进行配箍计算。

(3)计算箍筋箍筋采用6,双肢箍,则213.28mm A sv =01025.17.0h snA f bh f V sv yvt += mm bh f V h nA f s t sv yv 147930931400004653.28221025.17.025.1001=-⨯⨯⨯⨯=-=取mm s 120=故箍筋为6@120,双肢箍。

验算:%236.01202003.2821=⨯⨯==bs nA sv sv ρ sv yv t sv f f ρρ<=⨯==%163.021043.124.024.0min ,可以。

4.2梁截面尺寸同上题,但N V 4102.6⨯=及N V 5108.2⨯=,应如何处理?解:查表得:2/3.14mm N f c =、2/43.1mm N f t =、2/210mm N f yv =a.当N V 4102.6⨯=时 (1)验算截面尺寸mm h h w 465355000=-==4325.2200465<==b h w ,属于厚腹梁 混凝土为C30,故取0.1=c β0.25N V N bh f c c 620003324754652003.140.125.00=>=⨯⨯⨯⨯=β 截面符合要求。

混凝土结构设计原理-04章-受弯构件的正截面受弯承载力

混凝土结构设计原理-04章-受弯构件的正截面受弯承载力

fsd
即:
截面应力图
截面等效应力图
fcdb x k1 fcdb xc
x 2 xc yc 2 1 k2 xc
令:x xc ,可求出 21 k2 ,
k1
21 k2
对 C50 及以下混凝土, 1.0 , 0.8 ;C80时, 0.94
0.74 ,中间内插值。《公路桥规》直接取 1.0。
k2 xc
cu c c d c
0
式中k1、k2与混凝土的 强度等级有关,对C50 及以下混凝土,积分 可得 k1=0.797
k2=0.588
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
3.等效矩形应力图
fcd
等效原则:
合力大小C 相等
合力点位置 yc不变
fsd
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
4.适筋梁与超筋梁的界限及界限配筋率 (1)界限破坏
适筋破坏:受拉钢筋先屈服,
然后混凝土受压区边缘达到极限压
应变。
超筋破坏:受拉钢筋不屈服,
混凝土受压区边缘达到极限压应变。
界限破坏:受拉钢筋屈服的同 时混凝土受压区边缘达到极限压应
适筋、超筋、界限破坏时的截面应变
4.1 梁、板的一般构造
第4章 受弯构件的正截面受弯承载力
常用直径为8mm、10mm、12mm和14mm。 ■ 板内钢筋: 受力钢筋宜采用HPB300、HRB400和HRBF400钢筋。 常用直径为8mm、10mm、12mm和14mm。 分布钢筋宜采用HPB300、HRB335钢筋。 常用直径为6mm、8mm。 ■ 钢筋净距、保护层及有效高度 截面有效高度h0为受拉钢筋合力点至受压区边缘的距离。 h0 h as

《混凝土结构设计原理》第四章_课堂笔记资料讲解

《混凝土结构设计原理》第四章_课堂笔记资料讲解

《混凝⼟结构设计原理》第四章_课堂笔记资料讲解《混凝⼟结构设计原理》第四章受弯构件正截⾯承载⼒计算课堂笔记◆知识点掌握:受弯构件是⼟⽊⼯程中⽤得最普遍的构件。

与构件计算轴线垂直的截⾯称为正截⾯,受弯构件正截⾯承载⼒计算就是满⾜要求:M≤Mu。

这⾥M为受弯构件正截⾯的设计弯矩,Mu为受弯构件正截⾯受弯承载⼒,是由正截⾯上的材料所产⽣的抗⼒,其计算及应⽤是本章的中⼼问题。

◆主要内容受弯构件的⼀般构造要求受弯构件正截⾯承载⼒的试验研究受弯构件正截⾯承载⼒的计算理论单筋矩形戴⾯受弯承载⼒计算双筋矩形截⾯受弯承载⼒计算T形截⾯受弯承载⼒计算◆学习要求1.深⼊理解适筋梁的三个受⼒阶段,配筋率对梁正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。

2.熟练掌握单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯设计和复核的握法,包括适⽤条件的验算。

重点难点◆本章的重点:1.适筋梁的受⼒阶段,配筋率对正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。

2.单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯抗弯承载⼒的计算。

本章的难点:重点1也是本章的难点。

⼀、受弯构件的⼀般构造(⼀)受弯构件常见截⾯形式结构中常⽤的梁、板是典型的受弯构件:受弯构件的常见截⾯形式的有矩形、T形、⼯字形、箱形、预制板常见的有空⼼板、槽型板等;为施⼯⽅便和结构整体性,也可采⽤预制和现浇结合,形成叠合梁和叠合板。

(⼆)受弯构件的截⾯尺⼨为统⼀模板尺⼨,⽅便施⼯,宜按下述采⽤:截⾯宽度b=120, 150 , 180、200、220、250、300以上级差为50mm。

截⾯⾼度h=250, 300,…、750、800mm,每次级差为50mm,800mm以上级差为100mm。

板的厚度与使⽤要求有关,板厚以10mm为模数。

但板的厚度不应过⼩。

(三)受弯构件材料选择与⼀般构造1.受弯构件的混凝⼟等级提⾼砼等级对增⼤正截⾯承载⼒的作⽤不显著。

受弯构件常⽤的混凝⼟等级是C20~C40。

混凝土建筑结构第四章作业答案解析

混凝土建筑结构第四章作业答案解析

第四章思考题4.1 何谓单向板?何谓双向板?如何判别?P85.86答:在板面均布荷载作用下,从板中沿支座正交方向取出的矩形板单元,只有一个方向受弯,成为单向板;而在板面均布荷载作用下,荷载沿两个方向传递到周边的支座,故称为双向板。

对四变支撑213l l ≥的板按单向板计算,对212l l ≤的板按双向板计算;当213l l <时,宜按双向板计算。

4.2 结构平面布置的原则是什么?板、次梁、主梁的常用跨度是多少?P86答:单向板肋梁楼盖由板、次梁和主梁组成。

其中,次梁的间距决定了板的跨度;主梁的间距决定了次梁的跨度;柱或墙的间距决定了主梁的跨度。

单向板、次梁、主梁的常用跨度如下:单向板:4m ≤,荷载较大时取小值。

次梁:4~6m 。

主梁:5~8m 。

4.3 单向板中有哪些受力钢筋何构造钢筋?各起什么作用?如何设置?P94.95答:板中受力钢筋分为承受负弯矩板面负筋和承受正弯矩板底正筋,对于绑扎钢筋,当板厚150mm ≤时,间距不宜大于200mm ;板厚150h mm >,不宜大于1.5h ,且不宜大于250mm 。

钢筋间距也不宜小于70mm 。

在支梁支座处或连续板端支座及中间支座处,下部正钢筋伸入支座的长度不应小于5d 。

板中构造钢筋及其作用和设置:1.分布钢筋:分布钢筋布置在受力钢筋的内侧,其作用时与受力钢筋组成钢筋网,便于施工中固定受力钢筋的位置;承受由于温度变化和混凝土收缩所产生的内力;承受并分布板上局部荷载产生的内力;对四边支撑板,可承受在计算中未计及但实际存在的长跨方向的弯矩。

2.沿墙边和墙角处设置板面附加钢筋,承受板上部拉应力,钢筋直径不小于8mm ,间距不大于200mm ,伸出墙边长度大于等于07l 。

3.垂直于主梁的板面附加钢筋:承受主梁边缘处板面产生的支座负弯矩,在主梁上部的板面配置,数量不小于,且主梁单位长度内的总截面面积不小于板中单位宽度内受力钢筋截面积的13;4.板角附加短钢筋:两边嵌入砌体墙内的板内的板角部分,应在板面双面配置附加的短负钢筋。

混凝土结构设计原理 第四章 受弯构件正截面承载力的计算

混凝土结构设计原理   第四章  受弯构件正截面承载力的计算

3.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
分布钢筋的作用:
抵抗混凝土收缩和温度变化所引起的内力; 浇捣混凝土时,固定受力钢筋的位置; 将板上作用的局部荷载分散在较大的宽度上,以便 使更多的受力钢筋参与工作; 对四边支撑的单向板,可承受在计算中没有考虑的 长跨方向上实际存在的弯矩。
板中单位长度上的分布钢筋,其截面面积不应小于 单位长度上受力钢筋截面面积的15%,且配筋率不宜小于 0.15%。间距不应大于250mm,直径不宜小于6mm。
4.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
弯起钢筋 架立钢筋
腰筋
箍筋
纵向钢筋
梁的钢筋构造
梁中钢筋由纵向受力钢筋、弯起钢筋、箍筋和架立钢筋组 成,纵向受力钢筋的作用是承受由弯矩在梁内产生的拉力。 常用直径:10~32mm。 当h ≥ 300mm,直径不小于10mm;当h<300mm,直径 不小于8mm。
第4章 受弯构件正截面承载力
梁的配筋率ρ 很小,梁拉区开裂后,钢筋 应力趋近于屈服强度,即开裂弯矩Mcr趋近于拉 区钢筋屈服时的弯矩 My,这意味着第Ⅱ阶段的 缩短,当ρ 减少到当 Mcr=My 时,裂缝一旦出现,
钢筋应力立即达到屈服强度,这时的配筋百分
率ρ 称为最小配筋率ρ
min。
min b max
h0
h
第4章 受弯构件正截面承载力
正截面受弯的三种破坏形态
(1) 适筋破坏形态——破坏始自受拉区 钢筋的屈服
受拉钢筋先屈服,受压区混凝土后 压坏,破坏前有明显预兆——裂缝、变 形急剧发展,为“塑性破坏”。
(2) 超筋破坏形态——破坏始自受压混 凝土的压碎
受压区混凝土先压碎,钢筋不屈服, 破坏前没有明显预兆,为“脆性破坏”。 钢筋的抗拉强度没有被充分利用。

《混凝土结构设计原理》第四章_课堂笔记资料讲解

《混凝土结构设计原理》第四章_课堂笔记资料讲解

《混凝土结构设计原理》第四章受弯构件正截面承载力计算课堂笔记◆知识点掌握:受弯构件是土木工程中用得最普遍的构件。

与构件计算轴线垂直的截面称为正截面,受弯构件正截面承载力计算就是满足要求:M≤Mu。

这里M为受弯构件正截面的设计弯矩,Mu为受弯构件正截面受弯承载力,是由正截面上的材料所产生的抗力,其计算及应用是本章的中心问题。

◆主要内容受弯构件的一般构造要求受弯构件正截面承载力的试验研究受弯构件正截面承载力的计算理论单筋矩形戴面受弯承载力计算双筋矩形截面受弯承载力计算T形截面受弯承载力计算◆学习要求1.深入理解适筋梁的三个受力阶段,配筋率对梁正截面破坏形态的影响及正截面抗弯承载力的截面应力计算图形。

2.熟练掌握单筋矩形、双筋矩形和T形截面受弯构件正截面设计和复核的握法,包括适用条件的验算。

重点难点◆本章的重点:1.适筋梁的受力阶段,配筋率对正截面破坏形态的影响及正截面抗弯承载力的截面应力计算图形。

2.单筋矩形、双筋矩形和T形截面受弯构件正截面抗弯承载力的计算。

本章的难点:重点1也是本章的难点。

一、受弯构件的一般构造(一)受弯构件常见截面形式结构中常用的梁、板是典型的受弯构件:受弯构件的常见截面形式的有矩形、T形、工字形、箱形、预制板常见的有空心板、槽型板等;为施工方便和结构整体性,也可采用预制和现浇结合,形成叠合梁和叠合板。

(二)受弯构件的截面尺寸为统一模板尺寸,方便施工,宜按下述采用:截面宽度b=120, 150 , 180、200、220、250、300以上级差为50mm。

截面高度h=250, 300,…、750、800mm,每次级差为50mm,800mm以上级差为100mm。

板的厚度与使用要求有关,板厚以10mm为模数。

但板的厚度不应过小。

(三)受弯构件材料选择与一般构造1.受弯构件的混凝土等级提高砼等级对增大正截面承载力的作用不显著。

受弯构件常用的混凝土等级是C20~C40。

2.受弯构件的混凝土保护层厚度纵向受力钢筋的外表面到截面边缘的最小垂直距离,称为混凝土保护层厚度,用c表示。

第四章-混凝土结构材料的性能课后习题详解

第四章-混凝土结构材料的性能课后习题详解

第4章混凝土结构材料的性能4.1 思考题4-1 混凝土立方体抗压强度能不能代表实际构件中混凝土的强度?既然用立方体抗压强度f c u作为混凝土的强度等级,为什么还要有轴心抗压强度f c ?答:不能代表实际构件中混凝土的强度,因为立方体抗压强度采用立方体受压试件,有箍的作用,而混凝土构件的实际长度一般远大于截面尺寸,没有“箍”的作用,因此采用棱柱体试件的轴心抗压强度能更好的反映实际状态。

所以除立方体抗压强度外,还有轴心抗压强度。

4-2 混凝土的基本强度指标有哪些?各用什么符号表示,它们之间有什么关系?答:混凝土的基本强度指标有立方体抗压强度标准值f cu,k;轴心抗压强度f c、轴心抗拉强度f t s及混凝土劈裂抗拉强度f t;其分别用f cu,k,f c,f t s表示;它们的关系为f cu,k>f c>f t s>f t,其中f t=0.9f ts。

4-3 混凝土应力等于f c时的应变ξ0和极限压应变ξcu有什么区别?它们各在什么受力情况下考虑,其应变值大致为多少?答:A、混凝土应力等于f c时,ξ0为峰值应变,试件处于不稳定阶段,而ξcu为极限压应变,试件已近宏观破坏,峰值应变的应力大于极限压应变。

B、峰值应变是以在峰值应力(以棱柱体式样的抗压强度f c)作用下得到应变,其值大约为0.0015~0.0025;极限压应变是极限应力作用下的应变,其值大约为0.003~0.005.4-4 混凝土的受压变形模量有几种表达方式?混凝土的受压弹性模量如何测定、如何根据立方抗压强度标准值进行计算?答:混凝土的受压变形模量有两种表达方式,分别为弹性模量和变形模量。

弹性模量E c测定:我国国家标准《普通混凝土力学性能试验方法》规定E c用以下方法测定:棱柱体式样,应力上限0.5f c,下限位0,反复加载-卸载5~10次,应力-应变曲线接近于直线,取该直线的斜率为弹性模量E c。

(补1:将混凝土受压时的应力应变曲线的切线斜率定义为混凝土的切线模量,并将原点时的切线斜率定义为混凝土的初始模量,简称弹性模量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向的强度 f3 和峰值应变 fc , p,
大于单轴受压的相应值
(3)初始斜率随应力比σ2 / σ3增 大;
(4)双轴压状态下的抗拉延性 比单轴压状态下大得多;
二轴受压峰值应变图:
(1)两个受力方向的峰值应变ε2p, ε3p随应力比例(σ2/σ3 )而变化; (2)ε3p的变化曲线与二轴抗压强 度的曲线相似,最大应变值发生 在σ2/σ3 ≈0.25处,应变ε3p在数值上 最大;
σ2
混凝土在二轴拉/压应力不同组合下的强度试验结果如图。
试验结果
二轴强度对比图
识图: f3 随应力比例的变化规律
(1) σ2 /σ3 =0~0. 2 —— f3 随 应力比的增大而提高较快;
(2) σ2 /σ3 =0. 2~0. 7 —— f3 变化平缓, 最大抗压强度为
(1. 25~1. 60) fc,发生在σ2 /σ3 =0.3~0.6之间,
(3) σ2 /σ3 =0. 7~1. 0 ——f3 随应力比的增大而降低。
(4) σ2 /σ3 = 1 (二轴等压)
fcc=(1.15~1.35) fc
fcc
二轴受压应力-应变曲线图:
(1)混凝土二轴受压的应力-应 变曲线为抛物线形,有峰点和下 降段,与单轴受压的应力-应变全 曲线相似。
(2)试件破坏时,最大主压应 3力p
变比例加载、恒侧压加载、反复加卸载、应变或应变速度控制 加载等。
显然,应用三轴试验装置也可以进行单轴压/拉试验,但是
由于三轴试验装置的加载设备、试件形状和尺寸、量测精度、 承压面的摩擦约束等条件都各不形同,从而会导致实验结果的
离散度比较大,所以后文在分析砼多轴性能时,取标准试验方 法下的强度(fc、ft)作为对比标准。
第四章
混凝土的多轴强度和本构关系
主要内容:
1、前言 2、实验设备和方法 3、强度和变形的一般规律 4、典型破坏形态及其界分 5、破坏准则 6、本构关系
前言
为什么要研究混凝土的多轴强度和本构关系?
钢筋混凝土结构中,混凝土几乎不存在单一轴压 或轴拉的应力状态。

梁板柱构件
弯矩和剪力共同作用产生正应力和剪应力; 支座、集中荷载作用下局部存在横向应力;
( σ2/σ3 =1) 时达最大压应 变ε2p= ε3p ,近似直线变化。
二轴受压体积应变图:
(1)混凝土二轴受压的体积应 变(εv≈ε1+ε2+ε3)曲线也与单 轴受压体积应变曲线相似。
(2)在应力较低时,混凝土泊 松比νs<0. 5,体积应变为压缩 (εv<0)。
(3)当应力达到二轴强度的 85%-90%后,试件内部裂缝发 展,其体积(包括裂缝在内) 应变转为膨胀。
4.2 强度和变形的一般规律
混凝土的多轴强度是指试件破坏时三向主应力的最大 值。用 f1,f2,f3 表示,相应的峰值应变为:1p ,2 p ,3 p
符号规则为:
f1 f2 f3 1p 2 p 3 p
1
受拉为正,受压为负
2
3
4.2.1 二轴应力状态
σ3
1.二轴受压(C/C, σ1 =0)
混凝土多轴试验中,行之有效的减摩措施有4类: ①在试件和加压板之间设置减摩垫层; ②刷形加载板; ③柔性加载板;④金属箔液压垫。
2、施加拉力
对试件施加拉力,须有高强粘结胶把试件和加载板牢固地粘结 在一起。此外,试件在浇注和振捣过程中形成含有气孔和水泥砂浆 较多的表层(厚约2-4mm),抗拉强度偏低,故用作受拉试验的试件先 要制作尺寸较大的混凝土试块,后用切割机锯除表层≥5mm后制成。
σ2降低σ3产生的横向拉应变,从而也 降低了ε3p
因为: σ2/σ3 较大 σ2/σ3 =0~0.2
实验证明当σ2/σ3 ≈0.25左右,由于 σ2值适中,限制了该方向的拉断, 又不致引起σ3 方向的突然崩碎,从 而使σ3方向的峰值应变值ε3p最大。
发生柱状压坏
(3)而ε2p 由单轴受压 ( σ2/σ3 =0) 时的拉伸逐渐转 为压缩变形,至二轴等压
前者较准确,但量程有限,适用于二轴试验和三轴拉/压试验; 后者的构造较复杂,但量程大,适用于三轴受压试验。
4、应力(变)途径的控制
实际结构中一点的三向主应力值,随荷载的变化可有不同
的应力途径。已有的大部分三轴试验是等比例(σ1:σ2:σ3 =const)单调加载、直到试件破坏。
应力比例由电-液控制系统实现,一般设备都具备这一功能。 有些设备还可进行多种应力(变)途径的试验,例如三向应力

应 力
双向板、墙板、剪力墙、折所以,设计时,如采用混凝土单轴压或拉强度, 其结果是:过低地给出二轴和三轴抗压强度,造成材 料浪费,却又过高地估计多轴拉-压应力状态的强度, 埋下不安全的隐患,显然都不合理。
那么,研究混凝土在复杂应力状态下的强度(多 轴强度)问题,就有着极其重要的理论意义和工程实 用价值。
4.1 实验设备和方法
所有的混凝土多轴试验装置,按试件的应力状态分为类:
1、 常规三轴试验机
一般利用已有的大型材料试验机,配备一个带活塞的高压油 缸和独立的油泵、油路系统。
试件:圆柱体或棱柱体 特点:三轴受压(C/C/C)时,必有两方向应力相等,称为 常规三轴受压试验。
采用空心圆筒试件,在筒外或 筒内施加侧压,还可进行二轴受压 (C/C)或拉/压(T/C)试验。
2、 真三轴试验装置
共同特点是:在3个相互垂直的方向都设有独立的活塞、 液压缸、供油管路和控制系统。
在设计混凝土的三轴试验方法和试验装置时,有些试验 技术问题需要研究解决,否则影响试验结果的可靠性和准确
性,决定三轴试验的成败。主要的技术难点和其解决措施有:
1、消减试件表面的摩擦
在多轴受压试验时,如不采取措施消除或减小此摩擦作 用,各承压端面的约束相互强化,可使混凝土的试验强度成 倍地增长,试验结果不真实,毫无实际价值。
3、应力和应变的量测
混凝土多轴试验时,试件表面有加载板阻挡,周围的空间很 小,成为应变量测的难点。试验中一般采用两类方法:
①直接量测法:在试件表面上预留浅槽(深2~3 mm)内粘贴电阻 应变片,并用水泥砂浆填满抹平;或者在打磨过的试件棱边上粘贴 电阻片(影响试件性能,应变片可能被破坏); ②间接量测法:使用电阻式或电感式变形传感器量测试件同方向两 块加载板的相对位移,扣除事先标定的减摩垫层的相应变形后,计 算试件应变。
相关文档
最新文档