[历年真题]2014年四川省高考数学试卷(文科)
2014年四川省高考数学试题(卷)(文科)答案与解析
2014年四川省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)(2014•四川)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣2,﹣1,0,1} D.{﹣1,0,1,2}考点:交集及其运算.专题:集合.分析:由题意,可先化简集合A,再求两集合的交集.解答:解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选D.点评:本题考查求交,掌握理解交的运算的意义是解答的关键.2.(5分)(2014•四川)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本考点:用样本的频率分布估计总体分布.专题:概率与统计.分析:根据题意,结合总体、个体、样本、样本容量的定义可得结论.解答:解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A.点评:本题主要考查总体、个体、样本、样本容量的定义,属于基础题.3.(5分)(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接利用函数图象的平移法则逐一核对四个选项得答案.解答:解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.(5分)(2014•四川)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3B.2C.D.1考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.解答:解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2,∴三棱锥的体积V=××2××=1.故选:D.点评:本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.5.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<考点:不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,∴C、D不正确;=﹣3,=﹣∴A不正确,B正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:B.点评:本题考查不等式比较大小,特值法有效,带数计算正确即可.6.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3考点:程序框图的三种基本逻辑结构的应用;简单线性规划.专题:算法和程序框图.分析:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.解答:解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.点评:本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.7.(5分)(2014•四川)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数式与对数式的互化、对数的运算性质和换底公式即可得出.解答:解:由5d=10,可得,∴cd=lgb=log5b=a.故选:B.点评:本题考查了指数式与对数式的互化、对数的运算性质和换底公式,属于基础题.8.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为75°、30°,此时气球的高是60m,则河流的宽度BC等于()A.240(﹣1)m B.180(﹣1)m C.120(﹣1)m D.30(+1)m考点:解三角形的实际应用;余弦定理的应用.专题:解三角形.分析:由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.解答:解:如图,由图可知,∠DAB=15°,∵tan15°=tan(45°﹣30°)==.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120()(m).∴河流的宽度BC等于120()m.故选:C.点评:本题考查了解三角形的实际应用,考查了两角差的正切,训练了直角三角形的解法,是中档题.9.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是()A.[,2] B.[,2] C.[,4] D.[2,4]考点:两条直线的交点坐标;函数最值的应用.专题:直线与圆.分析:可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得.解答:解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),∵动直线x+my=0和动直线mx﹣y﹣m+3=0的斜率之积为﹣1,始终垂直,P又是两条直线的交点,∴PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.设∠ABP=θ,则|PA|=sinθ,|PB|=cosθ,由|PA|≥0且|PB|≥0,可得θ∈[0,]∴|PA|+|PB|=(sinθ+cosθ)=2sin(θ+),∵θ∈[0,],∴θ+∈[,],∴sin(θ+)∈[,1],∴2sin(θ+)∈[,2],故选:B.点评:本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.解答:解:设直线AB的方程为:x=ty+m,点A(x,y1),B(x2,y2),直线AB与x轴的交1点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO==.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.点评:求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2014•四川)双曲线﹣y2=1的离心率等于.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的方程,求出a,b,c,即可求出双曲线的离心率.解答:解:由双曲线的方程可知a2=4,b2=1,则c2=a2+b2=4+1=5,则a=2,c=,即双曲线的离心率e==,故答案为:点评:本题主要考查双曲线的离心率的计算,求出a,c是解决本题的关键,比较基础.12.(5分)(2014•四川)复数= ﹣2i .考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.解答:解:复数===﹣2i,故答案为:﹣2i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.13.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .考点:函数的值.专题:计算题.分析:由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.解答:解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.14.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m= 2 .考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.解答:解:∵向量=(1,2),=(4,2),=m+(m∈R),∴=m(1,2)+(4,2)=(m+4,2m+2).∴=m+4+2(2m+2)=5m+8,=4(m+4)+2(2m+2)=8m+20.,=2.∵与的夹角等于与的夹角,∴=,∴,化为5m+8=4m+10,解得m=2.故答案为:2.点评:本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)考点:命题的真假判断与应用;充要条件;全称命题;特称命题;函数的值域.专题:新定义;极限思想;函数的性质及应用;不等式的解法及应用;简易逻辑.分析:根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.解答:解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g (x)≤M.故f(x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,alnx∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题(共6小题,共75分)16.(12分)(2014•四川)一个盒子里装有三张卡片,分别标记有1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.考点:相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c 有计3个,由此求得“抽取的卡片上的数字满足a+b=c”的概率.(Ⅱ)所有的可能结果(a,b,c)共有3×3×3种,用列举法求得满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)共计三个,由此求得“抽取的卡片上的数字a,b,c完全相同”的概率,再用1减去此概率,即得所求.解答:解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,故“抽取的卡片上的数字满足a+b=c”的概率为=.(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:(1,1,1)、(2,2,2)、(3,3,3),共计三个,故“抽取的卡片上的数字a,b,c完全相同”的概率为=,∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.点评:本题主要考查相互独立事件的概率乘法公式的应用,属于中档题.17.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.解答:解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z.(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.18.(12分)(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)先证明AA⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面1ACC1A1;(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1,证明四边形MDEO为平行四边形即可.解答:(Ⅰ)证明:∵四边形ABBA1和ACC1A1都为矩形,1∴AA1⊥AB,AA1⊥AC,∵AB∩AC=A,∴AA1⊥平面ABC,∵BC⊂平面ABC,∴AA1⊥BC,∵AC⊥BC,AA1∩AC=A,∴直线BC⊥平面ACC1A1;(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点,则O 为AC1的中点.连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,∴MD∥OE,MD=OE,连接OM,则四边形MDEO为平行四边形,∴DE∥MO,∵DE⊄平面A1MC,MO⊂平面A1MC,∴DE∥平面A1MC,∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.点评:本题考查线面垂直的判定与性质的运用,考查存在性问题,考查学生分析解决问题的能力,属于中档题.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)利用等比数列的定义证明即可;(Ⅱ)先由(Ⅰ)求得a n,b n,再利用错位相减求数列{a n b n2}的前n项和S n.解答:(Ⅰ)证明:由已知得,b n=>0,当n≥1时,===2d,∴数列{b n}为首项是,公比为2d的等比数列;(Ⅱ)解:f′(x)=2x ln2∴函数f(x)的图象在点(a2,b2)处的切线方程为y﹣=ln2(x﹣a2),∵在x轴上的截距为2﹣,∴a2﹣=2﹣,∴a2=2,∴d=a2﹣a1=1,a n=n,b n=2n,a n b n2=n4n,∴T n=1•4+2•42+3•43+…+(n﹣1)•4n﹣1+n•4n,4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,∴T n﹣4T n=4+42+…+4n﹣n•4n+1=﹣n•4n+1=,∴T n=.点评:本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.解答:解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.点评:本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交可得根与系数的关系及弦长问题、向量相等问题、平行四边形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,考查了数形结合和转化能力,属于难题.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点.专题:导数的综合应用.分析:(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.解答:解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.点评:本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.。
2014年高考数学四川卷(文科)word版
2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合()(){}120A x x x =+-…,集合B 为整数集,则AB =( ).A.{}1,0-B.{}0,1C.{}2,1,0,1--D.{}1,0,1,2- 2.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( ) . A.总体 B.个体C.样本的容量D.从总体中抽取的一个样本3.(2014四川文3)为了得到函数()sin 1y x =+的图像,只需把函数sin y x =的图像上所有的点( ).A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度 4.某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( ). (锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A.3B.2D.1 5.若0a b >>,0c d <<,则一定有( ).侧视图俯视图11222211A.a b d c > B.a b d c < C.a b c d > D.a b c d< 6.(2014四川文6)执行如图所示的程序框图,如果输入的,x y ∈R ,那么输出的S 的最大值为( ).A.0B.1C.2D.37.(2014四川文7)已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( ).A.d ac =B.a cd =C.c ad =D.d a c =+8.(2014四川文8)如图所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60m ,则河流的宽度BC 等于( ).A.)2401mB.)1801mC.)1201mD.)301m9.(2014四川文9)设m ∈R ,过定点A 的动直线0x my +=和过定点B的动直线否输出S S开始30mx y m --+=交于点(),P x y ,则PA PB +的取值范围是( ).A.B.C.D.⎡⎣10.(2014四川文10)已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( ).A.2B.3C.8第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.11.双曲线2214x y -=的离心率等于____________. 12.复数22i1i-=+____________. 13.设()f x 是定义在R 上的周期为2的函数,当[)1,1x ∈-时,()242,10,,01,x x f x x x ⎧-+-<=⎨<⎩……,则32f ⎛⎫= ⎪⎝⎭____________. 14.向量()1,2=a ,()4,2=b ,m =+c a b ()m ∈R ,且c 与a 的夹角等于c 与b 的夹角,则m =____________.15.(2014四川文15)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[],M M -.例如,当()31x x ϕ=,()2sin x x ϕ=时,()1x A ϕ∈,()2x B ϕ∈.现有如下命题: ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”; ②若函数()f x B ∈,则()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数()()2ln 21xf x a x x =+++()2,x a >-∈R 有最大值,则()f x B ∈. 其中的真命题有____________(写出所有真命题的序号).三、解答题:本大题共6小题,共75分。
2014年高考四川文科数学试题及答案(word解析版)
2014年高考四川文科数学试题及答案(word解析版)D于( )(A )240(31)m (B )180(21)m (C )120(31)m(D )30(31)m 【答案】C【解析】如图,30ACD ∠=,75ABD ∠=,60AD =m ,在Rt ACD △中,60603tan tan30AD CD=ACD ==∠m , 在Rt ABD △中,()606023tan tan 7523AD BD =ABD ===∠+m,所以()603602312031BC CD BD =-==m,故选C . (9)【2014年四川卷,文9,5分】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+= 交于点(,)P x y ,则||||PA PB +的取值范围是( )(A )[5,25] (B )[10,25] (C )[10,45] (D )[25,45] 【答案】B【解析】直线0x my +=过定点()0,0A ,直线30mx y m --+=过定点()1,3B .①当0m =时,过定点A 的直线方程为0x =,过定点B 的直线方程为3y =,两条直线互相垂直,此时()0,3P ,所以4PA PB +=.②当0m ≠时,直线0x my +=的斜率为1m -,直线30mx y m --+=的斜率为m ,因为11m m -⨯=-,所以两条直线互相垂直,即点P 可视为以AB 为直径的圆上的点.当点P 与点A 或点B 重合时,PA PB +有最小10P 不与点A ,点B 重合时,PAB △为直角CA 75°30°60 mmx-y-m+3=0x+my=0yx 213-1-2-1321PBA三角形,且22210PA PB AB +==.由不等式性质知222252PA PBPA PB++=,所以10,25PA PB ⎡⎤+∈⎣⎦.综合①②得10,25PA PB ⎡⎤+∈⎣⎦,故选B .(10)【2014年四川卷,文10,5分】已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )(A )2 (B )3 (C )1728(D )10 【答案】B【解析】如图所示,设()11,A x y ,()22,B x y ,则12122x x y y +=(*).不妨设A 点在第一象限,则10y >,20y <.设直线AB :x my n =+,代入2y x =中,得20y my n --=,则12y y n =-,代入(*)式,有220n n --=,解得2n =或1n =-(舍),故直线AB 过定点()2,0,所以ABO AFO S S +=△△1211112224y y y ⨯⨯-+⨯⨯1298y y =-()12923382ny y -==≥,故选B .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2014年四川卷,文11,5分】双曲线2214x y-=的离心率等于 . 【答案】5【解析】由双曲线方程2214x y -=知24a=,21b=,2225ca b =+=,所以5c e a ==.(12)【2014年四川卷,文12,5分】复数22i1i-=+ . 【答案】2i -【解析】()()()()()2222i 1i 22i 1i 12i i 2i1i 1i 1i ---==-=-+=-++-.(13)【2014年四川卷,文13,5分】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f =________.【答案】1【解析】()f x 是定义域在R 上的圆周期为2的函数,且()2421001x x f x x x ⎧-+-<=⎨<⎩, 所以231142121222f f ⎛⎫⎛⎫⎛⎫=-=-⨯-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(14)【2014年四川卷,文14,5分】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =_______. 【答案】2【解析】()1,2=a ,()4,2=b ,则()4,22m m m +=++c =a b ,5a =,25b =58m ⋅=+a c ,820m ⋅=+b c .因为c 与a 的夹角等于c 与b 的夹角,所以⋅⋅=⋅⋅a c b c a c b c 525,解得2m =. (15)【2014年四川卷,文15,5分】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,x R ∃∈,()f a b =”;②若函数()f x B ∈,则()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉;④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有____________.(写出所有真命题的序号). 【答案】①③④【解析】对于①,()f x A ∈⇔()f x 的值域为R ⇔b ∀∈R ,a D ∃∈,()f a b =,故①正确;对于②,当()1f x x =,1x >时,()1f x <,即()()[]1,00,11,1-⊆-,但()f x 无最值,故②不正确;对于③,因为x D ∀∈,()g x M ≤,所以总存在0x D ∈,使得()()0f xg x +趋近于无穷大,即()()f x g x B +∉,故③正确;对于④,令2()1x g x x =+,则()()()2222222121'11x x x g x xx+--==++()()()22111x x x+-=+,令()'0g x >,解得11x -<<,故()g x 在()1,1-上单调递增,且()112g =,()112g -=-,又()g x 在()1,+∞上单调递减,1x >时,()0g x >, 又()g x 为奇函数,故()12g x ≤.而()ln(2)h x a x =+,当2x >-时,若0a ≠,则()h x A ∈由③知,()()h x g x B +∉,即()f x 无最大值,所以0a =时,()f x 有最大值,此时()2()1x f x g x B x ==∈+,故④正确.综上:真命题的有①③④.三、解答题:本大题共6题,共75分. (16)【2014年四川卷,文16,12分】一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . (1)求“抽取的卡片上的数字满足a b c +=”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解:(1)由题意知,(),,a b c 所有可能的结果为()1,1,1,()1,1,2,()1,1,3,()1,2,1,()1,2,2,()1,2,3,()1,3,1,()1,3,2,()1,3,3,()2,1,1,()2,1,2,()2,1,3,()2,2,1,()2,2,2,()2,2,3,()2,3,1,()2,3,2,()2,3,3,()3,1,1,()3,1,2,()3,1,3,()3,2,1,()3,2,2,()3,2,3,()3,3,1,()3,3,2,()3,3,3,共27种.设“抽取的卡片上的数字满足a b c +=”为事件A ,则事件A 包括()1,1,2,()1,2,3,()2,1,3,共3种.所以()31279P A ==.因此,“抽取的卡片上的数字满足a b c +=”的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括()1,1,1,()2,2,2,()3,3,3,共3种.所以()()3811279P B P B =-=-=.因此“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89. (17)【2014年四川卷,文17,12分】已知函数()sin(3)4f x x π=+. (1)求()f x 的单调递增区间;(2)若α是第二象限角,4()cos()cos2354f απαα=+,求cos sin αα-的值.解:(1)因为函数sin y x =的单调递增区间为ππ2π,2π22k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .由πππ2π32π242k x k -+++,k ∈Z ,得π2ππ2π43123k k x -++,k ∈Z .所以函数()f x 的单调递增区间为π2ππ2π,43123k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(2)由已知,有()22π4πsin cos cos sin 454αααα⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭, 所以()22ππ4ππsin cos cos sin cos cos sin sin cos sin 44544αααααα⎛⎫+=-- ⎪⎝⎭, 即()()2ππ4sin cos cos sin cos sin sin cos 445αααααα+=-+.当sin cos 0αα+=时,由α是第二象限角,知3π2π4k α=+,k ∈Z .此时cos sin 2αα-=-当sin cos 0αα+≠时,有()25cos sin 4αα-=.由α是第二象限角,知cos sin 0αα-<,此时5cos sin αα-=.综上所述,cos sin 2αα-=-5. (18)【2014年四川卷,文18,12分】在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形.(1)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ;(2)设D ,E 分别是线段BC ,1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE平面1A MC ?请证明你的结论.解:(1)因为四边形11ABB A 和11ACC A 都是矩形,所以1AA AB ⊥,1AA AC ⊥.因为AB ,AC 为平面ABC 内两条相交直线,所以1AA ⊥平面ABC .因为直线BC ⊂平面ABC ,所以1AA BC ⊥.又AC BC ⊥,1AA , AC 为平面11ACC A 内两条相交直线,所以BC ⊥平面11ACC A .(2)取线段AB 的中点M ,连接1A M ,MC ,1A C ,1AC ,设O 为1A C ,1AC 的交点.由已知可知O 为1AC 的中点.连接MD ,OE ,则MD ,OE 分别为ABC ∆,1ACC ∆的中位线,所以=1//2MD AC ,=1//2OE AC ,因此=//MD OE .连接OM ,从而四边形MDEO 为平行四边形,则//DE MO .因为直线DE ⊄平面1A MC ,所以直线//DE 平面1A MC ,即线段AB 上存在一点M (线段AB 的中点),使直线//DE DB11AB A M E OC 1A 1B 1DC BA平面1A MC . (19)【2014年四川卷,文19,12分】设等差数列{}na 的公差为d ,点(,)n na b 在函数()2x f x =的图象上(n N *∈). (1)证明:数列{}nb 为等差数列;(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n na b 的前n 项和nS .解:(1)证明:由已知可知,20na nb=>,当1n 时,1122n naa dn nb b+-+==,所以数列{}nb 是首项为12a ,公比为2d等比数列.(2)函数()2xf x =在()22,a b 处的切线方程为()()22222ln 2a a y x a -=-,它在x 轴上的截距为21ln 2a -.由题意知,2112ln 2ln 2a -=-,解得22a=.所以211d aa =-=,na n=,2nn b =,24nn na bn =⋅. 于是,()231142434144n nn T n n -=⨯+⨯+⨯++-⨯+⨯,()23141424144nn n T n n +=⨯+⨯++-⨯+⨯,因此()1121113444444444439n n n n n nnn T T n n ++++-+--=+++-⨯=-⨯=.所以()113449n n n T +-+=.(20)【2014年四川卷,文20,13分】已知椭圆C :22221x y a b +=(0a b >>)的左焦点为(2,0)F -6.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平 行四边形时,求四边形OPTQ 的面积.解:(1)因为(2,0)F -,所以2c =,又6e =,所以6a =,2222b a c =-=,即椭圆C 的方程为22162x y +=.(2)如图所示,由题意可设直线PQ 的方程为2x my =-.当0m =时,2x =-,此时()3,0T -,P ,Q 关于点F 对称,但DF TF ≠,故四边形OPTQ 不是平行四边 形,与题意不符,故0m ≠.直线TF :()2y m x =-+,令3x =-,得y m =,即()3,T m -,连接OT ,设OT PQ E =,则3,22m E ⎛⎫-⎪⎝⎭,联立方程222162x my x y =-⎧⎪⎨+=⎪⎩,消去x 整理得()22236my y -+=,即()223420m y my +--=,显然()2216830m m ∆=++>,令()11,P x y ,()22,Q x y .则12243m y y m +=+,12223y y m -=+,则1222232E y y m my m +===+,解得21m=.此时()()221212PQ x x y y =-+-()22121214m y y y y=++-2126=+=,112TF =+=.所以四边形OPTQ 的面积1262232S PQ TF =⨯⨯⨯=⨯=.(21)【2014年四川卷,文21,14分】已知函数2()1xf x e ax bx =---,其中,a b R ∈, 2.71828e =⋅⋅⋅ 为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,证明:21e a -<<. 解:(1)()2e 1xf x ax bx =---,()()e 2xg x f x ax b '==--. ()e 2xg x a '=-.当[]0,1x ∈时,()[]12,e 2g x a a '∈--.当12a 时,()0g x ',所以()g x 在[]0,1上单调递增.因此()g x 在[]0,1上的最小值是()01gb =-;当e2a 时,()0g x ',所以()g x 在[]0,1上单调递减.因此()g x 在[]0,1上的最小值是()1e 2g a b =--;当1e22a <<时,令()0g x '=,得()()ln 20,1x a =∈.所以函数()g x 在区间()0,ln 2a ⎡⎤⎣⎦上单调递减,在区间()(ln 2,1a ⎤⎦上单调递增.于是,()g x 在[]0,1上的最小值是()()()ln 222ln 2g a a a a b =--.综上所述,当12a 时,()g x 在[]0,1上的最小值是()01gb =-;当1e22a <<时,()g x 在[]0,1上的最小 值是()()()ln 222ln 2g a a a ab =--;当e2a 时,()g x 在[]0,1上的最小值是()1e 2g a b =--.(2)设0x 为()f x 在区间()0,1内的一个零点,则由()()000f f x ==可知,()f x 在区间()00,x 上不可能单调递增,也不可能单调递减.则()g x 不可能恒为正,也不可能恒为负.故()g x 在区间()00,x 内存在零点 1x .同理()g x 在()0,1x 区间内存在零点2x .所以()g x 在区间()0,1内至少有两个零点. 由(1)知,当12a 时,()g x 在[]0,1上单调递增,故()g x 在()0,1内至多有一个零点.当e 2a 时,()g x 在[]0,1上单调递减,故()g x 在()0,1内至多有一个零点.所以1e22a <<. 此时()g x 在区间()0,ln 2a ⎡⎤⎣⎦上单调递减,在区间()(ln 2,1a ⎤⎦上单调递增.因此()(10,ln 2x a ∈⎤⎦,()()2ln 2,1x a ∈,必有()010g b =->,()1e 20g a b =-->. 由()10f =,有e 12a b +=-<,有()01e 20g b a =-=-+>,()1e 210g a b a =--=->,得e 21a -<<.所以函数()f x在区间()0,1内有零点时,e21-<<.a。
2014年四川省高考数学试卷(文科)学生版
2014 年四川省高考数学试卷(文科)一、选择题(共10 小题,每题 5 分,共 50 分)1.( 5 分)(2014?四川)已知会合 A={ x| (x+1)( x﹣ 2)≤0} ,会合 B 为整数集,则 A∩B=()A.{ ﹣1,0}B.{ 0,1}C.{ ﹣2,﹣ 1,0,1} D.{ ﹣1,0,1,2}2.(5 分)(2014?四川)在“世界念书日”前夜,为了认识某地5000 名居民某天的阅读时间,从中抽取了200 名居民的阅读时间进行统计剖析,在这个问题中, 5000 名居民的阅读时间的全体是()A.整体B.个体C.样本的容量D.从整体中抽取的一个样本3.(5 分)(2014?四川)为了获得函数y=sin(x+1)的图象,只要把函数y=sinx 的图象上全部的点()A.向左平行挪动 1 个单位长度B.向右平行挪动 1 个单位长度C.向左平行挪动π个单位长度D.向右平行挪动π个单位长度4.(5 分)(2014?四川)某三棱锥的侧视图、俯视图以下图,则该三棱锥的体积为()(锥体体积公式: V= Sh,此中 S 为底面面积, h 为高)A.3B.2C.D.15.(5 分)(2014?四川)若 a>b>0,c<d<0,则必定有()A.>B.<C.>D.<6.(5 分)(2014?四川)履行以下图的程序框图,若输入的x,y∈ R,那么输出的 S 的最大值为()A.0B.1C.2D.37.(5 分)(2014?四川)已知 b>0,log5b=a, lgb=c, 5d =10,则以下等式必定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c8.(5 分)(2014?四川)如图,从气球 A 上测得正前面的河流的两岸B,C的俯角分别为75°, 30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 9.(5 分)(2014?四川)设 m∈ R,过定点 A 的动直线 x+my=0 和过定点 B 的直线 mx﹣ y﹣m+3=0 交于点P( x, y),则 | PA|+| PB| 的取值范围是()A.[, 2]B.[,2]C.[,4]D.[ 2,4] 10.(5 分)( 2014?四川)已知 F 为抛物线 y2=x 的焦点,点 A,B 在该抛物线上且位于 x 轴的双侧,? =2(此中 O 为坐标原点),则△ ABO 与△ AFO 面积之和的最小值是()A .2B .3C .D .二、填空题(本大题共 5 小题,每题 5 分,共 25 分)11.( 5 分)(2014?四川)双曲线 ﹣ y 2=1 的离心率等于 .12.( 5 分)(2014?四川)复数=.13.(5 分)(2014?四川)设 f (x )是定义在 R 上的周期为 2 的函数,当 x ∈ [ ﹣ 1,)时, ( ) , <,则 f ( )= .1 f x = , <14.( 5 分)(2014?四川)平面向量 =(1,2), =( 4, 2), =m + (m ∈ R ),且 与 的夹角等于与 的夹角,则 m=.15.( 5 分)(2014?四川)以 A 表示值域为 R 的函数构成的会合, B 表示拥有以下性质的函数 φ(x )构成的会合:关于函数 φ(x ),存在一个正数 M ,使得函数 φ(x )的值域包括于区间 [ ﹣M ,M ] .比如,当 φ1(x )=x 3,φ2(x )=sinx 时, φ1(x )∈ A ,φ2(x )∈ B .现有以下命题:①设函数 f ( x )的定义域为 D ,则 “f(x )∈ A ”的充要条件是 “? b ∈R ,? a ∈D ,f(a )=b ”;②函数 f (x )∈ B 的充要条件是 f (x )有最大值和最小值;③若函数 f ( x ),g (x )的定义域同样,且 f ( x )∈ A ,g (x )∈ B ,则 f (x )+g( x )?B .④若函数 f ( x )=aln (x+2)+(x >﹣ 2,a ∈R )有最大值,则 f (x )∈ B .此中的真命题有.(写出全部真命题的序)三、解答题(共 6 小题,共 75 分)16.(12 分)(2014?四川)一个盒子里装有三张卡片, 分别标志有数字1、2、3,这三张卡片除标志的数字外完整同样.随机有放回地抽取 3 次,每次抽取 1,将抽取的卡片上的数字挨次 a、b、c.(Ⅰ)求“抽取的卡片上的数字足 a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a、b、c 不完整同样”的概率.17.( 12 分)( 2014?四川)已知函数 f (x)=sin(3x+ ).(1)求 f (x)的增区;(2)若α是第二象限角, f()= cos(α+ )cos2α,求 cosα sin α的.18.( 12 分)( 2014?四川)在如所示的多面体中,四形1 1和 ACC1 1都ABB A A矩形(Ⅰ)若 AC⊥ BC,明:直 BC⊥平面 ACC;1A1(Ⅱ) D、E 分是段 BC、CC1的中点,在段AB 上能否存在一点 M,使直 DE∥平面A1 MC?明你的.19.(12 分)(2014?四川)等差数列 { a n} 的公差 d,点( a n,b n)在函数 f( x)=2x的象上( n∈N*)(Ⅰ)明:数列 { b n} 等比数列;(Ⅱ)若 a1=1,函数 f(x)的象在点( a2,b2)的切在 x 上的截距 2,求数列 { a n b n2} 的前 n 和 S n.20.(13 分)(2014?四川)已知 C:+ =1(a>b>0)的左焦点 F( 2,0),离心率.(Ⅰ)求 C 的准方程;(Ⅱ) O 坐原点, T 直 x= 3 上一点, F 作 TF 的垂交于 P、Q,当四形 OPTQ是平行四形,求四形OPTQ的面.21.(14 分)(2014?四川)已知函数(fx)=e x ax2 bx 1,此中 a,b∈ R,e=2.71828⋯自然数的底数.(1)设 g( x)是函数 f(x)的导函数,求函数 g(x)在区间 [ 0,1] 上的最小值;(2)若 f (1)=0,函数 f (x)在区间( 0,1)内有零点,求 a 的取值范围.。
2014年高考文科数学四川卷有答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B = ( )A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 2.在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有( )A .a bc d > B .a b c d < C .a b d c> D .a b d c<5.执行如图的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .192 种B .216 种C .240 种D .288 种7.平面向量a (1,2)=,b (4,2)=,c m =a +b ()m ∈R ,且c 与a 的夹角等于c 与b 的夹角,则m =( )A .2-B .1-C .1D .28.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是 ( )A.B .C .[]33D .[39.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-.现有下列命题:①()()f x f x -=-;②22()2()1xf f x x =+;③|()|2||f x x ≥.其中的所有正确命题的序号是( )A .①②③B .②③C .①③D .①②10.已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB =(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( )A .2B .3CD 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分. 11.复数22i1i-=+ . 12.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-=⎨⎩≤<≤<则3()2f = .13.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46 m ,则河流的宽度BC 约等于m .(用四舍五入法将结果精确到个位.参考数据:sin670.92≈,cos670.39≈,sin370.60≈,cos370.80≈ 1.73≈)14.设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB 的最大值是 .15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1xf x a x x =+++(2x >-,a ∈R )有最大值,则()f xB ∈. 其中的真命题有 (写出所有真命题的序号).-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数π()sin(3)4f x x=+.(Ⅰ)求()f x的单调递增区间;(Ⅱ)若α是第二象限角,4π()cos()cos2354fααα=+,求cos sinαα-的值.17.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(Ⅰ)设每盘游戏获得的分数为X,求X的分布列;(Ⅱ)玩三盘游戏,至少有一盘出现音乐的概率是多少?(Ⅲ)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 18.(本小题满分12分)三棱锥A BCD-及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN NP⊥.(Ⅰ)证明:P为线段BC的中点;(Ⅱ)求二面角A NP M--的余弦值.19.(本小题满分12分)设等差数列{}na的公差为d,点(,)n na b在函数()2xf x=的图象上(n*∈N).(Ⅰ)若12a=-,点87(,4)a b在函数()f x的图象上,求数列{}na的前n项和nS;(Ⅱ)若11a=,函数()f x的图象在点22(,)a b处的切线在x轴上的截距为12ln2-,求数列{}nnab的前n项和nT.20.(本小题满分13分)已知椭圆C:22221x ya b+=(0)a b>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的左焦点,T为直线3x=-上任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)证明:OT平分线段PQ(其中O为坐标原点);(ⅱ)当||||TFPQ最小时,求点T的坐标.21.(本小题满分14分)已知函数2()e1xf x ax bx=---,其中,a b∈R,e 2.71828=⋅⋅⋅为自然对数的底数.(Ⅰ)设()g x是函数()f x的导函数,求函数()g x在区间[0,1]上的最小值;(Ⅱ)若(1)0f=,函数()f x在区间(0,1)内有零点,求a的取值范围.数学试卷第4页(共18页)数学试卷第5页(共18页)数学试卷第6页(共18页)101{A B-=,【提示】由题意,可先化简集合【考点】交集及其运算32最大值,画出可行域如图:1x=⎧【解析】解:如图:31tan45tan30-︒-︒tan1560AD︒=,∴tan6060DC AD=︒=120(31)(m)-.数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页) 数学试卷 第11页(共18页) 数学试卷 第12页(共18页)2OA OB =,∴12122x x y y +=,结合,B 位于x 轴的两侧,∴122y y =-,故不妨令点A 在轴上方,则0y >,又1123y y =. 面积之和的最小值是【提示】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及2OA OB =消元,最后将面积之和表示出来,探求最值问题【考点】直线与圆锥曲线的关系【答案】2【解析】(,2)c a b m m m =+=||||||||a c b ca cbc =,即2252051620525m m m =+++,即584m +=解得2m =.【提示】利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.数学试卷 第13页(共18页) 数学试卷 第14页(共18页) 数学试卷 第15页(共18页)4cos sin 5α(﹣是第二象限角,∴cos α-ABAC A =1BC AA AC A =,,11BC ACC A ⊥平面AB 的中点M 1DEA MC 平面1DE A MC 平面231142434(1)44n nn n -++++-+2341142434(1)44n n n n +++++-+114(13)4443n n n n ++----⋅=,∴1(31)449n n n T +-+=. 是平行四边形,∴OP QT =,∴(1=±.2122242|||242333m y y m m -⎛⎫-=-= ⎪++⎝⎭. 22(,)Q x y .直线方程与椭圆方程可得根与系可得OP QT =,即可解得21|||y y -. 【考点】直线与圆锥曲线的综合问题数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)11ln 2x x ⎫=-⎪⎭上单调递增,在区间。
2014年高考文科数学四川卷-答案
设 ABP ,则 PA
10 sin , PB
10cos
,由 |
PA |
0且|
PB
|
0
,可得
0,
π 2
∴ | PA | | PB |
10(sin cos ) 2
5 sin
4
,∵
0,
π 2
,∴
π 4
m
0
,根据韦达定理有
y1 y2
m ,∵ OA OB 2 ,∴ x1
x2 y1
y2
2 ,结合
y12 x1 及 y22 x2 ,得 ( y1 y2 )2 y1 y2 2 0 ,∵点 A,B 位于 x 轴的两侧,∴ y1 y2 2 ,故 m 2 .
不妨令点
2 / 10
【解析】解:如图:
由图可知, DAB 15 ,∵ tan15 tan(45-30)= tan 45 tan 30
1
3 3
2
3.
1 tan 45 tan 30
11
3 3
在 Rt△ADB 中,又 AD 60 ,∴ DB AD tan15 60 (2 3) 120 60 3 .
π 4
x
2kπ 3
π 12
,故函数的增区间为
2kπ 3
π 4
,2kπ 3
π 12
,k
Z
.
(2)由函数的解析式可得
f
a 3
sin
π 4
2014年四川高考文科数学试题含答案(Word版).
2014年普通高等学校招生全国统一考试(四川卷数学(文史类本试题卷分第Ⅰ卷(选择题和第Ⅱ卷(非选择题。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷 (选择题共50分注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合{|(1(20}A x x x =+-≤,集合B 为整数集,则AB =(A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( A 、总体 B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1y x =+的图象,只需把函数sin y x =的图象上所有的点(A 、向左平行移动1个单位长度B 、向右平行移动1个单位长度C 、向左平行移动π个单位长度D 、向右平行移动π个单位长度 4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( (锥体体积公式:13V Sh =,其中S 为底面面积,h 为高 A 、3 B 、2 CD 、1 5、若0a b >>,0c d <<,则一定有(A 、a b d c > B 、a b d c < C 、a b c d > D 、a b c d<6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为(A 、0B 、1C 、2D 、3 7、已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( A 、d ac = B 、a cd = C 、c ad = D 、d a c =+ 侧视图俯视图112222118、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60m ,则河流的宽度BC 等于(A、1m B、1mC、1m D、1m9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,P x y ,则||||PA PB +的取值范围是(A、 B、 C、 D、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点,则ABO ∆与AFO ∆面积之和的最小值是( A 、2 B 、3 C、8D第Ⅱ卷 (非选择题共100分注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。
2014四川高考文科数学试题及答案(word)
2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则AB =( )A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2 CD 、15、若0a b >>,0c d <<,则一定有( )A 、a b d c > B 、a b d c < C 、a b c d > D 、a b c d<6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( )A 、0B 、1C 、2D 、37、已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )侧视图俯视图112222118、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( )A、1)m B、1)m C、1)m D、1)m9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A、 B、 C、 D、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A 、2 B 、3 C、8D第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2014年四川高考数学文史类试卷及答案
2014年四川高考数学文史类试卷及答案D10.已知F 为抛物线x =2y的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2=⋅(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是(A )2 (B )3(C )8217 (D )10第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答案区域内作答。
作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚。
答在试题卷,草稿纸上无效。
第Ⅱ卷共11小题。
二、填空题:本大题共5小题,每小题5分,共25分。
11.双曲线1422=-y x 的离心率等于_____________.12.复数ii +-122=____________. 13.设)(x f 是定义在R 上的周期为2的函数,当)1,1[-∈x 时,,,24{)(2x x x f +-=,10,01<≤<≤-x x 则)23(f =____________.14. 平面向量)(2,1=a ,)(2,4=b ,)(R m m ∈+=b a c ,且c 与a 的夹角等于c 与b 的夹角,则=m _____________.15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数)(x ϕ组成的集合:对于函数)(x ϕ,存在一个正数M ,使得函数)(x ϕ的值域包含于区间],[M M -.例如,当31)(x x =ϕ,x x sin )(2=ϕ时,A x ∈)(1ϕ,B x ∈)(2ϕ. 现在如下命题:①设函数)(x f 的定义域为D ,则“A x f ∈)(”的充要条件是“b a f D a R b =∈∃∈∀)(,,”;②若函数B x f ∈)(,则)(x f 有最大值和最小值;③若函数)(x f ,)(x g 的定义域相同,且B x g A x f ∈∈)(,)(,则B x g x f ∉+)()(; ④若函数),2(1)2ln()(2R a x x x x a x f ∈->+++=有最大值,则B x f ∈)(.其中的真命题有________________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分。
2014年全国高考文科数学试题及答案-四川卷
2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则AB =( )A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}- 2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( )A 、向左平行移动1个单位长度B 、向右平行移动1个单位长度C 、向左平行移动π个单位长度D 、向右平行移动π个单位长度4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2 C、1 5、若0a b >>,0c d <<,则一定有( )A 、a b d c >B 、a b d c<侧视图俯视图11222211C 、a b c d > D 、a b c d< 6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S的最大值为( ) A 、0 B 、1 C 、2 D 、37、已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+ 8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60m ,则河流的宽度BC 等于( )A、1)m B、1)m C、1)m D、1)m9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A、 B、 C、 D、 10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A 、2 B 、3 CD第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。
2014年四川高考数学文史类试卷及答案
绝密★启用前2014年普通高等学校招生全国统一考试(四川卷)数学(文史类)本试题卷分第I 卷(选择题)和n 卷(非选择题) 。
第I 卷1至2页,第n 卷3至4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试题 卷和答题卡一并交回。
第I 卷(选择题共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第I 卷共10小题。
一、选择题:本大题共 10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题 目要求的。
1•已知集合A {x |(x 1)(x 2) 0},集合B 为整数集,则 A B(A ) { 1,0} (B ) {0,1} (C ) { 2, 1,0,1}( D ) { 1,0,2}2•在“世界读书日”前夕,为了了解某地 5000名居民某天的阅读时间,从中抽取了 200名居民的阅读时间进行统计分析•在这个问题中,5000名居民的阅读时间的全体是 (A )总体 (B )个体(D )从总体中抽取的一个样本sin(x 1)的图象,只需把函数 y sinx 的图象上所有的点(A )向左平行移动1个单位长度 (B) 向右平行移动1个单位长度 (C) 向左平行移动 个单位长度(D)向右平行移动 个单位长度 4•某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是1(椎体体积公式: V -Sh ,其中S 为底面面积,h 为高)3(A ) 3( B ) 2(C ) 3 ( D ) 1(C )样本的容量3•为了得到函数y5•若a b 0 , c d 0 ,则一定有(C) c ad (D) d a c8•如图,从气球A上测得正前方的河流的两岸 B , C的俯角分别为75,30,此时气球的高是60m,则河流的宽度BC等于(A)240( 3 1)m (B)180(.2 1)m(C)120( . 3 1)m (D)30( . 3 1)my m 3 0交于点P(x, y),则9.设m R,过定点A的动直线x my 0和过定点B的动直线mx| PA | |PB |的取值范围是(A)[ .5,2.5] (B)[ •一10,2.、5](C)[ 10,4 5] (D)[2,5,4.5]10.已知F为抛物线y2 x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA OB 2 (其中0为坐标原点),贝U ABO与AFO面积之和的最小值是(A)2 (B)3(C)17 2(D). 108第n卷(非选择题共100分) 注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答案区域内作答。
2014年四川省高考数学试卷(文科)(含解析版)
2014年四川省高考数学试卷(文科)一、选择题(共10小题,每小题5分,共50分)1.(5分)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A ∩B=()A .{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}2.(5分)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本3.(5分)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度4.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3B.2C.D.15.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<6.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()第 1 页共 27 页 1A.0B.1C.2D.37.(5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c8.(5分)如图,从气球A上测得正前方的河流的两岸B ,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC 等于()A.m B.m C.m D.m 9.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y ),则|PA |+|PB|的取值范围是()A .[,2]B .[,2]C.[,4]D.[2,4] 10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()2第 2 页共 27 页A.2B.3C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)双曲线﹣y2=1的离心率等于.12.(5分)复数=.13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f (x)=,则f()=.14.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题(共6小题,共75分)16.(12分)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;第 3 页共 27 页 3(Ⅱ)求“抽取的卡片上的数字a、b 、c 不完全相同”的概率.17.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.18.(12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.4第 4 页共 27 页19.(12分)设等差数列{a n}的公差为d,点(a n ,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.20.(13分)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.第 5 页共 27 页 521.(14分)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.6第 6 页共 27 页2014年四川省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】由题意,可先化简集合A,再求两集合的交集.【解答】解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选:D.【点评】本题考查求交,掌握理解交的运算的意义是解答的关键.2.(5分)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本【考点】BE:用样本的数字特征估计总体的数字特征.【专题】5I:概率与统计.【分析】根据题意,结合总体、个体、样本、样本容量的定义可得结论.第 7 页共 27 页7【解答】解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A .【点评】本题主要考查总体、个体、样本、样本容量的定义,属于基础题.3.(5分)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】57:三角函数的图像与性质.【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3B.2C.D.18第 8 页共 27 页【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.【解答】解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2,∴三棱锥的体积V=××2××=1.故选:D.【点评】本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.5.(5分)若a>b >0,c<d<0,则一定有()A.>B.<C.>D .<【考点】R3:不等式的基本性质.【专题】59:不等式的解法及应用.【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,∴C、D不正确;=﹣3,=﹣∴A不正确,B正确.第 9 页共 27 页9解法二:∵c<d<0,∴﹣c>﹣d>0,∵a >b>0,∴﹣ac>﹣bd,∴,∴.故选:B.【点评】本题考查不等式比较大小,特值法有效,带数计算正确即可.6.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3【考点】7C:简单线性规划;E9:程序框图的三种基本逻辑结构的应用.10第 10 页共 27 页【专题】5K:算法和程序框图.【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.7.(5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c【考点】4M:对数值大小的比较.【专题】51:函数的性质及应用.【分析】利用指数式与对数式的互化、对数的运算性质和换底公式即可得出.第 11 页共 27 页11【解答】解:由5d=10,可得,∴cd=lgb=log5b=a.故选:B.【点评】本题考查了指数式与对数式的互化、对数的运算性质和换底公式,属于基础题.8.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m【考点】HU:解三角形.【专题】12:应用题;58:解三角形.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC 中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.12第 12 页共 27 页故选:B.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.9.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB |的取值范围是()A.[,2]B.[,2]C.[,4]D.[2,4]【考点】5A:函数最值的应用;IM:两条直线的交点坐标.【专题】5B:直线与圆.【分析】可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),∵动直线x+my=0和动直线mx﹣y﹣m+3=0的斜率之积为﹣1,始终垂直,P又是两条直线的交点,∴PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.设∠ABP=θ,则|PA|=sinθ,|PB|=cosθ,由|PA|≥0且|PB|≥0,可得θ∈[0,]∴|PA|+|PB|=(sinθ+cosθ)=2sin(θ+),∵θ∈[0,],∴θ+∈[,],∴sin(θ+)∈[,1],第 13 页共 27 页13第 14 页 共 27 页14 ∴2sin (θ+)∈[,2],故选:B .【点评】本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.10.(5分)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,•=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3C .D . 【考点】K8:抛物线的性质.【专题】5E :圆锥曲线中的最值与范围问题.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB 的方程为:x=ty +m ,点A (x 1,y 1),B (x 2,y 2), 直线AB 与x 轴的交点为M (m ,0),由⇒y 2﹣ty ﹣m=0,根据韦达定理有y 1•y 2=﹣m , ∵•=2,∴x 1•x 2+y 1•y 2=2, 结合及,得, ∵点A ,B 位于x 轴的两侧,∴y 1•y 2=﹣2,故m=2.不妨令点A 在x 轴上方,则y 1>0,又,∴S △ABO +S △AFO ═×2×(y 1﹣y 2)+×y 1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选:B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)双曲线﹣y2=1的离心率等于.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的方程,求出a,b,c,即可求出双曲线的离心率.【解答】解:由双曲线的方程可知a2=4,b2=1,则c2=a2+b2=4+1=5,第 15 页共 27 页15则a=2,c=,即双曲线的离心率e==,故答案为:【点评】本题主要考查双曲线的离心率的计算,求出a,c是解决本题的关键,比较基础.12.(5分)复数=﹣2i.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f (x)=,则f()=1.【考点】3Q:函数的周期性.【专题】11:计算题.【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.16第 16 页共 27 页【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.14.(5分)平面向量=(1,2),=(4,2),=m+(m∈R ),且与的夹角等于与的夹角,则m=2.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.【解答】解:∵向量=(1,2),=(4,2),=m+(m ∈R),∴=m(1,2)+(4,2)=(m+4,2m+2).∴=m+4+2(2m+2)=5m+8,=4(m+4)+2(2m+2)=8m+20.,=2.∵与的夹角等于与的夹角,∴=,∴,化为5m+8=4m+10,解得m=2.故答案为:2.【点评】本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的第 17 页共 27 页17值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【考点】29:充分条件、必要条件、充要条件;2H:全称量词和全称命题;2I:存在量词和特称命题;2K:命题的真假判断与应用;34:函数的值域.【专题】23:新定义;3A:极限思想;51:函数的性质及应用;59:不等式的解法及应用;5L:简易逻辑.【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g (x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f(x)+g(x)∈(﹣∞,+∞).18第 18 页共 27 页则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f (x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题(共6小题,共75分)16.(12分)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a、b、c不完全相同”的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c 的(a,b,c有计3个,由此求得“抽取的卡片上的数字满足a+b=c”的概率.(Ⅱ)所有的可能结果(a,b,c)共有3×3×3种,用列举法求得满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)共计三个,由此求得“抽取的卡片上的数字a,b,c完全相同”的概率,再用1减去此概率,即得所求.【解答】解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,故“抽取的卡片上的数字满足a+b=c”的概率为=.(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:(1,1,1)、(2,2,2)、(3,3,3),共计三个,第 19 页共 27 页19故“抽取的卡片上的数字a,b ,c完全相同”的概率为=,∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于中档题.17.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.【专题】56:三角函数的求值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z ,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin (α+),又f ()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin (3x +),令2kπ﹣≤3x +≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k ∈Z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)20第 20 页共 27 页即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.18.(12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.【考点】LS:直线与平面平行;LW:直线与平面垂直.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)先证明AA1⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面ACC1A1;(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1,证明四边形MDEO为平行四边形即可.【解答】(Ⅰ)证明:∵四边形ABB1A1和ACC1A1都为矩形,∴AA1⊥AB,AA1⊥AC,∵AB∩AC=A,第 21 页共 27 页21∴AA1⊥平面ABC,∵BC⊂平面ABC,∴AA1⊥BC,∵AC⊥BC,AA1∩AC=A,∴直线BC⊥平面ACC1A1;(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC 1,设O为A1C,AC1的交点,则O为AC1的中点.连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,∴MD∥OE,MD=OE,连接OM,则四边形MDEO为平行四边形,∴DE∥MO,∵DE⊄平面A1MC,MO⊂平面A1MC,∴DE∥平面A1MC,∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.【点评】本题考查线面垂直的判定与性质的运用,考查存在性问题,考查学生分析解决问题的能力,属于中档题.19.(12分)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.22第 22 页共 27 页【考点】8M:等差数列与等比数列的综合.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用等比数列的定义证明即可;(Ⅱ)先由(Ⅰ)求得a n,b n,再利用错位相减求数列{a n b n2}的前n项和S n.【解答】(Ⅰ)证明:由已知得,b n =>0,当n≥1时,===2d,∴数列{b n }为首项是,公比为2d的等比数列;(Ⅱ)解:f′(x)=2x ln2∴函数f(x)的图象在点(a2,b2)处的切线方程为y﹣=ln2(x﹣a2),∵在x轴上的截距为2﹣,∴a2﹣=2﹣,∴a2=2,∴d=a2﹣a1=1,a n=n,b n=2n,a n b n2=n4n,∴T n=1•4+2•42+3•43+…+(n﹣1)•4n﹣1+n•4n ,4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,∴T n﹣4T n=4+42+…+4n﹣n•4n+1=﹣n•4n+1=,∴T n=.【点评】本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.20.(13分)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;第 23 页共 27 页23(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【考点】KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ ,可得直线PQ的方程为x=my﹣2.设P(x1,y 1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P (x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.24第 24 页共 27 页∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交可得根与系数的关系及弦长问题、向量相等问题、平行四边形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,考查了数形结合和转化能力,属于难题.21.(14分)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【考点】51:函数的零点;6E:利用导数研究函数的最值.【专题】53:导数的综合应用.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.第 25 页共 27 页25【解答】解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b ,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x )在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a ≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x 26第 26 页共 27 页<∴h (x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=e x﹣2ax﹣b=0,故有e x=2ax+b且f(1)=0知e﹣1=a+b,则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a +1﹣e)x+e﹣a﹣2,开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,故f(x)min<0,故e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.第 27 页共 27 页27。
2014年普通高等学校招生全国统一考试数学(四川卷)文
2014年普通高等学校招生全国统一考试(四川卷)数学(文科)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2014四川,文1)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0}B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2}答案:D解析:∵A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},A∩B=A∩Z={x|-1≤x≤2}∩Z={-1,0,1,2},故选D.2.(2014四川,文2)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案:A解析:由题意知,5000名居民的阅读时间是总体,200名居民的阅读时间为一个样本;每个居民的阅读时间为个体;200为样本容量;故选A.3.(2014四川,文3)为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度答案:A解析:根据图象的变换规律“左加右减”知,选A.4.(2014四川,文4)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是(锥体体积公式:V=13Sh,其中S为底面面积,h为高)()A.3B.2C.√3D.1答案:D解析:由俯视图知该三棱锥的底面积S底=12×2×√3=√3,由侧视图知该三棱锥的高h=√3.所以V三棱锥=13S底×h=13×√3×√3=1,故选D.5.(2014四川,文5)若a>b>0,c<d<0,则一定有()A.ad >bcB.ad<bcC.ac >bdD.ac<bd答案:B解析:∵a>b>0,c<d<0,∴-c>-d>0,∴-ac>-bd,即ac<bd.又∵dc>0,∴acdc <bddc,即ad <bc,故选B.6.(2014四川,文6)执行如图的程序框图,如果输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3 答案:C解析:记M={(x,y)|{x≥0,y≥0,x+y≤1}.由程序框图知,当(x,y)∈M时,S=2x+y;当(x,y)∉M时,S=1.如图,画出集合M表示的可行域(阴影部分).移动直线l0:y=-2x.由图可知,当直线l0过点A(1,0)时,目标函数S=2x+y取得最大值,此时S max=2×1+0=2.所以,当(x,y)∈M时,S的最大值为2>1,所以输出的S的最大值为2.故选C.7.(2014四川,文7)已知b>0,log5b=a,lg b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c答案:B解析:由log5b=a,得lgblg5=a;由5d=10,得d=log510=lg10lg5=1lg5,又lg b=c,所以cd=a.故选B.8.(2014四川,文8)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.240(√3-1)mB.180(√2-1)mC.120(√3-1)mD.30(√3+1)m答案:C解析:如图,作AD⊥BC,垂足为D.由题意,得DC=60×tan60°=60√3(m),DB=60×tan15°=60×tan(45°-30°)=60×tan45°-tan30°1+tan45°tan30°=60×-√331+√33=(120-60√3)m .所以BC=DC-DB=60√3-(120-60√3)=120√3-120=120(√3-1)(m),故选C .9.(2014四川,文9)设m ∈R ,过定点A 的动直线x+my=0和过定点B 的动直线mx-y-m+3=0交于点P (x ,y ),则|PA|+|PB|的取值范围是( ) A.[√5,2√5] B.[√10,2√5] C.[√10,4√5] D.[2√5,4√5]答案:B解析:由题意,得A (0,0),B (1,3),因为1×m+m×(-1)=0,所以两直线垂直,所以点P 在以AB 为直径的圆上,所以PA ⊥PB. 所以|PA|2+|PB|2=|AB|2=10, 设∠ABP=θ,则|PA|+|PB|=√10sin θ+√10cos θ =2√5sin (θ+π4). 因为|PA|≥0,|PB|≥0,所以0≤θ≤π2.所以√10≤|PA|+|PB|≤2√5,故选B .10.(2014四川,文10)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A.2 B.3 C.17√28D.√10答案:B解析:设AB 所在直线方程为x=my+t.由{x =my +t ,y 2=x ,消去x ,得y 2-my-t=0.设A (y 12,y 1),B (y 22,y 2)(不妨令y 1>0,y 2<0),故y 12+y 22=m ,y 1y 2=-t.而OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =y 12y 22+y 1y 2=2.解得y 1y 2=-2或y 1y 2=1(舍去). 所以-t=-2,即t=2.所以直线AB 过定点M (2,0). 而S △ABO =S △AMO +S △BMO =12|OM||y 1-y 2|=y 1-y 2, S △AFO =12|OF|×y 1=12×14y 1=18y 1,故S △ABO +S △AFO =y 1-y 2+18y 1=98y 1-y 2.由98y 1-y 2=98y 1+(-y 2)≥2√98y 1×(-y 2)=2√98×2=3, 得S △ABO +S △AFO 的最小值为3,故选B .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2014四川,文11)双曲线x 24-y 2=1的离心率等于 . 答案:√52解析:∵x 24-y 2=1,∴a 2=4,b 2=1,∴c 2=a 2+b 2=5,∴a=2,c=√5, ∴e=c a=√52.12.(2014四川,文12)复数2-2i1+i= .答案:-2i解析:2-2i 1+i=(2-2i )(1-i )(1+i )(1-i )=2(1-i )22=-2i.13.(2014四川,文13)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )={-4x 2+2,-1≤x <0,x ,0≤x <1,则f (32)= .答案:1解析:∵f (x )的周期为2,∴f (32)=f (32-2)=f (-12).又∵当x ∈[-1,0)时,f (x )=-4x 2+2, ∴f (-12)=-4×(-12)2+2=1.14.(2014四川,文14)平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m= . 答案:2解析:∵a=(1,2),b=(4,2),∴c=m a+b =(m+4,2m+2).又∵c 与a 的夹角等于c 与b 的夹角, ∴cos <c ,a >=cos <c ,b >,∴c ·a |c ||a |=c ·b |c ||b |,即c ·a |a |=c ·b|b |, ∴√5|c |=√20|c |, ∴√5=√20,∴10m+16=8m+20,∴m=2.15.(2014四川,文15)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B.现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x+2)+xx 2+1(x>-2,a ∈R )有最大值,则f (x )∈B.其中的真命题有 .(写出所有真命题的序号) 答案:①③④解析:对于①,若对任意的b ∈R ,都∃a ∈D 使得f (a )=b ,则f (x )的值域必为R .反之,f (x )的值域为R ,则对任意的b ∈R ,都∃a ∈D 使得f (a )=b ,故正确.对于②,比如对f (x )=sin x (x ∈(-π2,π2))∈B ,但它无最大值也无最小值. 对于③,∵f (x )∈A ,∴f (x )∈(-∞,+∞). ∵g (x )∈B ,∴存在正数M 使得-M ≤g (x )≤M , 故f (x )+g (x )∈(-∞,+∞), ∴f (x )+g (x )∉B ,正确. 对于④,-12≤x x 2+1≤12,当a>0或a<0时,a ln x ∈(-∞,+∞),f (x )均无最大值,若f (x )有最大值,则a=0,此时f (x )=xx 2+1,f (x )∈B ,故正确. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(2014四川,文16)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c. (1)求“抽取的卡片上的数字满足a+b=c”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.分析:(1)利用列举法分别求出基本事件空间和所求事件包含的基本事件,然后代入古典概型公式求解;注意该题抽取方式为有放回地抽取,故a ,b ,c 可取相同的数字;(2)因为a ,b ,c 不完全相同包含的基本事件较多,故可转化为其对立事件“a ,b ,c 相同”的概率求解. 解:(1)由题意,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A, 则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19. (2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B, 则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.17.(本小题满分12分)(2014四川,文17)已知函数f(x)=sin(3x+π4).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f(α3)=45cos(α+π4)cos2α,求cosα-sinα的值.分析:(1)利用换元法,将3x+π4视为整体t,即可将其转化为y=sin t的单调增区间,然后解不等式即得;(2)首先代入f(α3),然后化简等式,根据sinα+cosα是否为0进行分类讨论,即可求得cosα-sinα的值.解:(1)因为函数y=sin x的单调递增区间为[-π2+2kπ,π2+2kπ],k∈Z,由-π2+2kπ≤3x+π4≤π2+2kπ,k∈Z,得-π4+2kπ3≤x≤π12+2kπ3,k∈Z,所以,函数f(x)的单调递增区间为[-π4+2kπ3,π12+2kπ3],k∈Z.(2)由已知,有sin(α+π4)=45cos(α+π4)(cos2α-sin2α),所以,sinαcosπ4+cosαsinπ4=45(cosαcosπ4−sinαsinπ4)(cos2α-sin2α),即sinα+cosα=45(cosα-sinα)2(sinα+cosα).当sinα+cosα=0时,由α是第二象限角,知α=3π4+2kπ,k∈Z.此时,cosα-sinα=-√2.当sinα+cosα≠0时,有(cosα-sinα)2=54.由α是第二象限角,知cosα-sinα<0,此时cosα-sinα=-√52.综上所述,cosα-sinα=-√2或-√52.18.(本小题满分12分)(2014四川,文18)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.分析:(1)首先利用两个矩形中的垂直关系证明AA1⊥平面ABC,进而得到AA1⊥BC,然后结合已知AC⊥BC即可证得结论;(2)当M为线段AB中点时,取平行四边形ACC1A1的对角线交点O,即可利用中位线的性质构造平行关系证明DE∥平面A1MC.解:(1)因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内两条相交直线,所以AA1⊥平面ABC.因为直线BC⊂平面ABC,所以AA1⊥BC.又由已知,AC⊥BC,AA1,AC为平面ACC1A1内两条相交直线,所以BC⊥平面ACC1A1.(2)取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点.由已知,O为AC1的中点.连接MD,OE,则MD,OE分别为△ABC,△ACC1的中位线.所以,MD 12AC ,OE 12AC ,因此MD OE.连接OM ,从而四边形MDEO 为平行四边形, 则DE ∥MO.因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC , 所以直线DE ∥平面A 1MC.即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC.19.(本小题满分12分)(2014四川,文19)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln2,求数列{a n b n 2}的前n 项和S n .分析:(1)利用点(a n ,b n )在函数图象上建立a n 与b n 的关系式,然后利用等差数列和等比数列的定义证明结论;(2)先利用导数几何意义求出函数f (x )的图象在点(a 2,b 2)处的切线方程,根据已知截距求出a 2的值,从而求出数列{a n b n 2}的通项公式,然后根据通项的结构特征利用错位相减法求和. (1)证明:由已知,b n =2a n >0.当n ≥1时,b n+1b n=2a n+1-a n =2d .所以,数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)解:函数f (x )=2x 在(a 2,b 2)处的切线方程为y-2a 2=(2a 2ln 2)(x-a 2),它在x 轴上的截距为a 2-1ln2. 由题意,a 2-1ln2=2-1ln2. 解得a 2=2.所以,d=a 2-a 1=1,a n =n ,b n =2n ,a n b n 2=n ·4n .于是,T n =1×4+2×42+3×43+…+(n-1)·4n-1+n ·4n ,4T n =1×42+2×43+…+(n-1)×4n +n ·4n+1. 因此,T n -4T n =4+42+…+4n -n ·4n+1=4n+1-43-n ·4n+1=(1-3n )4n+1-43. 所以,T n =(3n -1)4n+1+49.20.(本小题满分13分)(2014四川,文20)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F (-2,0),离心率为√63.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x=-3上一点,过F 作TF 的垂线交椭圆于P ,Q.当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.分析:(1)由焦点可求c ,然后利用离心率即可求a ,再求b ,即可求得方程;(2)由题意设T (-3,m ),然后利用TF ⊥PQ 求出PQ 的斜率,从而设出直线PQ 方程,与椭圆C 方程联立后,根据平行四边形OPTQ 的性质:对边平行且相等,即可求出m 的值,最后将四边形OPTQ 的面积转化为△OPQ 面积的两倍求解. 解:(1)由已知可得,c a=√63,c=2,所以a=√6.又由a 2=b 2+c 2,解得b=√2, 所以椭圆C 的标准方程是x 26+y 22=1. (2)设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m. 当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x=my-2.当m=0时,直线PQ 的方程是x=-2,也符合x=my-2的形式. 设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得{x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my-2=0, 其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3, x 1+x 2=m (y 1+y 2)-4=-12m 2+3.因为四边形OPTQ 是平行四边形, 所以OP ⃗⃗⃗⃗⃗ =QT ⃗⃗⃗⃗⃗ ,即(x 1,y 1)=(-3-x 2,m-y 2). 所以{x 1+x 2=-12m 2+3=-3,y 1+y 2=4mm 2+3=m .解得m=±1.此时,四边形OPTQ 的面积S OPTQ =2S OPQ =2×12·|OF|·|y 1-y 2|=2√(4m m 2+3)2-4·-2m 2+3=2√3. 21.(本小题满分14分)(2014四川,文21)已知函数f (x )=e x -ax 2-bx-1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a<1.分析:(1)先利用求导求出g (x )的解析式,再求出其导函数g'(x ),根据a 的不同取值分类讨论g'(x )的符号变化,判断其单调性,从而求其最值;(2)先根据已知分析f (x )在(0,1)上的单调性与零点个数,将其转化为g (x )的零点个数,进而利用(1)中的结论判断a 的范围及其零点所在区间,结合函数g (x )在区间端点处的函数值及f (1)=0即可证得结论. 解:(1)由f (x )=e x -ax 2-bx-1,有g (x )=f'(x )=e x -2ax-b.所以g'(x )=e x -2a.当x ∈[0,1]时,g'(x )∈[1-2a ,e -2a ]. 当a ≤12时,g'(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g'(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a-b ; 当12<a<e 2时,令g'(x )=0,得x=ln(2a )∈(0,1).所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a-2a ln(2a )-b. 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a<e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a-2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a-b. (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1, 同理g (x )在区间(x 0,1)内存在零点x 2. 所以g (x )在区间(0,1)内至少有两个零点. 由(1)知,当a ≤12时,g (x )在[0,1]上单调递增, 故g (x )在(0,1)内至多有一个零点.当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点. 所以12<a<e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b>0,g (1)=e -2a-b>0. 由f (1)=0有a+b=e -1<2, 有g (0)=a-e +2>0,g (1)=1-a>0. 解得e -2<a<1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a<1.。
2014年全国普通高等学校招生统一考试文科数学(四川卷带解析)试题
2014年全国普通高等学校招生统一考试文科(四川卷)数学试题1、【题文】已知集合,集合为整数集,则()A.B.C.D.2、【题文】在“世界读书日”前夕,为了了解某地名居民某天的阅读时间,从中抽取了名居民的阅读时间进行统计分析。
在这个问题中,名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本3、【题文】为了得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度4、【题文】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()(锥体体积公式:,其中为底面面积,为高)A.B.C.D.5、【题文】若,,则一定有()A.B.C.D.6、【题文】执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.7、【题文】已知,,,,则下列等式一定成立的是()A.B.C.D.8、【题文】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是,则河流的宽度BC等于()A.B.C.D.9、【题文】设,过定点的动直线和过定点的动直线交于点,则的取值范围是()A.B.C.D.10、【题文】已知是抛物线的焦点,点,在该抛物线上且位于轴的两侧,(其中为坐标原点),则与面积之和的最小值是()A.B.D.C.11、【题文】双曲线的离心率等于____________.12、【题文】复数 .13、【题文】设是定义在R上的周期为2的函数,当时,,则 .14、【题文】平面向量,,(),且与的夹角等于与的夹角,则 .15、【题文】以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间。
例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②若学科网函数,则有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)16、【题文】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。
2014四川高考试题及答案(文科数学)
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每
更多2014届高考试题答案及分数线信息及2015届复习信息奇速英语微信公众号qisuen,QQ757722345,每。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年四川省高考数学试卷(文科)一、选择题(共10小题,每小题5分,共50分)1.(5分)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}2.(5分)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本3.(5分)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度4.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3 B.2 C.D.15.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<6.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0 B.1 C.2 D.37.(5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c8.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 9.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是()A.[,2]B.[,2]C.[,4]D.[2,4]10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2 B.3 C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)双曲线﹣y2=1的离心率等于.12.(5分)复数=.13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.14.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题(共6小题,共75分)16.(12分)一个盒子里装有三张卡片,分别标记有1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.17.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.18.(12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.19.(12分)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n ∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.20.(13分)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.21.(14分)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.2014年四川省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)(2014•四川)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}【分析】由题意,可先化简集合A,再求两集合的交集.【解答】解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选D.【点评】本题考查求交,掌握理解交的运算的意义是解答的关键.2.(5分)(2014•四川)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本【分析】根据题意,结合总体、个体、样本、样本容量的定义可得结论.【解答】解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A.【点评】本题主要考查总体、个体、样本、样本容量的定义,属于基础题.3.(5分)(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.(5分)(2014•四川)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3 B.2 C.D.1【分析】根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.【解答】解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2,∴三棱锥的体积V=××2××=1.故选:D.【点评】本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.5.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,∴C、D不正确;=﹣3,=﹣∴A不正确,B正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:B.【点评】本题考查不等式比较大小,特值法有效,带数计算正确即可.6.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S 的最大值为()A.0 B.1 C.2 D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.7.(5分)(2014•四川)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c【分析】利用指数式与对数式的互化、对数的运算性质和换底公式即可得出.【解答】解:由5d=10,可得,∴cd=lgb=log5b=a.故选:B.【点评】本题考查了指数式与对数式的互化、对数的运算性质和换底公式,属于基础题.8.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.9.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是()A.[,2]B.[,2]C.[,4]D.[2,4]【分析】可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),∵动直线x+my=0和动直线mx﹣y﹣m+3=0的斜率之积为﹣1,始终垂直,P又是两条直线的交点,∴PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.设∠ABP=θ,则|PA|=sinθ,|PB|=c osθ,由|PA|≥0且|PB|≥0,可得θ∈[0,]∴|PA|+|PB|=(sinθ+cosθ)=2sin(θ+),∵θ∈[0,],∴θ+∈[,],∴sin(θ+)∈[,1],∴2sin(θ+)∈[,2],故选:B.【点评】本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.10.(5分)(2014•四川)已知F 为抛物线y 2=x 的焦点,点A,B 在该抛物线上且位于x 轴的两侧,•=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A .2B .3C .D .【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB 的方程为:x=ty +m,点A (x 1,y 1),B (x 2,y 2), 直线AB 与x 轴的交点为M (m,0), 由⇒y 2﹣ty ﹣m=0,根据韦达定理有y 1•y 2=﹣m, ∵•=2,∴x 1•x 2+y 1•y 2=2, 结合及,得,∵点A,B 位于x 轴的两侧,∴y 1•y 2=﹣2,故m=2. 不妨令点A 在x 轴上方,则y 1>0,又,∴S △ABO +S △AFO ═×2×(y 1﹣y 2)+×y 1, =.当且仅当,即时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3,故选B .【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2014•四川)双曲线﹣y2=1的离心率等于.【分析】根据双曲线的方程,求出a,b,c,即可求出双曲线的离心率.【解答】解:由双曲线的方程可知a2=4,b2=1,则c2=a2+b2=4+1=5,则a=2,c=,即双曲线的离心率e==,故答案为:【点评】本题主要考查双曲线的离心率的计算,求出a,c是解决本题的关键,比较基础.12.(5分)(2014•四川)复数=﹣2i.【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.13.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=1.【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.14.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=2.【分析】利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.【解答】解:∵向量=(1,2),=(4,2),=m+(m∈R),∴=m(1,2)+(4,2)=(m+4,2m+2).∴=m+4+2(2m+2)=5m+8,=4(m+4)+2(2m+2)=8m+20.,=2.∵与的夹角等于与的夹角,∴=,∴,化为5m+8=4m+10,解得m=2.故答案为:2.【点评】本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f(x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题(共6小题,共75分)16.(12分)(2014•四川)一个盒子里装有三张卡片,分别标记有1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.【分析】(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c 有计3个,由此求得“抽取的卡片上的数字满足a+b=c”的概率.(Ⅱ)所有的可能结果(a,b,c)共有3×3×3种,用列举法求得满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)共计三个,由此求得“抽取的卡片上的数字a,b,c 完全相同”的概率,再用1减去此概率,即得所求.【解答】解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,故“抽取的卡片上的数字满足a+b=c”的概率为=.(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:(1,1,1)、(2,2,2)、(3,3,3),共计三个,故“抽取的卡片上的数字a,b,c完全相同”的概率为=,∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于中档题.17.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k ∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.18.(12分)(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.【分析】(Ⅰ)先证明AA1⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面ACC1A1;(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1,证明四边形MDEO为平行四边形即可.【解答】(Ⅰ)证明:∵四边形ABB1A1和ACC1A1都为矩形,∴AA1⊥AB,AA1⊥AC,∵AB∩AC=A,∴AA1⊥平面ABC,∵BC⊂平面ABC,∴AA1⊥BC,∵AC⊥BC,AA1∩AC=A,∴直线BC⊥平面ACC1A1;(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点,则O为AC1的中点.连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,∴MD∥OE,MD=OE,连接OM,则四边形MDEO为平行四边形,∴DE∥MO,∵DE⊄平面A1MC,MO⊂平面A1MC,∴DE∥平面A1MC,∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.【点评】本题考查线面垂直的判定与性质的运用,考查存在性问题,考查学生分析解决问题的能力,属于中档题.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.【分析】(Ⅰ)利用等比数列的定义证明即可;(Ⅱ)先由(Ⅰ)求得a n,b n,再利用错位相减求数列{a n b n2}的前n项和S n.【解答】(Ⅰ)证明:由已知得,b n=>0,当n≥1时,===2d,∴数列{b n}为首项是,公比为2d的等比数列;(Ⅱ)解:f′(x)=2x ln2∴函数f(x)的图象在点(a2,b2)处的切线方程为y﹣=ln2(x﹣a2),∵在x轴上的截距为2﹣,∴a2﹣=2﹣,∴a2=2,∴d=a2﹣a1=1,a n=n,b n=2n,a n b n2=n4n,∴T n=1•4+2•42+3•43+…+(n﹣1)•4n﹣1+n•4n,4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,∴T n﹣4T n=4+42+…+4n﹣n•4n+1=﹣n•4n+1=,∴T n=.【点评】本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【分析】(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交可得根与系数的关系及弦长问题、向量相等问题、平行四边形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,考查了数形结合和转化能力,属于难题.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.【解答】解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x﹣2a >0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增, g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f (x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x <∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.参与本试卷答题和审题的老师有:xintrl;caoqz;sxs123;清风慕竹;whgcn;沂蒙松;刘长柏;lincy;尹伟云;maths;任老师;王老师;liu老师;静定禅心(排名不分先后)菁优网2017年3月24日。