2018考研数学线性代数六大考点
2018年考研数学(高数、线代、概率论)最全公式手册
dy (ln x) 1 x
1 dx x ln a d (ln x) 1 dx x
特例 y ln x (5) y sin x (6) y cos x (7) y tan x (8) y cot x (9) y sec x (10) y csc x
y cos x y sin x
x x0
f ( x) f ( x0 ) x x0
(2)
2 函数 f ( x) 在 x0 处的左、右导数分别定义为: 左导数:
f ( x0 ) lim
x 0
f ( x0 x) f ( x0 ) f ( x) f ( x0 ) lim , ( x x0 x) x x0 x x x0
x 的复合函数.例如
1 , y 2 , ln y , e y 等均是 x 的复合函数. y
F ( x, y) dy ,其中, Fx( x, y) , x dx Fy( x, y )
对 x 求导应按复合函数连锁法则做. (2)公式法.由 F ( x, y) 0 知
Fy( x, y) 分别表示 F ( x, y) 对 x 和 y 的偏导数
常用的等阶无穷小:当x 0时 sin x arcsin x tan x x, arctan x ln(1 x) ex 1
1 cos x
1 2 x 2 1 1 (1 x) n 1 x n
无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的 无穷小的倒数为无穷大
设函数f ( x)在x x0处可导,则f ( x)在M ( x0 , y0 )处的
考研数学线性代数重要考点总结
考研数学线性代数重要考点总结考研数学线性代数的六大考点线性代数主要包含行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型六章内容。
按照章节,我们总结出线性代数必须掌握的六大考点。
一是行列式部分,强化概念性质,熟练行列式的求法。
在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。
另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。
二是矩阵部分,重视矩阵运算,掌握矩阵秩的应用。
通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。
涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。
三是向量部分,理解相关无关概念,灵活进行判定。
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。
如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。
基础线性相关问题也会涉及类似的题型:判定向量组的'线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
四是线性方程组部分,判断解的个数,明确通解的求解思路。
线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。
考研线性代数知识点归纳
考研线性代数知识点归纳线性代数是现代数学的一个重要分支,广泛应用于各个领域,特别是在计算机科学、物理学、经济学等方面。
对于考研生来说,线性代数是必修课程之一,也是很多专业课程的基础。
在考研线性代数的学习中,掌握并灵活运用重要的知识点是取得好成绩的关键。
本文将对考研线性代数的知识点进行归纳总结,希望能够帮助考生更好地备考。
1. 矩阵与向量矩阵是线性代数中的一种基本概念,其是一个矩形的数表,由各种数(或者说称之为元素)构成。
向量是矩阵的一种特殊形式,它是一个只有一个列的矩阵。
在考研线性代数中,需要了解和掌握矩阵的基本性质,包括矩阵的运算法则、矩阵的转置、逆矩阵等。
同时,还需要了解向量的运算法则、向量空间的性质等。
2. 线性方程组线性方程组是线性代数中的一个重要概念,它由未知数及其系数构成的等式组成。
考研中常涉及到的线性方程组有齐次线性方程组和非齐次线性方程组。
对于齐次线性方程组,需要了解齐次方程的基本性质、解空间的概念以及求解齐次方程组的方法。
对于非齐次线性方程组,需要了解非齐次方程的基本性质、解的存在唯一性以及求解非齐次方程组的方法。
3. 行列式行列式是线性代数中的另一个重要概念,它是一个标量,通过矩阵的元素按照一定规则的运算得到。
在考研线性代数中,需要了解行列式的定义、性质以及基本的运算规则。
同时,还需要了解行列式的计算方法,包括拉普拉斯展开法、性质法等。
4. 特征值与特征向量特征值与特征向量也是线性代数中的一个重要概念,它们与矩阵的特征有关。
在考研线性代数中,需要了解特征值与特征向量的定义、性质以及求解方法。
特征值与特征向量在矩阵对角化、线性变换等方面具有重要的应用,也是考研中常考的一个重点。
5. 线性空间线性空间是指由向量构成的集合,并满足一定的运算性质。
在考研线性代数中,需要了解线性空间的定义、性质以及基本的运算规则。
同时,还需要了解线性相关性与线性无关性的概念,以及线性相关性与线性无关性的判定方法。
考研数学线性代数六大重点笔记+常考题型
考研数学线代 6 大部分重点及常考题型一、行列式行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。
如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。
所以要熟练掌握行列式常用的计算方法。
1.重点内容:行列式计算(1)降阶法这是计算行列式的主要方法,即用展开定理将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2.常见题型(1)数字型行列式的计算(2)抽象行列式的计算(3)含参数的行列式的计算(4)代数余子式的线性组合二、矩阵矩阵是线性代数的核心,是后续各章的基础。
矩阵的概念、运算及理论贯穿线性代数的始终。
这部分考点较多。
涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。
有些性质得证明必须能自己推导。
这几年还经常出现有关初等变换与初等矩阵的命题。
1.重点内容:(1)矩阵的运算(2)伴随矩阵(3)可逆矩阵(4)初等变换和初等矩阵(5)矩阵的秩2.常见题型:(1)计算方阵的幂(2)与伴随矩阵相关联的命题(3)有关初等变换的命题(4)有关逆矩阵的计算与证明(5)解矩阵方程(2013 年和 2014 年连续出大题,要重视)(6)矩阵秩的计算和证明三、向量向量部分既是重点又是难点,由于n 维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。
考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1.重点内容:(1)向量的线性表示线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
线性代数各章知识点荟萃
线性代数各章知识点荟萃线性代数各章知识点荟萃线性代数之所以难复习,是因为线性代数这门学科不仅知识点多、概念多、定理多、符号多、运算规律多,而且各章节的内容也是相互纵横交错的,知识点之间的联系非常紧密。
因此,在复习线性代数的时候应该将重点放在对基本概念的理解上,做到掌握基本定理的条件、结论及其应用、各种运算规律及基本题型的计算方法等。
多注重知识点之间的衔接与转换,注重理解,多思考多总结,使知识成网状,努力提高自己综合分析问题的能力。
为了让大家在复习中能将线性代数提高到一个新的层次,在此分析一下历年考研重点及其复习思路,以使大家做到有的放矢决胜千里!考研线性代数总共涉及到六章的内容,接下来我们针对各章节进行考点的总结,并给出复习重难点。
第一章行列式本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。
数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的'计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。
因此,在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算。
另外还要会综合后面的知识会计算简单的抽象行列式的值。
第二章矩阵本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要掌握的。
除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:1、矩阵的符号运算2、具体矩阵的数值运算矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。
第三章向量本章的重点有:1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。
考研数学线性代数每年必考的知识点
考研数学线性代数每年必考的知识点考研数学线性代数每年必考的知识点线性代数是考研数学中比较重要的一部分内容,考生要认真复习,尤其注意对重点知识的理解和应用。
店铺为大家精心准备了考研数学线性代数每年必考的难点,欢迎大家前来阅读。
考研数学线性代数每年必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学拿高分的技巧1、认真思考数学问题的习惯思考对于数学的学习是最核心的,对做题更甚。
不坚持去思考,不仔细去联想,类比,总结只相当于背书,是学不到数学的本质的,想考高分是不可能的。
举一个例子:中值定理那块的证明题,一开始不会证,我就忍住不去看答案,自己去思考,有时候一晚上都在思考一个题。
这样思考,我会想到很多知识点并加以整合,会慢慢提炼出思路。
以后解这一类题就会顺畅很多。
考研的题肯定是自己没见过的,平常做题时不会就去看答案,考场上可没有现成的答案看啊。
2018考研数学
2018考研数学一、绪论1.1 考研概述考研,即研究生入学考试,是中国高等教育体系中的一项重要考试。
作为考研的一部分,数学是综合素质考试中的一门必修科目。
本文将以2018年考研数学为主题,探讨考研数学的考试形式、考点以及备考技巧等内容。
1.2 考试形式2018年考研数学分为两个科目:高数和线性代数。
高数科目包括数列、极限、连续性、微分和积分等内容;线性代数科目包括向量、矩阵、行列式、特征值和特征向量等内容。
考试形式主要为选择题和解答题。
选择题是考察考生的基本理解能力,解答题是考察考生的问题解决能力和计算能力。
二、高数2.1 基础知识高数作为数学的一门基础学科,是考研数学中的重点和难点。
考生需要掌握数列的概念、极限的计算方法、连续性的判断条件、微分和积分的相关公式和运算规则等基础知识。
2.2 考点分析在2018年高数考研中,重点考察的考点包括但不限于:一致收敛、导数的性质、微分中值定理、泰勒公式、定积分的计算方法等。
考生需要根据以往的考试情况和教材重点来有针对性地备考。
2.3 备考技巧高数的备考主要需要从两个方面入手:理论与实践。
理论方面,考生需要系统地学习教材,掌握基础知识和考点。
实践方面,考生需要多做题,在不同难度的题目中寻找规律和方法,提高解题能力和速度。
此外,考生还需要注意总结经验,及时复习和整理错题,不断提高复习效果。
三、线性代数3.1 基础知识线性代数是数学的一个分支,是考研数学中的另一个重要学科。
考生需要掌握向量的运算、矩阵的基本概念、行列式的性质、特征值和特征向量的求解方法等基础知识。
3.2 考点分析2018年线性代数考研中的考点包括但不限于:向量组的线性相关性、矩阵的秩、矩阵的特征值和特征向量的求解、对角化、相似矩阵等。
考生需要针对这些考点进行重点复习和练习。
3.3 备考技巧线性代数的备考主要需要从两个方面入手:理论与实践。
理论方面,考生需要对线性代数的基本概念和定理有深入理解,掌握基础知识和考点。
线性代数重点归纳
线性代数复习要点第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算 行列式的定义 1. 行列式的计算:① (定义法)1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.1122,,0,.i j i j in jn A i j a A a A a A i j ⎧=⎪++=⎨≠⎪⎩③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.11221122***0**0*0nnnnb b A b b b b ==④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O ---*==-1⑥ 范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111⑦ ab -型公式:1[(1)]()n a b bbb a bba nb a b b b ab b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ijm nA a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中12121122(,,,)j j ij i i is i j i j is sj sj b b c a a a a b a b a b b ⎛⎫ ⎪ ⎪==+++ ⎪ ⎪ ⎪⎝⎭注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;11112111111211221222221222221212000000n n n n m m m mn m m m m m mn a b b b a b a b a b ab b b a b a b a b B a b b b a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量.11121111121212122221212222121122000000n m n n m n m m mn m m m m mn b b b a a b a b a b b b b a a b a b a b B b b b a a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mnm nA A A+=, ()()m n mnA A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵TA A =.A 是反对称矩阵T A A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A-=, 11AA --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭ 1111A O A O C B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ ④1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1AB BA E A B -==⇒=)3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:①对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;②对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A矩阵秩的描述:①、()=r A r,A中有r阶子式不为0,1+r阶子式(存在的话) 全部为0;②、()<r A r,A的r阶子式全部为0;③、()≥r A r,A中存在r阶子式不为0;☻矩阵的秩的性质:①()A O r A≠⇔≥1; ()0A O r A=⇔=;0≤()m nr A⨯≤min(,)m n②()()()T Tr A r A r A A==③()()r kA r A k=≠其中0④()(),,()m n n sr A r B nA B r ABB Ax⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB≤{}min(),()r A r B⑥若P、Q可逆,则()()()()r A r PA r AQ r PAQ===;即:可逆矩阵不影响矩阵的秩.⑦若()()()m nAxr AB r Br A nAB O B OAAB AC B Cο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩只有零解在矩阵乘法中有左消去律;若()()()n sr AB r Br B nB⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r rE O E Or A r A AO O O O⎛⎫⎛⎫=⇒ ⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.⑨()r A B±≤()()r A r B+, {}max(),()r A r B≤(,)r A B≤()()r A r B+⑩()()A O O Ar r A r BO B B O⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A Cr r A r BO B⎛⎫≠+⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()() A E B X ⎛⎫⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等列变换(II)的解法:构造T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法:法1法2法3推论♣ 线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一 4. 最大无关组相关知识向量组的秩 向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r ααα矩阵等价 A 经过有限次初等变换化为B .向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论线性方程组的矩阵式 Ax β= 向量式 1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.(4) 求非齐次线性方程组Ax = b 的通解的步骤12112(1()(2)()()(3)(4)10,,...,(5)A b r A b r A r n n r Ax b Ax Ax b x k k ααααααα==<-====++0n-r 0) 将增广矩阵通过初等行变换化为;当时,把不是首非零元所在列对 应的个变量作为自由元;令所有自由元为零,求得的一个;不计最后一列,分别令一个自由元为,其余自由元 为零,得到的{};写出非齐次线性方程组的阶梯形矩阵特解基础 解系 通解212...,,...,n r n rn r k k k k α---++其中为任意常数.(5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫==⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P ); 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1. ②),Tn a 与),Tn b 的内积1(,)ni i n n i a b a b αβ===++∑③(,)0αβ=. 记为:αβ⊥ ④),,Tn a 的长度221(,)ni n i a a ααα====++∑⑤(,1αα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)k k αβαβ=3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量. ②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ=⑤ 12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A ⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O =⇒A 的任何一个特征值必满足()i f λ=0 ②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法(1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ. (2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量.设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.5. ①1P AP B -= (P 为可逆矩阵)②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A 6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量. ②A B =tr tr③A B = 从而,A B 同时可逆或不可逆 ④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. 设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪⎪= ⎪ ⎪⎝⎭.② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化.8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAA E =正交矩阵的性质:① 1T A A -=;② T TAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10.11.123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。
考研数学《线性代数》考点知识点总结
第一章行列式二元线性方程组:a x11ax21a12a22yyb1b2aa1112D,aa2122ba112D,1ba222ab111D2ab212xD1D,yD2D排列的逆序数:ttn1ti〔t为排列p1p2p n中大于p i且排于p i前的元素个数〕it为奇数奇排列,t为偶数偶排列,t0标准排列。
a 11 a12a1nn阶行列式:Daaa21222ndet(a)=ij(1)t为列标排列的逆序数.t aaa1p12p np2na n1 an2ann定理1:排列中任意两个元素对换,排列改变奇偶性推论:奇〔偶〕排列变为标准排列的对换次数为奇〔偶〕数定理2:n阶行列式可定义为tD(1)a1a2a=pppn12n (1).t aaat aaa1p12p np2nT 1.D=DT,D为D转置行列式.(沿副对角线翻转,行列式同样不变)推论:两行(列)完全一样的行列式等于零.2.互换行列式的两行(列),行列式变号.记作:r i r〔c i c j〕DD.j 记作:r i r〔c i c j〕DD0.j推论:某一行(列)所有元素公因子可提到行列式的外面.3.行列式乘以k等于某行(列)所有元素都乘以k.记作:kDr i k〔kDc i k〕.记作:kDrki〔kDc i k〕.4.两行(列)元素成比例的行列式为零.记作:r j r i k〔c j c i k〕D0.行列式的性质:a11a12(a1ia1i) a1na11a12a1ia1na11a12a1ia1n5.D a21a22(a2ia2i) a2n Da21a22a2ia2na21a22a2ia2na n1 an2(aniani) annan1an2aniannan1an2aniann上式为列变换,行变换同样成立.6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.记作:c i ckc(r i r i kr j),D不变.ij注:任何n阶行列式总能利用行运算r i+kr j化为上(下)三角行列式.对角行列式上D〔下DT〕三角形行列式00a11011212nn(n1)2 2,n(1)12aa2122Da11a22ann00nn an1an2anna 11 a1ka11a1kabD1det(aij)假设对Dak1c11akkc1kb11b1k设ak1bakkb,假设2nabD2,n11 1n 阶行列式cdc k1 ckkbk1bkkD2det(bij)bn1bnncd2n那么有D=D1D2.有D2n=(ad-bc)n.n.ij余子式:n 阶行列式中把a ij 所在的第i 行和第j 列去掉后,余下n-1阶行列式.代数余子式:ijA ij (1)M引理:n 阶行列式D 中,假设第i 行所有元素除a ij 外都为零,那么有Da ij A ij .行列式等于它的任一行(列)的各元素与其对应的代数余子式乘机之和.定理3:推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘机之和等于零. (代数余子式性质) D,ij,当n aAD ki 当kjijk10,ij;或 D,当j i naAD ikjkij 当 k 10,ij, ; 其中 ij1, 0, 当 当 i ij , j.1111X 德蒙德 行列式:xxxx123n2222Dxxxx =n123nnij ( 1x i x).证明用数学归纳法.jn x11n x21n x 31n nx1设方程组a x111ax211a12a22x2x2a xnxn1na2nb,1b,2aa111n,假设0D ,那么方程组有惟一解:克拉默法ax n11a n2 x 2a nnx nbna n1 ann那么:DDD12nx,x,,x1,其中2nDDDD ja 11 a n1 a 1,a n ,j j 1 1 b 1 b n a 1,a n,j j 1 1a 1nann(j1,2,,n).定理4:假设上线性方程组的系数行列式D0,那么方程组一定有惟一解;假设无解或有两个不同解,那么D0.定理5:假设齐次线性方程组(b n =0)的系数行列式D0,那么齐次线性方程组无非零解;假设有非零解,那么D0.第二章矩阵及其运算对角矩阵(对角阵):n 阶单位矩阵(单位阵):纯量阵:100 λ000λ1E0100Λλ00 λ2E00100 λ0n0 λEAAEA.另可记作diag(,,,)Λ.12n(E)AA,A(E)A.矩阵与矩假设(a)Α是一个ms矩阵,B(b ij)是一个sn矩阵,且CAB,那么C(c ij)是一个mn矩阵,ij阵相乘:且cabababimij1122(1,2,,;j1,2,,n).假设ABBA ,称A与B是可交换的.ijijissjT矩阵转置:假设Α(a ij),那么(a)ΑjiTTTTTT(AB)AB,(AB)BA假设TA,A为对称阵A方阵的行列式:n阶方阵A元素构成的行列式,记A或det A.方阵行列式的运算规律:A 11 A21An1A为行列式A中对应元素的ijT;1.AA伴随矩阵:A* A12A22An2代数余子式.n;2.AAA 1n A2nAnnAA**A A A E 13.ABAB,1AA.逆矩阵:假设ABBAE,那么A可逆,且称B为A的逆矩阵,记B=A-1,A的逆阵是唯一的.定理1:假设矩阵A可逆,那么A0.定理2:假设A0,那么矩阵A可逆,且A1 1.*AA奇异矩阵:当A0时,A称为奇异矩阵.矩阵A可逆的充要条件:A0,即矩阵A是非奇异矩阵。
2018考研数学线性代数详解
凯程考研辅导班,中国最权威的考研辅导机构第 1 页 共 1 页 2018考研数学线性代数详解线性代数总共分为六章,第一章行列式,这一块唯一的重点是行列式的计算,主要有数值型和抽象型两类行列式的计算,06、08、10、12年的真题中均有抽象行列式的计算问题,而且均是以填空题的形式出现的,个别的还出现在了大题的第一问中。
2013年考了一道填空题,也属于抽象矩阵的行列式的计算。
第二章矩阵,重点在矩阵的秩、逆、伴随、初等变换以及初等矩阵、分块矩阵。
中公考研指出,这一章概念和运算较多,考点也较多,而且考点以填空和选择为主,当然也会结合其他章节的知识考大题。
06、09、11、12年均考了一个小题是有关初等变换与矩阵乘法之间的关系,10年考了一个小题关于矩阵的秩,08年考了一道抽象矩阵求逆的问题,而今年考试的则是矩阵的运算。
第三章向量,可以分为三个重点,第一个是向量组的线性表示,第二个是向量组的线性相关性,第三个是向量组的秩及极大线性无关组。
这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表示就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题,今年也考了一道真题就是向量组的等价。
第四章线性方程组,中公考研指出有三个重点。
第一个是线性方程组解的判定问题,第二个是解的性质问题,第三个是解的结构问题。
06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题,而今年考试的形式不是很明显,需要考生自己转换成线性方程组的问题进行解答。
第五章矩阵的特征值与特征向量,也是分三个重点。
第一个是特征值与特征向量的定义、性质以及求法。
第二个为矩阵的相似对角化问题,第三是实对称矩阵的性质以及正交相似对角化的问题。
实对称矩阵的性质与正交相似对角化问题可以说每年必考,12年、11年、10年09年都考了,2013年的最后一道线性代数大题中也涉及到了特征值与特征向量的知识。
18年金融考研线性代数部分内容盘点
18年金融考研线性代数部分内容盘点小编整理2018考研数学中线性代数六大题型考点预测,还在为数学而奋斗不止的朋友们赶紧看过来了,考前最后几天,战胜线性代数在此一举。
一、行列式的计算行列式的计算和其他类型相比算是比较简单的类型,在以往的真题试题中大部分是计算n 阶特殊的行列式。
这种题型称得上是“送分童子”。
二、向量的线性相关性向量的线性相关性是最近几年考研数学真题中线性代数的一个常考题型,比如在2014年、2012年、2011年及2009年都有出现,大多以选择题或者填空题的类型出现,属于比较简单的类型,同学们定要重视一下以免造成无谓的丢分。
三、有关线性方程组的解的问题线性方程组关于解的问题是线性代数的基础,这类题中大多是根据对应矩阵中的参数变化来确定解的情况,比如方程组有唯一解、无穷多解还是无解以及求第三矩阵。
例如2014年、2012年、2010年2008年、2007年等的历年考研中都有出现,这方面的应用一定要熟练掌握。
四、矩阵或者向量的秩来出题这类题的形式比较多(多数是求参数题),但多是一些较简单的题目来出现。
题型七矩阵的行、列初等变换的题目多以选择或者填空的形式出现,要求真正理解。
五、矩阵之间的相似、合同和等价这类题主要是填空、选择或者证明题的的形式出现(例如2014年的第21大题)还有就是判断它们之间的关系或者根据它们之间的关系求其中的参数或者特征值。
六、关于对称矩阵的问题关于对称矩阵,围绕这类矩阵来出题显得更加灵活,最常见的类型是求对称矩阵或者二次型对应的矩阵的所有特征值以及所对应特征向量,有时还要求考生求一正交变换使对称矩阵能够对角化并化成标准型或者规范化,虽然2014年真题中没有出现,但在2013年、2012年、2011年、2009年的考研数学中都有涉及到,或者是根据对称矩阵在正交变换下的标准型反过来求矩阵例如2010年的考研数学中;再者就是根据对称矩阵的秩或者二次型的解的个数来求解矩阵中出现的参数比如在2012年、2010年、2009年的数学考研中;最后是根据矩阵中已给出的特征值和特征向量求出所有的特征值和特征向量或者是反求出矩阵2011年、2010年、2007年的考研数学中均有出现。
考研数学 线性代数重要考点解析
考研数学线性代数重要考点解析提醒大家,线性代数的考题与高等数学、概率局部考题最大的不同就是,线性代数的一道考题可能会牵涉到行列式、矩阵、向量等等很多知识点,这是因为线性代数各个章节知识之间联系非常紧密,知识是一个环环相扣且互相融合的。
线性代数概念多、定理多、符号多、运算规律多、内容相互纵横交织,知识前后紧密联系。
因此考研复习重点应该先充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法等等。
根本概念、根本性质和根本方法一直是考研数学的重点。
所以,考生在复习中一定要重视根本概念、根本性质和根本方法的理解与掌握,多做一些基此题来稳固根本知识,并及时进行总结,使所学知识能融会贯穿,举一反三。
根据往年经验,为大家总结了线性代数的通常主要考点:1、行列式——行列式这局部没有太多内容,行列式的重点是计算,利用性质熟练准确的计算出行列式的值。
2、矩阵——矩阵是一个根底,关联到整个线代。
矩阵的运算非常重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。
矩阵运算里一个很重要的就是初等变换。
我们在解方程组,求特征向量都离不开这局部内容。
这是我们矩阵局部的重点。
3、向量——向量这局部是逻辑性非常强的局部,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。
向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。
用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
4、特征值、特征向量——要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。
考研数学历年真题线性代数的考点总结
考研数学历年真题线性代数的考点总结线代部分对很多备考的学子来说,最深刻感觉就是,抽象、概念多、定理多、性质多、关系多。
为大家精心准备了考研数学历年真题线性代数的要点,欢迎大家前来阅读。
?线性代数章节总结第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理问题需要计算行列式,题目难度不是很大。
主要方法是利用行列式的性质或者展开定理即可。
而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进展变形、利用相似关系。
06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,今年数一、数二、数三这块都没有涉及。
第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。
本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。
其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的那么是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题那么用到了矩阵的秩的相关性质。
14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。
16年只有数二了矩阵等价的判断确定参数。
第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。
重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。
复习的时候要注意构造和从不同角度理解。
线性代数知识点及总结
线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。
性质1行列式与它的转置行列式相等。
性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。
推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。
性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。
性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。
而算得行列式的值。
4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。
盘点考研数学线性代数历年真题考点分布
盘点考研数学线性代数历年真题考点分布线性代数是考研数学的一个重要的考试科目,近年来在考研中的比重越来越大,几乎占据数学科目的一半以上。
同时,线性代数的难度也相对较高,考察的知识点也比较多。
在备考中,了解历年真题考点分布是非常重要的,可以帮助考生更加有目的地学习和复习。
本文将盘点考研数学线性代数历年真题考点分布。
第一章行列式行列式是线性代数的基础和核心概念之一,也是其中重要的考试知识点之一。
近年来,考研数学中对于行列式的考察也非常频繁。
下面是历年真题行列式的考点分布:•行列式性质及展开定理:每年都有考察,占据行列式考试题目的大部分。
•克拉默法则:每年至少考察一次。
•求行列式的值:每年都有考察,但难度较大。
•行列式的变形:近几年考察的次数有所减少。
第二章线性方程组线性方程组是线性代数又一个重要的概念和考试知识点,其较为基础的概念包括了矩阵的增广矩阵,矩阵的秩,线性方程组的解法等。
历年真题考察的线性方程组的考点分布如下:•线性方程组的基本概念:每年都有考察。
•线性方程组的解法及相关定理:高斯-若尔当消元法每年都会出现,齐次线性方程组许多年都有考察,而解的存在性和唯一性则在近年来变得更加重要。
•线性方程组复习题型:此类题型主要是对于线性方程组概念的考察,伴随一些计算策略的理解。
第三章矩阵与矩阵运算矩阵是线性代数的另一要点,也是重要的考试知识点之一,在高等数学、工程技术等方面都有广泛的应用。
历年考研真题的矩阵与矩阵运算的考点分布如下:•矩阵的基本概念:每年都有考察,占比比较低。
•矩阵的运算:和、积的概念和计算是考试的重点,每年都会出现计算题,而转置、逆矩阵则是近年来的热点考察内容。
•特殊矩阵:对角矩阵、下三角矩阵、上三角矩阵等其它特殊矩阵也有一定的考试范围。
第四章线性空间线性空间是线性代数较为高级的要点,在考研线性代数的试卷中会相对较多地涉及。
其中最重要的概念就是线性变换、基和维数、内积和正交等。
历年考研真题的线性空间考点分布如下:•线性空间的基本概念:其中向量组、基、维数是考试重点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跨考考研线性代数在考研数学中占比22%,因此,学好线代很关键。
一般,线性代数常考计算题和证明题,因此大家要把握好公式和理论重点。
下面和大家分享线性代数六大考点,大家注意复习。
一、行列式部分,强化概念性质,熟练行列式的求法
在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。
另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。
二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用
通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。
涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。
三、向量部分,理解相关无关概念,灵活进行判定
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。
如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。
基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
四、线性方程组部分,判断解的个数,明确通解的求解思路
线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。
为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。
通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。
若为非齐次方程组,则按照对增广矩阵的讨论进行求解。
五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解
矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。
相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。
六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理
二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。
另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。
2018考研交流总群337587371。