高考数学导数中的零点问题解决方法

合集下载

高考数学利用导数研究函数的零点

高考数学利用导数研究函数的零点
[总结反思]根据参数确定函数的零点个数有两种解决方法:一种是利用单调性与零点存在定理求解,另一种是化原函数为两个函数,利用两个函数图像的交点来求解.
课堂考点探究
变式题 已知函数f(x)=ex-ax+sin x-1.(1)当a=2时,讨论函数f(x)的单调性;
课堂考点探究
解: 当a=2时,f(x)=ex-2x+sin x-1(x∈R),则f'(x)=ex-2+cos x,设h(x)=f'(x)=ex-2+cosx, 则h'(x)=ex-sin x,当x∈(-∞,0]时,ex≤1,所以f'(x)=ex-2+cos x≤-1+cos x≤0,所以f(x)在(-∞,0]上单调递减;当x∈(0,+∞)时,ex>1,所以h'(x)=ex-sin x>1-sin x≥0,所以f'(x)在(0,+∞)上单调递增,所以f'(x)>f'(0)=0,所以f(x)在(0,+∞)上单调递增.综上,f(x)在 (-∞,0]上单调递减;在(0,+∞)上单调递增.
[总结反思]根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数的单调性确定函数图像与x轴的交点个数,或者通过两个相关函数图像的交点个数确定参数需满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.
课堂考点探究
课堂考点探究
变式题 已知f(x)=x2-x+asin x.(1)当a=1时,求证:f(x)>0在(0,+∞)上恒成立;
课堂考点探究
例4 已知函数f(x)=x·cos x.(2)求证:当x∈时,方程2f(x)-1=0有且仅有2个不等的实数根.

高考数学总复习考点知识与题型专题讲解22 利用导数研究函数的零点

高考数学总复习考点知识与题型专题讲解22 利用导数研究函数的零点

高考数学总复习考点知识与题型专题讲解§3.7 利用导数研究函数的零点考试要求 函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现. 题型一 利用函数性质研究函数的零点 例1已知函数f (x )=x sin x -1.(1)讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π2,π2上的单调性;(2)证明:函数y =f (x )在[0,π]上有两个零点. (1)解 因为函数f (x )的定义域为R ,f (-x )=-x sin(-x )-1=f (x ),所以函数f (x )为偶函数,又f ′(x )=sin x +x cos x ,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0,所以函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,又函数f (x )为偶函数,所以f (x )在⎣⎢⎡⎭⎪⎫-π2,0上单调递减,综上,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,在⎣⎢⎡⎭⎪⎫-π2,0上单调递减.(2)证明 由(1)得,f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,又f (0)=-1<0,f ⎝ ⎛⎭⎪⎫π2=π2-1>0,所以f (x )在⎣⎢⎡⎦⎥⎤0,π2内有且只有一个零点, 当x ∈⎝ ⎛⎦⎥⎤π2,π时,令g (x )=f ′(x )=sin x +x cos x ,则g ′(x )=2cos x -x sin x ,当x ∈⎝ ⎛⎦⎥⎤π2,π时,g ′(x )<0恒成立,即g (x )在⎝ ⎛⎦⎥⎤π2,π上单调递减,又g ⎝ ⎛⎭⎪⎫π2=1>0,g (π)=-π<0,则存在m ∈⎝ ⎛⎦⎥⎤π2,π,使得g (m )=0,且当x ∈⎝ ⎛⎭⎪⎫π2,m 时,g (x )>g (m )=0,即f ′(x )>0,则f (x )在⎝ ⎛⎭⎪⎫π2,m 上单调递增,当x ∈(m ,π]时,有g (x )<g (m )=0,即f ′(x )<0,则f (x )在(m ,π]上单调递减, 又f ⎝ ⎛⎭⎪⎫π2=π2-1>0,f (π)=-1<0,所以f (x )在(m ,π]上有且只有一个零点,综上,函数y =f (x )在[0,π]上有2个零点.思维升华利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练1(2023·芜湖模拟)已知函数f (x )=ax +(a -1)ln x +1x -2,a ∈R . (1)讨论f (x )的单调性;(2)若f (x )只有一个零点,求a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a +a -1x -1x 2=(ax -1)(x +1)x 2,①若a ≤0,则f ′(x )<0,f (x )在(0,+∞)上单调递减;②若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增.(2)若a ≤0,f ⎝ ⎛⎭⎪⎫1e =a e +1-a +e -2=⎝ ⎛⎭⎪⎫1e -1a +e -1>0,f (1)=a -1<0.结合函数的单调性可知,f (x )有唯一零点.若a >0,因为函数在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,所以要使得函数有唯一零点,只需f (x )min =f ⎝ ⎛⎭⎪⎫1a =1-(a -1)ln a +a -2=(a -1)(1-ln a )=0,解得a =1或a=e.综上,a ≤0或a =1或a =e. 题型二 数形结合法研究函数的零点例2(2023·郑州质检)已知函数f (x )=e x -ax +2a ,a ∈R . (1)讨论函数f (x )的单调性; (2)求函数f (x )的零点个数.解 (1)f (x )=e x -ax +2a ,定义域为R ,且f ′(x )=e x -a ,当a ≤0时,f ′(x )>0,则f (x )在R 上单调递增;当a >0时,令f ′(x )=0,则x =ln a , 当x <ln a 时,f ′(x )<0,f (x )单调递减;当x >ln a 时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≤0时,f (x )在R 上单调递增;当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. (2)令f (x )=0,得e x =a (x -2),当a =0时,e x =a (x -2)无解,∴f (x )无零点, 当a ≠0时,1a =x -2e x ,令φ(x )=x -2e x ,x ∈R ,∴φ′(x )=3-xe x , 当x ∈(-∞,3)时,φ′(x )>0;当x ∈(3,+∞)时,φ′(x )<0,∴φ(x )在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x )max =φ(3)=1e 3, 又x →+∞时,φ(x )→0, x →-∞时,φ(x )→-∞, ∴φ(x )的图象如图所示.当1a >1e 3,即0<a <e 3时,f (x )无零点; 当1a =1e 3,即a =e 3时,f (x )有一个零点; 当0<1a <1e 3,即a >e 3时,f (x )有两个零点; 当1a <0,即a <0时,f (x )有一个零点.综上所述,当a ∈[0,e 3)时,f (x )无零点;当a ∈(-∞,0)∪{e 3}时,f (x )有一个零点;当a ∈(e 3,+∞)时,f (x )有两个零点.思维升华含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.跟踪训练2(2023·长沙模拟)已知函数f (x )=a ln x -2x . (1)若a =2,求曲线y =f (x )在x =1处的切线方程; (2)若函数f (x )在(0,16]上有两个零点,求a 的取值范围.解 (1)当a =2时,f (x )=2ln x -2x ,该函数的定义域为(0,+∞),f ′(x )=2x -1x ,又f (1)=-2,f ′(1)=1,因此,曲线y =f (x )在x =1处的切线方程为y +2=x -1,即x -y -3=0. (2)①当a ≤0时,f ′(x )=a x -1x<0,则f (x )在(0,+∞)上单调递减,不符合题意; ②当a >0时,由f (x )=a ln x -2x =0可得2a =ln xx ,令g (x )=ln x x,其中x >0,则直线y =2a 与曲线y =g (x )的图象在(0,16]内有两个交点, g ′(x )=x x -ln x2x x =2-ln x2x x,令g ′(x )=0,可得x =e 2<16,列表如下,所以函数g (x )在区间(0,16]上的极大值为g (e 2)=2e ,且g (16)=ln 2,作出g (x )的图象如图所示.由图可知,当ln 2≤2a <2e ,即e<a ≤2ln 2时,直线y =2a 与曲线y =g (x )的图象在(0,16]内有两个交点, 即f (x )在(0,16]上有两个零点, 因此,实数a 的取值范围是⎝ ⎛⎦⎥⎤e ,2ln 2.题型三 构造函数法研究函数的零点例3(12分)(2022·新高考全国Ⅰ)已知函数f (x )=e x -ax 和g (x )=ax -ln x 有相同的最小值. (1)求a ;[切入点:求f (x ),g (x )的最小值](2)证明:存在直线y =b ,其与两条曲线y =f (x )和y =g (x )共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.[关键点:利用函数的性质与图象判断e x -x =b ,x -ln x =b 的解的个数及解的关系]思维升华涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3(2021·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln 2)2x(x>0),令f′(x)>0,则0<x<2ln 2,此时函数f(x)单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,2ln 2,单调递减区间为⎝ ⎛⎭⎪⎫2ln 2,+∞.(2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解. 设g (x )=ln xx (x >0),则g ′(x )=1-ln x x 2(x >0), 令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e , 且当x >e 时,g (x )∈⎝ ⎛⎭⎪⎫0,1e ,又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e , 即a 的取值范围为(1,e)∪(e ,+∞).课时精练1.(2023·济南质检)已知函数f (x )=ln x +axx ,a ∈R . (1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解 若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln xx 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e)=1e .(2)证明 f ′(x )=⎝ ⎛⎭⎪⎫1x +a x -ln x -ax x 2=1-ln x x 2, 由(1)知,f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0, 故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f ⎝ ⎛⎭⎪⎫1e =a -e<0,f (e)=a +1e >0, 且f (x )在(0,e)上单调递增,∴f (x )在(0,e)上有且只有一个零点,综上,f (x )有且只有一个零点.2.函数f (x )=ax +x ln x 在x =1处取得极值.(1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=a+ln x+1,由f′(1)=a+1=0,解得a=-1.则f(x)=-x+x ln x,∴f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.∴f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,则函数y=f(x)与y=m+1的图象在(0,+∞)内有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,f(e)=0,作出f(x)图象如图.由图可知,当-1<m+1<0,即-2<m<-1时,y=f(x)与y=m+1的图象有两个不同的交点.因此实数m的取值范围是(-2,-1).3.(2022·河南名校联盟模拟)已知f(x)=(x-1)e x-13ax3+13a(a∈R).(1)若函数f(x)在[0,+∞)上单调递增,求a的取值范围;(2)当a≤e时,讨论函数f(x)零点的个数.解(1)f(x)=(x-1)e x-13ax3+13a,则f′(x)=x(e x-ax).∵函数f(x)在[0,+∞)上单调递增,∴f′(x)=x(e x-ax)≥0在[0,+∞)上恒成立,则e x-ax≥0,x≥0.当x=0时,则1≥0,即a∈R;当x>0时,则a≤e x x,构建g(x)=e xx(x>0),则g′(x)=(x-1)e xx2(x>0),令g′(x)>0,则x>1,令g′(x)<0,则0<x<1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(x)≥g(1)=e,∴a≤e,综上所述,a≤e.(2)f(x)=(x-1)e x-13ax3+13a=(x-1)⎣⎢⎡⎦⎥⎤e x-13a(x2+x+1),令f(x)=0,则x=1或e x-13a(x2+x+1)=0,对于e x-13a(x2+x+1)=0,即e xx2+x+1=13a,构建h(x)=e xx2+x+1,则h′(x)=x(x-1)e x (x2+x+1)2,令h′(x)>0,则x>1或x<0,令h′(x)<0,则0<x<1,∴h(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,h(0)=1,h(1)=e3且h(x)>0,当x∈R时恒成立,则当a=e时,e xx2+x+1=13a有两个根x1=1,x2<0;当0<a<e时,e xx2+x+1=13a只有一个根x3<0;当a≤0时,e xx2+x+1=13a无根.综上所述,当a≤0时,f(x)只有一个零点;当0<a≤e时,f(x)有两个零点.4.(2022·全国乙卷)已知函数f(x)=ax-1x-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解(1)当a=0时,f(x)=-1x-ln x(x>0),所以f′(x)=1x2-1x=1-xx2.当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f (x )=ax -1x -(a +1)ln x (x >0),得f ′(x )=a +1x 2-a +1x =(ax -1)(x -1)x 2(x >0). 当a =0时,由(1)可知,f (x )不存在零点;当a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x -1a (x -1)x 2, 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (1)=a -1<0,所以f (x )不存在零点;当a >0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x -1a (x -1)x 2, 当a =1时,f ′(x )≥0,f (x )在(0,+∞)上单调递增,因为f (1)=a -1=0, 所以函数f (x )恰有一个零点;当a >1时,0<1a <1,故f (x )在⎝ ⎛⎭⎪⎫0,1a ,(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减. 因为f (1)=a -1>0,所以f ⎝ ⎛⎭⎪⎫1a >f (1)>0, 当x →0+时,f (x )→-∞,由零点存在定理可知f (x )在⎝ ⎛⎭⎪⎫0,1a 上必有一个零点,所以a >1满足条件,当0<a <1时,1a >1,故f (x )在(0,1),⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减. 因为f (1)=a -1<0,所以f ⎝ ⎛⎭⎪⎫1a <f (1)<0,当x →+∞时,f (x )→+∞,由零点存在定理可知f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上必有一个零点,即0<a <1满足条件.综上,若f (x )恰有一个零点,则a 的取值范围为(0,+∞).。

专题07 利用导函数研究函数零点问题 (原卷版)-2024年高考数学复习解答题解题思路训练

专题07 利用导函数研究函数零点问题 (原卷版)-2024年高考数学复习解答题解题思路训练

专题07利用导函数研究函数零点问题(典型题型归类训练)目录一、必备秘籍..........................................................................................................1二、典型题型..........................................................................................................2题型一:判断(讨论)零点(根)个数问题...................................................2题型二:证明唯一零点问题..............................................................................3题型三:根据零点(根)的个数求参数...........................................................4三、专项训练. (6)一、必备秘籍2、函数零点的判定如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是()0f x =的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点3、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.4、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解;(2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.二、典型题型题型一:判断(讨论)零点(根)个数问题题型二:证明唯一零点问题2.(2023上·黑龙江·高三校联考阶段练习)已知函数()ln f x x x =+,()e ln xg x x a =+,且函数()f x 的零点是函数()g x 的零点.(1)求实数a 的值;(2)证明:()y g x =有唯一零点.3.(2023下·河南·高三校联考阶段练习)已知函数()ln f x ax x =-,a ∈R .(1)过坐标原点作()f x 的切线,求该切线的方程;(2)证明:当a<0时,2()0f x ax +=只有一个实数根.题型三:根据零点(根)的个数求参数三、专项训练8.(2023上·吉林长春·高一吉林省实验校考期中)已知函数()()22ln f x x a x a x =-++,()R a ∈(1)求函数的单调区间与极值点;(2)若4a =,方程()0f x m -=有三个不同的根,求m 的取值范围.9.(2023上·江苏·高三校联考阶段练习)已知函数()2sin cos f x x x x x =-⋅-.(1)若曲线()y f x =在点()()00,x f x 处的切线与x 轴平行,求该切线方程;(2)讨论曲线()y f x =与直线y a =的交点个数.10.(2023下·山东菏泽·高二校考阶段练习)给定函数()()3exf x x =+(1)判断()f x 的单调性并求极值;(2)讨论()()R f x m m =∈解的个数.四、证明题。

求解导数零点问题的四种策略

求解导数零点问题的四种策略

2020年第12期中学数学教学参考(下旬)'想方法求解导数零点问题的四种策略毛正燕(贵州省安顺市西秀区高级中学)余登高(贵州省安顺市西秀区岩腊乡三股水学校)摘要:导数零点是导数综合应用中非常重要的知识,其考查形式多样,问题设置一般较为复杂,尤其是导 数零点不可求问题。

本文给出四种策略下求解导数零点问题的示例,展现了一种策略独领风骚,多种策略 助力的解题过程。

关键词:导数;零点定理;函数文章编号:1002-2171 (2020) 12-0054-03导数作为高中数学中的重点内容,一直是高考函数压轴题涉及的主要知识。

导数零点问题考查形式多样,问题设置较为复杂,常常给学生的解题带来障碍。

下面笔者通过示例说明求解该类问题的四种策略。

1 一个定理——零点存在性定理在判断导函数/(:c)在给定区间U,6)内的单调 性后,可在区间(a,6)内取两个特殊值(往往取比较容易计算的具有明显特征的数值),计算对应的导函数值,并与〇进行比较,结合函数的零点存在性定理,就 可以得到导函数/'(x)在给定区间(a,6)内存在唯一 的零点。

例1(2019年高考数学全国卷I文科第20题第(I )问)已知函数 /(x) =2sin x—xcos x— x, /U)为/(X)的导函数。

证明:/(1)在区间(0,7T)内存在唯一零点。

分析:先对函数/(I)求导,然后对导函数再次求导,利用函数的单调性与最值,结合函数的零点存在性定理证明。

证明:由题意可得/^(工)=2cos x— [cos x+x(— sin x)] —l=cos x+xsin x一1,设函数g(x)=//(x)=c o s x+xsin x—1,贝!j(:r) =:ccos x。

当时,单调递增;当(|,7T)时,^/(:r)<0,g(jc)单调递减。

则函数g O)的最大值为 —1>〇。

又 g(0) =0,g(7t)=—2,可得 d f) .g(7t)<〇,即/'(f) ./(兀)<〇,所以根据函数的零点存在性定理,可知/(:c)在区间(0, 7t)内存在唯一零点。

(完整版)导数问题中虚设零点的三大策略

(完整版)导数问题中虚设零点的三大策略

导数问题中虚设零点的三大策略导数在高中数学中可谓“神通广大”,是解决函数单调性、极值、最值、不等式证明等问题的“利器”。

因而近几年来与导数有关的数学问题往往成为高考函数压轴题.在面对这些压轴题时,我们经常会碰到导函数具有零点但求解相对比较繁杂甚至无法求解的问题。

此时,我们不必正面强求,可以采用将这个零点只设出来而不必求出来,然后谋求一种整体的转换和过渡,再结合其他条件,从而最终获得问题的解决。

我们称这种解题方法为“虚设零点”法.下面笔者就一些高考题,来说明导数问题中“虚设零点”法的具体解题方法和策略。

策略1整体代换将超越式化简为普通式如果f′(x)是超越形式(对字母进行了有限次初等超越运算包括无理数次乘方、指数、对数、三角、反三角等运算的解析式,称为初等超越式,简称超越式),并且f′(x)的零点是存在的,但我们无法求出其零点,这时采用虚设零点法,逐步分析出“零点”所在的范围和满足的关系式,然后分析出相应函数的单调性,最后通过恰当运用函数的极值与零点所满足的“关系”推演出所要求的结果。

通过这种形式化的合理代换或推理,谋求一种整体的转换和过渡,从而将超越式化简为普通式,有效破解求解或推理证明中的难点.例1(2015年全国高考新课标Ⅰ卷文21)设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)的零点的个数;(2)证明:当a>0时,f(x)≥2a+aln2a。

解(1)f(x)的定义域为(0,+∞),f′(x)=2e2x—ax(x>0)。

由f′(x)=0,得2xe2x=a。

令g(x)=2xe2x,g′(x)=(4x+2)e2x〉0(x>0),从而g(x)在(0,+∞)单调递增,所以g (x)>g(0)=0.当a〉0时,方程g(x)=a有一个根,即f′(x)存在唯一零点;当a≤0时,方程g(x)=a没有根,即f′(x)没有零点。

(2)由(1),可设f′(x)在(0,+∞)的唯一零点为x0,当x∈(0,x0)时,f′(x)〈0;当x∈(x0,+∞)时,f′(x)>0。

高考数学专题一 微专题8 利用导数研究函数零点问题

高考数学专题一 微专题8 利用导数研究函数零点问题

④当x∈(π,+∞)时,ln(x+1)>1, 所以f(x)<0,从而f(x)在(π,+∞)上没有零点. 综上,f(x)有且仅有2个零点.
跟踪训练1 (2023·常德模拟)已知函数f(x)=x2+2-aln x(a∈R). x
(1)若f(x)在x=2处取得极值,求f(x)在点(1,f(1))处的切线方程;
因为 f(x)=x2+2x-aln x,x>0,
2x3-ax-2
所以 f′(x)= x2
(x>0),
令g(x)=2x3-ax-2,则g′(x)=6x2-a,
由 a>0,g′(x)=0,可得 x= a6,
所以 g(x)在0,
a6上单调递减,在
a6,+∞上单调递增,
由于 g(0)=-2<0,故当 x∈0,
a6时,g(x)<0,
又g(1)=-a<0,故g(x)在(1,+∞)上有唯一零点,设为x1,
从而可知f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,
由于f(x)有唯一零点x0,故x1=x0,且x0>1,
所以有 2x30-ax0-2=0,x20+x20-aln x0=0,
联立得 2ln x0-x30-3 1-1=0,
(*)
令 h(x)=2ln x-x3-3 1-1,可知 h(x)在(1,+∞)上单调递增,
由于 h(2)=2ln 2-170<2×0.7-170<0,h(3)=2ln 3-2296>2×1-2296>0, 故方程(*)的唯一解,即f(x)的唯一零点x0∈(2,3),故[x0]=2.
考点二 由零点个数求参数范围
③若a<-1, (ⅰ)当x∈(0,+∞)时, 则g′(x)=ex-2ax>0, 所以g(x)在(0,+∞)上单调递增, 又g(0)=1+a<0,g(1)=e>0, 所以存在m∈(0,1), 使得g(m)=0,即f′(m)=0, 当x∈(0,m)时,f′(x)<0,f(x)单调递减, 当x∈(m,+∞)时,f′(x)>0,f(x)单调递增, 所以当x∈(0,m)时,f(x)<f(0)=0,

高三总复习数学课件 利用导数研究函数的零点问题

高三总复习数学课件 利用导数研究函数的零点问题
当 x→+∞时,f(x)→+∞,f′(x)→+∞.
根据以上信息,画出大致图象,如图所示.
(3)令 g(x)=f(x)-a=0,得 f(x)=a. 所以函数 g(x)=f(x)-a(a∈R )的零点的个数,即函数 y=f(x)的图象与直线 y =a 的交点个数.
易知当 x=-2 时,f(x)取得最小值, 最小值为 f(-2)=-e12.
若选择条件②, 由于 0<a<12,故 0<2a<1, 则 f(0)=b-1≤2a-1<0, 当 b≥0 时,e2>4,4a<2, f(2)=e2-4a+b>0, 又函数 f(x)在区间(0,+∞)上单调递增, 故函数 f(x)在区间(0,+∞)上有一个零点.
当b<0时,构造函数H(x)=ex-x-1,则H′(x)=ex-1, 当x∈(-∞,0)时,H′(x)<0,H(x)单调递减, 当x∈(0,+∞)时,H′(x)>0,H(x)单调递增, 注意到H(0)=0,故H(x)≥0恒成立,从而ex≥x+1,此时f(x)=(x-1)ex- ax2+b≥(x-1)(x+1)-ax2+b=(1-a)x2+(b-1),
综上,当 a<-e12时,函数 g(x)的零点的个数为 0; 当 a=-e12或 a≥0 时,函数 g(x)的零点的个数为 1; 当-e12<a<0 时,函数 g(x)的零点的个数为 2.
[系统思维] 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个 数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的 符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)利用函数零点存在定理:先用该定理判断函数在某区间上有零点,然后 利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该 区间上零点的个数.

10.分离函数解决导数零点不可求问题

10.分离函数解决导数零点不可求问题

[高考数学母题一千题]分离函数解决导数零点不可求问题解决导数零点不可求问题的通法利用导数研究函数的关键“点”是求导数的零点,在高考中,存在一类试题,其导数的零点不可求,那么如何破解“导数的零点不可求”的困局?我们给出破解困局的通法,以如下母题的方式给出:[母题结构]:己知函数f(x)满足其导函数f '(x)的零点不可求,研究函数f(x)的性质.[解题程序]:首先对导函数f '(x)进行等价变形,分离出函数g(x),使f '(x)=M(x)g(x),其中M(x)或恒正,或恒负,或其零点可求,然后,研究函数g(x)的零点. 1.函数g(x)不含参数子题类型Ⅰ:(2012年课标高考试题文科第21题)设函数f(x)=e x-ax-2. (Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k 为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k 的最大值.[分析]:本题的落脚点在第(Ⅱ)问,利用分离参数法可得:当x>0时,(x-k)f '(x)+x+1>0⇔k<11-+xe x +x,令g(x)=11-+x e x +x(x>0),则问题等价于k<g(x)的最小值;由g '(x)=2)1()1()1(-+--xxx e e x e +1=-2)1(1-+xx e xe +1=2)1(-xx e e (e x-x-2),然后,利用(Ⅰ)中的结果,研究分离出的函数f(x)=e x-x-2的零点.[解析]:(Ⅰ)由f(x)=e x -ax-2⇒f '(x)=e x-a;①当a ≤0时,f '(x)>0⇒f(x)在(-∞,+∞)上单调递增;②当a>0时,f(x)在(-∞,lna)上单调递减,f(x)在(lna,+∞)上单调递增;(Ⅱ)当a=1时,f '(x)=e x-1,所以,当x>0时,(x-k)f '(x)+x+1>0⇔当x>0时,k<11-+xe x +x;令g(x)=11-+x e x +x(x>0),则g '(x)=2)1(-x x e e (e x -x-2);由(Ⅰ)知,f(x)=e x-x-2在(0,+∞)上单调递增,且f(1)=e-3<0,f(2)=e 2-4>0⇒f(x),即g '(x)在(1,2)内存在唯一的零点α,且α是g(x)的极小值点,也是g(x)的最小值点;由g '(α)=0⇒e α-α-2=0⇒e α=α+2⇒g(α)=11-+ααe +α=1+α∈(2,3)⇒k 的最大值=2.[点评]:对于函数f(x)满足:f '(x)=M(x)g(x),其中M(x)或恒正,或恒负,g(x)不含参数,研究函数f(x)的性质;①确定g(x)的零点α范围;②判断α是f(x)的极大值点,还是极小值点?③由g(α)=0及α的范围,求f(α)的取值范围. 2.函数g(x)含参数子题类型Ⅱ:(2014年山东高考试题)设函数f(x)=2xe x -k(x2+lnx)(k 为常数,e=2071828…是自然对数的底数). (Ⅰ)当k ≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k 的取值范围.[分析]:由f(x)=2xe x-k(x2+lnx)(x>0)⇒f '(x)=422xxe e x xx --k(-22x+x 1)=32xx -(e x-kx),所以,函数f(x)的性质取决于分离出的函数g(x)=e x-kx 的零点.[解析]:由f(x)=2xe x-k(x2+lnx)(x>0)⇒f '(x)=422x xe e x xx --k(-22x +x 1)=32xx -(e x-kx); (Ⅰ)当k ≤0时,e x-kx>0(x>0),所以,函数f(x)在(0,2)上单调递减,在(2,+∞)上单调递增; (Ⅱ)当x ∈(0,2)时,32xx -<0;令g(x)=e x-kx,则函数f(x)在(0,2)内存在两个极值点⇔f '(x),即g(x)在(0,2)内存在两个零点,且g(x)的图案在其零点附近穿过x 轴;由(Ⅰ)知,当k ≤0时,不合题意;当k>0时,由g '(x)=e x-k ⇒g min (x)=g(lnk)=k-klnk,所以,0<lnk<2,g min (x)=k-klnk<0,且g(2)=e 2-2k>0⇒e<k<22e ⇒k 的取值范围是(e,22e ). [点评]:对于满足:f '(x)=M(x)g(x)的函数f(x),其中M(x)或恒正,或恒负,g(x)含参数,研究函数f(x)性质的关键是研究f '(x)分离出的含参数的函数g(x)的零点;逆向而行,由函数g(x)的零点及其零点类别(是f(x)的极大值点,极小值点,还是拐点),可命制函数f(x)的性质试题. 3.一个命题模式子题类型Ⅲ:(2014年辽宁高考理科试题)已知函数f(x)=(cosx-x)(π+2x)-38(sinx+1),g(x)=3(x-π)xosx-4(1+ sinx)ln(3-πx2).证明:(Ⅰ)存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)存在唯一x 1∈(2π,π),使g(x 1)=0,且对(Ⅰ)中的x 0,有x 0+x 1<π. [分析]:第(Ⅰ)问是常规问题,对于第(Ⅱ)问当x ∈[2π,π]时,由g(x)=0⇔x x x sin 1cos )(3+-π-4ln(3-πx 2)=0,因此,需研讨函数h(x)=x x x sin 1cos )(3+-π-4ln(3-πx2),但其导数的零点不可求,为利用第(Ⅰ)问的需通过t=π-x 转化变量的范围得t ∈[0,2π],且h(t)=h(π-t)=t t t sin 1cos 3+-4ln(1+πt 2)⇒h '(t)=)sin 1)(2()(3t t t f ++π,即f(t)恰是由h '(t)分离出的函数. [解析]:(Ⅰ)当x ∈(0,2π)时,由f '(x)=-(1+sinx)(π+2x)-2x-32cosx<0⇒f(x)在(0,2π)内递减,又f(0)=π-38>0, f(2π)=-π2-316<0⇒存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)由g(x)=0⇔x x x sin 1cos )(3+-π-4ln(3-πx 2)=0,x ∈[2π,π],令h(x)=x x x sin 1cos )(3+-π-4ln(3-πx2),x ∈[2π,π],t=π-x ∈[0,2π],h(t)=h(π-t)=)sin(1)cos(])[(3t t t -+---ππππ-4ln[3-ππ)(2t -]=t t t sin 1cos 3+-4ln(1+πt 2),则h '(t)=)sin 1)(2()(3t t t f ++π⇒当x ∈(0,x 0)时,h '(t)>0⇒h(t)在(0,x 0)内递增,又h(0)=0⇒h(t)>0;当x ∈(x 0,2π)时,h '(t)<0⇒h(t)在(x 0,2π)内递减,又h(2π)=-4ln2<0⇒存在唯一t 0∈(x 0,2π),使h(t 0)=0⇒存在唯一x 1∈(2π,π),使g(x 1)=0;由t 0=π-x 1∈(x 0,2π)⇒x 0+x 1<π. [点评]:本题给出了命制导数的零点不可求型试题一个模式:对于满足:f '(x)=M(x)g(x)的函数f(x),其中M(x)或恒正,或恒负,或其零点可求,而g(x)的不可求;可命制如下递进型试题:第(Ⅰ)问讨论g(x)的零点;第(Ⅱ)问证明或研究函数f(x)的性质. 4.子题系列:1.(2013年课标Ⅱ高考试题)已知函数f(x)=e x -ln(x+m). (Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明:f(x)>0.2.(2014年四川高考理科试题)已知函数f(x)=e x-ax 2-bx-1,其中a,b ∈R,e=2071828…为自然对数的底数. (Ⅰ)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (Ⅱ)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a 的取值范围.3.(2014年辽宁高考文科试题)已知函数f(x)=π(x-cosx)-2sinx-2,g(x)=(x-π)xx sin 1sin 1+-+πx 2-1.证明: (Ⅰ)存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)存在唯一x 1∈(2π,π),使g(x 1)=0,且对(Ⅰ)中的x 0,有x 0+x 1>π. 4.(2015年山东高考试题)设函数f(x)=(x+a)lnx,g(x)=xe x 2,已知曲线y=f(x)在点(1,f(1))处的切线与直线2x-y=0平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k,使的方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由; (Ⅲ)设函数m(x)=min{f(x),f(x)}(min{p,q}表示p,q 中的较小值),求m(x)的最大值. 5.(2015年四川高考文科试题)已知函数f(x)=-2xlnx+x 2-2ax+a 2,其中a>0. (Ⅰ)设g(x)是f(x)的导函数,讨论函数g(x)的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 6.(2015年四川高考理科试题)已知函数f(x)=-2(x+a)lnx+x 2-2ax-2a 2+a,其中a>0. (Ⅰ)设g(x)是f(x)的导函数,讨论函数g(x)的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 4.子题详解: 1.解:(Ⅰ)由f '(x)=e x-m x +1,x=0是f(x)的极值点⇒f '(0)=0⇒m=1⇒f '(x)=e x -11+x ⇒f ''(x)=e x+2)1(1+x >0⇒f '(x)在(-1,+∞)内单调递增⇒当x ∈(-1,0)时,f '(x)<f '(0)=0⇒f(x)在(-1,0)内单调递减;当x ∈(0,+∞)时,f '(x)>f '(0)=0⇒f(x)在(0,+∞)内单调递增;(Ⅱ)当m≤2时,f(x)=e x-ln(x+m)≥e x-ln(x+2),故只需证明当m=2时,f(x)=e x-ln(x+2)>0;由f '(x)=e x-21+x 在(-2,+∞)内单调递增,且f(-1)<0,f(0)>0⇒f(x)的最小值点x 0∈(-1,0),且e 0x -210+x =0⇒ln(x 0+2)=-x 0⇒f min (x)=f(x 0)=e 0x - ln(x 0+2)=210+x +x 0>0. 2.解:(Ⅰ)由f(x)=e x-ax 2-bx-1⇒g(x)=f '(x)=e x-2ax-b ⇒g '(x)=e x-2a,由x ∈[0,1]⇒e x∈[1,e];①当a ≤21时,g '(x)≥0⇒g(x)在[0,1]内递增⇒g min (x)=g(0)=1-b;②当21<a<2e时,g(x)在[0,ln(2a)]内递减,在[ln(2a),1]内递增⇒ g min (x)=g(ln(2a))=2a-2aln(2a)-b;③当a ≥2e时,g '(x)≤0⇒g(x)在[0,1]内递减⇒g min (x)=g(1)=e-2a-b; (Ⅱ)由f(1)=0⇒e-a-b-1=0⇒b=e-a-1,又f(0)=0,所以,f(x)在区间(0,1)内有零点⇔f(x)在区间(0,1)内至少有三个单调区间;由(Ⅰ)知,当a ≤21或a ≥2e时,f ''(x)在区间[0,1]上单调⇒f(x)在区间(0,1)内至少有二个单调区间,不合题意; 当21<a<2e时,g(0)=1-b=2+a-e>0,g(1)=e-2a-b=1-a>0⇒a ∈(e-2,1),g min (x)=2a-2aln(2a)-b=3a-2aln(2a)-e-1;令h(x)= 3x-2xln(2x)-e-1,x ∈(e-2,1),则h '(x)=1-2ln(2x)⇒h max (x)=h(2e )=2e -2e-1<0⇒g min (x)<0⇒f(x)在区间(0,1)内恰有三个单调区间.综上,a 的取值范围为(e-2,1). 3.解:(Ⅰ)由f '(x)=π(1+sinx)-2cosx>0⇒f(x)在(0,2π)内增,又f(0)<0,f(2π)>0⇒存在唯一x 0∈(0,2π),使f(x 0)=0; (Ⅱ)当x ∈[2π,π]时,由g(x)=(x-π)xxsin 1sin 1+-+πx 2-1=(π-x)x x sin 1cos ++πx 2-1;令t=π-x,h(t)=g(π-t)=-t t t sin 1cos +-πt 2+ 1,t ∈[0,2π],则h '(t)=)sin 1()(t t f +π⇒当x ∈(0,x 0)时,h '(t)<0⇒h(t)在(0,x 0)内递减,又h(0)=1,⇒h(t)>0;当x ∈(x 0,2π)时,h '(t)>0⇒h(t)在(x 0,2π)内递增,又h(2π)=0⇒h(x 0)<0⇒存在唯一t 0∈(0,x 0),使h(t 0)=0⇒存在唯一x 1∈(2π,π),使g(x 1)=0;由t 0=π-x 1∈(0,x 0)⇒x 0+x 1>π. 4.解:(Ⅰ)由f '(1)=2;由f(x)=(x+a)lnx ⇒f '(x)=lnx+xax +⇒f '(1)=1+a=2⇒a=1; (Ⅱ)由f '(x)=lnx+x x 1+⇒f ''(x)=x 1-21x =21x(x-1)⇒f '(x)的极小值=f '(1)=2⇒f '(x)>0⇒f(x)在(0,+∞)内递增;由g(x)=xex 2⇒g '(x)=-xe x x )2(-⇒g(x)在(0,2)内递增,在(2,+∞)内递减;又因当x ∈(0,1]时,f(x)≤0,g(x)>0;f(2)=3ln2>1,g(2)=24e <1;当x ∈(1,+∞)时,f(x)>f(2)>1,g(x)<g(2)<1.综上,当x ∈(1,2)时,方程f(x)=g(x)存在唯一的根⇒k=1;(Ⅲ)由(Ⅱ)知,方程f(x)=g(x)在(1,2)内存在唯一的根α,且当x ∈(0,α)时,f(x)<g(x)⇒m(x)=f(x)<f(α)=g(α)< g(2);当x ∈(α,+∞)时,f(x)>g(x)⇒m(x)=g(x)⇒m(x)的最大值=g(2)=24e .5.解:(Ⅰ)由g(x)=f '(x)=2(x-1-lnx-a)(x>0)⇒g '(x)=xx )1(2-⇒g(x)在(0,1)内递减,在(1,+∞)内递增; (Ⅱ)由(Ⅰ)知f '(x)=g(x)在(1,+∞)内递增,且f '(1)=-2a<0,f '(a+4)=2[3-ln(a+4)]>0⇒f '(x)在(1,+∞)内存在唯一零点α,且x=α是f(x)的极小值点,也是f(x)的最小值点,所以,f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解⇔f(α)=0;由f '(α)=0⇒a=α-ln α-1⇒f(α)=-2αln α+α2-2a α+a 2=-2αln α+(α-a)2=-2αln α+(ln α+1)2;令h(x)=-2xlnx+(lnx+1)2,则h(1)=1,h(e)=4-2e<0⇒h(x)存在零点t ∈(1,e);令T(t)=t-lnt-1,t ∈(1,e),则T '(t)=1-t1>0,T(1)=0,T(e)=e-2<1⇒T(t)∈(0,1)⇒a=α-ln α-1∈(0,1). 6.解:(Ⅰ)由g(x)=f '(x)=-2lnx-2-x a 2+2x-2a(x>0,a>0)⇒g '(x)=22x(x 2-x+a);①当a ≥41时,g '(x)≥0⇒g(x)在(0,+∞)内递增;②当0<a<41时,由g '(x)=0⇒x 1=2411a --,x 2=2411a -+⇒g(x)在(0,x 1)和(x 2,+∞)内递增,在(x 1,x 2)内递减; (Ⅱ)当a ∈(0,1)时,x 2=2411a-+<1,由(Ⅰ)知f '(x)=g(x)在(1,+∞)内递增,且f '(1)=-4a<0,f '(a+4)=2[3-ln(a+4)- 4+a a ]>2(3-2-51)>0⇒f '(x)在(1,+∞)内存在唯一零点α,且x=α是f(x)的极小值点,也是f(x)的最小值点,所以,f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解⇔f(α)=0;由f ''(α)=0⇒ln α=α-αa-a-1⇒f(α)= =-2(α+a)ln α+α2-2a α-2a 2+a=-2(α+a)(α-αa -a-1)+α2-2a α-2a 2+a=-α2+2α+α22a +4a-2a α;由f(α)=0⇒-α2+2α+α22a +5a-2a α=0⇒2a 2+(5α-2α2)a-α3+2α2=0⇒(2a-α)(a+α2-2α)=0⇒a=2α,或a=2α-α2,令a=2α-α2,代入f ''(α)=0得ln α=α2-3⇒α∈(1,2)⇒a=2α-α2∈(0,1).。

高考数学复习 《导数中的隐零点问题》

高考数学复习  《导数中的隐零点问题》

衢州三中微专题系列之《导数中的隐零点问题》衢州三中 李娜 知识要点求解导数题时,经常会碰到导函数存在零点但求解比较繁杂甚至无法求解的情形,我们将这类问题称为“隐零点”问题。

这类问题我们一般采用设而不求,通过整体代换和过渡,再结合其他条件,从而使问题得到解决。

解隐零点问题的一般策略:第一步:用零点存在性定理(或用二分法进一步缩小零点的范围)判断导函数零点的存在性。

列出零点方f ′(x 0)=0,并结合f(x)的单调性得到零点的范围。

第二步:将零点方程f ′(x 0)=0适当变形,整体代入最值式子中进行化简证明、求最值、解不等式等。

典例分析【类型一】不含参函数的隐零点问题(构造关于隐零点的单一函数进行求解)已知不含参函数,导函数方程的根存在,却无法求出,设方程的根为,则①有关系式成立,②注意确定的合适范围.例1 已知函数f (x )=(ae x﹣a ﹣x )e x(a ≥0,e=2.718…,e 为自然对数的底数),若f (x )≥0对于x ∈R 恒成立. (1)求实数a 的值;(2)证明:f (x )存在唯一极大值点x 0,且.【解答】(1)a=1,证明略;(2)证明:由(1)f (x )=e x(e x﹣x ﹣1),故f'(x )=e x(2e x﹣x ﹣2),令h (x )=2e x﹣x ﹣2,h'(x )=2e x﹣1, 所以h (x )在(﹣∞,ln)单调递减,在(ln,+∞)单调递增,h (0)=0,h (ln )=2eln ﹣ln ﹣2=ln2﹣1<0,h (﹣2)=2e ﹣2﹣(﹣2)﹣2=>0,∵h (﹣2)h (ln)<0由零点存在定理及h (x )的单调性知,方程h (x )=0在(﹣2,ln)有唯一根,)(x f 0)('=x f 0)('=x f 0x 0)('0=x f 0x设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0,所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,从而f(x)存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=,取等不成立,所以f(x0)<得证,又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证,从而0<f(x0)<成立.例2 已知函数.(1)讨论的最值;(2)若,求证:..【解析】(1)依题意,得.①当时,,所以在上单调递减,故不存在最大值和最小值;②当时,由得,.当变化时,与的变化情况如下表(2)当,,设,则,设,由,可知在上单调递增.因为,,所以存在唯一的,使得.当变化时,与的变化情况如下表:由上表可知,在上单调递减,在上单调递增,故当时,取得极小值,也是最小值,即.由可得,所以.又,所以,所以,即,所以不等式成立.[来源:]【类型二】含参函数的隐零点问题对于含参数的隐零点问题,在整体代换时,需要利用零点方程得出参数与零点的关系,将参数用零点表示,再结合具体问题进行求解、已知含参函数,其中为参数,导函数方程的根存在,却无法求出,设方程的根为,则①有关系式成立,该关系式给出了的关系,②注意确定的合适范围,往往和的范围有关. 例3已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.),(a x f a 0),('=a x f 0)('=x f 0x 0)('0=x f a x ,00x a解:(Ⅰ)因为+3()ex mf x x =-,所以+2()e 3x m f x x '=-.………………………1分因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ) 设()()+eln 12x mh x x =-+-,则()+1e 1x m h x x '=-+. 设()+1e 1x m p x x =-+,则()()+21e 01x m p x x '=+>+. 所以函数()p x =()+1e 1x m h x x '=-+在()+∞-1,上单调递增.………………6分 因为1m ≥,所以()()1e+1e 1e e e e e 10mmmmm m h ----+-+'-+=-=-<,()0e 10m h '=->.所以函数()+1e 1x m h x x '=-+在()+∞-1,上有唯一零点0x ,且()01e ,0m x -∈-+. …8分因为()00h x '=,所以0+01e1x mx =+,即()00ln 1x x m +=--.………………9分 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以当0x x =时,()h x 取得最小值()0h x .……………………………………10分 所以()()()0+00e ln 12x mh x h x x ≥=-+-00121x m x =++-+ ()0011301x m x =+++->+. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分例4 已知函数f (x )=e x+a﹣lnx (其中e=2.71828…,是自然对数的底数). (Ⅰ)当a=0时,求函数a=0的图象在(1,f (1))处的切线方程; (Ⅱ)求证:当时,f (x )>e+1.【解答】(Ⅰ)解:∵a=0时,∴,∴f(1)=e,f′(1)=e﹣1,∴函数f(x)的图象在(1,f(1))处的切线方程:y﹣e=(e﹣1)(x﹣1),即(e﹣1)x﹣y+1=0;(Ⅱ)证明:∵,设g(x)=f′(x),则,∴g(x)是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′(x)>0;若0<x<1⇒e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′(x)<0,故f′(x)=0仅有一解,记为x0,则当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增;∴,而,记h(x)=lnx+x,则,⇔﹣a<⇔h(x0)<h(),而h(x)显然是增函数,∴,∴.综上,当时,f(x)>e+1.巩固练习1.已知函数.(1)求的极值点;(2)证明:.2.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.3.已知函数的导函数为,且.(1)求函数的极值.(2)若,且对任意的都成立,求的最大值.4.已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.参考答案1.(2)设,则,设,则方程在区间内恰有一个实根.设方程在区间内的实根为,即.所以,当时,,此时单调递减;当时,,此时单调递增.所以由在上是减函数知,,故.综上.`2. 【解答】(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表x (0,x0)x0(x0,∞)g′(x)﹣0 +g(x)递减递增g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.3.(2)由(1)及题意知,对任意的都成立.令,则.令,则,所以函数在上为增函数,因为,,所以方程存在唯一实根,且,.故当时,,即;当时,,即.所以函数在上单调递减,在上单调递增,所以,所以,,又,故的最大值为.4.【解答】(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.。

高考数学:函数零点问题的处理方法

高考数学:函数零点问题的处理方法

高考数学:函数零点问题的处理方法唐山市开滦第一中学 张智民函数零点问题是高考的热点问题,常出现涉及利用函数的导数研究函数单调性的问题中;是每年必考的知识点,要确定区间上导函数的正负,则导函数的零点是关键,比如下面的例题。

引例:(2019唐山二中高三期中试卷16)设函数a ax x e x f x+--=)12()(,1<a ,若函数存在唯一整数o x ,使得0)(0<x f ,求实数a 的取值范围解:a ax x e x f x +--=)12()(<0等价于a ax x e x -<-)12(,构造函数)1()(),12()(-=-=-=x a a ax x h x e x g x ,存在唯一整数o x ,使得0)(0<x f ,等价于存在唯一整数o x 使得)()(00x h x g <;由,210)12()(/-=⇒=+=x x e x g x当,0)(21/<-<x g x 时,,0)(21/>->x g x 时, 作出两个函数的图像如下:红色的为)点的直线图像,过(的图像,黑色的为0,1)()(x h x g故此,123321)1()1()0()0(<≤⇒⎪⎩⎪⎨⎧-≤-<⇒⎩⎨⎧-≤->a e e a a g h g h 这个题多数学生不会做。

经过了解,这个题不会做的一个原因是不会利用导函数,另外一个原因就是处理函数的零点问题不会做等价转化。

转化为什么?如何转化呢?这就有必要进行下列知识的复习与回顾了。

一、什么是函数零点?定义:对于函数y=f(x),使f(x)=0的实数x 叫做函数y=f(x)的零点。

二、一般结论若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b)≤0,则在区间[a,b]内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间[a,b]内至少有一个实数解。

【高考理数】利用导数解决函数零点问题(解析版)

【高考理数】利用导数解决函数零点问题(解析版)

2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

数学高考导数难题导数零点问题导数最新整理

数学高考导数难题导数零点问题导数最新整理

含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。

(1)因式分解求零点 例1 讨论函数)(12)21(31)(23R a x x a ax x f ∈+++-=的单调区间 解析:即求)('x f 的符号问题。

由)2)(1(2)12()('2--=++-=x ax x a ax x f 可以因式分方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。

例4 讨论函数ax x a x e a x x f x++-+--=23)1(2131)1()(,R a ∈,的极值情况 解析:)1)(()1()()('2-+-=++-+-=x e a x a x a x e a x x f xx,只能解出)('x f 的一个零点为a ,其它的零点就是01=-+x e x的根,不能解。

例5(2011高考浙江理科)设函数R a x a x x f ∈-=,ln )()(2(Ⅰ)若e x =为)(x f y =的极值点,求实数a(Ⅱ)求实数a 的取值范围,使得对任意的],3,0(e x ∈恒有24)(e x f ≤成立(注:e 为自然对数), 方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,①当10≤<x 时,对于任意的实数a ,恒有240)(e x f <≤成立②当e x 31≤<,由题意,首先有,4)3ln(3()3(22e e a e ef ≤-=)解得)3ln(23)3ln(23e e e a e e e +≤≤-由'()()(2ln 1)af x x a x x=-+-,但这时会发现0)('=x f 的解除了a x =外还有xax -+1ln 2=0的解,显然无法用特殊值猜出。

高考数学科学复习创新方案:利用导数研究函数的零点问题

高考数学科学复习创新方案:利用导数研究函数的零点问题

利用导数研究函数的零点问题例1(2022·新高考Ⅰ卷改编)已知函数f(x)=e x-x,g(x)=x-ln x.(1)判断直线y=b与曲线y=f(x)和y=g(x)的交点分别有几个;(2)证明:曲线y=f(x)和y=g(x)有且只有一个公共点;(3)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.解(1)设S(x)=e x-x-b,S′(x)=e x-1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(-∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1-b.当b<1时,S(x)min=1-b>0,S(x)无零点;当b=1时,S(x)min=1-b=0,S(x)有1个零点;当b>1时,S(x)min=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,则当b>1时,u′(b)=e b-2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点.,设T(x)=x-ln x-b,T′(x)=x-1x当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1-b.当b<1时,T(x)min=1-b>0,T(x)无零点;当b=1时,T(x)min=1-b=0,T(x)有1个零点;当b>1时,T(x)min=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,所以T(x)=x-ln x-b有两个不同的零点.综上可知,当b<1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是0;当b=1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是1;当b>1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是2.(2)证明:由f(x)=g(x)得e x-x=x-ln x,即e x+ln x-2x=0,设h(x)=e x+ln x-2x,其中x>0,故h′(x)=e x+1x-2,设s(x)=e x-x-1,则当x>0时,s′(x)=e x-1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0,即e x>x+1,所以h′(x)>x+1x-1≥2-1>0,所以h(x)在(0,+∞)上为增函数,而h(1)=e-2>0,e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,且1e3<x0<1,当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),所以曲线y=f(x)和y=g(x)有且只有一个公共点.(3)证明:由(2)知,若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的解x1,x0(x1<0<x0),x-ln x=b有两个不同的解x0,x2(0<x0<1<x2),故e x1-x1=b,e x0-x0=b,x2-ln x2-b=0,x0-ln x0-b=0,所以x2-b=ln x2,即e x2-b=x2,即e x2-b-(x2-b)-b=0,故x2-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,所以{x1,x0}={x0-b,x2-b},而b>10=x2-b,1=x0-b,即x1+x2=2x0.利用导数确定函数零点或方程根的个数的常用方法(1)构建函数g(x)(需g′(x)易求,g′(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义域区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用函数零点存在定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.(2024·衡水模拟)已知函数f(x)=(x-2)e x.(1)求函数f(x)的单调区间和极值;(2)若g(x)=f(x)-a,讨论函数g(x)的零点个数.解(1)f(x)的定义域为R,f′(x)=e x+(x-2)e x=(x-1)e x,又e x>0恒成立,∴当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,∴函数f(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).函数f(x)的极小值为f(1)=-e,无极大值.(2)当x<2时,f(x)<0,当x>2时,f(x)>0,结合(1)中结论作出函数图象如图,∴g(x)的零点个数等价于f(x)的图象与直线y=a的交点个数.当a≥0时,f(x)的图象与直线y=a有且仅有一个交点;当-e<a<0时,f(x)的图象与直线y=a有两个不同的交点;当a=-e时,f(x)的图象与直线y=a有且仅有一个交点;当a<-e时,f(x)的图象与直线y=a无交点.综上所述,当a∈[0,+∞)∪{-e}时,g(x)有唯一零点;当a∈(-e,0)时,g(x)有两个不同的零点;当a∈(-∞,-e)时,g(x)无零点.例2(2022·全国乙卷)已知函数f(x)=ax-1x-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解(1)当a=0时,f(x)=-1x -ln x(x>0),则f′(x)=1x2-1x=1-xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f(x)=ax-1x -(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).当a=0时,由(1)可知,f(x)不存在零点;当a<0时,f′(x)=x-1)x2,若x∈(0,1),f′(x)>0,f(x)单调递增,若x∈(1,+∞),f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;当a>0时,f′(x)=x-1)x2,若a=1,则f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点,若a>1,则f(x)(1,+∞)为f(1)=a-1>0,所以f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知,f(x)a>1满足条件.若0<a<1,则f(x)在(0,1)因为f(1)=a-1<0,所以f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知,f(x)0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.(2024·南阳一中月考)设函数f(x)=(x-2)ln(x-1)-ax,a∈R.(1)若f(x)在(2,+∞)上单调递增,求a的取值范围;(2)若f(x)有两个不同的零点,求a的取值范围.解(1)∵f′(x)=ln(x-1)+1-1x-1-a(x>1),令H(x)=ln(x-1)+1-1x-1-a(x>1),则H′(x)=1x-1+1(x-1)2>0,∴f′(x)在(1,+∞)上单调递增,∵f(x)在(2,+∞)上单调递增,∴f′(2)≥0,∴-a≥0⇒a≤0.∴a的取值范围是(-∞,0].(2)f(x)=0⇒a=(x-2)ln(x-1)x,令g(x)=(x-2)ln(x-1)x,故g′(x)=1x-1-2·xx-1-ln(x-1)x2=(x-1)-1x-1+2ln(x-1)x2,令h(x)=(x-1)-1x-1+2ln(x-1),∴h′(x)=1+1(x-1)2+2x-1>0,∴h(x)在(1,+∞)上单调递增,又h(2)=0,∴当1<x<2时,h(x)<0,即g′(x)<0,当x>2时,h(x)>0,即g′(x)>0,∴g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,∴g(x)≥g(2)=0,又由当x→1时,x-2x→-1,ln(x-1)→-∞,则g(x)→+∞;当x→+∞时,x-2x→1,ln(x-1)→+∞,则g(x)→+∞,若f(x)有两个不同的零点,则需满足a>0.∴a的取值范围为(0,+∞).例3(2023·泰州模拟)已知函数f(x)=e x-ax2+bx-1,其中a,b为常数,e 为自然对数的底数,e=2.71828….(1)当a=0时,若函数f(x)≥0,求实数b的取值范围;(2)当b=2a时,若函数f(x)有两个极值点x1,x2,现有如下三个命题:①7x1+bx2>28;②2a(x1+x2)>3x1x2;③x1-1+x2-1>2.请从①②③中任选一个进行证明.解(1)当a=0时,f(x)=e x+bx-1,f′(x)=e x+b,当b≥0时,因为f(-1)b<0,所以此时不符合题意;当b<0时,当x∈(-∞,ln(-b))时,f′(x)<0,f(x)单调递减,当x ∈(ln (-b ),+∞)时,f ′(x )>0,f (x )单调递增,所以f (x )min =f (ln (-b ))=-b +b ln (-b )-1,要使f (x )≥0,只需f (x )min =-b +b ln (-b )-1≥0,令g (x )=x -x ln x -1,则g ′(x )=-ln x ,当x ∈(0,1)时,g ′(x )>0,g (x )单调递增,当x ∈(1,+∞)时,g ′(x )<0,g (x )单调递减,所以g (x )≤g (1)=0,则由g (-b )=-b +b ln (-b )-1≥0,得-b =1,所以b =-1,故实数b 的取值范围为{-1}.(2)证明:当b =2a 时,f (x )=e x -ax 2+2ax -1,f ′(x )=e x -2ax +2a ,令φ(x )=f ′(x )=e x -2ax +2a ,则φ′(x )=e x -2a ,因为函数f (x )有两个极值点x 1,x 2,所以φ(x )=f ′(x )=e x -2ax +2a 有两个零点,若a ≤0,则φ′(x )>0,φ(x )单调递增,不可能有两个零点,所以a >0,令φ′(x )=e x -2a =0,得x =ln (2a ),当x ∈(-∞,ln (2a ))时,φ′(x )<0,φ(x )单调递减;当x ∈(ln (2a ),+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )min =φ(ln (2a ))=4a -2a ln (2a ),因为φ(x )有两个零点,所以4a -2a ln (2a )<0,则a >12e 2.设x 1<x 2,因为φ(1)=e >0,φ(2)=e 2-2a <0,所以1<x 1<2<x 2,因为φ(x 1)=φ(x 2)=0,所以e x 1=2ax 1-2a ,e x 2=2ax 2-2a ,则e x 2e x 1=x 2-1x 1-1,取对数得x 2-x 1=ln (x 2-1)-ln (x 1-1),令x 1-1=t 1,x 2-1=t 2,则t 2-t 1=ln t 2-ln t 1,即t 2-ln t 2=t 1-ln t 1(0<t 1<1<t 2).若选择命题①:令u (t )=t -ln t ,则u (t 1)=u (t 2),u ′(t )=1-1t,当0<t <1时,u ′(t )<0,当t >1时,u ′(t )>0,所以u (t )=t -ln t 在(0,1)上单调递减,在(1,+∞)上单调递增,令v (t )=u (t )-u (2-t )=2t -ln t +ln (2-t )-2(0<t <2),则v ′(t )=2(t -1)2t (t -2)≤0,v (t )在(0,2)上单调递减,因为0<t 1<1,所以v (t 1)>v (1)=0,即u (t 1)-u (2-t 1)>0,亦即u (t 2)=u (t 1)>u (2-t 1),因为t 2>1,2-t 1>1,u (t )=t -ln t 在(1,+∞)上单调递增,所以t 2>2-t 1,则x 2-1>2-(x 1-1),整理得x 1+x 2>4,所以7x 1+bx 2=7x 1+2ax 2>7x 1+7x 2>28,故①成立,得证.若选择命题②:令u (t )=t -ln t ,则u (t 1)=u (t 2),u ′(t )=1-1t,当0<t <1时,u ′(t )<0,当t >1时,u ′(t )>0,所以u (t )=t -ln t 在(0,1)上单调递减,在(1,+∞)上单调递增,令v (t )=u (t )-t -1t -2ln t ,则v ′(t )=(t -1)2t2≥0,v (t )在(0,+∞)上单调递增,又v (1)=0,所以当t ∈(0,1)时,v (t )=u (t )-v (1)=0,即u (t )<因为0<t 1<1,所以u (t 2)=u (t 1)<因为t 2>1,1t 1>1,u (t )=t -ln t 在(1,+∞)上单调递增,所以t 2<1t 1,所以x 2-1<1x 1-1,即x 1x 2<x 1+x 2,所以x1x2<x1+x2<2312e2(x1+x2)<23a(x1+x2),所以2a(x1+x2)>3x1x2,故②成立,得证.若选择命题③:因为x1-1=t1,x2-1=t2,则t2-t1=ln t2-ln t1=2ln t2t1,因为0<t1<1<t2,所以t2t1>1.令F(t)=ln t-2(t-1)t+1,则当t>1时,F′(t)=(t-1)2t(t+1)2>0,所以F(t)=ln t-2(t-1)t+1在(1,+∞)上单调递增,则F(t)=ln t-2(t-1)t+1>F(1)=0,所以ln t>2(t-1)t+1,则t2-t1=2ln t2t1>4·t2-t1t2+t1,两边约去t2-t1后,化简整理得t1+t2>2,即x1-1+x2-1>2,故③成立,得证.(1)研究函数零点问题,要通过数的计算(函数性质、特殊点的函数值等)和形的辅助,得出函数零点的可能情况.(2)函数可变零点(函数中含有参数)性质的研究,要抓住函数在不同零点处函数值均为零,建立不同零点之间的关系,把多元问题转化为一元问题,再使用一元函数的方法进行研究.已知函数f(x)=a e-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性;(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤2ln3,求x2x1的最大值.解(1)函数的定义域为(0,+∞),f ′(x )=-a e -x+1x =e x -ax x e x ,∵a ≤e ,∴e x -ax ≥e x -e x .设g (x )=e x -e x ,则g ′(x )=e x -e ,当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,∴g (x )≥g (1)=0,∴f ′(x )≥0,f (x )在(0,+∞)上单调递增.∴当a ≤e 时,函数f (x )在(0,+∞)上单调递增.(2)依题意,f ′(x 1)=f ′(x 2)=0x 1=ax 1,x 2=ax 2,两式相除得,e x 2-x 1=x 2x 1,设x 2x 1=t ,则t >1,x 2=tx 1,e (t -1)x 1=t ,∴x 1=ln t t -1,x 2=t ln t t -1,∴x 1+x 2=(t +1)ln tt -1.设h (t )=(t +1)ln t t -1(t >1),则h ′(t )=t -1t -2ln t (t -1)2,设φ(t )=t -1t-2ln t (t >1),则φ′(t )=1+1t 2-2t =(t -1)2t 2>0,∴φ(t )在(1,+∞)上单调递增,则φ(t )>1-11-2ln 1=0,∴h ′(t )>0,则h (t )在(1,+∞)上单调递增,又x 1+x 2≤2ln 3,即h (t )≤2ln 3,又h (3)=2ln 3,∴t ∈(1,3],即x 2x 1的最大值为3.课时作业一、单项选择题1.(2023·全国乙卷)函数f (x )=x 3+ax +2存在3个零点,则a 的取值范围是()A .(-∞,-2)B .(-∞,-3)C .(-4,-1)D .(-3,0)答案B解析f (x )=x 3+ax +2,则f ′(x )=3x 2+a ,若f (x )存在3个零点,则f (x )存在极大值和极小值,则a <0.令f ′(x )=3x 2+a =0,解得x =--a3或x =-a 3,且当x ∈∞∪时,f ′(x )>0,当x ∈--a 3,f ′(x )<0,故f (x )的极大值为f,若f (x )存在3个零点,则,即a -a3+2>0,a -a3+2<0,解得a <-3.故选B.2.(2023·济宁二模)已知函数f (x ),x ≤0,ln x ,x >0,若函数g (x )=f (x )-f (-x )有5个零点,则实数a 的取值范围是()A .(-e ,0)-1e ,C .(-∞,-e)∞答案C解析y =f (-x )与y =f (x )的图象关于y 轴对称,且f (0)=0,要想g (x )=f (x )-f (-x )有5个零点,则当x >0时,-x =a ln x 要有2个根,结合对称性可知,x<0时也有2个零点,故满足有5个零点.当x =1时,-1=0,不符合题意;当x ≠1时,a =-x ln x ,令h (x )=-xln x ,定义域为(0,1)∪(1,+∞),h ′(x )=1-ln x (ln x )2,令h ′(x )>0得0<x <1,1<x <e ,令h ′(x )<0得x >e ,故h (x )=-xln x在(0,1),(1,e)上单调递增,在(e ,+∞)上单调递减,且当x ∈(0,1)时,h (x )=-x ln x>0恒成立,h (x )=-xln x在x =e 处取得极大值,其中h (e)=-e ,故a ∈(-∞,-e),此时直线y =a 与h (x )=-xln x的图象有两个交点.故选C.3.(2023·银川三模)已知函数f (x )=mx -ln x +m 在区间(e -1,e)上有唯一零点,则实数m 的取值范围为()A.-e e 2+1,e 2+1-1e +1,-ee +1,1,e 2+答案B解析函数f (x )=mx -ln x +m ,令f (x )=0,则ln x ,即m =x ln x x +1,令h (x )=x ln x x +1,则h ′(x )=x +1+ln x (x +1)2,令k (x )=x +1+ln x ,则k ′(x )=1+1x >0,所以函数y =k (x )在区间(e -1,e)上单调递增,故k (x )>k (e -1)=e -1>0,所以h ′(x )>0,故函数y =h (x )在区间(e -1,e)上单调递增,故h (e -1)<h (x )<h (e),即-1e +1<h (x )<e e +1,所以-1e +1<m <ee +1,故实数m -1e +1,故选B.4.(2023·邢台二模)已知函数f (x )=x -ln x +m (m ∈R ),若f (x )有两个零点x 1,x 2(x 1<x 2),则下列关系式不正确的是()A .m <-1B .x 1+x 2≤2C .0<x 1<1D .e x 1-x 2=x 1x 2答案B解析f ′(x )=1-1x =x -1x,令f ′(x )=0,解得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,如图,故f (x )min =f (1)=1+m <0,即m <-1,并且0<x 1<1,故A ,C 正确;由于x 1,x 2为f (x )的零点,故有x 1-ln x 1+m =0①,x 2-ln x 2+m =0②,两式相减得,x 1-x 2=lnx 1x 2,即e x 1-x 2=x 1x 2,故D 正确;由①②可知,m =ln x 1-x 1=ln x 2-x 2,令g (x )=ln x -x ,则g (x 1)=g (x 2),g ′(x )=1x -1=1-x x ,所以在(0,1)上,g ′(x )>0,g (x )单调递增,在(1,+∞)上,g ′(x )<0,g (x )单调递减,令h (x )=g (x )-g (2-x )=ln x -x -ln (2-x )+2-x =ln x -ln (2-x )-2x +2,则h ′(x )=1x+12-x -2=2x 2-4x +2x (2-x )=2(x -1)2x (2-x ),所以当0<x <1时,h ′(x )>0,所以h (x )在(0,1)上单调递增,所以h (x )<h (1)=0,所以g (x 1)<g (2-x 1),又因为g (x )在(1,+∞)上单调递减,且g (x 2)=g (x 1),所以x 2>2-x 1,即x 1+x 2>2,故B 不正确.故选B.二、多项选择题5.(2022·新高考Ⅰ卷)已知函数f (x )=x 3-x +1,则()A .f (x )有两个极值点B .f (x )有三个零点C .点(0,1)是曲线y =f (x )的对称中心D .直线y =2x 是曲线y =f (x )的切线答案AC解析因为f (x )=x 3-x +1,所以f ′(x )=3x 2-1,令f ′(x )=3x 2-1=0,得x=±33.由f ′(x )=3x 2-1>0,得x <-33或x >33;由f ′(x )=3x 2-1<0,得-33<x <33.所以f (x )=x 3-x +1∞在-33,f (x )有两个极值点,故A 正确;因为f (x )的极小值-33+1=1-239>0,f (-2)=(-2)3-(-2)+1=-5<0,所以函数f (x )在R 上有且只有一个零点,故B 错误;因为函数g (x )=x 3-x 的图象向上平移一个单位长度得函数f (x )=x 3-x +1的图象,函数g (x )=x 3-x 的图象关于原点(0,0)中心对称,所以点(0,1)是曲线f (x )=x 3-x +1的对称中心,故C 正确;假设直线y =2x 是曲线y =f (x )的切线,切点为(x 0,y 0),则f ′(x 0)=3x 20-1=2,解得x 0=±1.若x 0=1,则切点坐标为(1,1),但点(1,1)不在直线y =2x 上,若x 0=-1,则切点坐标为(-1,1),但点(-1,1)不在直线y =2x 上,所以假设不成立,故D 错误.故选AC.6.(2023·秦皇岛二模)已知函数f (x )=ln x -ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是()A .aB .y =f (x )在(0,e)上单调递增C .x 1+x 2>6D .若a x 2-x 1<2-aa答案ABD解析由f (x )=ln x -ax ,可得f ′(x )=1x-a (x >0),当a ≤0时,f ′(x )>0,∴f (x )在x ∈(0,+∞)上单调递增,与题意不符;当a >0时,令f ′(x )=1x -a =0,解得x =1a ,∴当x f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减,∴当x =1a 时,f (x )取得极大值,又函数f (x )=ln x -ax 有两个零点x 1,x 2(x 1<x 2),∴ln 1a -1>0,可得0<a <1e .综上可得,0<a <1e ,故A 正确;当a →1e时,x 1+x 2→2e<6,故C 错误;∵当x f (x )单调递增,a ∴(0,e)B 正确;∵f (x )a 1,x 1,2a ,x 2f (1)=-a <0=f (x 1),∴x 1>1.∵ln 2a -2<ln e 2-2=0=f (x 2),∴x 2<2a ,∴x 2-x 1<2a -1=2-a a ,故D 正确.故选ABD.7.(2024·福建省名校联盟模拟)机械制图中经常用到渐开线函数inv x =tan x -x ,其中x 的单位为弧度,则下列说法正确的是()A .x ·inv x 是偶函数B .inv x -π2-k π,π2+k 2k +1个零点(k ∈N )C .inv x -π2-k π,π2+k 4k +1个极值点(k ∈N )D .当-π2<x <0时,inv x <x -sin x答案ABD解析函数inv x =tan x -x ∈R|x ≠n π+π2,n ∈显然y =x 和inv x 均为奇函数,因此x ·inv x 是偶函数,A 正确;当x -π2,令h (x )=inv x ,h ′(x )=1cos 2x -1≥0,函数inv x -π2,x =0时,inv x =0,即函数inv x -π2,x -π2+k 1π,π2+k 1k 1∈Z 时,令x=t +k 1π,t -π2,则tan x -x =tan(t +k 1π)-(t +k 1π)=tan t -t -k 1π,令y =tan t -t ,t -π2,y =tan t -t -π2,R ,直线y =k 1π(k 1∈Z )与y =tan t -t ,t -π2唯一交点,因此函数inv x 在-π2+k 1π,π2+k 1k 1∈Z 上有唯一零点,所以inv x -π2-k π,π2+k2k +1个零点(k ∈N ),B 正确;由B 项知,函数inv x -π2+k 1π,π2+k 1k 1∈Z 上为增函数,因此inv x 不存在极值点,C 错误;令函数f (x )=inv x -x +sin x ,求导得f ′(x )=1cos 2x -2+cos x ,当-π2<x <0时,设u =cos x ∈(0,1),g (u )=1u2-2+u ,求导得g ′(u )=1-2u 3<0,函数g (u )在(0,1)上单调递减,g (u )>112-2+1=0,即f ′(x )>0,因此f (x )π2,f (x )<f (0)=0,即inv x <x -sin x ,D 正确.故选ABD.8.(2024·日照模拟)已知函数f (x )=x 2+x -1e x ,则()A .函数f (x )只有两个极值点B .若关于x 的方程f (x )=k 有且只有两个实根,则k 的取值范围为(-e ,0)C .方程f (f (x ))=-1共有4个实根D .若关于x 的不等式f (x )≥a (x +1)的解集内恰有两个正整数,则a 的取值范,12e答案ACD解析对f (x )求导得f ′(x )=-x 2-x -2e x =-(x +1)(x -2)ex,当x <-1或x >2时,f ′(x )<0,当-1<x <2时,f ′(x )>0,即f (x )在(-∞,-1),(2,+∞)上单调递减,在(-1,2)上单调递增,因此f (x )在x =-1处取得极小值f (-1)=-e ,在x =2处取得极大值f (2)=5e 2,A 正确;由上述分析可知,曲线y =f (x )及直线y=k 如图所示,由图可知,当-e<k≤0或k=5e2时,直线y=k与曲线y=f(x)有2个交点,所以若方程f(x)=k有且只有两个实根,则k的取值范围为(-e,0]∪5e2,B错误;由f(x)=0,得x2+x-1=0,解得x=-1±52,令f(x)=t且f(t)=-1,由图可知,f(t)=-1有两解分别为-1-52<t1<-1,t2=0,所以f(x)=t1或f(x)=t2,而1+5<2e,则-1-52>-e,则f(x)=t1有两解.又t2=0,由图可知f(x)=t2也有两解.综上,方程f(f(x))=-1共有4个实根,C正确;因为直线y=a(x+1)过定点(-1,0),且f(1)=1e ,f(2)=5e2,f(3)=11e3,记k1=f(1)-01-(-1)=12e,k2=f(2)-02-(-1)=53e2,k3=f(3)-03-(-1)=114e3,所以k3<a≤k1,D正确.故选ACD.三、填空题9.(2024·长沙模拟)已知函数f(x)=e x-2ax+a,若f(x)恰有两个零点,则实数a的取值范围是________.答案12e32,+∞解析函数f(x)=e x-2ax+a,定义域为R,显然x=12不是f(x)的零点,令f(x)=0,得a=e x2x-1,设g(x)=e x2x-1,则g′(x)=(2x-3)e x(2x-1)2,令g′(x)<0,解得x<32且x≠12,令g ′(x )>0,解得x >32,故g (x )∞递增.当x <12时,g (x )<0,当x >12时,g (x )>0,当x =32时,g (x )取得极小值=12e 32,作出函数g (x )的大致图象如图所示,结合图象可知,实数a 的取值范围是e 32,+10.(2023·福州三模)如果两个函数分别存在零点α,β,满足|α-β|<n ,则称两个函数互为“n 度零点函数”.若f (x )=ln (x -2)与g (x )=ax 2-ln x 互为“2度零点函数”,则实数a 的最大值为________.答案12e解析因为函数f (x )的零点为3,所以设函数g (x )的零点为x 0,则|x 0-3|<2,解得1<x 0<5.g (x 0)=ax 20-ln x 0=0,a =ln x 0x 20(1<x 0<5),令h (x )=ln xx 2(1<x <5),求导得h ′(x )=1-2ln xx3,令h ′(x )=0,得x =e ,所以当x ∈(1,e)时,h ′(x )>0,h (x )单调递增;当x ∈(e ,5)时,h ′(x )<0,h (x )单调递减,所以h (x )max =h (e)=12e .所以实数a 的最大值为12e.四、解答题11.(2023·广州模拟)已知函数f (x )=e x -1+e -x +1,g (x )=a (x 2-2x )(a <0).(1)求函数f (x )的单调区间;(2)讨论函数h (x )=f (x )-g (x )的零点个数.解(1)由f (x )=ex -1+e-x +1,可得f ′(x )=ex -1-e-x +1=e 2(x -1)-1ex -1,令f ′(x )=0,解得x =1,当x <1时,则x -1<0,可得f ′(x )<0,f (x )在(-∞,1)上单调递减;当x >1时,则x -1>0,可得f ′(x )>0,f (x )在(1,+∞)上单调递增.故函数f (x )的单调递减区间是(-∞,1),单调递增区间是(1,+∞).(2)由h(x)=0,得f(x)=g(x),因此函数h(x)的零点个数等价于函数f(x)与g(x)图象的交点个数.因为g(x)=a(x2-2x)(a<0),所以g(x)的单调递增区间是(-∞,1),单调递减区间是(1,+∞),所以当x=1时,g(x)取得最大值g(1)=-a.由(1)可知,当x=1时,f(x)取得最小值f(1)=2,当-a<2,即-2<a<0时,函数f(x)与g(x)的图象没有交点,即函数h(x)没有零点;当-a=2,即a=-2时,函数f(x)与g(x)的图象只有一个交点,即函数h(x)只有一个零点;当-a>2,即a<-2时,函数h(x)有两个零点,理由如下:因为h(x)=f(x)-g(x)=e x-1+e-x+1-a(x2-2x),所以h(1)=2+a<0,h(2)=e+e-1>0,由函数零点存在定理,知h(x)在(1,2)内有零点.又f(x)在(1,+∞)上单调递增,g(x)在(1,+∞)上单调递减,所以h(x)=f(x)-g(x)在(1,+∞)上单调递增,所以h(x)=f(x)-g(x)在(1,+∞)上只有一个零点.又因为f(2-x)=e(2-x)-1+e-(2-x)+1=e1-x+e x-1=f(x),所以f(x)的图象关于直线x=1对称,因为g(x)的图象关于直线x=1对称,所以f(x)与g(x)的图象都关于直线x=1对称,所以h(x)=f(x)-g(x)在(-∞,1)上也只有一个零点.所以当a<-2时,函数h(x)=f(x)-g(x)有两个零点.ax2-ln x.12.(2024·镇江模拟)已知函数f(x)=12(1)若a=1,求f(x)的极值;(2)若方程f(x)=1在区间[1,2]上有解,求实数a的取值范围.解(1)当a=1时,f(x)=12x2-ln x,f′(x)=x2-1x,令f′(x)=0,得x=1,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极小值为f(1)=12,无极大值.(2)因为f′(x)=ax-1x =ax2-1x,①若a≥1,当x∈[1,2]时,f′(x)≥0恒成立,所以f(x)在[1,2]上单调递增,要使方程f(x)=1在[1,2]1)≤1,2)≥1,1,-ln2≥1,得1+ln22≤a≤2,因为1+ln22<1,所以1≤a≤2.②若a≤14,当x∈[1,2]时,f′(x)≤0恒成立,所以f(x)在[1,2]上单调递减,此时f(x)≤f(1)=a2≤18,不符合题意.③若14<a<1,当1≤x<1a时,f′(x)<0,当1a<x≤2时,f′(x)>0,所以f(x)在12上单调递增,此时f(1)=a2<12,f(1)<12,要使方程f(x)=1在[1,2]上有解,则需f(2)=2a-ln2≥1,解得a≥1+ln22,所以1+ln22≤a<1.综上可知,实数a的取值范围为1+ln22,2.13.(2021·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln2)2x(x>0).令f′(x)>0,得0<x<2ln2;令f′(x)<0,得x>2ln2,故函数f(x)(2)要使曲线y=f(x)与直线y=1有且仅有两个交点,即方程x aa x =1(x>0)有两个不同的解,故方程ln xx=ln aa有两个不同的解.设g(x)=ln xx(x>0),则g′(x)=1-ln xx2(x>0).令g′(x)=1-ln xx2=0,解得x=e.令g′(x)>0,则0<x<e,此时函数g(x)单调递增.令g′(x)<0,则x>e,此时函数g(x)单调递减.故g(x)max=g(e)=1e,且当x>e时,g(x)又g(1)=0,故要使方程ln xx =ln aa有两个不同的解,则0<ln aa<1e.即0<g(a)<g(e),所以a∈(1,e)∪(e,+∞).综上,a的取值范围为(1,e)∪(e,+∞).14.(2023·济南模拟)已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2(x1<x2),证明:x41x2>e3(e=2.71828…为自然对数的底数).解(1)g(x)=f(x)x =ln x-ax-1,g′(x)=1x-a,①当a≤0时,g′(x)>0,g(x)在(0,+∞)上单调递增;②当a>0时,令g′(x)=0,解得x=1a,当x g′(x)>0,g(x)单调递增,当x g′(x)<0,g(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)上单调递增;当a>0时,g(x)(2)证明:由题意知,f′(x)=ln x-2ax,x1,x2是f′(x)=0的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2,(*)要证x41x2>e3,即证4ln x1+ln x2>3,即证4·2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x2(4x1+x2)>3,所以应证ln x1x2<3(x1-x2)4x1+x2=4·x1x2+1令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h′(t)=1t -15(4t+1)2=16t2-7t+1t(4t+1)2>0,所以h(t)在(0,1)上单调递增,h(t)<ln1-3×(1-1)4×1+1=0,不等式得证.。

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。

高考数学复习课件:利用导数解决函数的零点问题

高考数学复习课件:利用导数解决函数的零点问题
利用导数解决函数的零点问题
01 探本朔源·技法示例
技法阐释 1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对 值式结构函数零点个数(或方程根的个数)问题的一般思路 (1)可转化为用导数研究其函数的图象与x轴(或直线y=k)在该区 间上的交点问题; (2)证明有几个零点时,需要利用导数研究函数的单调性,确定 分类讨论的标准,确定函数在每一个区间上的极值(最值)、端点函数 值等性质,进而画出函数的大致图象.再利用零点存在性定理,在 每个单调区间内取值证明f(a)·f(b)<0.
[解] (1)由题意知,当m=e时,f(x)=ln x+ex(x>0),则f′(x)= x-x2 e,
∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减; 当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上单调递增, ∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2, ∴f(x)的极小值为2.
(2)方法一:由题意知,方程 kx-ln x=0 仅有一个实根,
由 kx-ln x=0,得 k=lnxx(x>0). 令g(x)=lnxx(x>0),则g′(x)=1-xl2n x, 当x=e时,g′(x)=0;当0<x<e时,g′(x)>0;当x>e时, g′(x)<0.
∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减, ∴g(x)max=g(e)=1e. 当x→+∞时,g(x)→0. 又∵k>0,∴要使f(x)仅有一个零点,则k=1e.
谢谢观论法:一般命题情境为没有固定区间,求满足函数零 点个数的参数范围,通常解法为结合单调性,先确定参数分类的标 准,在每个小范围内研究零点的个数是否符合题意,将满足题意的 参数的各小范围并在一起,即为所求参数范围.
高考示例 (2020·全国卷Ⅲ)设函数f(x)=x3+bx+c,曲线y=f(x)在点12,f 12处的 切线与y轴垂直. (1)求b; (2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值 都不大于1.

第10讲利用导数研究函数的零点问题 高考数学

第10讲利用导数研究函数的零点问题 高考数学

=




=



=

,构造函数

=

,求导得

, >
在 −∞, 上单调递减,在 , 上单调递增, , +∞ 上单调递减,
且 = ,
试卷讲评课件
=


> 及


→ +∞ 时 → ,
的图像如图,得到 =
当<或 = 时, 有一个零点;
当> 时, 有两个零点.
试卷讲评课件
练1
f x = 2ex − 5x 2 的零点的个数为(
A.0
B.1
)
D.3

C.2
【分析】先把零点个数转化为函数交点个数,再构造函数 =

,结

合导函数求解单调性及极值最后应用数形结合求解.
【详解】由
π
4
2e
a =______

【分析】常数分离得

=


= 有唯一的解,求出 的单调性与


极值,由 有且仅有一个零点可得 = .
试卷讲评课件
【详解】当 = 时, = ≥ 恒成立, 在[, ]上无零点.
1
, +∞
e
【分析】由 ′
2
3 1
,
2
2e e
3
0, 2
2e

,令


1
∪ , +∞
e

=
<<


,则直
上的图象有两个交点,利用导数分析函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。

一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。

例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。

解析:22()ln ()22g x x f x e a x ex x x =-⇒=-+,令2ln ()2x h x x ex x=-+,'21ln ()22x h x x e x-=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ —注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。

所以21a e e=+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。

在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。

例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是解析:当0a =时,2()31f x x =-+有两个零点,不符合题意当0a >时,'2()363(2)f x ax x x ax =-=-,若'()0f x >,则20x x a ><或 :若'()0f x <,则20x a<<,此时函数在(,0)-∞上单增,(1)20f a -=--< 此时在(,0)-∞上存在零点,不符合题意。

当0a <时,若'()0f x >,则20x a <<,若'()0f x <,则2x a<或0x > 此时要保证函数存在唯一的正零点,则2()0f a >,解得(,2)a ∈-∞-注意:如果不是的大题没必要分类讨论,做出符合题意的图像反推即可例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e上有两个不同零点,求实数b 的取值范围。

解析:2'222(2)(1)()x x x x f x x x +-+-==,可知函数()f x 在(0,1)上递减,在(1,)+∞上递增,要保证函数()f x 在1[,]e e 上有两个不同的零点,根据函数的趋势图像可】 得必须满足1()02(1)011()0f e f b e e f e ⎧≥⎪⎪<⇒<≤+-⎨⎪≥⎪⎩例4.已知函数32()f x x ax b =++(1)讨论()f x 的单调性;(2)若b c a =-,当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-⋃⋃+∞,求c 的值。

解析:(1)当0a =时,()f x 在R 上单调递增当0a >时,()f x 在2(,),(0,)3a -∞-+∞上单调递增,在2(,0)3a -上单调递减; 当0a <时,()f x 在2(,0),(,)3a -∞-+∞上单调递增,在2(0,)3a -上单调递减; (2)只有当0a ≠时才有可能满足()f x 有三个零点,因为()f x 有两个极值点324(0),()327a f b f a b =-=+,要满足有三个零点必须满足2(0)()03a f f ⋅-<,结合bc a =-可得330044002727a a a a c a a c ><⎧⎧⎪⎪⎨⎨-+>-+<⎪⎪⎩⎩或,因为()f x 恰有三个零点时,a 的取值范围是33(,3)(1,)(,)22-∞-⋃⋃+∞ 所以题目可以转化为34027a a c -+>在33(1,)(,)22a ∈⋃+∞上恒成立,且34027a a c -+<在(,3)a ∈-∞-上恒成立 设34()27h a a a c =-+,对其求导可得()h a 在33(,),(,)22-∞-+∞递增,在33(,)22-递减,因此()h a 图像必须满足以下趋势: 所以(3)0101311()02f c c c f -≤⎧-≤⎧⎪⇒⇒=⎨⎨-≥≥⎩⎪⎩ 验证:当1c =时,322()1(1)[(1)1]f x x ax a x x a x a =++-=++-+-函数有三个不等的实数根,所以2()(1)10h x x a x a =+-+-=有两个不相等且不等于-1的实数根,所以必须满足033(,3)(1,)(,)(1)022a h ∆>⎧⇒∈-∞-⋃⋃+∞⎨-≠⎩。

综上,1c =第一问很简单,但是是解决第二问必要的前提,第二问题目中函数有三个不同的零点,但是题目中有两个参数,类似于双参数问题解决方法,最后将两个参数中已知的那个作为自变量,然后转化为恒成立问题即可,三个零点意味着两个极值的积为负值,然后再根据不同的a 的取值转化为函数恒成立问题,通过函数的趋势图像即可解出符合题意的条件。

但是很多同学缺省最后检验的步骤,同时也不理解为什么需要验证,如果不验证,则即便满足有三个零点,此时的a 的取值范围也可以不是题目中给出的范围,注意这个恰字就说明了必须要进行最后的验证。

例6.已知函数2()1x f x e ax bx =---(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围。

解析:(1)'()2,()2x x g x e ax b g x e a =--=-当0a ≤时,'()0g x >,()g x 在[0,1]递增,min ()(0)1g x g b ==-当0a >时,令'()0g x =,ln 2x a =,此时0,1,ln 2a 位置不确定因此需要&讨论Case1:当ln21a ≥时,2e a ≥,此时()g x 在[0,1]递减, min ()(1)2g x g e a b ==--Case1:当ln 20a ≤时,12a ≤,此时()g x 在[0,1]上递增, min ()(0)1g x gb ==-Case3:当0ln 21a <<时,即122e a <<,此时 min ()(ln 2)22ln 2g x g a a a a b ==--综上所述min 11()21()22ln 2()222()2b a e g x a a a b a e e a b a ⎧-≤⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩((2)本题目隐藏一个条件即(0)0f =,又知(1)0f =,所以如果()f x 在区间(0,1)内有零点,则()f x 在(0,1)内至少有两个极值点或者至少有三个单调区间或者说()g x 在(0,1)内不可以恒正也不可以恒负。

(要好好理解这句话)题目中有两个参数,根据(1)0f =可得1b e a =--,若当12a ≤或2e a ≥时,函数()g x 为单调函数,不符合题意,故a 只能在1(,)22e 内取值,此时min ()32ln 21g x a a a e =--+,且要满足32ln 210a a a e --+<才可令'()32ln 21,()12ln 2h x x x x e h x x =--+=-,根据单调性可知min ()10h x e =+<,此时min g()0x <成立,因此要保证()f x 在(0,1)上至少有三个单调区间,则需要满足条件122(0)021(1)0e a g e a g ⎧<<⎪⎪>⇒-<<⎨⎪>⎪⎩题目第二问的关键是理解原函数单调区间的个数和导函数零点个数之间的关系,建议同学们在做第二问的时候把相应的图作出来就明白了。

总结:处理零点问题不管是处在函数的题目里面还是导数的题目里面,方法都是一样的,都是需要用到数形结合思想,通过判断单调性,既可以大致的将函数的趋势图像都作出来,然后根据题目的要求作出合适的函数图像以及列出不等式即可。

相关文档
最新文档