最新数学建模竞赛答案汇总

合集下载

数学建模技能大赛-决赛选答题(附答案)

数学建模技能大赛-决赛选答题(附答案)

【C1】U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。

一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。

手电筒是不能用丢的方式来传递的。

四个人的步行速度各不同,若两人同行则以较慢者的速度为准。

Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥。

他们要如何在17分钟内过桥呢?【C2】共有三类药,分别重1g,2g,3g,放到若干个瓶子中,现在能确定每个瓶子中只有其中一种药,且每瓶中的药片足够多,能只称一次就知道各个瓶子中都是盛的哪类药吗?如果有4类药呢?5类呢?N类呢(N可数)?如果是共有m个瓶子盛着n类药呢(m,n为正整数,药的质量各不相同但各种药的质量已知)?你能只称一次就知道每瓶的药是什么吗?注:当然是有代价的,称过的药我们就不用了。

【A3】周雯的妈妈是豫林水泥厂的化验员。

一天,周雯来到化验室做作业。

做完后想出去玩。

"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。

你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?" 爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。

请你想想看,"小机灵"是怎样做的?【C4】假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为5升和6升。

问题是如何只用这2个水壶从池塘里取得3升的水。

【C5】据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。

聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?【B6】假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

高等数学建模题目及答案

高等数学建模题目及答案

典型谱方法的缺点:
当解u存在奇异点时,典型谱方法在奇异点 处不收敛,这时需要加密在奇异点附近的离散点。 对于奇异解的问题,多区域谱方法可以解决。
以下介绍多区域谱方法。
4.多区域谱方法
① p-refinement (M固定,N不固定)
x∈[-1,1],先将[-1,1]等分为M个均分小区间, 再将每个小区间分为Ni (i=1,2,...M) 个小区间,分 别求M个小区间上的求导矩阵,然后按照相应规 则组装。
② 同样,对于简单函数u,可以利用定义直接计算它 的分数阶积分/导数,但是对于复杂函数u,无法利用 定义求解其分数阶积分/导数。解决方法是用正交多 项式逼近u,通过求正交多项式的分数阶积分/导数代 替求u的分数阶积分/导数。
2.第一种形式的谱方法
其中,正交系数Cij的求法如下:
3.第二种形式的谱方法
分数阶谱方法
1.分数阶积分/导数的定义 2.第一种形式的谱方法 3.第二种形式的谱方法 4.多区域谱方法 5.数值例子
1.分数阶积分/导数的定义
思考:
① 联想数学分析中的泰勒级数展开,对于简单函数u, 可以直接计算并讨论它的收敛性、连续性、可微性和 可积性,但对于复杂函数u,无法直接讨论它的以上 性质。解决方法是用泰勒级数逼近u,通过讨论级数 的性质代替讨论u的性质。
(cosx
i
sin
x)
(it
(
( 1) 1)
t
)
x [0,2 ], t [0,1]
IC : u(x,0) 0, BC:u(0,t) t 2, u(2 ,t) t 2
exact solution: u(x,t) t (cosx i sin x)
解题原理:
误差图:

数学建模答案(完整版)

数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。

在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。

数学建模知识竞赛题库

数学建模知识竞赛题库

数学建模知识竞赛题库1.请问计算机中的二进制源于我国古代的哪部经典? DA.《墨经》B.《诗经》C.《周书》D.《周易》2.世界上面积最大的高原是? DA.青藏高原B.帕米尔高原C.黄土高原D.巴西高原3.我国海洋国土面积约有多少万平方公里? BA.200B.300C.280D.3404.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是BA.猫B.飞鸽C.海鸥D.鹰5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?BA.红色B.蓝色C.灰色D.绿色6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D )A. [1 0 1]B. [1 1 1]C. [0 0 1]D.[0 0 0]7.秦始皇之后,有几个朝代对长城进行了修葺? AA.7个B.8个C.9个D.10个8.中国历史上历时最长的朝代是?AA.周朝B.汉朝C.唐朝D.宋朝9我国第一个获得世界冠军的是谁?CA 吴传玉B 郑凤荣C 荣国团D 陈镜开10.我国最早在奥运会上获得金牌的是哪位运动员?BA.李宁B.许海峰C.高凤莲D.吴佳怩11.围棋共有多少个棋子?BA.360B.361C.362D.36512下列属于物理模型的是:AA水箱中的舰艇B分子结构图C火箭模型D电路图13名言:生命在于运动是谁说的?CA.车尔尼夫斯基B.普希金C.伏尔泰D.契诃夫14.饱食后不宜剧烈运动是因为BA.会得阑尾炎B.有障消化C.导致神经衰弱D.呕吐15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。

A.行B.列C.对角线D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?AA.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役17色盲患者最普遍的不易分辨的颜色是什么?AA.红绿B.蓝绿C.红蓝D.绿蓝18下列哪种症状是没有理由遗传的?A.精神分裂症B.近视C.糖尿病D.口吃19下面哪个变量是正无穷大变量?(A )A. InfB. NaNC. realmaxD. realmin20泼水节是我国哪个少数民族的节日?DA.彝族B.回族C.壮族D.傣族21被称为画圣的是古代哪位画家?AA吴道子B.顾恺之C.韩干D.张择端22我国第一部有声影片是AA四郎探母B.定军山C.林则徐D.玉人何处23奔驰原产于哪国?CA美国B.日本C.德国D.英国24.菲利浦电器是哪一国家的产品?BA.日本B.美国C.德国D.英国25奥运会每四年举办一次,为期不超过多少天?BA.14天B.16天C.20天D.21天26.看鱼鳞能识鱼鳞,鱼鳞上的一圈代表?AA.半岁B.一岁C.一岁半D.两岁27.世界上最长的动物是哪一种?BA.鲸鱼B.水母C.恐龙D.大象28.山东山西中的山是指?BA.泰山B.太行山C.沂蒙山D.恒山29坦克是哪个国家发明的?AA英国 B.德国 C.美国 D.法国30我军三大纪律,八项注意中三大纪律不包括?A不贪污受贿 B.一切听从指挥 C.不拿群众一针一线 D.一切缴获要归公31雨后彩虹,美丽可目,但在1928年1月7日,由马德拉岛到开普敦的海面上,出现了一道奇特的彩虹,在能见度很差的雾霭中有一光晕,晕环下部似乎能触及船侧,你知道这道彩虹成什么颜色吗?DA.红色B.蓝白色C.蓝色D.白色32.“牛郎织女”的故事是众口皆碑的神话传说,你知道牛郎星属于什么星座吗?BA.天琴座B.天鹰座C.金牛座D.狮子座33世界上曾有六次截流,中国就有三次,都在长江上,其中有两次是长江三峡截流,另一次是哪项工程?CA.都江堰B.黄河C.葛洲坝D.钱塘江34唐代诗人有称“诗圣”的杜甫“诗仙”的李白等,你可知道被人颂称“诗魔”的是谁?AA.白居易B.王维C.刘禹锡D.李商隐35“君子之交淡如水,小人之交甘若醴”出自下列哪部作品?BA.老子B.庄子C.论语D.史记36.在Word2003文档中,对图片设置下列哪种环绕方式后,可以形成水印效果。

数学建模案例精选知到章节答案智慧树2023年济南大学

数学建模案例精选知到章节答案智慧树2023年济南大学

数学建模案例精选知到章节测试答案智慧树2023年最新济南大学第一章测试1.在商人过河问题中,如果设彼岸的人数情况为案例中的变量,则状态转移函数变为()参考答案:s k+1=s k +(-1)k+1 d k2.下面哪一个不是商人过河允许的状态()参考答案:(2,1)3.关于商人过河问题,下面说法错误的是()参考答案:商人过河要保证每一岸的商人数和随从数一样多4.关于路障间距设计问题,说法不正确的()参考答案:不可以假设汽车做匀速运动5.关于机理分析说法不正确的是()参考答案:将研究对象看做一个黑箱第二章测试1.Lingo软件不可以直接求解哪一类优化模型().参考答案:多目标规划2.在露天矿生产的车辆安排问题中,已知铲位1到岩石漏距离为5.26km,车辆平均速度为28km/h,请问这条线路上运行一个周期平均所需时间Tij为()(请保留两位小数).参考答案:8.38;30.54;19.273.在露天矿生产的车辆安排问题中,基本假设不变,若某天线路上的T ij=19分钟,车辆开始工作的时间可以不同,工作后车辆不会发生等待,则该线路上最多可以安排()辆卡车?参考答案:44.在露天矿生产的车辆安排问题中,基本假设不变,若某天线路上的Tij=17分钟,安排3辆车在该线路上工作,开始工作的时间可以不同,开始工作后车辆不会发生等待,则三辆车在一个班次内的最大运算趟数是()?参考答案:28,27,275.在露天矿生产的车辆安排问题中,基本假设不变,车辆开始工作的时间可以不同,开始工作后车辆不会发生等待,若可以安排3辆车在同一条线路上工作,则三辆车在一个班次(8小时)内的工作时间(分钟)不可能是().参考答案:479,471,474第三章测试1.假设快速喝下1瓶啤酒,酒精从肠胃向体液的转移速度与胃肠中的酒精含量x成正比,比例系数为k,则得到的微分方程为?()。

参考答案:2.模型中有未知参数,给定了测试数据,确定参数的最佳方法为()。

数学建模竞赛(大专组)参考答案及评分标准

数学建模竞赛(大专组)参考答案及评分标准

建模练习题第一套参考答案一.水厂设立 如图,设(公里)2.312540,22≈-==AD x AC ,则AC 的费用为400x ,BC 的费用为()222.3125600x -+,此问题的数学模型为 min S = 400x + ()222.3125600x -+ 2.310≤≤x模型的求解: ()()222.31252.31600400x x dx ds -+--= , 令dxds = 0 ,得到驻点 x 0≈8.8 由实际意义或求二阶导数可说明驻点x 0是最小值点,最小费用为(元)0.23676≈S ( 答略).二.截割方案设1米长的钢材截27厘米的x 根,15厘米的y 根.则此问题的数学模型为:⎪⎪⎩⎪⎪⎨⎧∈≥≤++=Zy x y x yx t s y x ,,0,1001527..1001527max λ模型的求解: 方法1: 在区域115.027.0,0,0≤+≥≥y x y x 内确定出与直线115.027.0:=+y x l 最近的格点;方法2: 由1527100x y -=穷举. 方法3: 用Lindo 数学软件.求解结果: 3,2==y x .最高利用率: %99100315227max =⨯+⨯=λ. 三.投资决策投资生产A 、B 两产品的利润分别为4200100010)4.02006.01000(=-⨯⨯-⨯=A R (万元)132040010)4.0206.0300(=-⨯⨯-⨯=B R (万元)投资回报率分别为 3.34001320,2.410004200====B A λλ. 故应对A 产品进行投资, 投资回报率将最大.四.生产安排设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为Zy x y x y x y x y x t s yx S ∈≥≥≤+≤+≤++=,,0,020002424006140032..65max模型的求解:方法一:图解法.可行域为:由直线,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及 组成的凸五边形区域.直线C y x l =+65:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由⎩⎨⎧=+=+200024140032y x y x 解得:200,400==y x320020064005max =⨯+⨯=S (千元)(答略)方法二:用Lindo 软件或Maple 软件求解.五.最优联网以村(包括乡政府)为顶点,可直接联网的两村则连边,联网费用作为边上的权,得到一个赋权连通图G 如下:由破圈法或避圈法求得G 的最优树T (上图波浪线),最优联网方案为SD 、DC 、DE 、DB 、BA 、AF 或SD 、BC 、DE 、DB 、BA 、AF最小联网费用为千元)(6.1856.33322min =+++++=s六、最佳存款设存款分n 次进行,每次的存期分别为1x ,.,,2n x x 这里1≤n ≤6,∑==ni i x 16,存期集合为S ={1,2,3,5}.存期为i x 时,对应度年利率为i r当i x =1时,i r =0.0225;当i x =2时,i r =0.0243;当i x =3时,i r =0.0270;当i x =5时,i r =0.0288;设将一万元分n 次进行,每次存期分别为1x ,.,,2n x x 所得的收益为()n x x x f ,,,21 .则此问题当数学模型为()()∏=+=n i i i n r x x x x f 1421110,,,max s.t. ∑==n i i x 16. 1≤n ≤6 ,S x i ∈易知函数()n x x x f ,,,21 的值与1x ,.,,2n x x 的顺序无关.不妨设n x x x ≤≤≤ 21.则(1x ,.,,2n x x )的所有取值为(1,1,1,1,1,1),(1,1,1,1,2),(1,1,2,2),(1,1,1,3), (1,2,3),(1,5),(2,2,2),(3,3)现计算()n x x x f ,,,21 的值如下:()()25.114280225.01101,1,1,1,1,164≈+=f ()()()07.114620243.0210225.01102,1,1,1,144≈⨯++=f ()()()99.114950243.0210225.01102,2,1,1224≈⨯++=f ()()()22.115560270.0310225.01103,1,1,134≈⨯++=f ()()()()41.115900270.0310243.0210225.01103,2,14≈⨯+⨯++=f()()()4.116970288.0510225.01105,14≈⨯++=f()()01.115300243.021102,2,234≈⨯+=f ()()61.116850270.031103,324≈⨯+=f 故最佳存款方案为:先存一年期再存一个五年期,所得的最大收益为11697.4元.。

高教社杯全国大学生数学建模竞赛B题参考答案

高教社杯全国大学生数学建模竞赛B题参考答案

交巡警服务平台的设置与调度优化分析摘要本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。

并分别对题目的各问,作了合理的解答。

问题一:(1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd 算法及matlab编程求出两点之间的最短距离,使其尽量满足能在3分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。

(2)、我们对进出该区的13条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用0-1变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。

(3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。

我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。

问题二:(1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、D、E、F区域平台设置不合理。

并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。

(2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。

关健字: MATLAB软件,0-1规划,最短路,Floyd算法,指派问题一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

数学建模 答案与解析

数学建模 答案与解析
2.5.2符号规定
设 = 1 (第 个备选校址被选用)或0 (第 个备选校址没被选用)。
2.5.3模型的建立
Hale Waihona Puke 目标函数:min z= + + + + +
约束条件:
s.t + +
+
+
+
+ +
+
=1
+ +
2.5.4利用Matlab解得结果如下,源程序见t2_6.m
x =
1.0000
0.0000
0.0000
1.6.3符号规定
表示飞机携带 型炸弹轰炸 目标所消耗的汽油数;
表示摧毁目标的可能性
1.6.4模型的建立
约束条件:
总的炸弹数是有限的,因此重型炸弹:
轻型炸弹:
油量限制:
即:
目标函数:
题中已经指出,只要有一个目标被炸毁就算任务完成,因此目标函数为:
线性规划模型:
将此方程化为线性方程,得线性规划模型为:
每一个机器只能分一次,因此,表格中的每一行之和为1
有这样一种可能,即一个工厂分了6台机器,因此,在这种情况下,每个工厂的机器数必须小于总的机器数,即:
目标函数:
要求的目标是利润最大,即
因此,所列的线性规划模型为:
2.6.5利用Matlab解得结果如下,源程序见t2_6.m
解得
即将1机器分给丁厂,2机器分给甲厂,3机器分给丙厂,4机器分给丙厂,5机器分给乙厂,6机器分给乙厂。
1.9.6分析
所以货物1不装,货物2装15吨,货物3装15.9474吨,货物4装3.0526吨,此时货机飞行利润是最大的,为12.152万元。

数学建模习题集及答案解析课后习题集

数学建模习题集及答案解析课后习题集

第一局部课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

学生们要组织一个10人的委员会,试用以下方法分配各宿舍的委员数:〔1〕按比例分配取整数的名额后,剩下的名额按惯例分给小数局部较大者。

〔2〕2.1节中的Q值方法。

〔3〕d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。

将3种方法两次分配的结果列表比较。

〔4〕你能提出其他的方法吗。

用你的方法分配上面的名额。

2.在超市购物时你注意到大包装商品比小包装商品廉价这种现象了吗。

比方洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。

试用比例方法构造模型解释这个现象。

〔1〕分析商品价格C与商品重量w的关系。

价格由生产本钱、包装本钱和其他本钱等决定,这些本钱中有的与重量w成正比,有的与外表积成正比,还有与w无关的因素。

〔2〕给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。

解释实际意义是什么。

3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大〔如图〕。

假设知道管道长度,需用多长布条〔可考虑两端的影响〕。

如果管道是其他形状呢。

5.用尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。

6.动物园里的成年热血动物靠饲养的食物维持体温根本不变,在一些合理、简化的假设下建立动物的饲养食物量与动物的某个尺寸之间的关系。

7.举重比赛按照运发动的体重分组,你能在一些合理、简化的假设下建立比赛成绩与体重之间的关系吗。

数学建模考试试题及答案

数学建模考试试题及答案

数学建模及应用试题汇总1.假如你站在崖顶且身上带着一只具有跑表功能的计算器,假如你站在崖顶且身上带着一只具有跑表功能的计算器,你也会出于好奇心想用扔下一你也会出于好奇心想用扔下一块石头听回声的方法来估计山崖的高度,假定你能准确地测定时间,你又怎样来推算山崖的高度呢,请你分析一下这一问题。

2.建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。

3.一根长度为l 的金属杆被水平地夹在两端垂直的支架上,一端的温度恒为T1,另一端温度恒为T2,(T1、T2为常数,T1> T2)。

金属杆横截面积为A ,截面的边界长度为B ,它完全暴露在空气中,空气温度为T3,(T3< T2,T3为常数),导热系数为α,试求金属杆上的温度分布T(x),(设金属杆的导热率为λ)4.甲乙两队进行一场抢答竞赛,竞赛规则规定:开始时每队各记2分,抢答题开始后,如甲取胜则甲加1分而乙减1分,反之则乙加1分甲减1分,(每题必需决出胜负)。

规则还规定,当其中一方的得分达到4分时,竞赛结束。

现希望知道:(1)甲队获胜的概率有多大?(2)竞赛从开始到结束,平均转移的次数为多少?(3)甲获得1、2、3分的平均次数是多少?5.由于指派问题的特殊性,又存在着由匈牙利数学家提出的更为简便的解法——匈牙利算法。

当系数矩阵为下式,求解指派问题。

16151922172119182422181717192216C éùêú=êúêúëû6.在遥远的地方有一位酋长,他想把三个女儿嫁出去。

假定三个女儿为A 、B 、C ,三位求婚者为X 、Y 、Z 。

每位求婚者对A 、B 、C 愿出的财礼数视其对她们的喜欢程度而定:úúúûùêêêëé7412810272653z y x C B A 问酋长应如何嫁女,才能获得最多的财礼(从总体上讲,他的女婿最喜欢他的女儿。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A、B,C、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令()f θ为A、B 离地距离之和,()g θ为C、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=−,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =−<而()()()0h f g πππ=−>,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模答案--完整版

数学建模答案--完整版
a 2 b2 的值,其中 a=2.3,b=4.89. a b



4、用 MATLAB 计算函数 f ( x ) 实
sin x cos x 在 x= 处的值. 2 3 1 x
5、用 MATLAB 计算函数 f ( x) arctan x ln( x 1) 在 x=1.23 处的值.

15、求极限 lim
x 0
sin 2 x 1 cos x

>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,‘right’) ans =

2
1 21x ( ) 16、求极限 lim x 0 3
>> syms x y >> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17、求极限 xlim
y x 2 , y x3 , y x 4 这三条曲线的
图形,并要求用两种方法加各种标注.
x t2 13、作曲线 y sin t 的 3 维图象. z t

x (1 cos u ) cos v 14、作环面 y (1 cos u ) sin v 在 (0, 2 ) (0, 2 ) 上的 3 维图象. z sin u

19、求极限 lim
1 cos 2 x x 0 x sin x
>> syms x y >> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) 过 ans = 2 20、求极限 lim

数学建模试题(带答案)大全

数学建模试题(带答案)大全

(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0

bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

数学建模(数学模型)期末考试卷及答案详解第一部分 基本理论和应用1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率.2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测, 得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大?4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效?6. (15分)设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2nS 为样本二阶中心矩,2S 为样本方差,问下列统计量:(1)22σnnS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni iX各服从什么分布?7. (10分)一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.8. (10分)设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算.9. (10分)某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内.10. (15分)设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图7.1所示.1L 和2L 的寿命为X 和Y ,分别有密度(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种联接方式分别写出系统L 的寿命Z 的密度.答案第一部分 基本理论和应用 1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率. 解:设同时开着的灯数为X ,(10000,0.7)Xb ……………2分(0,1)N (近似) ……………3分 {69007100}210.971P X ≤≤=Φ-= …………5分 2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测,得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间. 解: T =(1)X t n - 0.005{(1)}0.99P T t n <-= ………4分0.0050.005{(1)(1)}0.99P X n X X n -<<+-= ………………4分 所求为(1485.61,1514.39) …………2分3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大? 解:(0,1)X N ………………3分{1.4 5.4}21P X P <<=<=Φ- ……………4分解210.95Φ-≥ 得34.6n ≥ n 至少取35 ……………3分4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.解: 1101()(2E X dx θθθθ++==+⎰+1)x ……………3分 解12X θθ+=+,得θ的矩估计量为211X X -- ……………2分 1()1()ni i L x θθθ=+∏n=() 1ln ln 1ln nii L n x θθ==+∑()+ ……………2分令1ln ln 01ni i d L nx d θθ==+=+∑ 得θ的极大似然估计量为11ln nii nX=--∑ …………3分5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效? 解:(1)2EX θ=,令2X θ=,得θ的矩估计量1ˆ2X θ=; ……………5分 似然函数为:()12121,0,,,(,,,;)0n n n x x x L x x x θθθ⎧<<⎪=⎨⎪⎩,其它其为θ的单调递减函数,因此θ的极大似然估计为{}212()ˆmax ,,,n n X X X X θ==。

2023年高教社杯全国大学生数学建模竞赛B题竞赛参考答案

2023年高教社杯全国大学生数学建模竞赛B题竞赛参考答案

2023高教社杯全国大学生数学建模竞赛B题参考答案注意:以下答案是命题人给出的,仅供参考。

各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

问题:钢铁工业是国家工业的基础之一,铁矿是钢铁工业的重要原料基地。

许多现代化铁矿是露天开采的,它的生产重要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车)运送来完毕。

提高这些大型设备的运用率是增长露天矿经济效益的首要任务。

露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料提成矿石和岩石。

一般来说,平均铁含量不低于 25%的为矿石,否则为岩石。

每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。

每个铲位至多能安顿一台电铲,电铲的平均装车时间为 5 分钟。

卸货地点(以下简称卸点)有卸矿石的矿石漏、2 个铁路倒装场(以下简称倒装场)和卸岩石的岩石漏、岩场等,每个卸点都有各自的产量规定。

从保护国家资源的角度及矿山的经济效益考虑,应当尽量把矿石按矿石卸点需要的铁含量(假设规定都为29.5% 1%,称为品位限制)搭配起来送到卸点,搭配的量在一个班次(8 小时)内满足品位限制即可。

从长远看,卸点可以移动,但一个班次内不变。

卡车的平均卸车时间为 3 分钟。

所用卡车载重量为 154 吨,平均时速 28kmh 。

卡车的耗油量很大,每个班次每台车消耗近 1 吨柴油。

发动机点火时需要消耗相称多的电瓶能量,故一个班次中只在开始工作时点火一次。

卡车在等待时所花费的能量也是相称可观的,原则上在安排时不应发生卡车等待的情况。

电铲和卸点都不能同时为两辆及两辆以上卡车服务。

卡车每次都是满载运送。

每个铲位到每个卸点的道路都是专用的宽 60 m 的双向车道,不会出现堵车现象,每段道路的里程都是已知的。

一个班次的生产计划应当包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运送多少次(由于随机因素影响,装卸时间与运送时间 都不精确,所以排时计划无效,只求出各条路线上的卡车数及安排即可)。

数学建模知识竞赛试题及答案

数学建模知识竞赛试题及答案

数学建模知识竞赛1._______是研究现实世界数量关系和空间形式的科学。

2._______是数学研究的最基本的对象,自然界无不可以用数和形以及它们的发展和变化形态及规律加以描述的,因此数学是无时不在,无处不在的。

3._______是生产力”,而数学是生产力发展的基石和源泉。

4.当今信息时代的一个重要特点是数学的应用向一切领域渗透,_______与_______的关系关系日益密切,产生了许多与数学相结合的新科学,如数学化学、数学生物学、数学地质学、数学社会学等。

5.“信息时代高科技的竞争本质上是数学的竞争”,“当今如此受到称颂的‘高科技’本质上是一种_______”。

6._______是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

7.数学模型具有_______、_______、_______三大作用,其中预测功能是数学模型价值的最重要的体现。

8.数学模型的预测功能就是用数学模型的_______和_______预测未来的发展,为人们的行为提供指导。

9.数学模型的判别功能就是用数学模型来判断_______、_______的可靠性。

10.数学模型的解释功能就是________________________。

11.一般来说,数学建模时为了构建数学模型而进行的_______、_______、_______、_______、_______、_______和的全过程。

12.数学建模的基本方法有:1)机理分析法2)__________ 3)__________ 4)__________5)__________13.建立数学模型的主要步骤是:(1)______(2)_______(3)_______(4)_______(5)_______(6)_______(7)_______14.鉴别所建立数学模型好坏的方法就是让它____________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年数学建模竞赛答案输油管道的铺设设计 符号约定m 炼油厂A 到铁路线L 的距离 n 炼油厂B 到铁路线L 的距离 b 炼油厂A 、B 间水平距离 F 输送管道的总费用 f 铺设管道的附加费用 W 铺设费用的权重系数1k A 厂铺设非共用管线每千米的费用 2k B 厂铺设非共用管线每千米的费用 3k 共用管线每千米的费用问题一分析与模型建立 最短路径的存在性论证如图4.1,假设C 点为在铁路线上设计增建的车站,由费尔马问题的结论,在ABC ∆中,存在费尔马点P ,使点P 与ABC ∆三个顶点距离之和小于三角形二边之和,即有PA+PB+PC<AC+BC图4.1且0120ACB ∠<时,费尔马点P 在ABC ∆内部 而当0120>∠ACB 时,费尔马点P 与C 点重合。

为此有如下结论:①当0120<∠ACB 时,铺设公用管道PC 的输送费用比不铺设公用管道费用低;②当0120>∠ACB 时,不需要铺设公用管道,即公用管道PC =0。

问题一分析与模型建立如图4.1,以炼油厂A 、B 间铁路线所在直线为x 轴,以过炼油厂A 且垂直于铁路线L 直线为y 轴,建立平面直角坐标系。

设 A(0,m), B(b,n),P(r,t),并设非公用管道的费用为每千米1个单位,公用管道的费用为每千米k 个单位(下同),根据实际意义易知21<≤k 。

根据参考文献[1],点P 不可能在A 的上方,故m t ≤≤0。

易得,A 点关于过点P 平行于x 轴的直线1L 的对称点'A (0,2t-m )。

由费尔马点的应用及平面几何对称性有111F PB PA k PC BA k PC '=⨯+⨯+⨯>⨯+⨯ 为此,得到铺设管道的最优模型min 1F BA k PC '=⨯+⨯ 4-1 问题一模型求解对模型分两种管道费用相同与不同两种情形研究,并根据点A 、B 的坐标不同的取值,进行A 、B 不同位置时管道铺设设计。

1公用管道与非公用管道费用不同,即k <1时模型的求解已知A 点关于1l 对称点'A (0,2t-m )()F t tk =求一阶导数,令'()0F t =求解:2224m n t k +=-或2224m n t m k+=+>-(舍去)又20224m n m k+≤≤-可得:22()4()4n m k n m k b --+-≤≤(1)如图4.2,在2()40n m k b k --≤≤时,易判断'()0F t <,即()F t 为单调递减。

图4.2此时,易得点P 坐标为(0,m ), 即点P 与点A 重合时,最优管道铺设方案为折线BA-AC 。

亦即车站建在(0,0),费用()F t 最小,且22min ()()F m mk b m n =+-。

特别的,当b=0时,两个炼油厂同位于垂于铁路线的直线上,车站建在点(0,0)点,最优管道铺设方案如图4.3,且输送管道铺设费的最优解为n k m m k m n F +-=⨯+-⨯=)1()(1min 。

图4.3(2)如图4.4,当22()4(4n m k n m k b k k--+-≤≤ 时,易判断()F t 在20,224m n k ⎡⎤+⎢-⎣上单调递减, 在2224m n m k ⎡⎤+⎢⎥-⎣⎦上单调递增。

由2224m n t k+=-可知'A 的坐标为2'(0,4A n k-图4.4∴直线AB ’的方程为2244k kb y x n kk=+---;直线y=t 的方程2224m n kby k+=--联立方程组得:22244224y x n k k m n y k ⎧=+-⎪--⎪⎨+⎪=-⎪-⎩22()42224m n k kbx k m n y k ⎧--+=⎪⎪⎨+⎪=-⎪-⎩P 的坐标点为(22()4,2224m n k kb m n k k --++--),最优管道铺设方案如图4.5所示。

图4.5且min ()F t =2222()(244kb m n b m n k k k+++---。

特别的,如图4.6所示,当m=n 时,两个炼油厂位于平行于铁路线的直线上,且炼油厂A 、B 所成的0120ACB ∠≤时,P 点为(2,224b m k--),车站建在点(,0)2b。

图4.6最优管道铺设方案如图4.6所示,费用最小值为min 22112424b F km k k=+--。

(3)如图4.7,在2()4m n k b +->时,易判断'()0F t >,即()F t 单调递增。

此时'A 的坐标为'(0,)A m -,直线'A B 的方程为m ny x m b+=- 令y=0 得mbx m n=+ 图4.7所以,点P 的坐标为(mb m n +,0)时,亦即车站建在(mbm n+,0),且 22min (0)()F b n m =++。

特别的,如图4.8所示,当m=n 时,两个炼油厂位于平行于铁路线的直线上,且炼油厂A 、B 所成的0120ACB ∠>时,车站建在点(2b,0)点。

图4.82 公用管道与非公用管道费用相同,即1=k 时模型求解根据4.1.3.1的结论,将1=k 代入有:(1)如图4.2,在03()b n m ≤≤-时,点P 坐标为(0,m ), 即点P 与点A 重合时,最优管道铺设方案为图4.2折线BA-AC 。

亦即车站建在(0,0),且22min ()()F m m b m n =++-。

特别的,当b=0时,两个炼油厂同位于垂于铁路线的直线上,车站建在点(0,0)点,最优管道铺设方案如图4.3,且输送管道铺设费的最优解为min F n =。

(2)如图4.4,3()3()n m b n m -≤≤+ 时,P 的坐标点为2m n +((,02m n kbk -)时,费用()F t 最小,且min F km =+min (0)F =特别的,如图4.6所示,当m=n 时,两个炼油厂位于平行于铁路线的直线上,且炼油厂A 、B 所成的0120ACB ∠>时,车站建在点(2b,0)点。

最优管道铺设方案如上图4.6所示,且min (0)F =(3)当)b a c >+时,如图4.7所示,由于不铺设公用管道,车站建设位置及最优铺设方案与图4.7相同。

问题二求解针对实际问题,根据参考文献[2],可根据层次分析法(AHP )可得图4.11依据图4.11建立目标层(资质评价),准则层和方案层关系,表4.1,城市管道铺设权重系数运算11223344T w T w T w T w λ=+++ 4-5根据参考文献[2],依中华人民共和国法令以及号令,对甲级资质和乙级资质公司各相关回来分析对比分析,有相关的数据表:表4.3公司资质数据表根据工程装价咨询的性质,对于工程总价目标的重要性,用表4.3数值表示表4.4 根据表4.3建立一致正互反矩阵(逆称矩阵)13571/315/37/31/53/517/51/73/75/71A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭运用MATLAB 软件,求解矩阵A 的权重w(具体编程运算见附件一):W=(0.5966,0.1989,0.1193,0.0852) 表4.5如表4.4,运用模型4-5对甲级城市管道铺设权重系数 λ=甲0.6447同理,乙级城市管道铺设权重系数 λ=乙0.3553 易判断λ=0.6447运用4-4模型,铺设管道的附加费为 f=21.5243图4.15如图4.15,设x轴上有一点C使得ACB∠最大。

∆中ACB构造圆的方法,来求解ACB∠;因此,在图4.15的基础上,以AB为直径构造圆,如图4.16图4.16图4.16中,A(0,5),B(20,8),可得圆方程:22(10)( 6.5)102.25x y -+-= 4-6 圆交于x 轴于点D ,E ,运用模型4-6解得C(2.2540,0),D(17.7460,0)X 轴上线段CD 以外的点与点A,B 组成的均小于90,如AEB 因此,若线段CD 间存在最大角且小于120 ,则证明AFB 存在费尔马点;做CD 的中垂线,连接AF,BF ,可知CD 间的最大角AFB ,证明如下:2()()BA B A ABx x y y =同理,可得125AF 164BF运用 222cos2AFBFABAF BF =-0.395486113.296120故直线CD 外存在费尔马点。

图4.12方案一,如图4.12,已知b=8 , a=5 , c=15 , l=20 ; 则可得A (0,5) ; B (20,8) 根据问题一模型4-3的方案设计已知338133b ≤=≤,3()3()22p m n b a c bx -+-+==3322p m n b a c b y ++== 由此可得点P 坐标为(7.4019,0.7265) 运用斜率式求解得直线BP l 的方程 0.5773 3.5470y x =- 又点F 在直线BP l ,确定点F (15,5.1125) 由两点间的距离公式得附加费的路径 FB =5.7739 min 3a c bS ++=方案一的相应铺设管道费用:min F =FB *f+min S *7.2=295.78方案二,为了使铺设管道费用减少,在减少附加费用的基础上,来减少附加费用的路径,因此我们在区域I 和区域II 之间的分界线上引入一个拐点'F ,如图4.13图4.13由图4.13,可知铺设管道费用的目标函数:min 7.2('')*'F PE PF BF AP f BF =++++ 由lingo 软件(步骤见附件二)运算得 min F = 282.8197 对比方案一与方案二的铺设费用min F =295.78>min F = 282.8197 因此,方案设计如图4.14图4.14 则此时,最省的铺设费用为min F 282.8197问题3根据已知条件312,,,,k k k c e ,则可建立问题的线性规划数学模型:222222min 1223()()()()()()F k t m r k rc ts k f b e c s k rs.t. 1223120000t c k k k k k k s c re利用LINGO 软件求解(见附件3)得:minF 252.0913图4.15如图4.15,设x轴上有一点C使得ACB∠最大。

∆中ACB构造圆的方法,来求解ACB∠;因此,在图4.15的基础上,以AB为直径构造圆,如图4.16图4.16图4.16中,A(0,5),B(20,8),可得圆方程:22x y-+-= 4-6(10)( 6.5)102.25圆交于x轴于点D,E,运用模型4-6解得D(2.2540,0),E(17.7460,0)。

相关文档
最新文档