数值计算方法插值法资料

合集下载

数值计算中的插值方法-教案

数值计算中的插值方法-教案

数值计算中的插值方法-教案一、引言1.1数值计算与插值方法的背景1.1.1数值计算在现代科学和工程中的重要性1.1.2插值方法在数值计算中的应用1.1.3插值方法的基本概念和分类1.1.4教学目标和意义1.2插值方法的历史发展1.2.1古典插值方法的发展历程1.2.2现代插值方法的发展趋势1.2.3插值方法在不同领域的应用案例1.2.4学生对插值方法历史了解的重要性1.3教学方法和组织形式1.3.1采用的教材和参考资料1.3.2教学方法和策略1.3.3教学活动的组织形式1.3.4学生参与和互动的重要性二、知识点讲解2.1插值函数的构造2.1.1拉格朗日插值多项式2.1.2牛顿插值多项式2.1.3埃尔米特插值多项式2.1.4各种插值方法的优缺点比较2.2插值误差分析2.2.1插值多项式的余项2.2.2插值误差的估计2.2.3插值误差与数据点分布的关系2.2.4提高插值精度的方法2.3插值方法的应用2.3.1数据拟合与逼近2.3.2数值微积分2.3.3工程问题中的插值应用2.3.4学生实际操作和案例分析的必要性三、教学内容3.1拉格朗日插值多项式3.1.1拉格朗日插值多项式的定义3.1.2拉格朗日插值多项式的构造方法3.1.3拉格朗日插值多项式的性质3.1.4拉格朗日插值多项式的应用实例3.2牛顿插值多项式3.2.1牛顿插值多项式的定义3.2.2牛顿插值多项式的构造方法3.2.3牛顿插值多项式的性质3.2.4牛顿插值多项式的应用实例3.3埃尔米特插值多项式3.3.1埃尔米特插值多项式的定义3.3.2埃尔米特插值多项式的构造方法3.3.3埃尔米特插值多项式的性质3.3.4埃尔米特插值多项式的应用实例四、教学目标4.1知识与技能目标4.1.1理解插值方法的基本概念和分类4.1.2掌握拉格朗日、牛顿和埃尔米特插值多项式的构造方法4.1.3学会分析插值误差,并了解提高插值精度的方法4.1.4能够运用插值方法解决实际问题4.2过程与方法目标4.2.1培养学生的数学建模能力4.2.2培养学生的数据分析能力4.2.3培养学生的逻辑思维能力和问题解决能力4.2.4培养学生的合作与交流能力4.3情感态度与价值观目标4.3.1培养学生对数学学习的兴趣和热情4.3.2培养学生的科学精神和创新意识4.3.3培养学生的团队协作意识和责任感4.3.4培养学生的国际视野和跨文化交流能力五、教学难点与重点5.1教学难点5.1.1插值多项式的构造方法5.1.2插值误差的分析与估计5.1.3插值方法在实际问题中的应用5.1.4学生对插值方法的理解和应用能力5.2教学重点5.2.1插值方法的基本概念和分类5.2.2拉格朗日、牛顿和埃尔米特插值多项式的性质5.2.3插值方法在数值计算中的应用5.2.4学生对插值方法的应用和实践能力六、教具与学具准备6.1教具准备6.1.1多媒体设备6.1.2白板和笔6.1.3教学软件和应用程序6.1.4教学视频和演示文稿6.2学具准备6.2.1笔记本和文具6.2.2计算器和数学软件6.2.3相关教材和参考资料6.2.4学生自主学习的资源七、教学过程7.1导入新课7.1.1引入数值计算和插值方法的背景7.1.2提出问题,激发学生的兴趣7.1.3引导学生回顾相关知识点7.1.4提出教学目标和要求7.2知识讲解与演示7.2.1讲解插值方法的基本概念和分类7.2.2演示拉格朗日、牛顿和埃尔米特插值多项式的构造方法7.2.3分析插值误差,并介绍提高插值精度的方法7.2.4通过实例讲解插值方法在实际问题中的应用7.3学生练习与讨论7.3.1布置练习题,让学生独立完成7.3.2组织学生进行小组讨论和合作7.3.3引导学生提出问题和解决问题的方法7.3.4检查学生的练习情况,并进行点评和指导7.4.2引导学生思考插值方法在其他领域的应用7.4.3提供相关资料和资源,鼓励学生进行深入学习7.4.4布置作业,巩固学生的学习成果八、板书设计8.1板书设计概述8.1.1板书设计的重要性8.1.2板书设计的原则和策略8.1.3板书设计的内容和方法8.1.4学生对板书的理解和记忆能力8.2板书设计的内容8.2.1插值方法的基本概念和分类8.2.2拉格朗日、牛顿和埃尔米特插值多项式的构造方法8.2.3插值误差的分析与估计8.2.4插值方法在实际问题中的应用8.3板书设计的策略8.3.1采用图表和示意图进行辅助说明8.3.2使用颜色和标记进行突出和区分8.3.3运用逻辑结构和层次进行组织8.3.4结合多媒体和教具进行补充和拓展九、作业设计9.1作业设计概述9.1.1作业设计的重要性9.1.2作业设计的原则和策略9.1.3作业设计的内容和方法9.1.4学生对作业的理解和完成能力9.2作业设计的内容9.2.1基本概念和分类的回顾题9.2.2插值多项式的构造和应用题9.2.3插值误差的分析和计算题9.2.4实际问题的建模和解决题9.3作业设计的策略9.3.1设计不同难度层次的作业题9.3.2提供相关资料和资源进行辅助9.3.3鼓励学生进行合作和讨论9.3.4安排作业的批改和反馈机制十、课后反思及拓展延伸10.1课后反思10.1.1教学目标的达成情况10.1.2教学难点和重点的处理情况10.1.3教学方法和策略的有效性10.1.4学生的学习情况和反馈意见10.2拓展延伸10.2.1插值方法在其他领域的应用10.2.2相关的数学建模和数据分析方法10.2.3国际视野下的数值计算方法10.2.4学生自主学习和研究的机会重点关注环节及其补充说明:1.教学难点与重点:在讲解插值多项式的构造方法和插值误差分析时,应结合实例和图表进行详细解释,并引导学生进行实际操作和练习,以提高他们的理解和应用能力。

数值计算方法插值与拟合

数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。

插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。

本文将介绍插值和拟合的基本概念和常见的方法。

一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。

插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。

二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。

2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。

3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。

三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。

2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。

3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。

四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。

五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。

六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。

插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。

数值计算方法-插值法

数值计算方法-插值法
Rn(x) = f (x) − Pn(x) 为插值多项式的余项,表示用 Pn(x) 去近似 f (x) 的截断误差。 一般地, max |Rn(x)| 越小,其近似程度越好。
a≤x≤b
10
拉格朗日插值
插值多项式的存在性与惟一性
插值多项式的存在性与惟一性
定理 在 n + 1 个互异节点 xi 上满足插值条件
几何意义: 通过 n + 1 个点 (xi, yi)(i = 0, 1, 2, · · · , n) 做一条代数曲线 y = Pn(x),使其近似于 y = f (x)
代数插值问题
y
y = f (x) y = Pn(x)
x0 x1
xn
x
图 1: 代数插值
几何意义: 通过 n + 1 个点 (xi, yi)(i = 0, 1, 2, · · · , n) 做一条代数曲线 y = Pn(x),使其近似于 y = f (x)
数值计算方法
插值法
张晓平 2019 年 11 月 4 日
武汉大学数学与统计学院
Table of contents
1. 简介 2. 拉格朗日插值 3. 分段低次插值 4. 差商与牛顿插值多项式 5. 差分与等距节点插值
1
简介
简介
• 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部 给定的离散数据点。
定义 : 插值余项 称
Rn(x) = f (x) − Pn(x) 为插值多项式的余项,表示用 Pn(x) 去近似 f (x) 的截断误差。
10
代数插值问题
在 [a, b] 上用 Pn(x) 近似 f (x),除了在插值节点 xi 处 Pn(xi) = f (xi) 外, 在其余点处有误差

数值计算方法第05章插值法

数值计算方法第05章插值法
(n+1)个, 恰好给出(n+1)个方程.
n( x0 ) a0 a1 x0 a2 x02 an x0n y0
n
(
x1
)
a0
a1 x1
a2 x12
an x1n
y1
n( xn ) a0 a1 xn a2 xn2 an xnn yn
17
1 x0 x02 x0n a0 f ( x0 )
一次
二次
三次 15
➢ 三个基本问题
插值多项式n(x)是否存在唯一? 若n(x)存在, 截断误差 f (x)-n(x)=? 如何求n(x)?
16
➢ 插值多项式n(x)的存在唯一性
n 次多项式n(x)有(n+1)个待定系数ai (i=0, 1, 2, …, n), 插值条件 n(xi)= f (xi)= yi (i=0, 1, 2, …, n)也是
表2.1.1 刹车距离实验数据
v 20 25 30 35 40 45 50
d 42 56 73.5 91.5 116 142.5 173
v 55 60 65 70 75 80
d 209.5 248 292.5 343 401 464
插值法是一种古老的数学方法。早在1000 多年前,我国历法上已经记载了应用一次插值 和二次插值的实例。
伟大的数学家:拉格朗日(Lagrange)、牛顿 Newton)、埃尔米特(Hermite)等人分别给出了 不同的解决方法。
生产实践中常常出现这样的问题:给出一批 离散样点,要求作出一条通过这些点的光滑 曲线,以便满足设计要求或进行加工。反映 在数学上,即已知函数在一些点上的值,寻 求它的分析表达式。因为由函数的表格形式 不能直接得出表中未列点处的函数值,也不 便于研究函数的性质。此外,有些函数虽有 表达式,但因式子复杂,不容易算其值和进 行理论分析,也需要构造一个简单函数来近 似它。

数值分析与计算方法 第一章 插值法

数值分析与计算方法 第一章 插值法

同 理 : (t) 至 少 有n 个 互 异 零 点;
(t) 至 少 有n 1 个 零 点 ;
(n1) (t ) 至 少 有 一 个 零 点 ; 即 (a ,b),
(n1) (
)
R(n1) n
(
)
K ( x)n1(n1) (
)
R(n1) n
(
)
K ( x) (n
1)!
f (n1) ( ) K ( x) (n 1)! 0
x x0 x1 x2 xn , y f ( x)? y y0 y1 y2 yn
(1)有的函数没有表达式,只是一种表格函数,而我们需要的 函数值可能不在该表格中。
(2)如果函数表达式本身比较复杂,计算量会很大;
对于这两种情况,我们都需要寻找一个计算方便且表达简单
的函数 P x来近似代替 f ( x),求 P x 的方法称为插值法。
Ln1( x)
为此我们考虑对Lagrange插值多项式进行改写; ——由唯一性,仅是形式上的变化
期望:Ln ( x) 的计算只需要对Ln1( x)作一个简单的修正.
考虑 h( x) Ln ( x) Ln1( x) h( x) 是次数 n 的多项式,且有
h( x j ) Ln ( x j ) Ln1( x j ) 0 ,j 0 ,1,2 ,L ,n 1 ;
)
3
)
1 2
(x
(
4
6
6
)( x
)(
4
3
)
3
)
1
(
x
6
)(
x
4
)
2
(
3
6
)(
3
4
)
3 2

数值计算方法第05章插值法

数值计算方法第05章插值法
第五章 插值法
拉格朗日Lagrange插值 牛顿Newton插值 分段线性差值 埃尔米特Hermite插值 样条插值
1
§1 引 言
一、引例
已经测得在某处海洋不同深度处的水温如下:
深度(M) 466 741 950 1422 1634 水温(oC)7.04 4.28 3.40 2.54 2.13
26
➢ 二次插值多项式
n = 2 L2( x) l0( x) f ( x0 ) l1( x) f ( x1 ) l2( x) f ( x2 )
l0( x)
xi x0 x1 x2
2次多项式 1 0 0
l0( x)
( x x1 ) ( x x2 ) ( x0 x1 )( x0 x2 )
8
解决这种问题的方法有两类:一类是给出函数 f(x)的一些样点值,选定一个便于计算的函数形 式,如多项式、分式线性函数及三角多项式等, 要求它通过已知样点,由此确定函数f'(x)作为 f(x)的近似。这就是插值法。另一类方法在选定 近似函数的形式后,不要求近似函数过已知样
点,只要求在某种意义下他在这些点上的总偏 差最小。这类方法称为曲线(数据)拟合法。
一次
二次
三次 15
➢ 三个基本问题
插值多项式n(x)是否存在唯一? 若n(x)存在, 截断误差 f (x)-n(x)=? 如何求n(x)?
16
➢ 插值多项式n(x)的存在唯一性
n 次多项式n(x)有(n+1)个待定系数ai (i=0, 1, 2, …, n), 插值条件 n(xi)= f (xi)= yi (i=0, 1, 2, …, n)也是
伟大的数学家:拉格朗日(Lagrange)、牛顿 Newton)、埃尔米特(Hermite)等人分别给出了 不同的解决方法。

数值计算方法插值法

数值计算方法插值法

f[x1,x2,x3] …
f[x0,x1,x2 ,x3]
例阶2.1差1商求值f(xi)= x3在节点 x=0, 2, 3, 5, 6上的各
解xi :
计算得如下表 f[xi] f[xi,xi+1]
f[xi,xi+1,xi+2 ]
f[xi,xi+1,xi+2 ,xi+2]
00
28
80 4 20
27 8 19 19 4 5
an x0 n an1x0 n1 a1x0 a0 f (x0 )
an x1n
an1
x n1 1
a1x1 a0
f (x1 )
an xn n an1xn n1 a1xn a0 f (xn )
这是惟一一个性关说于明待,定不参论数用何种方法来构a造的0,,n+也a11阶不, 线论性用, 方何an种形式来表示插值多项式,
由线性代数知,任何一个不高于n次的多项式, 都可以表示成函数
1, x x0 , (x x0 )(x x1 ),, (x x0 )(x x1 )(x xn1 )
的线性组合, 也就是说, 可以把满足插值条件 p(xi)=yi (i=0,1,…,n)的n次插值多项式, 写成如下形式
a0 a1(x x0) a2(x x0)(x x1) an (x x0)(x x1)(x xn1)
f[x0 , x1]=
f(x1)- f(x0) x1 – x0
f[x1 , x0]
f(x0)- f(x1) =
x0 – x1
f x0 , x1, x2 f x1, x2 , x0 f x0 , x2 , x1
性质3 若f[x, x0, x1 , …, xk ]是 x 的 m 次多项式, 则 f[x, x0, x1 ,…, xk , xk+1]是 x 的 m-1 次多项式

数值计算方法 5插值法

数值计算方法 5插值法

5.2.3 n次拉格朗日插值
➢问题描述
插值基点:x0,x1,…,xn(n+1个点互异) 插值函数:不超过n次的多项式
插值条件:Ln(xi)=yi, i=0,1,2,…,n
➢基函数
li (x)
(x x0 ) (x xi1 )(x xi1 ) (x xn ) (xi x0 ) (xi xi1 )(xi xi1 ) (xi xn )
定义5-3
设H

n
不超过n次的多项式的全体的集合,
0
(
x)
,1
(
x),
,n (x)
是H n中n
1个线性无关的多项式,则0 (x),1 (x),
,
n
(
x)是H

n
一组基函数。
注意:基函数是不唯一的;
n
H n中的任一多项式pn (x)均可由基函数唯一表示,即pn (x) kii (x) i0
➢定理5-1 (插值函数的存在唯一性定理)
由于多项式有其优良的特性,所以通常都是用多项式作为 插值函数。还有其它类型的插值函数,如有理函数插值、 三角函数插值等
➢函数插值涉及的基本问题
插值函数的存在唯一性问题
插值函数的构造问题
截断误差估计与收敛性问题
➢ 代数多项式插值函数的构造方法
拉格朗日插值法 埃尔米特插值法
牛顿插值法
样条函数插值法
拉格朗日插值函数均可表示为一组基函数与函数值的线性组 合,这些基函数与被插函数无关,只需用插值基点有来构造。
5.2.1 拉格朗日线性插值L1(x) ➢线性插值及几何意义
n=1时的n次多项式L1(x) 称为线性插值。此时,有两个互异的 插值基点:x0,x1,插值条件为: L1(x0)=y0, L1(x1)=y1 。

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析

数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。

在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。

插值方法就是为了解决这个问题而设计的。

插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。

常见的插值方法有拉格朗日插值、牛顿插值等。

下面我们将重点介绍这两种方法。

1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。

它是基于拉格朗日多项式的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。

然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。

2. 牛顿插值法牛顿插值法是另一种常见的插值方法。

它是基于差商的思想。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。

牛顿插值法的基本思想是通过插值多项式来逼近原函数。

具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。

计算方法——插值法综述

计算方法——插值法综述

计算方法——插值法11223510 李晓东在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是一些离散数值。

有时即使给出了解析表达式,却由于表达式过于复杂,使用不便,且不易于计算与分析。

解决这类问题我们往往使用插值法:用一个“简单函数”)(x ϕ逼近被计算函数)(x f ,然后用)(x ϕ的函数值近似替代)(x f 的函数值。

插值法要求给出)(x f 的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定)(x ϕ作为)(x f 的近似,概括地说,就是用简单函数为离散数组建立连续模型。

一、 理论与算法(一)拉格朗日插值法在求满足插值条件n 次插值多项式)(x P n 之前,先考虑一个简单的插值问题:对节点),,1,0(n i x i =中任一点)0(n k x k ≤≤,作一n 次多项式)(x l k ,使它在该点上取值为1,而在其余点),,1,1,1,0(n k k i x i +-=上取值为零,即⎩⎨⎧≠==k i ki x l i k 01)( (1.1)上式表明n 个点n k k x x x x x ,,,,,,1110 +-都是n 次多项式)(x l k 的零点,故可设)())(())(()(1110n k k k k x x x x x x x x x x A x l -----=+-其中,k A 为待定系数。

由条件1)(=k k x l 立即可得)())(()(1110n k k k k k k k x x x x x x x x A ----=+-(1.2)故 )())(()()())(()()(110110n k k k k k k n k k k x x x x x x x x x x x x x x x x x l --------=+-+-(1.3)由上式可以写出1+n 个n 次插值多项式)(,),(),(10x l x l x l n 。

数值分析中的(插值法)

数值分析中的(插值法)

三、多项式插值问题中需要研究的问题
满足插值条件的多项式 Pn 是x否存在?唯一?
若满足条件的 Pn 存x在,又如何构造? 用 Pn 近x似代替 f的 x误 差估计?
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
理学院
2.‹#›
(4)若引入记号
n1(x) (x x0 )(x x1) (x xn ) 则
n

1
(xk
)

(xk

x0 )
(xk

xk 1)(xk

xk 1)
(xk

xn )
于是
Ln(x)

n
yklk (x)
k 0

n
yk
k 0
(x
n1(x) xk )n1(xk )
Li(x)为插值基函数。
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
理学院
2.‹#›
注:(1) 插值基函数l i(x) (i=0,1, …,n)仅由插值节点 xi (i=0,1, … ,n)确定,与被插函数 f(x)无关.
Rn ( x) f ( x) Ln ( x) K ( x)n1( x) 可知:x0 , x1, , xn和x是 (t) 在区间[a,b]上的n+2个 互异零点, 因此根据罗尔(Rolle)定理, 至少存在一点

数值分析中的插值算法及其应用

数值分析中的插值算法及其应用

数值分析中的插值算法及其应用数值分析是研究解决数学问题的数值方法的一门学科。

其中,插值算法是数值分析中重要的方法之一。

插值是指在给定一些数据点的情况下,用一些方法建立一个函数,该函数可以在给定区间内的任何一点上计算出函数值。

插值方法有很多种,其中比较常用的有拉格朗日插值法、牛顿插值法和埃尔米特插值法。

1. 拉格朗日插值法拉格朗日插值法是一种将一个多项式函数p(x)与一系列已知数据点相联系的方法。

假设给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),其中x1 < x2 < ... < xn,那么可以构造一个次数小于等于n-1的多项式函数p(x)满足p(xi) = yi,i=1,2,...,n。

设p(x)的表达式为:p(x) = Σyi li(x)其中,li(x)为拉格朗日基函数。

每个基函数都满足:li(xi) = 1, li(xj) = 0, j≠i基函数的表达式为:li(x) = Π[j≠i] (x - xj) / (xi - xj)利用拉格朗日插值法,可以在给定数据点的情况下,快速计算函数在其他点上的值。

2. 牛顿插值法牛顿插值法是一种利用差商的方法建立插值多项式的方法。

相比于拉格朗日插值法,牛顿插值法更注重于递推计算。

给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),牛顿插值法可以建立一个关于x的n次多项式。

首先,定义一个差商:f[xi] = yif[xi, xi+1, ..., xj] = (f[xi+1, ..., xj] - f[xi, ..., xj-1]) / (xj - xi)差商f[xi, xi+1, ..., xj]是由区间(xi, xj)内的函数值f(xi), f(xi+1), ..., f(xj)所计算得到的。

定义一个新的多项式qk(x),其中:qk(x) = f[x0, x1, ..., xk] + (x - xk) qk-1(x)其中q0(x) = f[x0]。

数值计算方法第2版 第4章 插值法

数值计算方法第2版 第4章 插值法

x y
x0 y0
x1 y1
y1 y0 ( x x0 ) x1 x0 x x0 x x1 y0 y1 l0 ( x) y0 l1 ( x) y1 x0 x1 x1 x0
2 表达式 拉格朗日插值多项式
P ( x)
公式的结构:它是两个一次函数的线性组合 线性插值基函数
第4章 插值法
4.1 引言 4.2 拉格朗日插值 4.3 逐次线性插值 4.4 牛顿插值 4.5 等距节点插值 4.6 反插值 4.7 埃尔米特插值 4.8 分段插值法 4.9 三次样条插值
4.1 引言
4.1.1 插值问题及代数多项式插值
1 插值 已知某些(有限)点的函数值求其余点的函数值。 定义 函数y=f(x)在区间[a,b]上有函数值 yi f ( xi ),i 0,1,, n
满足插值条件 P ( xi ) yi , (i 0,1, 2)
l0 A( x x1 ) ( x x2 ) l0 ( x0 ) A( x0 x1 ) ( x0 x2 ) 1
的n次抛物线 y=P (x),近似代替曲线 y=2.1 线性插值(二点一次插值) 1 定义 已知f(x0)=y0,f(x1)=y1 , x0≠x1 要构造线性函数 P(x)=a0 + a1 x , 使满足插值条件 P(x0)=y0 , P(x1)=y1 .
y y0 y1 y0 x x0 x1 x0 P ( x) y0
y 10 11

x0=100, x1=121, x=115
P ( x) x x0 x x1 y0 y1 x0 x1 x1 x0
115 P(115)
115 121 115 101 10 11 10.914 100 121 121 100

数值计算方法教案插值方法

数值计算方法教案插值方法

复习:1.数值计算方法的含义 2.误差及误差限 3.误差与有效数字4.数值计算中应注意的问题第二章 插值方法一.插值的含义 问题提出:已知函数()y f x =在n+1个点01,,,n x x x 上的函数值01,,,n y y y ,求任意一点x '的函数值()f x '。

说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。

解决方法:构造一个简单函数()P x 来替代未知(或复杂)函数()y f x =,则用()P x '作为函数值()f x '的近似值。

二、泰勒(Taylor )插值 1.问题提出:已知复杂函数()y f x =在0x 点的函数值()0f x ,求0x 附近另一点0x h +的函数值()0f x h +。

2.解决方法:构造一个代数多项式函数()n P x ,使得()n P x 与()f x 在0x x =点充分逼近。

泰勒多项式为:()()()()()()()()()200000002!!n n n f x f x P x f x f x x x x x x x n '''=+-+-++-显然,()n P x 与()f x 在0x x =点,具有相同的i 阶导数值(i=0,1,…,n )。

3.几何意义为:()n P x 与()f x 都过点()()00,x f x ;()n P x 与()f x 在点()()00,x f x 处的切线重合; ()n P x 与()f x 在点()()00,x f x 处具有相同的凹凸性;其几何意义可以由下图描述,显然函数()3f x 能相对较好地在0x 点逼近()f x 。

4.误差分析(泰勒余项定理):()()()()()()1101!n n n f P x f x x x n ξ++-=-+,其中ξ在0x 与x 之间。

5.举例:已知函数()f x ()115f 。

数值分析常用的插值方法

数值分析常用的插值方法

数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。

下面将对这些插值方法进行详细介绍。

一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。

线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。

二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。

它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。

拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。

拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。

通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。

分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。

四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。

利用差商的概念来构造插值多项式。

Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次插值
当n 1时,求一次多项式P1(x),要求通过 x0, y0 , x1, y1
两点
y
y0 x0
y1 x1
P1(x) f(x)
二次插值
当n 2时,求二次多项式P2 (x),要求通过 x0, y0 , x1, y1 , x2, y2 三点
y
f(x)
y0 x0
y1 x1
y2 x2
P1(x)
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)
yk
yk 1 xk 1
yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P1(x)
x xk1 xk xk 1
yk
x xk xk 1 xk
yk

1
记l k (x)
x xk1 xk xk 1
, lk1(x)
l
0 ( x)
x 20 10 20
1 10
(x
20),l1 ( x)
x 10 20 10
1 10
(x
10)
例子
于是,拉格朗日型一次插值多项式为:
P1 ( x)
y0l0 (x)
y1l1 ( x)
1 10
(x
20)
1.3010 10
(x
10)
故P1
(12)
1 10
(12
20)
1.3010 10
(12
决定
1
例子
例1:已知lg10 1 , lg 20 1.3010,利用插值一次 多项式求 lg12的近似值。 解:f (x) lg x,f (x) lg x,f (10) 1,f (20) 1.3010 设x0 10,x1 20,y0 1,y1 1.3010, 则插值基本多项式为:
y2
x0
x1
x2
当 n1 时,求一次多项式
yn-1 xn-1
yn
xn
x
插值法的分类
一,拉格朗日插值法 二,牛顿插值法 三,埃尔米特插值法 四,分段多项式插值法 五,样条插值法
一,拉格朗日插值法
流程:线性插值(一次插值)→二次插值→ n次拉格朗日插值法的方程组法证明→用中国
剩余定理证明拉格朗日插值多项式。
P2 (xi ) yi , i k 1, k, k 1
二次插值基本多项式
问题的提出
插值问题的数学提法:已知函数y f (x)在n 1个 点x0 , x1, , xn上的函数值yi f (xi ), (i 0,1, , n), 求一 个多项式y P(x),使其满足P(xi ) yi , (i 0,1, , n). 即要求该多项式的函数曲线要经过y f (x)上已知的
其中P(x)为f(x)的插值函数,x0 ,x1 ,…,xn 称为插值节 点,包含插值节点的区间[a,b] 称为插值区间,求插值 函数P(x)的方法称为插值法。若P(x)是次数不超过n的 代数多项式,就称P(x)为插值多项式,相应的插值法 称为多项式插值。若P(x)是分段的多项式,就是分段 插值。若P(x)是三角多项式,就称三角插值。
x
拉格朗日插值公式
线性插值(一次插值)
已知函数f (x)在区间 xk , xk1的端点上的函数值
yk f (xk ), yk1 f (xk1),求一个一次函数y P1(x) 使得yk P1(xk ), yk1 P1(xk1)。其几何意义是已知
平面上两点 xk , yk , xk1, yk1 ,求一条直线过该已
n 1个点 x0, y0 , x1, y1 , , xn , yn ,同时在其他x a,b
上要估计误差R(x) f (x) P(x)
n1
个点
x0 , y0 , x1, y1 , , xn, yn ,
同时在其它
插值问题 上要估计误差
R(x) f (x) P(x)
y

f(x)
P(x)
y0
y1
为什么要插值
1.在工程技术和科学研究中,有时对一个函数 f(x)只能通过实验或观测的手段得到它在某个 区间[a,b]上的有限个不同点上的函数值,也就 是只知道一张函数表,却没有明确的表达式。
2.虽然函数有明确的表达式,但由于形式复杂, 不便于计算和使用,所以人们往往希望做出一 个既能反映函数的特性,又便于计算的简单函 数P(x)去近似替代f(x)。
10)
1.0602
即lg12由lg10 和lg 20 两个值的线性插值得到,且
具有两位有效数字(精数y
f
(
x)在点xk
1
,
xk
,
xk
上的函数值
1
yk1 f (xk1) , yk f (xk ),yk1 f (xk1)。
求一个次数不超过二次的多项式P2 (x),使其满足
插值法的概念
已知函数在n+1个点x0 ,x1 ,…,xn 上的函数值 yi=f(xi ), (i=0,1,…,n) ,求一个简单函数y=P(x),使其满 足: P(xi )=yi ,(i=0,1,…,n) 。即要求该简单函数的 曲线要经过y=f(x)上已知的这个n+1个 点: (x0 ,y0 ),(x1 ,y1 ),…,(xn ,yn ),同时在其它 x∈[a,b]上要估计误差: R(x) = f(x) - P(x)
x xk xk 1 xk

称它们为一次插值基函数。
线性插值
基函数的特点: lk1(x)
lxkk(x1 )
xk
lk (x)
1
xk 1
0
lk 1 ( x)
0
1
从而,P1(x) yklk (x) yk1lk1(x), 此形式称之为 拉格朗日型插值多项式。其中,插值基函数与
yk、yk
1无关,而由插值结点xk、xk
(1)基本多项式为二次多项式;
(2)它们的函数值满足下表:
xk 1
lk 1 ( x)
1
lk (x)
0
lk 1 ( x)
0
xk
xk 1
0
0
1
0
0
1
拉格朗日型二次插值多项式
由前述,拉格朗日型二次插值多项式: P2 (x) yk1lk1(x) yklk (x) yk1lk1(x),P2 (x)是 三个二次插值多项式的线性组合,因为它是次数 不超过二次的多项式,且满足:
P2 (xk1)
yk1,P2 (xk )
yk,P2 (xk1)
yk

1
其几何意义为:已知平面上的三个点:
xk1, yk1 , xk , yk , xk1, yk1 ,求一个二次
抛物线,使得该抛物线经过这三点。
二次插值基本多项式
有三个插值结点xk
1
,
xk
,
xk
,构造三个插值
1
基本多项式,要求满足: lxkk(1x1()x)
相关文档
最新文档