初二下册分式专题全部题型)
八年级分式经典题型
八年级分式经典题型包括:
1.分式的约分:将分式的分子和分母进行因式分解,然后找出分子和分母中的公因
式,将其约去。
2.分式的乘法:将两个分式相乘,即将分子相乘、分母相乘。
3.分式的除法:将除法转化为乘法,再将两个分式相乘。
4.分式的加减法:同分母的分式相加减,直接将分子相加减,分母不变。
5.分式的混合运算:在运算过程中,需要注意运算顺序,先乘除后加减,有括号的先
算括号里面的。
6.分式的实际应用:例如,解决与面积、速度、时间等相关的实际问题,需要根据实
际情况建立数学模型,然后进行分式的运算。
分式专题(含答案)
.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。
1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。
八年级下数学分式专题习题:《分式计算及分式方程练习题》
分式专题训练习题一、选择题: 1 下列式子(1)y x y x y x -=--122;(2)ca ba a c ab --=--;(3)1-=--b a a b ; (4)yx y x y x y x +-=--+-中正确的是( )A 、1个B 、2 个C 、 3 个D 、 4 个2. 能使分式122--x xx 的值为零的所有x 的值是 ( )A 0=xB 1=xC 0=x 或1=xD 0=x 或1±=x 3、下列各式-3x,x y x y +-,3xy y -,-310,25y +,3x ,4xxy中,分式的个数为 ( )A .1B .2C .3D .44计算)21(22x xx -÷-的结果为( )A .x B .x1-C .x1 D .xx 2--5. 下列运算中,错误..的是【 】 A 、a ac (c 0)b bc =≠ B 、a b1a b --=-+ C 、0.5a b 5a 10b0.2a 0.3b 2a 3b++=-- D 、x y y x x y y x --=++ 6. 化简2a a 4a ()a 2a 2a--⋅-+的结果是【 】 A .-4B .4C .2aD .-2a7、如果把分式yx xy-中的x 、y 都扩大5倍,那么分式的值( ) A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大25倍 8、当x 为任意实数时,下列分式中一定有意义的一个是( )A 、21x x - B 、211x x +- C 、211x x -+ D 、12x x -+ 9、关于x 的方程4332=-+x a ax 的解为x=1,则a=( ) A 、1 B 、-3 C 、-1 D 、310、已知ba ba b a ab b a -+>>=+则且,0622的值为( ) A 、2 B 、2±C 、2D 、2±11、若2x <,则2|2|x x --的值是( )A .1- B .0 C .1 D .212、化简xy y x y x ---22的结果是( ) A .y x -- B. x y - C. y x - D. y x + 13、若分式211x x --的值为0,则( )A .1x = B .1x =- C .1x =± D .1x ≠14.设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于( )B. C. D. 3 15 已知,b aab 1,a+b 2,a b=-=+=则式子16、如果b a =2,则2222b a b ab a ++-= 若x+x 1=3 ,则x 2+21x= 17、若关于x 的分式方程13ax -=+1x+3在实数范围内无解,则实数a=________。
初二分式考试题及答案
初二分式考试题及答案一、选择题(每题3分,共30分)1. 下列分式中,分母为零的分式是()A. \frac{2}{x-1}B. \frac{3}{x+2}C. \frac{4}{0}D.\frac{5}{x}2. 计算分式 \frac{1}{x} + \frac{1}{y} 的结果为()A. \frac{y+x}{xy}B. \frac{x+y}{x}C. \frac{x+y}{xy}D.\frac{y-x}{xy}3. 若分式 \frac{2}{x} = \frac{3}{y},则x与y的关系是()A. x = \frac{2}{3}yB. x = 3yC. y = \frac{2}{3}xD. y = 3x4. 将分式 \frac{a+b}{c+d} 化简为最简形式,正确的做法是()A. 直接约分B. 先通分再约分C. 先约分再通分D. 不能约分5. 已知 \frac{1}{x} + \frac{1}{y} = \frac{1}{2},求\frac{2x+2y}{x+y} 的值是()A. 2B. 4C. 6D. 86. 计算分式 \frac{3x-2}{2x+1} \cdot \frac{2x-1}{3x+2} 的结果为()A. \frac{1}{2}B. \frac{1}{3}C. \frac{1}{4}D. \frac{1}{5}7. 将分式 \frac{a^2-1}{a^2-2a+1} 化简,正确的结果为()A. \frac{a+1}{a-1}B. \frac{a-1}{a+1}C. \frac{a+1}{a}D. \frac{a-1}{a}8. 已知 \frac{2}{x} + \frac{3}{y} = 5,求 \frac{x+y}{xy} 的值是()A. \frac{1}{5}B. \frac{1}{10}C. \frac{1}{15}D. \frac{1}{20}9. 计算分式 \frac{1}{x-1} - \frac{1}{x+1} 的结果为()A. \frac{2}{x^2-1}B. \frac{2}{x^2+1}C. \frac{2x}{x^2-1}D.\frac{2x}{x^2+1}10. 将分式 \frac{x^2-1}{x^2-4} 化简,正确的结果为()A. \frac{x+1}{x-2}B. \frac{x-1}{x-2}C. \frac{x+1}{x+2}D.\frac{x-1}{x+2}二、填空题(每题4分,共20分)1. 计算 \frac{2x}{3} \div \frac{x}{2} 的结果为\frac{4x}{3} 。
初二下册分式练习题及答案
初二下册分式练习题及答案分式在初中数学中是一个重要的知识点,对于学习代数和解方程式都有很大帮助。
为了帮助同学们更好地掌握分式的相关知识,下面给出一些初二下册分式练习题及答案,供大家参考。
一、基础练习题1. 计算下列分式的值:a) 2/3 + 4/5b) 3/4 × 1/6c) 5/6 ÷ 2/3d) 7/8 - 1/92. 将下列分式化简到最简形式:a) 15/20b) 18/54c) 24/36d) 36/723. 计算下列各组分式的和:a) 1/3 + 2/3 + 1/6b) 2/5 + 1/10 + 3/44. 计算下列各组分式的差:a) 1/3 - 1/4 - 1/6b) 3/8 - 1/2 - 2/55. 计算下列各组分式的积:a) 2/3 × 4/5b) 3/4 × 2/3 × 5/66. 计算下列各组分式的商:a) 3/4 ÷ 2/5b) 5/6 ÷ 2/3 ÷ 4/5二、应用题1. 饭店每天会发放100份早餐,已知早餐中的糕点每份需用2/5千克的面粉制作。
那么,10天的总需面粉量是多少千克?答案:10 × 100 × 2/5 = 40千克2. 热气球上升2/5公里后,又上升3/4公里。
那么,热气球总共上升了多少公里?答案:2/5 + 3/4 = 8/20 + 15/20 = 23/20公里3. 小明拿到了一罐装有1/2千克爆米花。
他和小红一起分享,小明吃了其中的2/5千克。
那么,小红吃了多少千克?答案:1/2 - 2/5 = 5/10 - 4/10 = 1/10千克4. 一桶油装有3/4升汽油,小华用了其中的2/3升,并向里面又加入了1/2升。
那么,桶中还剩下多少升汽油?答案:3/4 - 2/3 + 1/2 = 9/12 - 8/12 + 6/12 = 7/12升5. 甲、乙、丙三个煮粥的锅炉同时开始工作。
八年级100道分式方程
题目1:解方程 $\frac{5}{6}x + \frac{1}{2} = \frac{4}{3}x - \frac{3}{4}$。
解法:首先将方程的两边都乘以12,得到$10x+6=16x-9$。
将变量的项移到一边,得到$16x-10x=6+9$。
继续计算,得到$6x=15$。
最后解得 $x=\frac{15}{6}$。
题目2:解方程 $2y - 1 = \frac{3}{4}y + \frac{5}{8}$。
解法:首先将方程的两边都乘以8,得到$16y-8=6y+5$。
将变量的项移到一边,得到$16y-6y=5+8$。
继续计算,得到$10y=13$。
最后解得 $y=\frac{13}{10}$。
题目3:解方程 $\frac{4}{5}x + \frac{2}{3} = \frac{3}{10} - \frac{1}{6}x$。
解法:首先将方程的两边都乘以30,得到$24x+20=9-5x$。
将变量的项移到一边,得到$24x+5x=9-20$。
继续计算,得到$29x=-11$。
最后解得 $x=\frac{-11}{29}$。
题目4:解方程 $\frac{1}{3}x + \frac{1}{2} = \frac{2}{5} - \frac{4}{15}x$。
解法:首先将方程的两边都乘以30,得到$10x+15=12-8x$。
将变量的项移到一边,得到$10x+8x=12-15$。
继续计算,得到$18x=-3$。
最后解得 $x=\frac{-1}{6}$。
题目5:解方程 $\frac{2}{7}x - \frac{3}{5} = \frac{1}{3}x + \frac{1}{2}$。
解法:首先将方程的两边都乘以70,得到$20x-42=35x+35$。
将变量的项移到一边,得到$35x-20x=35+42$。
继续计算,得到$15x=77$。
最后解得 $x=\frac{77}{15}$。
题目6:解方程 $\frac{3}{x} - 4 = \frac{5}{x} - 2$。
(完整版)初二分式难题汇总
一、计算1.计算(﹣)÷.2.计算:(﹣)÷.3.已知非零实数a满足a2+1=3a,求的值.4.已知x+y=xy,求代数式+﹣(1﹣x)(1﹣y)的值.5.先化简,再求值:(x+1﹣)÷,其中x=2.6.化简求值:(﹣)÷,其中x=﹣.7.先化简,再求值:(1+)÷,其中x=3.8.化简求值:•(),其中x=.9.先化简,再求值:(a+)÷(a﹣2+),其中,a满足a﹣2=0.10.当a=2014时,求÷(a+)的值.11.先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.12.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.13.化简求值:,a取﹣1、0、1、2中的一个数.14.先化简代数式(﹣)÷,再从0,1,2三个数中选择适当的数作为a 的值代入求值.15.先化简:(x﹣)÷,再任选一个你喜欢的数x代入求值.16.先简化,再求值:(1+)÷,其中x=3.17.先化简,再求值:,其中a=﹣1.18.已知=,求式子(﹣)÷的值.19.先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.20.先化简,再求值:(﹣),其中x=2.二、分式方程1.解方程:.2.解方程:.3.解分式方程:+=1.4.解方程:=1.5.解方程:+3=.6.解方程:﹣=.8.解分式方程:+=﹣1.9.解方程:=.10.解方程:=0.11.解分式方程:=.(2)解不等式:2+≤x,并将它的解集在数轴上表示出来.13.解分式方程:+=3.14.解方程:﹣=1.15.解方程:.16.解方程:﹣=1.三.分式方程的增根1.若解分式方程时出现了增根,则这个增根一定是()A.0或2 B.0C.2D.12.若解方程出现增根,则增根为()A.0或2 B.0C.2D.13.分式方程有增根,则增根为()A.2B.﹣1 C.2或﹣1 D.无法确定4.若关于x的方程+=2﹣有增根x=﹣1,则2a﹣3的值为()A.2B.3C.4D.65.分式方程若有增根,则增根可能是()A.x=1 B.x=﹣1 C.x=1或x=﹣1 D.x=0 6.若分式方程有增根x=5,那么k的值为()A.2B.5C.3D.﹣3 7.若关于x的分式方程有增根,则m的值为()A.1B.﹣1 C.﹣2 D.28.方程可能产生的增根是()A.1B.2C.﹣1或2 D.1或2 9.如果分式方程﹣=1有增根,那么增根可能是()A.﹣3 B.3C.3或﹣3 D.0 10.关于x的方程有增根,则m的值为()A.﹣4 B.6C.﹣4和6 D.0 11.若分式方程有增根,则增根是()A.x=0 B.x=0和x=﹣1 C.x=﹣1 D.无法确定12.若关于x的方程产生增根,则x等于()A.1B.2C.3D.4 13.若关于x的分式方程有增根,则增根的值为()A.1B.1和﹣2 C.0和3 D.﹣2 14.若分式方程=有增根,则增根为()A.x=﹣1 B.x=1 C.x=±1 D.x=0 15.如果关于x的方程有增根,则a的值是()A.2B.﹣2 C.1D.±2。
初二(下册)分式专题(全部题型)
分式专题题型一:分式的概念:【例题1】下列各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π.其中分式有______个. ( )A 、1B 、2C 、3D 、4 【练一练】1. 下列式子中.属于分式的是 ( )A 、π1 B 、3x C 、11-x D 、52 2. 下列式子中.2a .3x .1m m +.23x +.5π.2a a .23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义.分式值为0:【例题2】 下列各式中.(1)2m m +;(2)1||2m -;(3)239m m --.m 取何值时.分式有意义?【练一练】1. x 为任意实数.分式一定有意义的是 ( )A 、21x x - B 、112-+x x C 、112+-x x D 、11+-x x 2. 若代数式4-x x有意义.则实数x 的取值范围是________________.3. (1)若分式11+x 有意义.则x 的取值范围是________________;(2)已知分式ax x x +--532.当2=x 时.分式无意义.则=a _______________________.4. 若不论x 取何实数.分式mx x x ++-6322总有意义.则m 的取值范围是______________________.【例题3】当x 为何值时.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.各式的值为0.【练一练】 1. 已知分式11+-x x 的值是零.那么x 的值是 ( ) A 、-1 B 、0 C 、1 D 、1±2. 若分式112--x x 的值是零.则x 的值为 ( )A 、-1B 、0C 、1D 、1± 3.(1)如果分式212-+-x x x 的值为零.那么x 的值为_____________________;(2)当=x ______________时.分式123++x x 的值是零;(3)当=x ______________时.分式112--x x 的值为零.【例题4】当x 满足什么条件时.分式2122-++x x x 的值是负数?正数?【练一练】1.(1)若分式1232-a a 的值为负数.则a 的取值范围为__________________;(2)当整数=x _____________时.分式16-x 的值是负整数; (3)已知点)82017,22018(2-++n n n 在第四象限.则n 的取值范围是______________________.2. 当x 为何值时.分式232-+x x 的值为正数?负数?题型三:分式的基本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】 如果把分式中的都扩大3倍.那么分式的值 ( )A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 【例题6】不改变分式的值.将下列分式的分子、分母中的系数化为整数. (1)0.20.020.5x yx y+-(2)11341123x y x y +- 【练一练】 1. 如果把分式yx xy+中的x 和y 都扩大为原来的2倍.那么分式的值 ( ) A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的21 2. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31.那么分式的值 ( ) A 、扩大为原来的3倍 B 、缩小为原来的31 C 、缩小为原来的91D 、不变 3. 分式x --11可变形为 ( ) A 、11--x B 、x +-11 C 、x +11 D 、11-xyx x232-y x ,4. 不改变分式的值.将下列分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx x x 24.03.12.001.032+-(2) yx y x +-5.12.041题型四:分式的基本性质II (约分和通分):【例题7】 约分:(1); (2);(3)1616822-+-a a a .其中5=a (4)y x y x ---2422.其中1,3==y x【练一练】 1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简.再求值:(1) 22)2(1)(4-+--x x x x .其中7-=x (2)已知212=-=+y x y x ,.求2222222y xy x y x ++-的值.【例题8】 通分:(1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7n m mnn m ---的最简公分母是____________; (3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,b ab a cb ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461y y y x y x -+-的最简公分母是_____________________________________;(6)分式acbb ac c b a 107,23,5422的最简公分母是__________.通分时.这三个分式的分子分母依次乘以_______________.____________._______________. 【练一练】 通分:(1)xz xz y x 45,34,2123 (2)32)1(,)1(,1a z a y a x --- (3)42,882,4422-+-+-a c a a b a a a已知xy y x 4=-.求yxy x yxy x ---+2232的值【练一练】1. 若2=+abb a .则=++++22224b ab a b ab a ___________;若311=-y x .则代数式=----y xy x y xy x 22142____________; 2. 已知311=-y x .求yxy x yxy x ----2232的值.题型五:分式的加减:【例题9】 计算:(1) (2)(3)(4) (5) (6).22222333a b a b a b a b a b a b +--+-222422x x x x x +-+--222222222a ab b a b b a a b ++---21132a ab +2312224x x x x +-+--211a a a ---1. (1)111+-+x x x =_________;(2)x y x y x y -+-=_________;(3)2222235ba ab a b a ---+=__________. 2. (1)已知1,3==+ab b a .则=+a b b a ___________;(2)已知0322=++b ab a .则=+abb a __________. 3.(1) (2) (3)222442242x x x x x x-+-++-+【例题10】 已知.求整式A.B .【练一练】 1. 若11)1)(1(3-++=-+-x Bx A x x x .求整式A.B.22256343333a b b a a b a bc ba c cba +-++-2222()()a b a b b a ---34(1)(2)12x A Bx x x x -=+----【例题11】 计算:(1)(2) (3)(4).【练一练】 1.计算:(1)32232)()2(y x x y -- (2)x x x x x x +-÷-+-22211122.先化简.再求值:(1)其中 (2)其中=-1.3.已知求的值.422449158a b xx a b 222441214a a a a a a -+--+-222324a b a bc cd -÷2222242222x y x y x xy y x xy -+÷+++,144421422x x x x x ++÷--14x =-⋅,ab .b b a a b a b a a 222224)()(+÷--,21=a b .0)255(|13|2=-+-+b a b a 323232236().()()a ab ba b b a-÷--【例题12】 解分式方程:(1)(2) (3)【练一练】 (1)0122=-+x x (2)22231--=-x x x(3)x x x -=+--23123 (4)1132-=+-x xx x题型七:分式方程增根问题:【例题13】(1)若分式方程有增根.求值;10522112x x +=--225103x x x x -=+-21233x x x -=---223242mx x x x +=--+m(2)若分式方程有增根.求的值.【练一练】1、若关于x 的方程0111=----x xx m 有增根.则m 的值是 ( ) A 、3B 、2C 、1D 、-12、若关于x 的分式方程1322m x x x++=--有增根.则m 的值是 ( ) A 、1m =- B 、2m = C 、3m = D 、0m =或3m =3、若关于x 的方程0552=-+--x mx x 有增根.则m 的值是 ( )A 、-2B 、-3C 、5D 、3 4、如果方程有增根.那么增根是_____.若方程114112=---+x x x 有增根.则增根是______. 5、已知分式方程5133x mx x+=--有增根.则m 的值为 .6、(1)若关于x 的分式方程x x x m 2132=--+有增根.则该方程的增根为________________; (2)若关于x 的方程2222=-++-xmx x 有增根.则m 的值是__________________.7、若关于x 的分式方程3232-=--x m x x 有增根.则2-m 的值为________________.题型八:分式方程无解问题:【例题14】 若关于x 的分式方程6523212+-=---x x x a x 总无解.求a 的值。
八下 数学期末复习《分式》 含答案
《分式》一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣22.若分式,则分式的值等于()A.﹣B.C.﹣D.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±24.已知a2+b2=6ab,则的值为()A.B.C.2 D.±25.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4 6.在,,,,中分式的个数有()A.1个B.2个C.3个D.4个7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或38.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.= C.=D.=9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1 10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2二.填空题(共8小题)11.计算:﹣=.12.分式方程的解是.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.14.已知a>b>0,a2+b2=3ab,则的值为.15.当a=2016时,分式的值是.16.已知关于x的方程的解是负数,则m的取值范围为.17.若分式方程的解为x=0,则a的值为.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.20.化简:(a+1﹣)•.21.先化简,再求值:(﹣)+,其中a=2,b=.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案与试题解析一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.2.若分式,则分式的值等于()A.﹣ B.C.﹣ D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±2【分析】根据解分式方程的方法和关于x的分式方程无解,可以求得相应的m的值,本题得以解决.【解答】解:方程两边同乘以x,得x﹣m=mx﹣x解得,x=∵关于x的分式方程无解,∴x=0或2﹣m=0,解得m=0或m=2,故选C.【点评】本题考查分式方程的解,解题的关键是明确分式方程什么时候无解.4.已知a2+b2=6ab,则的值为()A.B.C.2 D.±2【分析】首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.【解答】解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.【点评】本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.5.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.6.在,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.【解答】解:分母不含字母,不是分式;是分式;是分式;π是数字不是字母,不是分式,是分式.故选C.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或3【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴|x|﹣2=0.解得:x=±2.当x=2时,x2﹣4x+4=0,分式无意义,当x=﹣2时,x2﹣4x+4=16≠00,分式有意义.∴x的值为﹣2.故选:B.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.8.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【分析】首先根据解分式方程的步骤,求出关于x的分式方程﹣=1的解是多少;然后根据分式方程的解为负数,求出k的取值范围即可.【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.【点评】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.二.填空题(共8小题)11.计算:﹣=.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.【点评】考查了分式的加减法,注意通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.12.分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.14.已知a>b>0,a2+b2=3ab,则的值为.【分析】先依据完全平方公式得到(a+b)2=5ab,(a﹣b)2=ab,然后由=求解即可.【解答】解:∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab.∵a>b>0,∴>0.∴===.故答案为:.【点评】本题主要考查的是求分式的值,依据完全平方公式求得=是解题的关键.15.当a=2016时,分式的值是2017.【分析】首先化简分式,然后把a=2016代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2016时,=﹣===a+1=2016+1=2017.故答案为:2017.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.16.已知关于x的方程的解是负数,则m的取值范围为m>﹣8且m ≠﹣4.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,根据分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有一定的代表性,但是有一定的难度.17.若分式方程的解为x=0,则a的值为5.【分析】根据方程的解的定义,把x=0代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=0代入方程得:=1,解得:a=5,故答案是:5.【点评】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.【分析】根据题意,易知倒出的水的规律,第n次倒出的水=,然后从1升水中逐次减去每一次倒的水,再进行计算即可.【解答】解:根据题意可知第一次倒出:,第二次倒出:,第三次倒出:,…第n次倒出:,∴第10次倒出:,∴倒了10次后容器内剩余的水量=1﹣(++…+)=1﹣(+﹣+﹣+…+﹣)=1﹣(1﹣)=.故答案是.【点评】本题考查了分式的混合运算,解题的关键是注意寻找规律,如:第n 次倒出:;以及=﹣.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.【分析】先化简分式,再把x=﹣1代入求解即可.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.【点评】本题主要考查了分式的化简求值,解题的关键是正确的化简.20.化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.21.先化简,再求值:(﹣)+,其中a=2,b=.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B 地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?【分析】(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;(2)设最低可以打m折,根据这批文具盒利润不得少于288元列出一元一次不等式求解.【解答】解:(1)设第一批每只文具盒的进价是x元.根据题意得:,解之得x=15,经检验,x=15是方程的根答:第一批文具盒的进价是15元/只.(2)设最低可打m折(24﹣15×1.2)××+(24×﹣15×1.2)××≥288,m≥8,答:最低可打8折.【点评】本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【分析】(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程=,解方程即可.【解答】解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为=0.325=32.5%;(2)设西服标价x元,根据题意得=,解之得x=750经检验,x=750是原方程的根.答:该套西装的标价为750元.【点评】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.要注意题中给出的判断条件.此题关键是套用优惠率的公式.25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x 件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x 件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。
(完整版)初二分式难题汇总
一、计算 1.计算(﹣) ÷.2.计算:( ﹣ ) ÷ .3.已知非零实数 a 知足 a 2+1=3a ,求的值.4.已知 x+y=xy ,求代数式 + ﹣( 1﹣ x )( 1﹣ y )的值.5.先化简,再求值: ( x+1 ﹣ ) ÷ ,此中 x=2 .6.化简求值: ( ﹣ ) ÷ ,此中 x= ﹣ .7.先化简,再求值:( 1+)÷,此中x=3.8.化简求值:?(),此中x=.9.先化简,再求值:( a+)÷(a﹣2+),此中,a知足a﹣2=0.10.当 a=2014 时,求÷(a+)的值.11.先化简÷(1﹣),再从不等式2x﹣ 3< 7 的正整数解中选一个使原式存心义的数代入求值.12.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个适合的代入求值.13.化简求值:,a取﹣1、0、1、2中的一个数.14.先化简代数式(﹣)÷,再从0,1,2三个数中选择适合的数作为a 的值代入求值.15.先化简:( x﹣)÷,再任选一个你喜爱的数x 代入求值.16.先简化,再求值:( 1+)÷,此中x=3.17.先化简,再求值:,此中a=﹣1.18.已知=,求式子(﹣)÷的值.19.先化简,再求值:2÷(a+2﹣),此中a +3a﹣1=0.20.先化简,再求值:(﹣),此中x=2.二、分式方程1.解方程:.2.解方程:.3.解分式方程:+=1.4.解方程:=1.5.解方程:+3=.6.解方程:﹣=.7.解方程:=+1.8.解分式方程:+=﹣1.9.解方程:=.10.解方程:=0.11.解分式方程:=.12.( 1)解方程:﹣=0;(2)解不等式:2+≤x,并将它的解集在数轴上表示出来.13.解分式方程:+=3.14.解方程:﹣=1.15.解方程:.16.解方程:﹣=1.三.分式方程的增根1.若解分式方程时出现了增根,则这个增根必定是()A .0 或 2B. 0C. 2D. 12.若解方程出现增根,则增根为()A .0 或 2B. 0C. 2D. 13.分式方程有增根,则增根为()A .2B.﹣ 1C. 2 或﹣ 1D.没法确立4.若对于 x 的方程 +=2﹣有增根 x= ﹣ 1,则 2a﹣ 3 的值为()A .2B. 3C. 4D. 65.分式方程如有增根,则增根可能是()A .x=1B. x=﹣ 1C. x=1 或 x= ﹣1D. x=06.若分式方程有增根x=5,那么k的值为()A .2B. 5C. 3D.﹣ 37.若对于x 的分式方程有增根,则m 的值为()A .1B.﹣ 1C.﹣2D. 28.方程可能产生的增根是()A .1B. 2C.﹣1 或 2D. 1 或 2 9.假如分式方程﹣=1 有增根,那么增根可能是()A .﹣ 3B. 3C. 3 或﹣ 3D. 010.对于 x 的方程有增根,则m 的值为()A .﹣ 4B. 6C.﹣4 和 6D. 011.若分式方程有增根,则增根是()A .x=0B. x=0 和 x=﹣ 1C. x=﹣1D.没法确立12.若对于 x 的方程产生增根,则x 等于()A .1B. 2C. 3D. 4 13.若对于 x 的分式方程有增根,则增根的值为()A .1B. 1 和﹣ 2C. 0 和 3D.﹣ 2 14.若分式方程=有增根,则增根为()A .x=﹣ 1B. x=1C. x=±1D. x=015.假如对于 x 的方程有增根,则 a 的值是()A .2B.﹣ 2C. 1D.±2。
初二下册分式专题(全部题型)
分式专题题型一:分式的概念:【例题1】以下各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π,其中分式有______个. 〔 〕A 、1B 、2C 、3D 、4 【练一练】1. 以下式子中,属于分式的是 〔 〕A 、π1 B 、3x C 、11-x D 、52 2. 以下式子中,2a ,3x ,1m m +,23x +,5π,2a a ,23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义,分式值为0:【例题2】以下各式中,〔1〕2m m +;〔2〕1||2m -;〔3〕239mm --.m 取何值时,分式有意义?【练一练】1. x 为任意实数,分式一定有意义的是 〔 〕A 、21x x - B 、112-+x x C 、112+-x x D 、11+-x x 2. 假设代数式4-x x有意义,则实数x 的取值范围是________________. 3. (1)假设分式11+x 有意义,则x 的取值范围是________________; (2)已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______________________.4. 假设不管x 取何实数,分式mx x x ++-6322总有意义,则m 的取值范围是______________________. 【例题3】当x 为何值时,〔1〕2132x x +-;〔2〕221x x x +-;〔3〕224x x +-.各式的值为0.【练一练】 1. 已知分式11+-x x 的值是零,那么x 的值是 〔 〕 A 、-1 B 、0 C 、1 D 、1±2. 假设分式112--x x 的值是零,则x 的值为 〔 〕A 、-1B 、0C 、1D 、1±3.(1)如果分式212-+-x x x 的值为零,那么x 的值为_____________________;(2)当=x ______________时,分式123++x x 的值是零;(3)当=x ______________时,分式112--x x 的值为零.【例题4】当x 满足什么条件时,分式2122-++x x x 的值是负数?正数?【练一练】1.(1)假设分式1232-a a 的值为负数,则a 的取值范围为__________________;(2)当整数=x _____________时,分式16-x 的值是负整数; (3)已知点)82017,22018(2-++n n n 在第四象限,则n 的取值范围是______________________. 2. 当x 为何值时,分式232-+x x 的值为正数?负数?题型三:分式的基本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】如果把分式中的都扩大3倍,那么分式的值 〔 〕A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 【例题6】不改变分式的值,将以下分式的分子、分母中的系数化为整数.(1)0.20.020.5x yx y+-〔2〕11341123x y x y +- 【练一练】1. 如果把分式yx xy+中的x 和y 都扩大为原来的2倍,那么分式的值 〔 〕 A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的21 2. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31,那么分式的值 〔 〕 A 、扩大为原来的3倍 B 、缩小为原来的31 C 、缩小为原来的91D 、不变 yx x232-y x ,3. 分式x--11可变形为 〔 〕 A 、11--x B 、x +-11 C 、x +11 D 、11-x 4. 不改变分式的值,将以下分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx xx 24.03.12.001.032+- (2) yx y x +-5.12.041题型四:分式的基本性质II (约分和通分):【例题7】约分:〔1〕; 〔2〕;〔3〕1616822-+-a a a ,其中5=a 〔4〕y x y x ---2422,其中1,3==y x【练一练】 1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简,再求值:(1) 22)2(1)(4-+--x x x x ,其中7-=x (2)已知212=-=+y x y x ,,求2222222y xy x y x ++-的值.【例题8】 通分:(1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7n m mnn m ---的最简公分母是____________; (3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,b ab a cb ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461y y y x y x -+-的最简公分母是_____________________________________;(6)分式acbb ac c b a 107,23,5422的最简公分母是__________,通分时,这三个分式的分子分母依次乘以_______________,____________,_______________.【练一练】通分:(1)xz xz y x 45,34,2123 〔2〕32)1(,)1(,1a z a y a x --- 〔3〕42,882,4422-+-+-a c a a b a a a【例题8】已知xy y x 4=-,求yxy x yxy x ---+2232的值【练一练】1. 假设2=+abb a ,则=++++22224b ab a b ab a ___________;假设311=-y x ,则代数式=----y xy x y xy x 22142____________;2. 已知311=-y x ,求yxy x yxy x ----2232的值.题型五:分式的加减:【例题9】 计算:(1) 〔2〕〔3〕22222333a b a b a b a b a b a b +--+-222422x x x x x +-+--222222222a ab b a b b a a b ++---〔4〕 〔5〕 〔6〕.【练一练】1. (1)111+-+x x x =_________;(2)x y x y x y -+-=_________;(3)2222235b a ab a b a ---+=__________. 2. (1)已知1,3==+ab b a ,则=+a b b a ___________;(2)已知0322=++b ab a ,则=+ab b a __________. 3.〔1〕 〔2〕 〔3〕222442242x x x x x x-+-++-+【例题10】已知,求整式A ,B .21132a ab +2312224x x x x +-+--211a a a ---22256343333ab b a a b a bc ba c cba +-++-2222()()a b a b b a ---34(1)(2)12x A Bx x x x -=+----【练一练】1. 假设11)1)(1(3-++=-+-x Bx A x x x ,求整式A ,B.题型六:分式的乘除:【例题11】 计算:(1)(2) (3)(4).【练一练】422449158a b xx a b 222441214a a a a a a -+--+-222324a b a bc cd -÷2222242222x y x y x xy y x xy -+÷+++1.计算:〔1〕32232)()2(y x x y -- 〔2〕x x x x x x +-÷-+-22211122.先化简,再求值:〔1〕其中 〔2〕其中=-1.3.已知求的值.题型七:分式方程:【例题12】解分式方程:,144421422x x x x x ++÷--14x =-⋅,ab .b b a a b a b a a 222224)()(+÷--,21=a b .0)255(|13|2=-+-+b a b a 323232236().()()a ab ba b b a-÷--〔1〕〔2〕 〔3〕【练一练】 〔1〕0122=-+x x 〔2〕22231--=-x x x〔3〕x x x -=+--23123 〔4〕1132-=+-x xx x题型七:分式方程增根问题:10522112x x +=--225103x x x x -=+-21233x x x -=---【例题13】(1)假设分式方程有增根,求值;〔2〕假设分式方程有增根,求的值.【练一练】 1、假设关于x 的方程0111=----x xx m 有增根,则m 的值是 〔 〕 A 、3B 、2C 、1D 、-12、假设关于x 的分式方程1322m x x x++=--有增根,则m 的值是 〔 〕 A 、1m =- B 、2m =C 、3m =D 、0m =或3m =3、假设关于x 的方程0552=-+--x mx x 有增根,则m 的值是 〔 〕 A 、-2 B 、-3 C 、5 D 、3223242mx x x x +=--+m 2221151k k x x x x x---=---1x =-k4、如果方程有增根,那么增根是_____.假设方程114112=---+x x x 有增根,则增根是______.5、已知分式方程5133x mx x+=--有增根,则m 的值为 .6、(1)假设关于x 的分式方程xx x m 2132=--+有增根,则该方程的增根为________________; (2)假设关于x 的方程2222=-++-xm x x 有增根,则m 的值是__________________. 7、假设关于x 的分式方程3232-=--x m x x 有增根,则2-m 的值为________________.题型八:分式方程无解问题:【例题14】假设关于x 的分式方程6523212+-=---x x x a x 总无解,求a 的值。
八年级数学分式方程题目
八年级数学分式方程题目一、分式方程题目。
1. 解方程:(1)/(x - 2)=(3)/(x)- 解析:- 方程两边同乘x(x - 2)(这是x-2与x的最简公分母)得:x=3(x - 2)。
- 展开括号得x = 3x-6。
- 移项得3x - x=6,即2x = 6。
- 解得x = 3。
- 检验:当x = 3时,x(x - 2)=3×(3 - 2)=3≠0,所以x = 3是原分式方程的解。
2. 解方程:(2)/(x+1)+(3)/(x - 1)=(6)/(x^2)-1- 解析:- x^2-1=(x + 1)(x - 1),方程两边同乘(x + 1)(x - 1)得:2(x - 1)+3(x + 1)=6。
- 展开括号得2x-2 + 3x+3 = 6。
- 合并同类项得5x+1 = 6。
- 移项得5x=6 - 1,即5x = 5。
- 解得x = 1。
- 检验:当x = 1时,(x + 1)(x - 1)=(1 + 1)×(1 - 1)=0,所以x = 1是增根,原分式方程无解。
3. 若关于x的分式方程(x)/(x - 3)-2=(m)/(x - 3)有增根,求m的值。
- 解析:- 方程两边同乘(x - 3)得x-2(x - 3)=m。
- 展开括号得x-2x + 6=m,即-x+6 = m。
- 因为分式方程有增根,所以x - 3 = 0,即x = 3。
- 把x = 3代入-x + 6=m得m=-3 + 6 = 3。
4. 解方程:(3)/(x - 1)-(x + 3)/(x^2)-1=0- 解析:- 方程两边同乘(x + 1)(x - 1)(x^2-1=(x + 1)(x - 1))得:3(x + 1)-(x + 3)=0。
- 展开括号得3x+3 - x - 3 = 0。
- 合并同类项得2x = 0。
- 解得x = 0。
- 检验:当x = 0时,(x + 1)(x - 1)=(0 + 1)×(0 - 1)= - 1≠0,所以x = 0是原分式方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式专题题型一:分式的概念:【例题1】下列各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π,其中分式有______个. ( )A 、1B 、2C 、3D 、4 【练一练】1. 下列式子中,属于分式的是 ( )A 、π1 B 、3x C 、11-x D 、52 2. 下列式子中,2a ,3x ,1m m +,23x +,5π,2a a ,23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义,分式值为0:【例题2】下列各式中,(1)2m m +;(2)1||2m -;(3)239mm --.m 取何值时,分式有意义?【练一练】1. x 为任意实数,分式一定有意义的是 ( )A 、21x x - B 、112-+x x C 、112+-x x D 、11+-x x 2. 若代数式4-x x有意义,则实数x 的取值范围是________________. 3. (1)若分式11+x 有意义,则x 的取值范围是________________; (2)已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______________________. 4. 若不论x 取何实数,分式mx x x ++-6322总有意义,则m 的取值范围是______________________. 【例题3】当x 为何值时,(1)2132x x +-;(2)221x x x +-;(3)224x x +-.各式的值为0.【练一练】 1. 已知分式11+-x x 的值是零,那么x 的值是 ( ) A 、-1 B 、0 C 、1 D 、1±2. 若分式112--x x 的值是零,则x 的值为 ( )A 、-1B 、0C 、1D 、1±3.(1)如果分式212-+-x x x 的值为零,那么x 的值为_____________________;(2)当=x ______________时,分式123++x x 的值是零;(3)当=x ______________时,分式112--x x 的值为零.【例题4】当x 满足什么条件时,分式2122-++x x x 的值是负数?正数?【练一练】1.(1)若分式1232-a a 的值为负数,则a 的取值范围为__________________;(2)当整数=x _____________时,分式16-x 的值是负整数; (3)已知点)82017,22018(2-++n n n 在第四象限,则n 的取值范围是______________________. 2. 当x 为何值时,分式232-+x x 的值为正数?负数?题型三:分式的基本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】如果把分式yx x232-中的y x ,都扩大3倍,那么分式的值 ( )A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 【例题6】不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x yx y+-(2)11341123x y x y +- 【练一练】1. 如果把分式yx xy+中的x 和y 都扩大为原来的2倍,那么分式的值 ( ) A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的21 2. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31,那么分式的值 ( )A 、扩大为原来的3倍B 、缩小为原来的31 C 、缩小为原来的91D 、不变 3. 分式x--11可变形为 ( ) A 、11--x B 、x +-11 C 、x +11 D 、11-x 4. 不改变分式的值,将下列分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx xx 24.03.12.001.032+-(2) yx y x +-5.12.041题型四:分式的基本性质II (约分和通分):【例题7】约分:(1); (2);(3)1616822-+-a a a ,其中5=a (4)y x y x ---2422,其中1,3==y x【练一练】 1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简,再求值:(1) 22)2(1)(4-+--x x x x ,其中7-=x (2)已知212=-=+y x y x ,,求2222222y xy x y x ++-的值.【例题8】 通分:(1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7n m mnn m ---的最简公分母是____________;(3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,bab a cb ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461yy y x y x -+-的最简公分母是_____________________________________; (6)分式acbb ac c b a 107,23,5422的最简公分母是__________,通分时,这三个分式的分子分母依次乘以_______________,____________,_______________. 【练一练】 通分:(1)xz xz y x 45,34,2123 (2)32)1(,)1(,1a z a y a x --- (3)42,882,4422-+-+-a c a a b a a a【例题8】已知xy y x 4=-,求yxy x yxy x ---+2232的值【练一练】1. 若2=+ab b a ,则=++++22224b ab a b ab a ___________;若311=-yx ,则代数式=----yxy x yxy x 22142____________;2. 已知311=-y x ,求yxy x y xy x ----2232的值.题型五:分式的加减:【例题9】 计算:(1)22222333a b a b a ba b a b a b +--+-(2)222422x x x x x +-+-- (3)222222222a ab b a b b a a b++---(4)21132a ab + (5)2312224xx x x +-+--(6)211a a a ---.【练一练】1. (1)111+-+x x x =_________;(2)x y x y x y -+-=_________;(3)2222235b a ab a b a ---+=__________. 2. (1)已知1,3==+ab b a ,则=+a b b a ___________;(2)已知0322=++b ab a ,则=+ab b a __________. 3.(1)22256343333a b b a a ba bc ba c cba +-++- (2)2222()()ab a b b a ---(3)222442242x x x x x x -+-++-+【例题10】已知34(1)(2)12x A Bx x x x -=+----,求整式A ,B .【练一练】1. 若11)1)(1(3-++=-+-x Bx A x x x ,求整式A ,B.题型六:分式的乘除:【例题11】 计算:(1)422449158a b xx a b (2)222441214a a a a a a -+--+- (3)222324a b a bc cd -÷(4)2222242222x y x y x xy y x xy -+÷+++.【练一练】 1.计算:(1)32232)()2(y x x y -- (2)x x x x x x +-÷-+-22211122.先化简,再求值:(1),144421422x x x x x ++÷--其中14x =-⋅ (2),a b .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.3.已知.0)255(|13|2=-+-+b a b a 求323232236().()()a ab b a b b a -÷--的值.题型七:分式方程:【例题12】 解分式方程:(1)10522112x x +=-- (2)225103x x x x -=+- (3)21233x x x -=---【练一练】 (1)0122=-+x x (2)22231--=-x x x(3)x x x -=+--23123 (4)1132-=+-x xx x题型七:分式方程增根问题:【例题13】 (1)若分式方程223242mx x x x +=--+有增根,求m 值;(2)若分式方程2221151k k x x x x x---=---有增根1x =-,求k 的值.【练一练】 1、若关于x 的方程0111=----x xx m 有增根,则m 的值是 ( ) A 、3B 、2C 、1D 、-12、若关于x 的分式方程1322m x x x++=--有增根,则m 的值是 ( )A 、1m =-B 、2m =C 、3m =D 、0m =或3m =3、若关于x 的方程0552=-+--x mx x 有增根,则m 的值是 ( ) A 、-2 B 、-3 C 、5 D 、3 4、如果方程11322xx x -+=--有增根,那么增根是_____.若方程114112=---+x x x 有增根,则增根是______. 5、已知分式方程5133x mx x+=--有增根,则m 的值为 .6、(1)若关于x 的分式方程xx x m 2132=--+有增根,则该方程的增根为________________; (2)若关于x 的方程2222=-++-xm x x 有增根,则m 的值是__________________. 7、若关于x 的分式方程3232-=--x m x x 有增根,则2-m 的值为________________.题型八:分式方程无解问题:【例题14】 若关于x 的分式方程6523212+-=---x x x a x 总无解,求a 的值。