桥梁结构动载试验共39页
预应力混凝土桥梁荷载试验检测报告(全面)
xxx桥荷载试验检测报告报告编号:练习-JB-2012-QL-02-001 报告总页数:40页(含此页)报告日期:工程名称:xxx桥荷载试验检测报告工程地点:xxx市检测日期:xxxxx检测有限公司xxx桥荷载试验检测报告项目负责人:检测人员:报告编写人:审核人:批准人:声明: 1.本检测报告涂改、换页无效.•••• 2.如对本检测报告有异议,可在报告发出后20 天内向本检测单位书面提请复议.3.检测单位名称与检测报告专用章名称不符者无效.目录1. 桥梁概况 (5)2. 荷载试验的目的 (7)3. 荷载试验的依据 (8)4. 检测组织 (8)4.1. 人员组织 (8)4.2. 仪器设备 (9)4.3. 现状环境 (10)5. 外观检测 (10)5.1. 外观检测过程 (10)5.2. 外观检测结果 (11)5.2.1. 桥面系 (11)5.2.2. 上部承重结构 (13)5.2.3. 下部结构 (13)5.2.4. 混凝土抗压强度检测 (14)6. 静力荷载试验方案 (15)6.1. 试验荷载的确定 (15)6.2. 荷载试验项目 (16)6.3. 加载方式与加载分级 (16)6.4. 加载位置与加载工况的确定 (16)6.5. 测试项目及量测方法 (18)6.6. 测试断面与测点布置 (18)6.7. 试验加载程序 (19)6.8. 静力荷载试验规则 (19)7. 动力荷载试验方案 (20)7.1. 测试项目 (20)7.2. 测试断面的确定 (21)8. 静载试验过程描述 (22)9. 静载试验数据分析 (24)9.1. 挠度数据分析 (24)9.1.1. 跨中(A-A)截面最大正弯矩上游偏心加载试验 (24)9.1.2. 跨中(A-A)截面最大正弯矩下游偏心加载试验 (25)9.2. 应变数据分析 (26)9.2.1. 跨中(A-A)截面最大正弯矩上游偏心加载试验 (26)9.2.2. 跨中(A-A)截面最大正弯矩下游偏心加载试验 (27)9.3. 裂缝观测 (29)10. 静载试验结果评定 (29)10.1. 计算分析模型 (29)10.2. 静力荷载试验效率 (29)10.3. 结构工作状况评定 (30)10.3.1.结构截面刚度评定 (30)10.3.2.结构总体刚度评定 (30)10.3.3.结构裂缝评定 (31)11. 动载试验结果评定 (31)11.1. 计算分析模型 (31)11.2. 动载试验测试过程 (31)11.3. 环境振动测试分析及评定 (32)11.3.1.实测数据 (32)11.3.2.理论计算 (34)11.3.3.分析及评定 (35)11.4. 无障碍行车试验分析及评定 (36)11.4.1.20米预应力空心板冲击系数 (36)11.4.2.分析及评定 (39)12. 结论 (39)13. 建议 (40)xxx桥荷载试验报告1.桥梁概况xxx市xxx桥桥位于xxx市鹤上镇镇区公路上,上部结构采用20米预应力钢筋砼简支空心板,上部横断面由6片板组成.下部结构采用基桩接盖梁式桥台,桥梁全长25.04米.场地表层为淤泥质土,下覆中砂层、粘土层、全风化花岗岩、强风化花岗岩,桥梁基础选择强风化花岗岩作为持力层.本桥净宽7.0米+2×0.5米安全带,全桥总宽8.0米.墩台与路线方向斜交15°,梁桥台处设有D-40型伸缩缝.设计荷载为公路-II级,五十年一遇设计洪水位3.1米,地震基本烈度为VII度 .桥面铺装采用C40防水混凝土.桥面铺装总厚度为10~15.25厘米.桥梁纵断面详见图1-1所示.图1-1 xxx桥纵断面布置图(单位:厘米)上部结构上部结构,20米跨预制空心板:板高0.95米,中板宽1.240米,边板宽1.240米,挑臂0.250米,横桥向由6片空心板组成;横断面形式示意于图1-2中.下部结构下部结构采用基桩接盖梁式桥台.xxx桥正面及侧面照片如图1-3、图1-4所示.图1-2 xxx桥横断面形式(单位:米米)图1-3 正面照片图1-4 侧面照片技术标准:(1)桥梁设计荷载:公路—Ⅱ级.(2)净跨径布置:1跨20米简支预应力空心板.(3)桥面宽度:0.5米(安全带)+7.0米(行车道)+0.5米(安全带),总宽8.0米.(4)桥梁纵坡:1.122%;桥梁横坡:机动车道1.5%.(5)地震作用:抗震设计烈度为7度 .(6)桥下净空:1.0米~1.5米.材料:(1)混凝土20米预应力空心板采用C40砼;桥面铺装采用C40防水砼;盖梁采用C30混凝土;桩基础采用C25混凝土.(2)钢材预应力钢束:采用高强度低松驰7丝捻制的预应力钢绞线,公称直径为15.20米米,公称面积140米米2,标准强度 fpk=1860米Pa,弹性模量E=1.95×105米Pa,1000h后应力松驰率不大于 2.5%,其技术性能必须符合中华人民共和国国家标准(GB/T 5224-2003)《预应力筋用钢绞线》的规定.普通钢筋:钢筋直径≤10米米者采用R235光圆钢筋,直径>10米米者采用HRB335带肋钢筋,其技术性能应分别符合中华人民共和国国家标准《钢筋混凝土热轧光圆钢筋》(GB 13013-1991)、《钢筋混凝土热轧带肋钢筋》GB 1499-1998的规定.(3)其它材料预应力锚具:必须采用成品锚具及其配套设备,并应符合中华人民共和国国家标准(GB/T 14370-2000)《预应力筋用锚具、夹具和连接器》、中华人民共和国交通行业标准(JT 329.2-97)《公路桥梁预应力钢绞线用锚具、连接器试验方法及检验规格》等技术要求.预应力体系:应符合国际预应力砼协会(FIP)《后张预应力体系的验收建议》的要求.金属波纹管应满足《预应力混凝土用金属螺旋管》JG/T3013-94的要求.桥梁支座:采用GJZ板式橡胶支座,其技术性能应符合中华人民共和国交通行业标准JT/T4-2004《公路桥梁板式橡胶支座》的规定.桥梁伸缩缝:D-40型,其技术性能应符合中华人民共和国交通行业标准JT/T 327-2004《公路桥梁伸缩装置》的规定.2.荷载试验的目的通过对xxx市xxx桥进行荷载试验,以达到以下目的:(1)通过测定桥跨结构在荷载所用下的控制断面应变和挠度,并与理论计算值比较,检验结构控制断面应变与挠度值是否满足设计与规范要求.(2)通过对该桥进行静力荷载试验,为本桥今后运营养护及长期健康状况评价提供结构原始参数.(3)通过测定桥跨结构的自振特性,以评定结构的实际动力性能,并检验桥跨结构的行车冲击系数等指标是否符合规范要求.(4)通过对试验观测数据和试验现象的综合分析,对实际结构做出总体评价,为交工验收提供技术依据.3.荷载试验的依据本次荷载试验及评定主要依据以下技术文件:(1)《公路桥涵养护规范》(JTG H11-2004);(2)《公路桥涵设计通用规范》(JTG D60-2004);(3)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);(4)《公路桥梁承载能力检测评定规程》(JTG/T J21-2011);(5)《回弹法检测混凝土强度技术规程》(JGJ/T23-2011);(6)《福建省xxx市鹤上镇xxx桥设计文件》,福建省林业勘察设计院,.4.检测组织4.1.人员组织为保证现场试验工作顺利、优质的完成,xxxxx检测有限公司专门组织有经验的工程师和技术人员成立检测小组,具体人员组成见表 4-1.表 4-1 试验人员组成4.2.仪器设备本次检测所用仪器设备及性能指标见表4-2所列.表 4-2 荷载试验仪器设备及性能指标4.3.现状环境试验期间环境状况为:检测起止时间:2012年2月17日至2012年2月18日湿度:40%~47%;天气:阴;温度:最高14℃,最低10℃;风力:1~2级.现场试验环境条件均满足桥梁荷载试验的基本要求.5.外观检测本次外观质量检测实施以下5方面的检测内容:(1)结构各部件表面缺损状况的检查;(2)桥梁开裂状况的详细调查;(3)桥梁关键部位混凝土强度检测;(4)混凝土碳化深度检测;5.1.外观检测过程2012年4月05日对xxx市xxx桥进行了详细的质量检测,包括对桥面铺装、排水系统、栏杆、伸缩装置、主梁、桥墩、桥台及基础等外观破损情况进行了检测,以及对主要承重构件进行了裂缝、混凝土强度及碳化深度的检测,图5-1给出了部分现场检测的照片.图5-1(a)混凝土强度测量图5-1(b)碳化深度测量5.2.外观检测结果本报告中各构件编号规则如下:空心号从上游至下游依次进行编号.具体见图5-2.上游下游板编号1号2号3号4号5号6号图5-2 空心板编号示意图(单位:米米)5.2.1. 桥面系5.2.1.1 桥面铺装经现场勘查,桥面铺装层未产生网裂、交错裂缝、碎块及纵向裂缝,未出现波浪车辙现象,未出现坑槽.但桥面上下游两侧卫生状况较差,垃圾堆积.见图5-3.桥面铺装层未发现病害 桥面上下游两侧垃圾堆积图5-3 桥面铺装技术状况 5.2.1.2伸缩缝经现场勘查,桥梁在两桥台处设置D-40型伸缩缝,伸缩缝被砂土等杂物堵塞.见图5-4.0号台、1号台处伸缩缝被砂土等杂物堵塞图5-4 伸缩缝病害现场状况5.2.1.3桥头与路堤连接部经现场勘查,桥头与路堤连接部平顺,行车基本顺畅.桥头与路堤连接部未发现纵横向裂缝.现场病害状况见图5-5.图5-5桥头与路堤连接部技术状况5.2.1.4 排水系统经现场勘查,桥面排水孔堵塞,排水不顺畅,桥面两侧有积水痕迹.见图5-6.(a)桥面排水孔堵塞、两侧积水,排水管未露出结构表面20厘米以上图5-6 排水系统状况5.2.1.5 护栏经现场勘查,护栏技术状况良好,未发现残缺丢失不全等病害.见图5-7.图5-7 护栏现场状况5.2.1.6 人行道京林桥未设置人行道.5.2.2.上部承重结构5.2.2.1裂缝观测空心板板底未发现裂缝.5.2.2.2上部结构混凝土表观质量空心板板底未出现露筋锈蚀、空心板之间接缝未发现异常、渗水现象.但空心板接缝间残留大量薄膜,见图5-8.图5-8 板底未出现裂缝、露筋现象,接缝间残留大量薄膜5.2.3.下部结构5.2.3.1 桥墩和桥台各桥台未发现明显病害.见图5-9.图5-9 桥台技术状况 5.2.3.2 支座现场支座技术状况无法观测.5.2.4. 混凝土抗压强度 检测根据规范《回弹法检测混凝土抗压强度 技术规程》(JTJ/T23-2001),采用回弹法检测空心板的 现龄期混凝土强度 ,检测结果详见表5-1.数据表明,20米预应力砼空心板现龄期砼强度 推定值最低值为46.3米Pa.混凝土强度 满足设计要求.表5-1 构件砼强度 非破损检测结果汇总表 构件名称强度 平均值c cu f m (米Pa)强度 标准差c cu f s (米Pa) 强度 推定值e cu f , (米Pa) 设计强度 等级 1号板52.0 4.42 48.6 C40 2号板55.0 3.59 52.1 C40 3号板47.6 1.84 46.3 C40 4号板54.1 6.34 49.5 C40 5号板52.2 4.01 49.1 C40 6号板 51.0 3.08 48.6 C40说明:c cuf m :构件上各测区砼强度 换算值的 平均值; c cuf s :构件上各测区砼强度 换算值的 标准差; e cu f ,:砼强度 推定值,指相应于强度 换算值总体分布中保证率不低于95%的 强度 值. 根据桥梁外观检查情况,建议做以下处理:(1)定期清理伸缩缝中的 沉积物;(2)重修排水孔及排水管;(3)清除空心板接缝间的 薄膜(4)依据《公路桥涵养护规范》(JTG H11-2004),加强桥梁日常养护.6. 静力荷载试验方案桥梁静力荷载试验,主要是通过测量桥梁结构在静力试验荷载作用下的 变形和应变,用以确定桥梁结构的 实际工作状态与设计期望值是否相符.它是检验桥梁结构受力特征的 最直接和最有效的 手段和方法.6.1. 试验荷载的 确定就某一加载试验项目而言,其所需加载车辆的 数量及其在桥梁上的 纵横向排列,根据试验荷载产生的 该加载试验项目对应的 加载控制截面内力或变位的 最不利效应值,按下式所确定的 原则等效换算而得:0.95 1.05(1)state q S sημ≤=≤+⨯ 式中:q η — 静力试验荷载效率;state S — 试验荷载作用下控制截面内力计算值;S — 控制荷载作用下控制截面最不利内力计算值(不计冲击); ()μ+1— 按规范取用的 冲击系数.本次静力荷载试验在计算过程中的 理论计算荷载等级按照桥梁设计荷载等级计算,静力荷载试验实际采用2辆单辆重约为400kN 的 三轴载重货车充当.试验车的 主要技术参数见表 6-1所示.表 6-1 加载车主要技术参数6.2.荷载试验项目根据理论计算的内力包络图,分别对0号台~1号台20米跨预应力空心板跨中最大正弯矩进行测试,共分2个加载工况.工况1:对0号台~1号台20米跨预应力空心板跨中截面(A-A截面)最大正弯矩上游偏心加载,测试跨中截面各测点应变、挠度 .工况2:对0号台~1号台20米跨预应力空心板跨中截面(A-A截面)最大正弯矩下游偏心加载,测试跨中截面各测点应变、挠度 .6.3.加载方式与加载分级为了获取结构试验荷载与变位的相关曲线,防止结构加载意外损伤,就某一加载试验项目,其静力试验荷载应分级加载,分级卸零.静力试验荷载的加载分级主要依据加载车在某一加载试验项目对应的控制截面内力和变位影响面内纵横向位置的不同以及加载车数量的多少分级.本次试验加载方式,每个工况分4级递加到最大荷载,然后一次卸零.分级办法:①号车作用在1/4跨位置→①号车作用在1/2跨位置→①号车作用在1/2跨位置、②号车作用在1/4跨位置→①号车作用在1/2跨位置、②号车作用在1/2跨位置6.4.加载位置与加载工况的确定1)加载位置与加载工况主要依据以下原则确定:①尽可能用最少的加载车辆达到最大的试验荷载效率;②为了缩短现场试验时间,尽可能简化加载工况,在满足试验荷载效率以及能够达到试验目的前提下对加载工况进行合并,以尽量减少加载位置;③每一加载工况依据某一试验项目为主,兼顾其他检验项目.2)加载位置本次静力试验经过优化合并后,确定的加载工况为2个,每个工况加载位置、主要试验项目及其加载车辆的纵横向排列详见图6-1.3)加载流程在进行正式加载试验前,首先采用一辆加载车在跨中进行预加载试验,预加载持荷时间为20分钟.预加载的目的是使结构进入正常工作状态,并消除结构非弹性变形.预加载卸至零荷载,并在结构得到充分的零荷载恢复后,方可进入正式加载试验.正式加载试验分别按加载工况序号逐一进行,完成一个序号的加载工况后,应使结构得到充分的零荷恢复,方可进入下一序号的加载工况.结构零荷充分恢复的标志是,同一级荷载内,当结构在最后五分钟内的变位增量,小于前一个五分钟增量的 5%或小于所用测量仪器的最小分辨率值时,即认为结构变位达到相对稳定.如果结构控制截面的变位、应力(或应变)在未加到最大试验荷载前,提前达到或超过设计计算值,应立即终止加载.4)工况1、2试验荷载布置图(a)工况1、2试验车辆纵向布置图(单位:厘米)(b)工况1试验车辆横向布置图(单位:米米)(c)工况2试验车辆横向布置图(单位:米米)图6-1 工况1、2试验车辆纵横向布置图6.5. 测试项目及量测方法本次静力荷载试验的 主要观测项目及量测方法为:(1)挠度 :采用百分表进行测量.测试截面为测试跨跨中截面.(2)应变:采用应变片及DH3816静态应变测试系统进行测量.应变测试的 目的 是通过测试梁体在试验荷载作用下应变增量的 大 小 ,直接了 解结构的 实际工作状态.在选定测试桥跨的 跨中截面布置测点,测试在各工况试验汽车荷载作用下测点应变.测试截面及测点布置详见图6-2~图6-4所示.6.6. 测试断面与测点布置A跨中图6-2 应变及挠度 测试截面纵向布置图(单位:厘米)上游下游应变片测点号124365图6-3 测试截面应变测点横向布置图(单位:米米)上游563421测点号百分表图6-4 测试截面挠度测点横向布置图(单位:米米)6.7.试验加载程序所有工况均按以下程序进行:①在进行正式加载试验前,用加载列车进行对称预加载试验,预加载试验每一加载位置持荷时间以不小于20分钟为宜.预加载的目的在于,一方面是使结构进入正常工作状态,另一方面可以检查测试系统和试验组织是否工作正常.②预加载卸到零荷载并在结构得到充分的零荷恢复后,才可进入正式加载试验,正式加载试验按加载工况序号逐一进行,完成一个序号的加载工况后,应使结构得到充分的零荷恢复,方可进入下一个序号的加载工况.6.8.静力荷载试验规则(1)静力试验应选择在气温变化不大和结构温度趋于稳定的时间段内进行.试验过程中在量测试验荷载作用下结构响应的同时应相应地测量结构表面温度.(2)静力试验荷载持续时间,原则上取决于结构变位达到相对稳定所需要的时间,只有结构变位达到相对稳定后,才能进入下一荷载阶段.一般每级荷载到位后稳定10分钟即可测读.(3)全部测点在正式加载试验前均应进行零级荷载读数,以后每次加载或卸载后应立即读数一次.位移测点每隔5分钟观测一次,而应变测点每1分钟测读一次,以观测结构变位和应力是否达到相对稳定.(4)若在加载试验过程中发生下列情况之一,立即终止加载试验:a.控制测点应力超过计算值并且达到或超过按规范安全条件反算的控制应力时.b.控制测点变位超过规范允许值时.7.动力荷载试验方案结构的动力特性是结构振动系统的基本特性,是进行结构动力分析所必须的参数.桥梁动力荷载试验主要是通过测试桥跨结构的动力特性指标(自振特性指标和动荷载作用下的振动特性指标),研究桥梁结构的自振特性和车辆动力荷载与桥梁结构的联合振动特性,以检验这些指标能否满足设计或规范规定,从而判断桥梁结构的整体刚度、行车性能.本次动载试验选取0号台~1号台20米跨预应力空心板上部结构进行.7.1.测试项目(1)环境振动试验环境振动试验主要测量桥梁的自振频率.环境振动试验是通过在桥上布置高灵敏度的传感器,长时间记录桥梁结构在环境激励下,如风、水流、地脉动等引起的桥梁振动,然后对记录下来的桥梁振动时程信号进行处理,并进行时域和频域分析,求出桥梁结构自振特性的一种方法.环境振动试验假设环境激励为平稳的各态历经,在中低频段,环境振动的激励谱比较均匀,在环境激励的频率与桥梁的自振频率一致或接近时,桥梁容易吸收环境激励的能量,使振幅增大;而在环境激励的频率与桥梁自振频率相差较大时,由于相位差较大,有相当一部分能量相互抵消,振幅较小.对环境激励下桥梁的响应信号进行多次功率谱的平均分析,可得到桥梁的各阶自振频率.环境振动试验要测出桥梁结构多阶频率及阻尼比.现场试验不同于室内试验,外界干扰较多,因此要保证仪器设备,特别是传感器的状态良好,并预备好备用的传感器,一旦某一传感器出现问题,马上予以更换,做到测试数据准确无误.测试时,适当增加采样时间,使试验数据有一定的储备,保证数据处理时有足够的原始数据可供选择.(2)无障碍行车试验无障碍行车试验是利用试验车辆在桥上以一定速度行驶,对桥梁施以动力荷载,测量桥梁特征位置的振幅、动应力和冲击系数等,对测得的桥梁动力响应值进行分析,获得桥梁的动力响应特性.试验中,一辆试验汽车分别以5千米/h、10千米/h、20千米/h、30千米/h的速度匀速驶过大桥,每一车速行驶2次,测试桥梁的动应变时程.7.2.测试断面的确定(1)环境振动试验桥梁自振特性测点布置在桥面上以观测桥梁竖向自振特性.测点如图7-1所示.图7-1(a) 环境振动测点纵向布置图(单位:厘米)下游上游拾振器图7-1(b) 环境振动测点横向布置图(单位:米米)(2)无障碍行车试验无障碍行车试验布置动应变测点.测试截面为0号台~1号台20米跨A-A 截面,测试截面见图7-2.动应变测点布置在测试截面的 板底以观测不同车速下桥梁强迫振动的 动应变时程曲线,根据动应变时程曲线分析最大 冲击系数,A-A 截面布置6个动应变测点.测点布置如图7-3所示.A跨中图7-2 强迫振动应变测试截面布置图(单位:厘米)上游下游应变片测点号124365图7-3 强迫振动应变测点布置图(单位:米米)8. 静载试验过程描述2012年4月06日上午对桥梁静载试验进行了 准备,主要内容包括应变测点表面处理、粘贴应变片、变形测点处理、测试仪器安装及调试,静载试验安排于4月06日傍晚正式进行(天气:阴).试验按加载工况顺序进行加载,每个工况分4级加载.每次加载之前采集数据初值,持荷时间原则上取决于结构变位达到相对稳定所需要的 时间,根据现场测试,本次试验加载稳定时间20分种左右测读各仪器仪表读数,卸载后稳定20分钟左右测读各测点残余变形;同时在加载过程中随时观测并计算各控制测点的 应变、挠度 变化情况,及时指导试验,保证试验安全顺利进行.部分现场检测的照片见图8-1.(a)应变及挠度测点(b) 数据采集系统(c)分级加载图8-1 静载试验现场照片9.静载试验数据分析9.1.挠度数据分析9.1.1.跨中(A-A)截面最大正弯矩上游偏心加载试验在工况1试验荷载作用下,理论及实测xxx市xxx桥跨中最大正弯矩截面各测点的挠度值见表 9-1及图9-1所示.同时,表中亦列出了卸载后的相对残余变形.由表可见,卸载后的相对残余变形在 1.89%~3.24%之间,满足《公路桥梁承载能力检测评定规程》中小于20%的规定.表 9-1 工况1试验荷载作用下各测点挠度值(单位:米米)项目测点理论值实测最大挠度卸载相对残余变形(%)1 5.18 3.35 0.09 2.69%2 5.11 3.40 0.11 3.24%图9-1 工况1试验荷载下最大挠度沿桥宽分布曲线9.1.2.跨中(A-A)截面最大正弯矩下游偏心加载试验在工况1试验荷载作用下,理论及实测xxx市xxx桥跨中最大正弯矩截面各测点的挠度值见表 9-1及图9-2所示.同时,表中亦列出了卸载后的相对残余变形.由表可见,卸载后的相对残余变形在0.62%~1.45%之间,满足《公路桥梁承载能力检测评定规程》中小于20%的规定.表 9-2 工况2试验荷载作用下各测点挠度值(单位:米米)图9-2 工况2试验荷载下最大挠度沿桥宽分布曲线9.2.应变数据分析9.2.1.跨中(A-A)截面最大正弯矩上游偏心加载试验在工况1试验荷载作用下,实测跨中截面的应变见表9-3及图9-3所示.同时,表中亦列出了卸载后截面的相对残余应变.由表可见,卸载后的相对残余应变在0.00%~1.67%之间,满足《公路桥梁承载能力检测评定规程》中不大于20%的规定.表 9-3 工况1试验荷载作用下各测点应变值(×1e-6)图9-3 工况1试验荷载下最大应变沿桥宽分布曲线9.2.2.跨中(A-A)截面最大正弯矩下游偏心加载试验在工况2试验荷载作用下,实测跨中截面的应变见表9-4及图9-4所示.同时,表中亦列出了卸载后截面的相对残余应变.由表可见,卸载后的相对残余应变在0.00%~3.51%之间,满足《公路桥梁承载能力检测评定规程》中不大于20%的规定.表 9-4 工况2试验荷载作用下各测点应变值(×1e-6)图9-4 工况2试验荷载下最大应变沿桥宽分布曲线9.3.裂缝观测加载前后空心板板底未发现裂缝.10.静载试验结果评定10.1.计算分析模型xxx市xxx桥预应力砼空心板结构静力计算采用平面杆系有限元程序,主梁荷载横向分布系数按铰接板梁法计算.10.2.静力荷载试验效率试验荷载在结构控制截面产生的最大内力效应和变位效应,能够反映理论计算活载作用下同一截面最不利内力效应和变位效应,满足《公路桥梁承载能力检测评定规程》的有关要求.在试验荷载作用下控制截面内力值与标准荷载作用下同一截面最不利内力的比值,即为静力荷载试验的效率.本次静力荷载试验的试验效率见表 10-1.由表可见本次试验的静力荷载试验效率(η)为1.05(表中内力值为1号板或6号板的内力),满足《公路桥梁承载能力检测评定规程》中所规定的0.95≤η≤1.05的要求,说明本次荷载试验反应了桥跨结构在标准荷载作用下的受力性能.。
溧水大桥结构静动载试验研究
--
∥
m 一 I理值 + 论I 实 测
-
02 . 03 .
--
0. 3
‘
应变 / 0
应变/
图 6 拱 脚 截 面 实 测 应 变 与 理 论 计 算 值 比 较 图
图 7 L 4截面 实 测 应 变 与 理 论 计 算 值 比较 图 /
…
0- 3
03 .
02 . 01 .
昌
、
一
\\ \
目
、
。 ‘
键
一
追
一
o
.o 2
一0 / I 1
。‘
1 0
2 0
3
52 1 1 5 . 0 5 0 — 5- I 1 2 0- 0- b  ̄ 1 2
-
01 .
加 载试验 每一 加 载载位 的 持荷 时间 为 2 n 0mi。在 预
A 面 最 大相 对 残 余 应 变0 0 满 足 《 路 桥 截 . 9, 公
第 5期
张琦练 , : 等 溧水大桥结构静动载试验研究
15 5
表 2 A截面测点应 变理论值、 实测 值 及 校验 系 数
测 点
图 2 测试截面应 变测点布置( 单位 : m) c
30k 一 第 Ⅲ 级 ( 5 N) 2×30 k 一 第 Ⅳ 级 ( 5 N) 2×
3 0k )- 。 5 N - 0 -  ̄
③ 完 成 一个序 号 的加 载工 况后 , 使结 构得 到 在
充 分 的零荷恢 复后 , 可进 入下一 序号 的加 载工 况 。 方
3_ . 51
,
理 论计 算
本桥计 算 采用桥 梁专 用软 件 MI A 6 7 D S . 1进行 ,
建筑结构试验第四章结构动载试验
疲劳试验
❖示例
本章小结
1 概述 2 动载试验仪器仪表 3 结构振动测试 4 结构抗震试验 5 结构疲劳试验
宝山壁画
❖ 宝山壁画是引人注目的昂贵文物。此壁画发现于阿鲁科 尔沁旗东沙布乡境内。1994年列为“全国十大考古新发 现”之一。宝山壁画中最引人注目的是《杨贵妃教鹦鹉 图》。该画高0.7米、宽2.3米,用于笔重彩绘制,最突 出的表现了 晚唐风格。唐代擅长绘贵妇仕女的大师周昉 绘制了《杨贵妃教鹦鹉图》,不仅享誉中原,而且还影 响全国各地。发现于阿旗宝山古墓里的这幅画,就是契 丹人聘请中原画家按照周氏风格绘制的, 技法深得周氏 画风的真传。在唐人真迹稀如星风的今天,能够从中完 整了解唐代人物画的杰出成就,堪称美术史研究的辛事。 这幅壁画现今保存在阿鲁科尔沁旗博物馆,历经千年, 恍如新绘,是该馆的镇馆之宝。
结构抗震试验——伪静力试验
❖常用的三种加载方法 ①控制位移加载法;常以屈服位移或最大层间位移
的某一百分比来控制加载 ②控制荷载加载法; ③控制荷载和位移混合加载法。
结构抗震试验——拟动力试验
❖拟动力试验,其实质就是按照某种确定性的地震 反应进行加载。
❖ 由于结构的恢复力模型未知,运动方程无法求解, 故采用“边试验、边求解”的方法分步得到实测 的结构恢复力模型,然后可完成整个试验加载过 程。
结构抗震试验——伪静力试验
❖结构低周反复加载试验的主要研究内容: ♦ 恢复力模型:相当于结构的物理方程 ♦ 抗震性能判定:强度、刚度、变形、延性、耗能 ♦ 破坏机制研究:为抗震设计提供方法和依据
❖伪静力试验的特点: 试验装置及加载设备简单、观测方便,但加载制 度是人为确定的,与真实情况差异较大,且不能 考虑应变速度及阻尼的影响。试验值偏低,一般 情况下低周反复加载静力试验结果偏于安全。
桥梁结构荷载试验
成桥动力荷载试验三、桥梁动载试验(一)检测项目和参数桥梁结构动力荷载试验的项目内容包括:1、检验桥梁结构在动力荷载作用下的受迫振动响应,如桥梁结构动位移、动应力等动力响应,测试桥梁结构的位移冲击系数、应力冲击系数;2、测定桥梁结构的自振特性,如结构的自振频率、振型和阻尼比等的脉动试验或跳车激振试验;3、测定动荷载本身的动力特性,如动力荷载的大小、自振频率等。
(二)检测方案进行桥梁结构动荷载之前,应编写试验方案,其主要内容包括:1、试验目的和依据;2、试验项目和主要测试参数,确定试验荷载工况,并设计测点布置图,每一测点均应有编号,给出测点布置图;3、根据试验项目和要求,选择试验仪器设备,计划设备布置方案;4、制定试验日程,明确人员分工,使测试过程做到统一指挥,有序进行;5、提出试验过程中需要业主配合的有关事项,如:联系方式、提供电源、必要的脚手架和及时的交通管制等。
(三)仪器设备桥梁结构振动测试的测试传感器,主要包括:应变传感器和振动响应传感器。
应变传感器可以采用和静态应变测试相同的应变片,振动响应传感器主要测试动态位移、速度和加速度,采用的传感器主要有加速度传感器和拾振器。
动载试验常用的仪器、仪表的使用精度和测量范围如表1所示。
表1 桥梁结构动载试验常用仪器及技术参数(四)作业指导书1、桥梁结构振动测试的目的桥梁结构的动载测试是研究桥梁结构的自振特性和车辆动力荷载与结构的耦合振动特性,是判断桥梁结构运营状况和承载能力的重要指标。
2、准备工作动载试验前,首先应按照试验方案进行准备工作,其内容主要包括:(1)搜集与试验桥梁有关的设计资料和图纸,详细研究确定试验荷载;(2)现场调查桥上和连接线线路状况、线路容许速度和车量实际过桥速度;(3)了解有关试验部位情况,确定导线布置和布线方案以及仪器安放位置的确定;(4)对拟开展试验的项目和测试点,进行理论分析计算,得出试验荷载作用下结构的应力、位移及自振频率,以便与实测值进行比较分析。
桥梁静动载试验检测方案讲解精选全文完整版
可编辑修改精选全文完整版预制梁板静载及成桥静、动载试验检测方案预制梁板静载试验方案一、试验目的和内容预制梁板静载试验是对结构工作状态进行直接测试的一种鉴定手段。
结构在试验荷载作用下,通过测试控制截面的静应变、静挠度,并与理论计算结果对比,从而判断结构的工作状态和受力性能。
试验的目的主要是通过对预制梁板在设计使用荷载下的受力性能进行测试,了解单梁的实际受力性能,从而积累科学技术资料,为设计提供试验资料。
二、试验技术标准和依据1、《大跨径混凝土桥梁的试验方法》(经1982年10月在柏林举行的专题第五次专家会议通过),交通部公路科学研究所、交通部公路局技术处、交通部公路规划设计院,1982年10月,北京(以下简称《试验方法》);2、《公路工程质量检验评定标准》 JTG F80/1-2004;3、《公路桥涵设计通用规范》 JTG D60-2004;4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004;5、《公路桥梁承载能力检测评定规程(征求意见稿)》交通部公路科学研究所;6、《公路工程技术标准》 JTG B01-2004;7、《桥梁工程检测手册》人民交通出版社;8、《城市桥梁设计荷载标准》CJJ77-98;9、相关的图纸及文件。
三、测试项目和测点布置1、测试跨中砼应变:测试跨中应变能较好地反映设计和施工质量情况,预应力梁以砼应变为主,在梁跨中和一侧四分点梁底、顶板各布置二个应变测点,跨中腹板沿梁高布置三个应变测点,共布置14个应变测点。
2、测试跨中挠度:满足正常使用对结构的刚度要求,体现在跨中挠度应小于设计计算值或规范规定的允许值,梁跨中、四分点各布置二个挠度测点。
3、测试支座变形(沉陷):测定支座沉陷量是消除其对跨中挠度的影响,两端支座处分别布置二个测点检测支座变形(沉陷)。
4、测定残余值:试验荷载卸载后,测定梁挠度值、应变值与卸载后相对应的残余值比值,利于梁结构试验结果评定。
5、裂缝观测:试验前和试验过程中,对梁结构是否出现裂缝进行观测,拟了解梁施工质量和利于试验数据分析。
桥梁动载试验检测报告
桥梁动载试验检测报告一、桥梁动载试验检测报告的重要性哎呀,桥梁动载试验检测报告可太重要啦。
就像给桥梁做一次全面的健康检查一样。
一座桥梁在那立着,每天有好多车呀人呀从上面过,它承受着各种各样的压力呢。
这时候就需要这个检测报告来告诉我们桥梁到底能不能扛得住这些压力。
如果没有这个报告,就好比不知道一个人的身体状况就硬让他去干重活一样,是很危险的呢。
二、检测内容都有啥1. 首先得看看桥梁在动载情况下的变形情况。
就像是观察一个人在跑步的时候身体的弯曲程度是不是正常。
比如说,桥在有车辆快速驶过的时候,它的桥面会不会出现过度的下沉或者扭曲。
这要是变形太大了,那可就容易出问题啦。
2. 然后就是检测桥梁的振动特性。
你想啊,桥梁在车辆等动载的作用下会振动,这振动就像心跳一样,得有个正常的频率范围。
要是振动太剧烈或者频率不正常,就像心跳过快或者过慢一样,那肯定是哪里不对劲了。
这时候就要仔细分析是桥梁结构本身的问题,还是外界的动载太特殊啦。
3. 还有应力的检测也很关键。
应力就像是桥梁内部的力量分布情况。
如果应力集中在某个地方,就像一群人都挤在一个小角落里,那个地方就容易损坏。
通过检测应力,就能知道桥梁哪里比较脆弱,需要特别关注或者加强保护。
三、检测的方法有哪些1. 对于变形的检测,可以使用水准仪、全站仪等设备。
就像用尺子量东西一样,不过这个尺子更加精密。
把这些仪器放在合适的位置,然后在动载发生的时候,准确地记录下桥梁不同部位的变形数值。
2. 振动特性的检测呢,可以用加速度传感器。
这个小玩意可以很灵敏地感受到桥梁的振动情况,然后把数据传给电脑进行分析。
就像是给桥梁的振动装上了一个听诊器,能听到它的“心跳声”到底正不正常。
3. 应力检测就比较复杂啦,可以采用应变片。
把应变片贴在桥梁的关键部位,当桥梁受到动载产生应力变化的时候,应变片就能把这种变化转化成电信号,然后我们就能知道应力的大小和分布啦。
四、检测结果怎么看如果检测结果显示桥梁的变形在合理范围内,振动频率正常,应力分布也比较均匀,那就说明这座桥梁的身体很健康,可以继续放心地让它工作啦。
《铁路桥梁动载试验》课件
建立分析模型
根据试验目的和数据特征,建立相应 的分析模型,如频域分析、时域分析 等。
撰写试验报告
将整个动载试验的过程、数据、分析 和结论整理成详细的试验报告,为后 续的工程实践提供参考。
05
CATALOGUE
动载试验的结果分析与应用
结果分析的方法
时域分析
通过分析桥梁在动载作用下的时间历 程响应,提取关键参数如振幅、频率 、阻尼比等。
安全措施
针对试验中发现的薄弱环节,采取相应的安全措 施,降低事故发生的可能性。
07
CATALOGUE
结论与展望
动载试验在铁路桥梁评估中的地位和作用
确保铁路桥梁安全运营
通过动载试验,可以评估铁路桥梁在动态荷载下的性能表 现,及时发现潜在的安全隐患,为桥梁的维修和加固提供 科学依据。
提高铁路桥梁设计水平
评估某铁路桥梁的承载能力和稳 定性,确保其安全运营。
试验方法
采用振动测试、应变监测和加速 度计等手段,对桥梁在不同载荷 下的动态响应进行测量和分析。
试验过程
在桥梁的不同位置布置传感器, 采集数据,并进行实时监测和记
录。
试验结果的分析与解读
数据处理
对采集到的数据进行处理和分析 ,提取关键的动态响应参数,如 振幅、频率和阻尼比等。
结果解读
根据数据处理结果,评估桥梁在 不同载荷下的动态性能,判断其 安全性和稳定性。
异常情况处理
对于出现异常的数据,进行深入 分析,找出可能的原因,并提出 相应的处理措施。
基于试验结果的改进建议
优化设计
根据试验结果,ቤተ መጻሕፍቲ ባይዱ桥梁的设计进行优化,提高其 承载能力和稳定性。
维护建议
根据桥梁的动态性能,提出针对性的维护和检修 建议,确保其长期安全运营。
桥梁动、静载试验
桥梁动、静载试验根据要求的试验项目、试验方法进行桥梁动、静载试验,验证采用的设计方案、设计参数、检测验收标准以及施工方案、施工工艺的合理性、可行性。
一、试验目标了解桥梁在静、动载作用下的工作状态:在静荷载下梁的应变与挠度,在动荷载下结构的动应变、动挠度、振幅、冲击系数及卸载后的残余应变;判断桥梁结构的承载能力,测量桥梁的均匀沉降及不均匀沉降,观测梁在动静荷载下的裂缝开展情况;研究确定桥梁结构的安全运用条件。
二、静载试验内容建立桥梁结构计算模型,进行分析计算;试验过程中的裂缝开展情况监测;箱梁在试验荷载下的静应变测试,计算结构应力和校验系数;箱梁在试验荷载下的静挠度测试,计算结构校验系数。
三、动载试验内容箱梁在试验荷载下的动应变测试,计算应力的动力系数;箱梁在试验荷载下的动挠度测试,计算挠度的动力系数;箱梁的横向振幅、竖向振幅、横向加速度和竖向加速度;桥梁结构的自振频率及阻尼比。
四、试验荷载与速度采用试验专用车辆按不同的速度运行,检测各工况下桥梁在静、动载作用下的工作状态。
五、测试方法静载试验:混凝土应变采用粘贴纸基电阻应变片,通过YZ22电阻平衡箱和YJ22静态电阻应变仪,测试各级荷载作用下的应变及卸载后的残余应变。
挠度量测采用光电挠度仪和全站仪进行测试,量测各级荷载作用下的变形及卸载后的残余变形。
动载试验:混凝土动应变通过纸基电阻应变片,YD28A动载应变仪测试各速度级试验列车作用下的动应变、冲击系数及卸载后的残余应变。
主梁、桥墩的振幅、加速度均采用891-II型传感器及放大器测定,由INV306数据采集系统进行数据采集、分析、处理。
动挠度采用光电挠度仪测试各速度级试验列车作用下的跨中竖向变形。
大桥动载试验方案
大桥动载试验方案大桥动载试验方案1.工程概况 (3)2.试验目的 (3)3.试验依据与准则 (3)4.动载试验 (4)4.1动载试验测试内容 (4)4.2动载试验测点布置 (4)4.2.1 结构动力分析 (4)4.2.2 测点布置 (6)4.3试验荷载 (7)4.4 试验工况 (7)4.5 试验过程 (8)5.静载试验 (8)5.1静载试验测试内容 (8)5.2静载试验测试截面选取 (8)5.3静载试验加载方案 (9)5.4试验荷载 (10)5.4 试验过程 (11)6.项目组织机构 (11)7.实验数据质量保证措施、工作和管理制度 (11)8.加载车辆移放方案 (12)9.仪器设备 (13)1.工程概况xx大桥主桥为预应力连续刚构2×(62.5+4×115+62.5)m预应力混凝土连续刚构,三向预应力体系。
桥梁平面位于直线上,纵面位于0.63%的上坡(起点附近位于凹型竖曲线上),桥宽12.0m。
箱梁采用单箱单室截面,顶板宽12.0m,底板宽6.5m,翼缘板悬臂长为2.75m。
箱梁根部梁高6.5m,高跨比为1/17.7;跨中梁高2.8m,高跨比为1/41.1;根部底板厚0.9m,跨中底板厚0.32m;梁高及底板厚度均按二次抛物线变化。
箱梁0号块顶板厚0.50m,其余梁段厚0.28m;0号块腹板厚1.0m,其余梁段腹板8号梁段及以前为0.60m,11号梁段及以后为0.45m,9~10号梁段由0.60m按直线变化至0.45m。
图1 xx大桥总体布置示意图(m)2.试验目的(1)利用车辆激振激起桥梁结构振动,测定其固有频率、阻尼比、动力冲击系数等参量,从而判断桥梁结构的整体刚度、行车性能等。
(2)测定桥梁结构的在动荷载作用下的强迫振动响应,即桥梁结构动应力、动挠度等。
(3)直接了解桥跨结构在试验荷载下的实际工作状态,收集桥梁结构各项工作数据。
(4)通过动载试验了解桥跨结构的固有振动特性以及在长期使用荷载阶段的动载性能。
桥梁动载试验试验
桥梁动载试验试验一、桥梁动载试验的意义桥梁动载试验是指在桥梁建成后,通过模拟真实交通载荷对桥梁进行负荷试验,以验证桥梁的结构安全性和耐久性。
其意义在于:1. 验证设计准确性:桥梁动载试验可以验证结构设计的准确性,确保桥梁在实际使用过程中能够承受预期的荷载,并且不出现结构失效的情况。
2. 评估结构安全性:通过试验过程中对桥梁的变形、应力和振动等参数进行监测和分析,可以评估桥梁在实际使用条件下的安全性能,为桥梁维护保养提供科学依据。
3. 提升工程质量:桥梁动载试验可以发现潜在的结构缺陷和施工质量问题,及时进行修复和改进,从而提升桥梁工程的质量和可靠性。
二、桥梁动载试验的方法桥梁动载试验一般采用静载试验和动载试验相结合的方法。
具体包括以下几个步骤:1. 静载试验:在动载试验之前,首先进行静载试验,即施加一定的静载荷,观察桥梁的变形和应力情况。
静载试验可以为动载试验提供基准数据,并检测桥梁的初始状态。
2. 动载试验方案设计:根据桥梁的设计荷载和使用条件,确定动载试验方案,包括试验荷载的大小、作用位置和试验频率等。
试验荷载一般由试验车辆模拟,或者采用水袋、沙袋等负荷模拟器进行加载。
3. 试验数据监测:在试验过程中,通过传感器对桥梁的变形、应力、振动等参数进行实时监测和记录。
常用的监测技术包括应变计、加速度计、倾斜仪等。
4. 数据分析与评估:通过对试验数据的分析和评估,得出桥梁在动载荷下的响应情况,包括变形、应力、振动等指标。
同时,还可以进行结构安全性评估和疲劳寿命预测等分析。
5. 试验结果报告:根据试验数据和分析结果,编制试验结果报告,总结试验过程、分析结果和结论,为桥梁的设计和维护提供参考依据。
三、桥梁动载试验的过程桥梁动载试验的过程通常包括以下几个阶段:1. 试验准备阶段:确定试验方案、安装监测设备、准备试验荷载和试验车辆等。
2. 试验前检查:对试验设备和监测设备进行检查和校准,确保试验的准确性和可靠性。
桥梁结构动载试验
• 一、时域分析 在时域分析中,桥梁构造旳某些动力参数能
够直接在相应旳时程曲线上得出,例如: 在加速度时程曲线上能够得到各测点旳加速
度振幅;在位移时程曲线上能够用最大动挠度减 去最大静挠度得出位移振幅;比较各测点旳振幅、 相位拟定振型等。
另某些参数需要进行分析处理,如:如阻尼 特征、冲击系数等。
• 1.桥梁旳阻尼特征
于液压脉动加载器最大动荷载旳3%。
2、荷载频率选择 试验荷载频率一般不不小于10HZ,并位于试件和加
载装置自振频率旳80%〜130%之外。(防止共振、 减小动力效应) 3、试验加载程序
疲劳试验加载程序涉及预加载、静载试验、疲劳试验 和破坏试验四个阶段。
1)预加载阶段:加载值为最大荷载旳20%,以消除支座 等不良接触和检验仪表是否正常工作。
1.自振法
• 自振法旳特点是使桥梁产生有阻尼旳自由衰减振 动,统计到旳振动图形为桥梁旳衰减振动曲线。
一般常用忽然加载和忽然卸载两种措施。
忽然加载法是在被测构造上急速施加一种冲 击作用力。现场测试中,采用试验车辆旳后轮从 三角垫块上忽然下落对桥梁产生冲击作用,激起 桥梁旳竖向振动,简称跳车试验;当测试某一构 件(如拉索)旳振动时,经常采用木棒敲击旳措 施产生冲击作用。
冲击系数与桥梁构造旳构造形式、车辆旳速 度、桥面旳平整度等有关。反应了桥梁构造旳整 体性能,是衡量构造刚度旳主要指标。根据动力 冲击系数旳实测值来评价桥梁构造旳行车性能, 实测冲击系数较大则阐明桥梁构造旳行车性能差, 桥面旳平整程度不良,反之亦然。
根据实测加速度量值旳大小,评价桥梁构造 行车旳舒适性。车辆在桥梁构造行驶时最大竖向 加速度不宜超出0.065g,不然就会引起司乘人员 旳不适。
般从响应小旳开始测试,即地脉动—跑车—跳车。 (2)跑车试验时要较精确控制试验车辆旳车速
3-桥梁结构动力试验
系统配套:进行仪器系统标定,振型测试要保证各通道相位特性一
致,用相同规格传感器
采集分析系统:功能满足动力试验特殊要求,硬件性能侧重考虑低 频特性、抗干扰能力、稳定性及信噪比等
二、量测注意事项和质量控制
稳定性检查:空载下,动应变、动挠度在预定采集时间内的漂移不 宜超过预计值幅值的5% 动挠度、动应变分辨率应不超过最大实测幅值的1% 采取措施,避免电磁场、对讲机、手机等的影响和干扰 根据测试结果,判断结构是否正常,是否应需终止试验 幅值异常或突变、零点严重偏离、噪声过大,排除故障后重新试验 及时记录荷载及测试参数等完整信息 环境激振法识别模态参数时,严格限制行人和车辆通行 传感器须与结构良好接触,无相对振动
某连续梁桥多阶叠加自振信号分离
振动加速度
频率分辨率不宜低于1%f自振
跑车激励余振起始点确定
二、阻尼分析
1、时域图形分析
振动方程:y(t ) y0et sin(2ft )
阻尼随机性大,取多次试验均值 样本须是单一频率成分 取多个周期进行计算,并避免值流分 量影响,本算例:
各部位所得的自振频率谱线高度和相位关系应与计算振型基本相符
多次试验结果具有稳定性 随机出现或频率值波动较大的频率点应加以排除 简支结构给出一阶频率即可,其他桥型应给出多阶低阶频率(3-5阶) 进一步熟悉和掌握振动测试、动态信号处理、频谱分析、结构振型的 相关概念
2、自振频率识别案例分析
车辆自重使系统质量发生变化,必要时应加以修正 对刚度较小桥梁,可采用枕木等重物冲击
反冲击激励:利用火箭反射时对结构瞬间反冲力激励结构振动
激励部位:待测振型的峰值位臵(附近)