酶反应器介绍(20201015203434)

烷基化反应器介绍 (2)

烷基化反应器装置 江苏开锐德机械有限公司 2015年12月18日

目录 第一部分公司简介 (3) 第二部分烷基化反应器装置简图 (4) 第三部分技术文件 (6) 1.技术参数表 2.产品主要技术特点描述 3.烷基化反应器装置说明 4.传动系统介绍 第四部分产品质量控制 (10) 1.主要制造、验收标准 2.制造工艺 第五部分安装、售后服务 (14) 1.设备安装调试施工方案 2.售后服务 第六部分主要业绩 (15)

第一部分公司简介 江苏开锐德机械有限公司是一家以石油化工设备和环保设备的生产、化工技术服务为主的高科技、新能源、技术密集型企业。公司位于江苏省扬州市邗江区扬州环保科技产业园内。 公司创立于2007年初,2014年6月11日改组注册为江苏开锐德机械有限公司,目前,公司已经取得A1(高压容器)、A2(第三类低、中压容器)级压力容器制造许可证,通过了ISO9001质量管理体系经、ISO14001环境管理体系认证。 公司主要从事化工机械、石油装备、环保水处理等行业的研发制造、销售。同时公司与设计院(武汉炼化工程设计有限责任公司、中石油华东设计院、胜利油田炼化工业设计院、上海华西设计院、中国环球工程公司辽宁分公司等)、研究院所(石科院、抚顺石油化工研究院、大连化学物理研究所等)、高校(石油大学、东南大学、东华大学等)建立了良好合作关系。公司将致力于为客户提供技术领先、节能低耗的优质产品和服务,致力于与客户共同发展。 “管理创造价值,服务提升优势,品质至上,服务至优”是公司的发展理念;“团结、创新、务实、奋进”是公司矢志不渝的追求。公司将积极贯彻《中国制造2025》行动纲领,坚持落实创新驱动、质量为先、绿色发展、结构优化、人才为本的基本方针,致力于为客户提供优质产品和服务,致力于与客户共同发展。

反应器选型与设计完结版

反应器选型与设计 一、反应器类型 反应器设备种类很多,按结构型式分,大致可分为釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等。 釜式反应器: 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 管式反应器 ①由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 ②管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。 ③由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。

④管式反应器适用于大型化和连续化的化工生产。 ⑤和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。 ⑥管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。固定床反应器 固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单。 固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。目前,蜂窝状、纤维状催化剂也已被广泛使用。 1. 4 流化床反应器 (1)流化床反应器的优点 ①由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可高 16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 达3280 ~ ②由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层 400/(2)],全床热容量大,热稳定性高,这与内浸换热表面间的传热系数很高[200 ~

微通道反应器系统技术要求

微通道反应器系统技术要求 一、技术要求 1、★整体要求:合成反应系统包含可相互独立的反应物通道,独立的反应物通道不小于6个。 2、★反应器支架可灵活配置反应模块的数量(不少于4个),含不少于8个入料与收集接口,4个换热流体接口。 3、★反应器可通过两个恒温循环器与密封隔热板分隔实现两个温区,两个温区各自的控制区域可灵活设置。 4、★反应模块为三层结构,上层为底板,中间层为混合或反应通道,下层为换热通道。模块均采用碳化硅材质,成型工艺采用扩散焊接技术,整体成型,保证气密性和耐高压性能,为了避免金属溶出性污染,模块中间不得安装金属连接件。 5、★反应器包含多组碳化硅模块,包含混合模块及反应模块,可执行A+B→P或A+B→P’+C→P,混合模块也可用作猝灭模块,用于反应停止或降温。 6、★反应通道结构设计能够在强化传质的同时减少返混,保证物料在反应器内停留时间的一致性,要求提供内部结构图。 7、热传导率:≥100W/mK(温度200℃范围内)。 8、耐腐蚀性:反应器的触液材质能够耐反应器操作温度下的硫酸、氢氟酸、氢溴酸、强碱等物质。 9、年损失率:≤0.1mm/年(120℃1:1 HF/HNO3条件下测试)。 10、工艺侧工作温度范围:-20-150℃,换热测温度范围:-20-150℃。 11、工艺侧压力范围:0-25bar,测试压力75bar,提供压力检测证书;换热侧压力范围0-5bar。 12、通量:0.2-20mL/min。 13、★反应器内体积:0.95-13.5ml,单板的最小持液量不大于1ml,单板的最大持液量不大于4.8ml。 14、★反应通道尺寸不大于1.4×1.4mm,预热通道尺寸不大于1×1mm。 15、停留时间:2.7sec-60min。 16、反应器配件要求:进、出料管路及背压系统均采用抗腐蚀、耐压材质,保证气液反应、液液反应的进行。 二、配置要求 1、主反应器(含阳极氧化铝支架) 2、A+B型碳化硅预热混合模块 3、P’+C型碳化硅预热混合模块 4、碳化硅反应模块 5、背压系统(16bar) 三、技术支持及售后服务 1、技术支持: 生产厂家技术工程师进行仪器的安装调试和免费培训3名以上操作人员,培训时间根据用户实际情况来定,内容包括仪器的基本原理、结构、基本操作、维护知识及实验的应用与开发。前期使用供应方派专业技术人员陪用户技术人员共同操作仪器,直到用户使用人员可独立进行操作为止。供应商应提供仪器应用的详细应用资料,用户能够在此基础上开展新的实验研究。 2、售后服务:

间歇式反应器系统控制方案案

2007 西门子杯全国大学生过程控制仿真挑战赛
西门子杯 全国大学生过程控制技能挑战赛
——间歇式反应器系统控制方案
第十一号参赛方案
第十一号方案
1

2007 西门子杯全国大学生过程控制仿真挑战赛
目 录
目 录........................................................................................................................................................ 2 一、间歇式反应器系统概述 ..................................................................................................................4 1.1 被控对象工艺流程(简单描述反应过程)...................................................................................4 1.2 反应过程分析 ..............................................................................................................................5 1.3 控制要求 ...................................................................................................................................... 7 1.4 间歇式反应器系统P&ID图 ...........................................................................................................8 二、系统硬件配置 .................................................................................................................................. 9 2.1 硬件及网络结构 ........................................................................................................................10
2.1.1 SIMATIC NET ...................................................................................................................... 11 2.1.2 PROFIBUS现场总线 ............................................................................................................12
2.2 硬件配置 ....................................................................................................................................14 2.3 软件配置及安装 ........................................................................................................................14 2.4 变量表 ........................................................................................................................................15 三、控制策略设计 ................................................................................................................................17 3.1 反应温度控制策略 ....................................................................................................................17
3.1.1 3.1.2 3.1.3 3.1.4
加热位式控制 ....................................................................................................................18 升温模糊控制 ....................................................................................................................18 恒温PID控制 ......................................................................................................................21 规则集 ................................................................................................................................22
3.2 压力控制策略 ............................................................................................................................23
3.2.1 协调型专家系统 ................................................................................................................23 3.2.2 压力安全专家策略 ............................................................................................................24
3.3 主产物产率控制策略 ................................................................................................................26
3.3.1 软测量技术 ........................................................................................................................26 3.3.2 组分控制 ............................................................................................................................31
3.4 控制系统P&ID图 ........................................................................................................................32 3.5 顺序控制 ....................................................................................................................................32 3.6 阀门特性选择 ............................................................................................................................34 四、控制系统软件实现 ........................................................................................................................35 4.1 SCL程序 ......................................................................................................................................35 4.2 CFC图描述 ..................................................................................................................................44 4.3 SFC图描述 ..................................................................................................................................50
第十一号方案
2

化学反应器自动控制系统设计

目录 摘要.............................................................................................................................III 1 关于化学反应 (1) 2 关于化学反应器 (2) 2.1 反应器的类型 (2) 2.2 反应器的性能指标 (2) 2.3 反应器的控制要求 (2) 3 反应器的控制方案 (4) 3.1 反应器常用的控制方式 (4) 3.2 温度被控变量的选择 (5) 3.3 控制系统的选择 (6) 4 反应器串级系统的控制原理 (9) 4.1 系统方框图 (9) 4.2 系统原理分析 (9) 5 反应器的部分实现 (11) 5.1 原料的比值控制 (11) 5.2 仪器仪表的选择 (12) 6 设计总结与展望 (13) 参考文献 (14)

化学反应器自动控制系统设计 1 关于化学反应 化学反应的本质是物质的原子、离子重新组合,使一种或者几种物质变成另一种或几种物质。化学反应过程具备以下特点: 1) 化学反应遵循物质守恒和能量守恒定律。因此,反应前后物料平衡,总热量也平衡; 2) 反应严格按反应方程式所示的摩尔比例进行; 3) 化学反应过程中,除发生化学变化外,还发生相应的物理等变化,其中比较重要的有热量和体积的变化; 4) 许多反应应需在一定的温度、压力和催化剂存在等条件下才能进行。 此外,反应器的控制方案决定于化学反应的基本规律: 1.化学反应速度 化学反应速度定义为:单位时间单位容积内某一部分A 生成或反应掉的摩尔数,即 t A A Vd dn r 1± = (1-1) 若容积V 为恒值,则有 dt dC dt V dn r A A A ±=± =/ (1-2) 式中 r A ——组分A 的反应速度,mol/m 3·h ; n A ——组分A 的摩尔数,mol ; C A ——组分A 的摩尔浓度,mol/m 3; V ——反应容积,m 3。 2.影响化学反应速度的因素 实验和理论表明,反应物浓度(包括气体浓度,溶液浓度等)对化学反应速度有关键作用。温度对化学反应速度影响较为复杂,最普遍的是反应速度与温度成正比。而对于气相反应或有气相存在的反应,增大压力(压强)会加速反应的进行。化学反应还受催化剂,反应深度等因素的影响,这些都是要在设计反应器是需要考虑的。

反应器串级控制系统整定

西华大学课程设计说明书 目录 1 前言 (1) 2 总体方案设计 (2) 2.1 方案比较 (2) 2.2 方案选择 (5) 3 反应器串级控制系统分析 (6) 3.1 被控变量和控制变量的选择 (6) 3.2 主、副回路的设计 (6) 3.3 主、副控制器正、反作用的选择 (8) 3.4 控制系统方框图 (8) 3.5 分析被控对象特性及控制算法的选择 (9) 4 串级控制系统的参数整定 (10) 4.1 参数整定方法 (10) 4.2 参数整定 (11) 4.3 两步法的整定步骤 (12) 5 MATLAB仿真 (14)

5.1 控制系统的MATLAB仿真 (14) 5.2 串级控制系统PID参数整定: (16) 5 结论 (20) 6 总结与体会 (21) 7 参考文献 (22) 1 前言 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 夹套式反应器是一类重要的化工生产设备,由于化学反应过程伴有许多化学和物理现象以及能量、物料平衡和物料、动量、热量和物质传递等过程,因此夹套反应器操作一般都比较复杂,夹套反应器的自动控制就尤为重要,他直接关系到产品的质量、产量和安全生产。 化工生产过程通常可划分为前处理、化学反应及后处理三个工序。前处理工序为化学反应做准备,后处理工序用于分离和精制反应产物,而化学反应工序通常是整个生产过程的关键,因此在化学反应工序中设计一套比较完善的控制系统是很重要的。 设计夹套式反应器的控制方案应从质量指标,物料平衡和能量平衡,约束条件三个方面考虑(假设在本反应器中反应物为一般性的,无腐蚀,无爆炸的液液反应物)。

夹套式反应器温度串级控制控制方案设计设计

目录 一.概述……………………………………………………………2-6页 1.1化学反应器的基本介绍…………………………………2-3页 1.2夹套式反应器的控制要求…………………………………3 页 1.3夹套式反应器的扰动变量………………………………3-4页 1.4基本动态方程式…………………………………………4-6页二.控制系统方案的确定…………………………………………6-7页三.控制系统设计…………………………………………………7-18页 3.1被控变量和控制变量的选择………………………………7-8页 3.2主、副回路的设计…………………………………………8-9页 3.3现场仪表选型………………………………………………9-12页 3.4主、副控制器正反作用选择………………………………12-13页 3.5控制系统方框图……………………………………………13页 3.6分析被控对象特性及控制算法的选择……………………13-14页 3.7控制系统整定及参数整定…………………………………14-18页四.课程设计总结……………………………………………………18页五.结束语……………………………………………………………18页六.参考文献…………………………………………………………19页

一概述 1.1 化学反应器的基本介绍 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 化学反应器可以按进出物料状况、流程的进行方式、结构形式、传热情况四 个方面分类: 一、按反应器进出物料状况可分为间歇式和连续式反应器 通常将半连续和间歇生产方式称为间歇生产过程。间歇式反应器是将反应物 料分次获一次加入反应器中,经过一定反应时间后取出反应中所有的物料,然后重新加料在进行反应。间歇式反应器通常适用于小批量、多品种、多功能、高附加值、技术密集型产品的生产,这类生产反应时间长活对反应过程的反应温度有严格程序要求。 连续反应器则是物料连续加入,化学反应连续不断地进行,产品不断的取出,是工业生产最常用的一种。一些大型的、基本化工产品的反应器都采用连续的形式。 二、从物料流程的进行方式可分为单程与循环两类 物料在通过反应器后不再进行循环的流程称为单程,当反应的转化率和产率都较高时,可采用单程的排列。如果反应速度较慢,祸首化学平衡的限制,物料一次通过反应器转化不完全,则必须在产品进行分离后,把没有反应的物料与新鲜物料混合后,再送送入反应器进行反应。这种流程称为循环流程。 三、从反应器结构形式可分为釜式、管式、塔式、固定床、流化床、移动床反应器等。 四、从传热情况可分为绝热式反应器和非绝热式反应器[1]。 绝热式反应器与外界不进行热量交换,非绝热式反应器与外界进行热量交换。一般当反

夹套式反应器温度串级控制课程设计

课程设计任务书

中北大学 课程设计说明书 学院:机械与动力工程学院 专业:过程装备与控制工程 题目:夹套式反应器温度串级控制系统设计指导教师:吕海峰职称: 副教授

中北大学课程设计说明书 目录 1、概述 (1) 1.1化学反应器基本介绍 (1) 1.2夹套式反应器控制要求 (2) 2、被控对象特性研究 (3) 2.1建立动态数学模型 (3) 2.2被控变量与控制变量的选择 (6) 2.3夹套式反应器扰动变量 (6) 3、控制系统方案确定 (7) 3.1主回路的设计 (8) 3.2副回路的设计 (8) 4、过程检测仪表的选型 (9) 4.1测温检测元件及变送器 (9) 4.2主、副控制器正、反作用的选择 (12) 4.3控制系统方框图 (13) 5、系统仿真,分析系统性能 (13) 5.1各个环节传函及参数确定 (13) 5.2控制系统的仿真及参数整定 (14) 5.3 系统性能分析 (17) 6、课程设计总结 (18) 7、参考文献 (19)

1 概述 1.1化学反应器的基本介绍 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 化学反应器可以按进出物料状况、流程的进行方式、结构形式、传热情况四 个方面分类: 一、按反应器进出物料状况可分为间歇式和连续式反应器 通常将半连续和间歇生产方式称为间歇生产过程。间歇式反应器是将反应物 料分次获一次加入反应器中,经过一定反应时间后取出反应中所有的物料,然后重新加料在进行反应。间歇式反应器通常适用于小批量、多品种、多功能、高附加值、技术密集型产品的生产,这类生产反应时间长活对反应过程的反应温度有严格程序要求。 连续反应器则是物料连续加入,化学反应连续不断地进行,产品不断的取出,是工业生产最常用的一种。一些大型的、基本化工产品的反应器都采用连续的形式。 二、从物料流程的进行方式可分为单程与循环两类 物料在通过反应器后不再进行循环的流程称为单程,当反应的转化率和产率都较高时,可采用单程的排列。如果反应速度较慢,祸首化学平衡的限制,物料一次通过反应器转化不完全,则必须在产品进行分离后,把没有反应的物料与新鲜物料混合后,再送送入反应器进行反应。这种流程称为循环流程。 三、从反应器结构形式可分为釜式、管式、塔式、固定床、流化床、移动床反应器等。 四、从传热情况可分为绝热式反应器和非绝热式反应器[1]。 绝热式反应器与外界不进行热量交换,非绝热式反应器与外界进行热量交换。一般当反应过程的热效应大时,必须对反应器进行换热,其换热方式有夹套式、蛇管式、列管式等。如今用的最广泛的是夹套传热方式,且采用最普通的夹套结构居多。随着化学工业的发展,单套生产装置的产量越来越大,促使了反应设备的大型化。也大大促进了夹套反应器的反展。 夹套式反应器是一类重要的化工生产设备,由于化学反应过程伴有许多化学和物理现象以及能量、物料平衡和物料、动量、热量和物质传递等过程,因此夹套反应器操作一般都比

反应器介绍(操作方式、操作条件)5页

反应器介绍 简介 用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 反应器的应用始于古代,制造陶器的窑炉就是一种原始的反应器。近代工业中的反应器形式多样,例如:冶金工业中的高炉和转炉;生物工程中的发酵罐以及各种燃烧器,都是不同形式的反应器。 类型 常用反应器的类型(见表)有:①管式反应器。由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。②釜式反应器。由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。③有固体颗粒床层的反应器。气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。④塔式反应器。用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。⑤喷射反应器。利用喷射器进行混合,实现气相或液相单相反应过程和气液相、液液相等多相反应过程的设备。⑥其他多种非典型反应器。如回转窑、曝气池等。

操作方式 反应器按操作方式可分为: ①间歇釜式反应器,或称间歇釜。 操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。 间歇操作反应器系将原料按一定配比一次加入反应器,待反应达到一定要求后,一次卸出物料。连续操作反应器系连续加入原料,连续排出反应产物。当操作达到定态时,反应器内任何位置上物料的组成、温度等状态参数不随时间而变化。半连续操作反应器也称为半间歇操作反应器,介于上述两者之间,通常是将一种反应物一次加入,然后连续加入另一种反应物。反应达到一定要求后,停止操作并卸出物料。 间歇反应器的优点是设备简单,同一设备可用于生产多种产品,尤其适合于医药、染料等工业部门小批量、多品种的生产。另外,间歇反应器中不存在物料的返混,对大多数反应有利。缺点是需要装卸料、清洗等辅助工序,产品质量不易稳定。 ②连续釜式反应器,或称连续釜,可避免间歇釜的缺点,但搅拌作用会造成釜内流体的返混。在搅拌剧烈、液体 粘度较低或平均停留时间较长的场合,釜内物料流型可视作全混流,反应釜相应地称作全混釜。在要求转化率高或有串联副反应的场合,釜式反应器中的返混现象是不利因素。此时可采用多釜串联反应器,以减

3.2.4工艺条件与反应器的选择

3.2.4 工艺条件与反应器的选择 前已述及,小型工艺试验的任务是:确定工艺条件框架(含最优工艺条件)、优选反应器型式,确定设计、放大依据。上述三项任务的基础是开发对象的特征,即反应类型(简单反应,复杂反应,串联副反应,并联副反应等)、热力学行为(可逆反应、不可逆反应、放热反应、吸热反应、平衡常数与平衡组成等)、动力学行为(快反应、侵反应、与传递过程的相对关系、相态等)以及工程环境(材质、杂质、寿命、加热、冷却、惰性组分、上下游工况变化范围等)。上述三项任务的目标是:经济效益、社会效益、环境保护、安全等。鉴于化工过程的原料一般占产品成本的70%一80%,所以衡量经济效益时往往以转化率、选择性为指标,而社会效益、环境、安全则难以定量表达。 换言之,小型工艺试验这种科学、技术行为有其特定的前提和出发点,也有其特定的追求目标,只能在给出的约束领域内工作。而三项任务虽全都立足于开发对象特征,但彼此并不独立,而是相互交联与协同的,不过有程度强弱之分。 (1)工艺条件选择 工艺条件主要指温度、压力、浓度、进料组成、空速(流量)、循环(返回)比、放空(排放)量与组成等,工艺学对特定过程的工艺条件选择均有详细的论述,本文仅从开发角度笼统地介绍一般原则。 a 在上述工艺条件中,以温度、浓度最为重要。从微观看,是反应场所(反应发生处)的温度、浓度;从较大尺度看是催化剂颗内、滴内、泡内、膜内、孔内、界面的温度与浓度分布;从宏观的角度看,就是反应器内、塔内、炉内、床内的温度与浓度分布。①上述三级(反应场所级,滴、粒、膜级,反应器级)温度分布与浓度分布,与反应特征有关,更主要的是与工程因素(由反应器型式、尺寸、操作方式、工艺条件综合生成)有关。所以小试优选的工艺条件,在不同级别的模试与工业反应器中,未必还是最优。原因很简单,上述三个级别的温度与浓度分布变了。②就本征反应速率而论,其值仅与催化剂(或理解为反应自身特征——涉及频率因子与活化能)、浓度、温度有关,而且一般情况下,它们是相互独立的。但如果因其中之一变化引起反应机理变化(例如,催化剂的催化机理变化;由反应控制转化为扩散控制等);温度变化,除自身通过阿累尼斯关系影响反应速率外,还通过物性一传递一浓度分布,影响反应结果;浓度变化,除自身通过反应级数影响反应速率外,还通过物性(热容)一传递一温度分布,影响反应结果,则产生协同效应的。还应指出,在多数情况下,这种协同效应可以略而不计。 b 以反应结果最优为目标,工艺条件、反应器型式、几何尺寸、操作方式应相互补充、彼此匹配,以体现综合效果。通过反应器的加热、冷却,催化剂的粒度、原料固体的粒度尺寸、液体原料的雾化与分布,填充床的结构与流体分布,塔式反应器结构,搅拌反应器的桨叶结构等等,有可能营造出满意的第二、第三层次因素。因此,在选择工艺条件时,应充分考虑第一层次因素之间既独立、又联合的效果。 c 在选择工艺条件时,应进行热力学计算,以掌握反应进行的极限。如果某组工艺条件预示的平衡状态与技术目标不符,则应设法改变工艺条件或反应器型式。有时候,希望反应在新的工艺条件下达到或趋近平衡;也有时候,则希望新的工艺条件能通过反应动力学抑制平衡出现。 d 选择工艺条件时还必须考虑材质等因素的约束。如果开发对象为吸热反应,提高温度对热力学和动力学都是有利的。处于工艺上的要求、有的为了防止或减缓副反应;有的为了提高设备生产强度,希望反应在高温下进行。此时,必须考虑材质承受能力,在材质的约束下选择工艺条件。 e 在系统工程观点指导下选择工艺条件。选择工艺条件既要着眼于具体的化工过程,又要立足于全系统最优,必要时要牺牲局部,保证全局。压力,特别是对大系统气体为原料过程而言是全局性因素。系统压力不可能时高、时低,多次起伏。因此,在选择系统压力时,一定要立足于系统,不仅要考虑一个反应过程,而是要考虑全部反应过程;还要考虑净化、分离过程,在发生矛盾时,要以系统最优(投资、成本、单耗、效益)决定弃取。

第七章 酶反应器的类型与选择

第七章酶反应器的类型与选择 ◆用于酶进行催化反应的容器及其附属设备称为酶反应器。 ◆按照结构的不同分为: 搅拌罐式反应器(Stirred Tank Reactor, STR)、鼓泡式反应器(bubble column reactor, BCR )、填充床式反应器(packed column reactor, PCR )、流化床式反应器( Fluidized Bed Reactor, FBR)、膜反应器(Membrane Reactor, MR)等; ◆酶反应器的操作方式可以分为分批式反应(batch )、连续式反应(continuous )和流加分批式反应(feeding batch ); ◆将反应器的结构和操作方式结合一起,对酶反应器进行分类, 连续搅拌罐反应器(Continuous Stirred Tank Reactor, CSTR)、分批搅拌罐反应器(Batch Stirred Tank Reactor, BSTR)等。 1.酶反应器的类型

1.1搅拌罐式反应器: ◆搅拌罐式反应器(stirred tank reactor, STR)是有搅拌装置的一种反应器(图8-1,8-2所示)。◆在酶催化反应中是最常用的反应器。它由反应罐,搅拌器和保温装置组成。 ◆搅拌式反应器的操作方式可以根据需要采用分批式(batch)、流加分批式(feeding batch)和连续式(continuous)三种。与之对应的有分批搅拌罐式反应器和连续搅拌罐式反应器之分。 (1)分批搅拌罐式反应器: 图8-1 分批搅拌罐式反应器 (2)搅拌罐式反应器: 连续搅拌罐式反应器(continuous stirred tank reactor ,CSTR)的结构示意图如图8-2 图8-2 连续搅拌罐式反应器示意图 1.2填充床式反应器: 填充床式反应器(packed column reactor, PCR)是一种用于固定化酶进行催化反应的反应器。如图8-3所示。

单池式反应器系统(OTR)

Info-Bulletin No. 005 CN 单池式反应器系统(OTR) 由拜尔杰斯特国际有限责任公司 (Biogest International GmbH) 为污水的生化处理提出的杰出理念 单池式反应(OTR),又名顺序批处理反应(SBR),代表的是一种改进的活性污泥工艺。就象其它的活性污泥工艺一样,单池式反应的原理是利用混合于污水中的细菌对污水中的BOD、COD 以及营养物的消耗来达到处理污染的目的。 单池式反应系统的处理范围很大,从生活污水到工业废水,从每天少量到每天上万吨。 由拜尔杰斯特公司开发的单池式反应系统的独特性在于它本身既是调节池,又是曝气池和澄清池。这一系列的程序都在同一个池子里进行,所以这个池子被称为“反应器”。由于沉淀在进水和曝气完全结束后进行,所以它可以在完全无干扰的情况下达到最佳效果,那怕是非常小的颗粒也不例外。也就是说拜尔杰斯特公司的SBR系统不允许在曝气、沉淀和滗水阶段有污水进入反应池。所以可知,这种工艺方法的处理效果非常好。在单池式反应系统的处理厂中,可以联结一个、两个或多个 这样的单池式反应器。每个反应器都作为一个独立的系统由电气控制柜控制。 每个反应器都保持它自已的处理状态,每个反应器中都进行系列的处理过程。 由于拜尔杰斯特公司的SBR是真正的批处理模式,所以每个循环都能达到最优的处理结果。只有大约20%~30%的污水会停留在反应器中,它们与含有适当生物量的污泥混合在一起,无时不刻都存在于反应器中。 BELüFTEN / RüHREN M M 在每个OTR池中,控制出水质量的关键在于进水量和污泥生物量的比例。因为在每个循环过程中只有少量的污泥被损耗,所以生物量(活性污泥量)可以被保持。

反应器设计说明

乙酸乙酯反应器的设计 : 班级:化学工程与工艺二班学号:3009207057

目录 第一章背景介绍 (3) 1 乙酸乙酯的理化性质 (3) 2 乙酸乙酯的用途 (3) 第二章乙酸乙酯的发展 (4) 1 乙酸乙酯的实验室制法 (4) 2 工业合成乙酸乙酯的工艺 (5) 第三章设计的方法与步骤 (6) 1 物料核算 (8) 1-1 流量计算 (8) 1-2 反应体积及时间的计算........................................................................。(9) 2 热量核算 (10) 2-1 能量衡算 (10) 2-2 换热设计 (13) 第四章设计心得 (14) 第五章文献检索 (15)

一、背景介绍 1、乙酸乙酯的理化性质 乙酸乙酯ethyl acetate 简写EA 乙酸乙酯又称醋酸乙酯。纯净的乙酸乙酯是无色透明具有刺激性气味的液体,是一种用途广泛的精细化工产品,具有优异的溶解性、快干性,用途广泛,是一种非常重要的有机化工原料和极好的工业溶剂,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树脂、乙酸纤维树酯、合成橡胶、涂料及油漆等的生产过程中。其主要用途有:作为工业溶剂,用于涂料、粘合剂、乙基纤维素、人造革、油毡着色剂、人造纤维等产品中;作为粘合剂,用于印刷油墨、人造珍珠的生产;作为提取剂,用于医药、有机酸等产品的生产;作为香料原料,用于菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的主要原料。我们所说的酒很好喝,就是因为酒中含有乙酸乙酯。乙酸乙酯具有果香味。因为酒中含有少量乙酸,和乙醇进行反应生成乙酸乙酯。因为这是个可逆反应,所以要具有长时间,才会积累导致酒香气的乙酸乙酯。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与氧化剂接触会猛烈反应。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。燃烧(分解)产物:一氧化碳、二氧化碳。现场应急监测方法:气体检测管法实验室监测方法:无泵型采样气相色谱法(WS/T155-1999,作业场所空气)应急处理处置方法:一、泄漏应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器,回收或运至废物处理场所处置。 2、乙酸乙酯的用途 其主要用途有:作为工业溶剂,用于涂料、粘合剂、乙基纤维素、人造革、油毡着色剂、人造纤维等产品中;作为粘合剂,用于印刷油墨、人造珍珠的生产;作为提取剂,用于医药、有机酸等产品的生产;作为香料原料,用于菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的主要原料。用作溶剂,及用于染料和一些医药中间体的合成。是食用香精中用量较大的合成香料之一,大量用于调配香蕉、梨、桃、菠萝、葡萄等香型食用香精。是硝酸纤维素、乙基纤维素、乙酸纤维素和氯丁橡胶的快干溶剂,也是工业上使用的低毒性溶剂。还可用作纺织工业的清洗剂和天然香料的萃取剂,也是制药工业和有机合成的重要原料。

反应器选型与设计完结版

反应器选型与设计完结 版 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

反应器选型与设计 一、反应器类型 反应器设备种类很多,按结构型式分,大致可分为釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等。 釜式反应器: 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 管式反应器 ①由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 ②管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。 ③由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。

④管式反应器适用于大型化和连续化的化工生产。 ⑤和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。 ⑥管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。固定床反应器 固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。②催化剂机械损耗小。③结构简单。 固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。目前,蜂窝状、纤维状催化剂也已被广泛使用。 1. 4 流化床反应器 (1)流化床反应器的优点 ①由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可高达3280 16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 ~ ②由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层

相关文档
最新文档