六年级奥数专题培优讲义列方程解应用题及解析
小升初培优讲义10 列方程解应用题--六年级一轮复习(知识点精讲+达标检测)(教师版)
专题10 列方程解应用题1.列方程解应用题的解题思路。
列方程解应用题就是用字母表示应用题中的未知数, 根据等量关系列出方程,再解所列的方程,得到答案。
应用题一般都可以用列方程的方法来解。
2.列方程解应用题的一般步骤。
1).弄清题意,找出未知数并用字母表示。
2).我出题中数量间的等量关系,列出方程。
3). 解方程,求出未知数的值。
4).检验,写出答语。
未知数一般用表示,可以直接设未知数,也可以设某个间接量为x ,再通过这个量去求未知数。
3.找等量关 系的方法 。
1).从题中反映的基本数量关系确定等量关系。
2). 根据公式确定等量关系。
3).以一般数量关系确定等量关系。
4).抓住关键句确定等量关系。
【例1】 甲、乙两辆汽车从相距324千米的两地同时相对开出,经6小时在途中相遇,甲车的速度是乙车的45。
甲车每小时行多少千米?【点拨分析】 本题的等量关系为:知识梳理例题精讲等量关系中,两车的速度都是末知的,而甲车的速度是乙车的4,其5中可特乙车的速度看作单位“1”,设乙车的速度为x千米/时,则甲车x千米/时。
或将甲车的速度看作单位“1”,设甲车的速度为的速度为45x千米/时。
根据量关系列方程解答。
x千米/时,则乙车的速度为54解法一:设乙车每小时行x千米,则:4x×6+x×6=324510.8x=324x=30×30=24(千米)甲车每小时行:45解法二:设乙车每小时行x千米,则:x)×6=324(x+5413.5x=324x=24答:甲车每小时行24千米。
[温馨提示]一般情况下,存在倍比关系的两个量都未知时,设单位“@的量为x,利用倍比关系,较容易将另外一个量表示出来。
举一反三1.一辆公共汽车,车上已有一些乘客,到文化路站时,有2的人下5。
车上原有乘客车,又上来了30人,这时车上的乘客数正好是原来的65多少人?2.A,B两城相距490千米,一辆货车和一辆客车同时从两城出发,相向而行,货车的速度比客车的速度快25%,行驶2小时后,两车还相距130千米。
六年级奥数专题培优讲义不定方程及解析全国通用
六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个方程。
当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。
【例1】★求方程2725=+y x 的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。
六年级奥数列方程解应用题试题及答案(20211003231020)
六年级奥数列方程解应用题试题及答案
甲、乙、丙三种货物,假如购置甲3 件、乙 7 件、丙 1 件共花 3.15元;假如购置甲 4 件、乙 10 件、丙 1 件共花 4.20 元,那么购置甲、乙、丙各 1 件需多少钱?
考点:列方程解含有两个未知数的应用题.
专题:列方程解应用题.
剖析:由题意能够列出算式:
3甲+7 乙 +丙=3.15;
4甲+10 乙+丙=4.20;
两式相减能够得出甲和乙的关系,第一个算式乘4,第二个算式
乘 3,后再相减就能够得出乙和丙之间的关系,而后把它们代入同一
个算式中就能够得出甲 +乙+丙的值.
解答:解:由题意得:
3甲+7 乙 +丙=3.15 元------------ (1)
4甲+10 乙+丙=4.2 元------------ (2)
(2)-(1)得:
甲+3 乙=1.05 元------(3)
(2)×3-(1)×4 得:
4甲×3+10 乙×3+丙×3-(3 甲×4+7 乙×4+丙×4)=4.2 ×3-3.15 ×4
12甲+30 乙+3 丙-12 甲-28 乙-4 丙
2乙-丙=0;
2 乙=丙----(4)
(4)代入( 3)中得:
甲+乙+2 乙=甲+乙+丙=1.05 元;
答:购置甲、乙、丙各 1 件需要花 1.05 元.
评论:解决这种问题的重点是把等式经过加减或代换变为只含有一个未知数的方程.。
六年级奥数-第五讲列方程解应用题
六年级奥数-第五讲列方程解应用题【知识要点】1、应用题也是常见的典型应用题。
列方程解应用题的主要特征是未知数和已知数同样都是运算对象,通过找出“未知”与“已知”之间的等量关系,列出方程,使问题得以解决。
列方程解应用题往往比算术方法易于思考。
2、列方程解应用题的一般步骤是:审题;设未知数;找出等量关系列方程;解方程;检验作答。
【例题精讲】例1:三牌楼小学六(1)班有56人,六(2)班有30人。
从六(1)班调几人到六(2)班,可使六(2)班的人数比六(1)班的2倍少10人?【思路点拨】可以设从从六(1)班调某人到六(2)班,可使六(2)班的人数比六(1)班的2倍少10人。
调动后六(1)班(56-某)人,六(2)班(30+某)人。
现在六(1)班人数=六(2)班人数某2+10。
模仿练习:有两根绳子,长绳子比短绳子的3倍多20米,如果长绳子用去25米,短绳子用去10米,那么长绳子是短绳子的4倍。
求长绳子和短绳子原来各多少米?例2:用一根绳子测量井的深度,如果把绳子3折,井外多2米;如果把绳子4折,还差1米不到井口。
井深多少米?绳子长多少米?【思路点拨】可以设井深某米,则绳长为3某+2某3或4某-1某4,小朋友你会做了吗?模仿练习:用一根绳子测一口井的深度,绳子对折时,比井深长60厘米,绳子三折时,比井深短40厘米。
求绳子的长度和井深。
例3:在一个除法算式里,被除数、除数、商与余数的和是127。
已知商是3,余数是2,那么除数是多少?【思路点拨】可以设除数是某。
被除数=除数某商+余数,你找到等量关系了吗?模仿练习:甲、乙两数,甲数除以乙数商3余15,乙数的20倍除以甲数商5余50.求甲、乙两数各是多少?例4:3年前,张老师的年龄是小芳的5倍;5年后,张老师的年龄是小芳的3倍。
今年张老师和小芳各有多少岁?【思路点拨】可以设今年小芳某岁,利用年龄差不变,你懂了吗?模仿练习:大海龟的年龄是小海龟年龄的4倍,再过20年,大海龟的年龄比小海龟年龄的2倍小14岁。
(完整版)六年级奥数列方程解应用题
(完整版)六年级奥数列方程解应用题列方程解应用题列方程解应用题,就是用代数算法解应用题。
它以布列方程为前提,先不考虑求得数,只把所求未知数设x。
一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。
但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。
列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。
正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。
例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。
这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。
例3.100个和尚吃100个馒头,大和尚每人吃3个,小和尚每3人吃一个,那么一共有几个大和尚,几个小和尚?1、鸡兔同笼,从上面数,有15个头。
六年级数学同步奥数培优
第一讲方程(解方程)例1①14x-12=7x+23②3x+4x-6=36-5x ③7*(x-8)=31+4x同步精练①15x-10=8x+11②5x+6x-6=36-3x ③9*(x-4)=45+6x例 2 ①21.5+8*4x=28.7 ②37x=7.5+12x ③23x-21=49+3x同步精练①26-3.5*4=2.5x② 3.4x-9.8=1.4x+9 ③0.72*3+4x=3.06+3x例3第二讲方程(列方程解应用题)例1光明小学买2张桌子和5把椅子共付220元,每张桌子的价钱是每把椅子价钱的3倍,每张桌子和每把椅子各多少钱?1.幼儿园买来花毛巾和白毛巾各40条,共用640元,已知花毛巾单价是白毛巾单价的3倍,一条花毛巾和一条白毛巾共多少元?2.买30于克精粉和70千克小米共付人民币312元,l千克精粉的价格是1千克小米价格的2倍,买精粉和小米各用去多少元?3.买10个排球和4个篮球共付510元,每个篮球比每个排球贵5元,篮球和排球的单价各是多少元?例2有一群鸭,在河里的只数是岸上的3倍,如有26只鸭上岸,那么岸上的鸭子就与河里的鸭一样多。
这群鸭一共有多少只?1.甲筐有梨400个,乙筐有梨240个,现在从两筐取出相等数目的梨,剩下的梨数,甲筐恰好是乙筐的5倍,求两筐所剩的梨数各是多少?2.六(1)班与六(2)班原有图书一样多,后来六(1)班又买来新书38本,六(2)班从本班原有图书中取出72本送给一年级同学,这时六(1)班的图书是六(2)班的3倍,两班原有图书各多少本?3.有甲、乙两个班,如果从甲班调8个同学到乙班,则两个班人数相等。
如果从乙班调8个同学到甲班,则甲班的人数就是乙班的2倍,甲乙两班各多少人?例3生产一批零件,原计划10天完成,实际每天比原计划多生产42个零件,结果提前3天完成任务。
这批零件有多少个?1.一辆汽车从甲地到乙地,原计划每小时行30千米,实际每小时比原计划多行10千米,结果比原计划提前2小时到达。
六年级奥数列方程解应用题含答案
列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:15x+x+8+x+10=35×3, 解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa-,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设用x 张铁皮制盒身,y 张铁皮制盒底.⎩⎨⎧=⨯=+y x y x 43216150解得x y ==⎧⎨⎩8664 所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设乙车运x 箱,每箱装y 个苹果,列表如下:车别 甲 乙 丙 箱数 x +4 x x -4 每箱苹果数y -3yy +5(x+4)(y-3)-xy=3 xy-(x-4)(y+5)=5化简为: 4y-3x=15, ①5x-4y=15,②①+②,得:2x=30,于是x=15. 将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个. 三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】 有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l 和17.这4人中最大年龄与最小年龄的差是多少?【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,⎧⎨⎩①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72.有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩.但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7. 60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题【难度】4星【题型】解答【解析】设汽车、摩托车、助力车、自行车的速度分别为a,b,c,d,设在12时骑自行车的与坐汽车的距离为x,骑自行车的与开摩托车的之间的距离为y.有(①+③)×2一(②+④),得310()x c d=+,即10()3x c d =+设骑自行车的在t时遇见骑助力车的,则(12)(), x t c d=-⨯+即10123t-=,所以1153t=.所以骑自行车的在15时20分遇见骑助力车的.【答案】15时20分家庭作业【作业1】甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题【难度】2星【题型】解答【解析】设x年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x),解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题【难度】2星【题型】解答【解析】设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声). 【答案】27【作业6】 小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。
六年级奥数列方程解应用题
六年级奥数列方程解应用题解析:这道题可以用代数方法解决。
设大和尚的人数为x,小和尚的人数为y,则有以下两个方程:3x + (y/3) = 100.(总人数)x + y = 100.(总馒头数)将第一个方程式中的y化简为3y,得到:9x + y = 300将两个方程式相减,消去y,得到:6x = 200解出x=33.33,但是x必须是整数,所以取x=33,代入第二个方程式,得到y=67.因此,一共有33个大和尚,67个小和尚。
我能行:1、某个班级有男生和女生,男生人数是女生人数的3倍,如果男生每人吃2个苹果,女生每人吃3个苹果,那么这个班级一共吃了多少个苹果?2、一家商店有苹果和梨两种水果,苹果每斤6元,梨每斤4元,如果这家商店卖出了100斤水果,收入500元,苹果和梨各卖出多少斤?3、三个数的和是15,其中两个数之和是9,第一个数比第二个数小2,求这三个数。
1.鸡兔同笼问题:有15个头,48条腿,求鸡和兔子的数量。
根据题意,可以列出方程组:鸡+兔=15,2鸡+4兔=48.解方程得到鸡有9只,兔子有6只。
2.硬币问题:有5分和2分的硬币各若干枚,共10枚,总面值为4角4分。
设5分硬币有x枚,2分硬币有y枚,则可以列出方程组:x+y=10,5x+2y=44.解方程得到5分硬币有6枚,2分硬币有4枚。
3.数学试卷问题:一份试卷有20道选择题,做对一题得5分,错一题扣1分,不做不扣分。
某学生得分为76分,求他做对了几道题。
设做对x道题,则错了20-x道题,可以列出方程:5x-(20-x)=76.解方程得到他做对了16道题。
4.火车问题:甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行38千米,乙车每小时行40千米,乙车出发2小时后,甲车才出发,求甲车几小时后与乙车相遇。
根据题意,可以列出方程:(38+40)t+2*40=470,解方程得到甲车行驶8小时后与乙车相遇。
1.鸡兔同笼问题:有15个头,48条腿,求鸡和兔子的数量。
六年级奥数讲义列方程解应用题_(1)
列方程解应用题。
列方程解应用题的一般步骤是:①审清题意,弄清楚题目意思以及数量之间的关系,;②合理设未知数x ,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数;③依题意确定等量关系,根据等量关系列出方程;④解方程; ⑤将结果代入原题检验。
概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。
寻找等量关系的常用方法是:根据题中“不变量”找等量关系。
一些基本概念:(1)像4x+2=9这样的的等式,只含有一个未知数x ,而且未知数x 的指数为1的方程叫做一元 一次方程;(2)像2x+y=8这样的的等式,含有两个未知数x 、y ,而且未知数的指数都为1的方程叫做二元 一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;(3)如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个 方程才能求出唯一解.如果有更多的未知数,可借助今天学习的解题思路来类推出解法.类型Ⅰ:列简易方程解应用题【例1】 (难度系数:★★)解下列方程:(1)357x x +=+(2)452x x -=-(3)12(3)7x x +-=+(4)132(23)5(2)x x --=--(5)5118()2352x x ⎡⎤⨯⨯-=⎢⎥⎣⎦ (6)1123x x +-=(7)527x yx y+=⎧⎨+=⎩(8)2311329x yx y+=⎧⎨+=⎩【例2】(难度系数:★★)汽车以每小时72公里的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)(小数报数学竞赛初赛)(难度系数:★★★)用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?【例3】(难度系数:★★)箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球.如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?【例4】(难度系数:★★★)小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。
六年级奥数列方程解应用题含答案
列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:15x+x+8+x+10=35×3, 解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa-,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设用x 张铁皮制盒身,y 张铁皮制盒底.⎩⎨⎧=⨯=+y x y x 43216150解得x y ==⎧⎨⎩8664 所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设乙车运x 箱,每箱装y 个苹果,列表如下:车别 甲 乙 丙 箱数 x +4 x x -4 每箱苹果数y -3yy +5(x+4)(y-3)-xy=3 xy-(x-4)(y+5)=5化简为: 4y-3x=15, ①5x-4y=15,②①+②,得:2x=30,于是x=15. 将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个. 三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】 有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l 和17.这4人中最大年龄与最小年龄的差是多少?【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,⎧⎨⎩①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72.有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩.但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7. 60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题【难度】4星【题型】解答【解析】设汽车、摩托车、助力车、自行车的速度分别为a,b,c,d,设在12时骑自行车的与坐汽车的距离为x,骑自行车的与开摩托车的之间的距离为y.有(①+③)×2一(②+④),得310()x c d=+,即10()3x c d =+设骑自行车的在t时遇见骑助力车的,则(12)(), x t c d=-⨯+即10123t-=,所以1153t=.所以骑自行车的在15时20分遇见骑助力车的.【答案】15时20分家庭作业【作业1】甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题【难度】2星【题型】解答【解析】设x年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x),解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题【难度】2星【题型】解答【解析】设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声). 【答案】27【作业6】 小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。
六年级奥数优胜教育第8讲:列方程解应用题二含答案
第八讲列方程解应用题(二)例1:有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.例2:松鼠妈妈采松子,晴天每天可以采20个,雨天每天可以采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天是下雨天?例3:把金放在水里称,其重量减轻119;把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?例4:口袋中有若干红色和白色的球.若取走一个红球,则口袋中的红球占27;若取出的不是一个红球而是两个白球,则口袋中的白球占23.原来口袋中白球比红球多多少个?例5:张老师购买了一套教师住宅,原计划采取分期付款方式.一种付款方式是开始第一年先付7万元,以后每年付款1万元;另一种付款方式是前一半时间每年付款2万元,后一半时间,每年付款1万5千元.两种付款方式的付款总数和付款时间都相同.假如一次性付款,可以少付房款1万6千元.现在张老师决定采用一次性付款方式.问:张老师要付房款多少万元?例6:姐姐现在的年龄是弟弟当年年龄的4倍,姐姐当年的年龄和弟弟现在的年龄相同,姐姐与弟弟现在的年龄和为26岁,则弟弟现在的年龄是多少岁?A1.用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?2.某八位数形如2abcdefg,它与3的乘积形如4abcdefg,则七位数abcdefg应是.3.有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.4.小军原有故事书的本数是小力的3倍,小军又买来7本书,小力买来6本书后,小军所有的书是小力的2倍,两人原来各有多少本书?5.共有多少人参加测验?6.甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.7.某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各自买票少花120元,问这个旅游团一共有多少人?8.有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。
小学六年级奥数系列讲座:方程与方程组(含答案解析)
方程与方程组1内容概述二元、三元一次方程组的代入与加减消元法.各种可通过列方程与方程组解的应用题,求解时要恰当地选取未知数,以便于将已知条件转化为方程.典型问题1.一个分数,分子与分母的和是122,如果分子、分母郡减去19,得到的分数 约简后是15.那么原来的分数是多少? 【分析与解】方法一:设这个分数为122aa-,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得。
=14.所以原来的分数是3389.2.有两堆棋子,A 堆有黑子350和白子500个,B 堆有黑子400个和白子100个.为了使A 堆中黑子占50%,B 堆中黑子占75%,那么要从B 堆中拿到A 堆黑子多少个?白子多少个?【分析与解】 要使A 堆中黑、白子一样多,从B 堆中拿到A 堆的黑子应比白子多150个,设从B 堆中拿白子x 个,则拿黑子(x +150)个.依题意有400(15).400100(2150)x x -++-+=75%, 解得x =25. 所以要拿黑子25+150=175个.白子25个 .3.A 种酒精中纯酒精的含量为40%,B 种酒精中纯酒精的含量为36%,C 种酒精中纯酒精的含量为35%.它们混合在一起得到了纯酒精的含量为38.5%,的酒精11升,其中B 种酒精比C 种酒精多3升.那么其中的A 种酒精有多少升?【分析与解】 设c 种酒精x 升,则B 种酒精戈x+3升,A 种酒精ll-x-(x+3) 升.有:[11-x-(x+3)] +4%+( x +3)×36%+ x×35%=11×38.5%解得x =0.5. 其中A 种酒精为11-2x-3=7(升).4.校早晨6:00开校门,晚上6:40关校门。
六年级奥数讲义列方程解应用题
小升初名校真题专项测试-----方程解应用题测试时间:15分钟 姓名_________ 测试成绩_________1、10名同学参加数学竞赛,前4名同学平均得分150分,后6名同学平均得分比10人的平均分少20分,这10名同学的平均分是________分. (06年清华附中入学测试题) 【解】:设10人的平均分为a 分,这样后6名同学的平均分为a-20分,所以列方程: [ 10a-6×(a-20)]÷4=150 解得:a=120。
2、某商店想进饼干和巧克力共444千克,后又调整了进货量,使饼干增加了20千克,巧克力减少5%,结果总数增加了7千克。
那么实际进饼干多少千克? (02年人大附中入学测试题) 【解】:设饼干为a ,则巧克力为444-a ,列方程: a+20+(444-a )×(1+5%)-444=7 解得:a=184。
3、某文具店用16000元购进4种练习本共6400本。
每本的单价是:甲种4元,乙种3元,丙种2元,丁种1.4元。
如果甲、丙两种本数相同,乙、丁两种本数也相同,那么丁种练习本共买了_________本。
(06年试验中学入学测试题) 【解】:设甲、丙数目各为a ,那么乙、丁数目为226400a-,所以列方程4a+3×226400a-+2a+1.4×226400a-=16000 解得:a=1200。
4、六年级某班学生中有161的学生年龄为13岁,有43的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是_________岁。
(03年圆明杯试题) 【解】:因为是填空题,所以我们直接设这个班有16人,计算比较快。
所以题目变成了:1个学生年龄为13岁,有12个学生年龄为12岁,3个学生学生年龄为11岁,求平均年龄? (13×1+12×12+11×3)÷16=11.875,即平均年龄为11.875岁。
六年级奥数第5讲:列方程解应用题-课件
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡开丹放花;,源自而选有择的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,
选
择
在
夏
我们,还在路上……
乙车的速度是45千米/小时。
例题五(选讲)
将20%的盐水与5%的盐水混合,配成15%的盐水
600克,需要20%的盐水和5%的盐水各多少克?
溶剂
溶液=溶质+溶剂 浓度= 溶质 ×100% 溶液
溶质
解:设20%的盐水的质量为x克, 则5%的盐水的质量为(600-x)克,
溶液
20% x+5%(600-x)=600×15% x=400
2
x+3 x+1+1 x-1=180 2 x=40
第二车间的人数: 3×40+1=121(人) 第三车间的人数:1 ×40-1=19(人)
2
答:第一车间有40人,第二车间有121人, 第三车间有19人。
练习三
甲、乙、丙三种货物共有167吨,甲种货物比乙种
货物的2倍少5吨,丙种货物比甲种货物的1 多3吨,求甲、
27=3 x
x=9
答:今年米德9岁。
练习一
妈妈今年的年龄是女儿的3倍,5年前的年龄 是女儿的4倍。今年妈妈、女儿各是多少岁?
解:设今年女儿x岁,那么妈妈就是3 x岁,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数专题培优讲义
列方程解应用题及解析
知识点梳理:
对于应用问题,解答方法往往不唯一, 列方程解应用题便是其中的一种方法。
这种解法 的优越性是比较符合人们的习惯。
准确地找出题目中的等量关系,恰当地设出未知数后列出 方程是解题的关键。
特另惺对于比较复杂的应用题,挖掘出题目中比较“隐蔽”的等量关系用 于用于设未知数或列方程,就更为重要。
典型例题精选:
【例11 ★有两根绳子,第一根长 56 cm,第二根长36 cm 。
同时点燃后,平均每分钟都烧掉 2 cm,多少分钟后,第一根绳子的长度是第二根绳子长度的
【解析1设点燃x 分钟
【例21 ★★设有六位数l abcde ,乘以3后,变为abcdel,求这个六位数.
【解析1设:五位数 abcde =x ,则 1abcde =i00000+x , abcdel =io x +i 3(100000+x )= 10 x +1, x =42857,六位数为 142857
1
【例31 ★某班43名同学,其中3名男生和女生的 丄参加书法比赛,剩下的男生比女生少
5
5人,则这个班男、女生个多少人?
【解析1设女生有 x 人,男生有(43-x )人
1
43-x- 3= (1-一 ) x -5 , x =25, 43-x =18
5
【例41 ★★小方与朋友约好下午 4: 30分在咖啡厅见面,两人在早上 & 00分同时将自己 的表对准,小方下午 4: 30准时到达咖啡厅,他的朋友没有来,原来朋友的手表比准确的 时间每小时慢4分钟,朋友按照自己手表的 4: 30到达。
问小方需要等候多少时间?
【解析1设需等候 x 分钟,
56
3
510= (510+x ) , X =36^
60 7
【例51 ★同学们参加野炊,一摸同学到负责后勤的老师处领碗,老师问他领多少,他说领 55个。
又问他多少人吃饭,他说一人一个饭碗,两人一个菜碗,三人一个汤碗。
问这名同 学给多少人领碗?3倍? 56-2 x =3(36-2 x ) x =13
【解析】设有x人
1 1
x+-x+ — x=55 , x=30
2 3
【例6] ★今年姐妹俩的岁数加起来是55岁。
曾经有一年姐姐的岁数是今年妹妹的岁数,
那时姐姐的岁数恰好是妹妹岁数的2倍。
姐妹俩今年各多少岁?
【解析】设姐姐今年x岁,则妹妹今年(55- X)岁;
[x-(55 -X)]年前,姐姐(55-X )岁,妹妹[55- x-(2 x-55)]岁
55-x=2[55-x-(2 X-55)], x=33, 55-33=22
【例7] ★★甲乙丙丁四个人参加数学竞赛,甲得了88分,丙得了85分,丁得了90分, 乙的分数比四个人的平均分多4分,则乙的成绩是多少?
【解析】设乙的分数为x,平均分为(x-4)
4(x-4)=88+85+90+x, x=93
【例8] ★★六年级三个班共有118人,2班人数是1班人数的2倍少30人,3班人数是1
班人数的一半还多15人,则三个班各有多少人?
【解析]设1班有X人,贝y 2班有(2X-30)人,3班有(1 X+15)人
2
X+2X-30+ 【小试牛刀]
1
(-X+15)=118, x=38. 2 班=46 人,3 班34 人.
2
有三个数,任取两数相加,其和分别为37、29、18,则这三个数分别是多少?
【解析]x+y=37, y+z=29, z+x=18,解得x=13, y=24, z=5
5
【例9] ★★高中学生的人数是初中学生人数的5,高中毕业生的人数是初中毕业生人数的
6
12
12,初、高中毕业生离校后,初、高中留下的人数都是
17
多少人?
520人。
那么初、高中毕业生共有
12
【解析]设初中毕业生有X人,则高中毕业生有12 X人
17
12 5 12
—x+520 =—(X+520),解得X=680, — x=480,
17 6 17
680+480=1160人
【小试牛刀]会议开始时,陈老师看了一下手表,会议结束时,陈老师又看了一下手表,
结果分针与时针恰好调换了位置。
会议是下午三点到四点之间开始的,五点到六点之间结
束的,请问会议何时召开?何时结束?
【解析】设黑球每个重 x 克,白球每个重y 克,则
「4x-2y = 20 ,解得 4y — 2x = 50 x=15
y = 20
L
【小试牛刀】某车间有 77名工人,每人每天可加工甲种零件 5个或乙种零件4个,或丙种 零件3个。
已知3个甲种零件1个乙种零件和9个丙种零件恰好配成一套。
问应安排生产 甲乙丙三种零件各多少人,才能使生产的三种零件恰好配成套?
【解析】设:加工乙种零件 x 个,则加工甲种 3x 个,丙种9x 个
1 —x 4 1 —x 4 =5人, -x =77,解得 x=20, 3 3 9 —X = 1
2 人,—x = 60 人. 5 3
课后作业
1.某校736名同学外出参观,共租用了 12辆客车。
已知大客车可乘 75人,小客车可乘
34人,全部坐满。
求大、小客车分别有几辆?
【解析】设大客车有 x 辆,则小客车有(12-X )辆
75X+34(12-X )=736
x=8, 12-x=4
2.甲数是乙数的6倍,若两数各增加 30,则甲数是乙数的 3倍,甲乙两数各是多少?
【解析】设乙数是 X ,则甲数是6x
6x+30=3 (x+30)
62 X = 26—— 【解析】设会议3点X 分开始,5点y 分结束,则{ 12,解得I 143
l y =15」 l y =17 丝
I 12 I 143
【例10】★★★ 一台天平,右盘上有若干重量相等的白球, 左盘上有若干重量相等的黑球, 这时两边平衡。
从右盘取一个白球置于左盘,再把左盘的两个黑球置于右盘上,同时给左 盘加20克砝码,这时两边也平衡;若从右盘移两个白球到左盘,再从左盘移一个黑球到右
盘上,则需再放 50克砝码于右盘上,两边才平衡。
问白球、黑球每个各重多少克?
x=20, 6x=120
3.小林做假期作业,如果每天做 4道,按计划时间还有 48道题不能完成;如果每天做 6
道,按计划做完后还有时间多做
8道题。
问共有多少道作业题?计划做几天? 【解析】设计划做 x 天, 4x+48=6x-8
x=28, 4x+48=160
所得的余数之和为13。
试求甲所得的余数。
【解析】设甲所得的商为 x ,余数为y ,乙所得的商为
8x+y =9z +( 13-x )
整理得:9( x-z )=i3-y ,因为(13-y )是9的倍数, 3
5. 2个蟹将和4个虾兵能打扫龙宫的 —,8个蟹将和10个虾兵就能打扫完整个龙宫。
现
10
在要清扫整个龙宫,只用虾兵或只用蟹将分别需要多少个?
4.甲、乙二人做同一个数的带余除法,甲将其除以
8,乙将其除以9,甲所得的商数与乙 乙余数为(13-x )
而y 是被8除的余数,所以y =4
【解析】设工作量为“1”,每个蟹将的工效为x,每个虾兵的工效为y
,
卜十幼嗚,解得p x +10y =1 丄12 1 30
所以虾兵用30个,蟹将用12个.。