光电型脉搏传感器的原理及其应用

合集下载

光电容积脉搏波原理

光电容积脉搏波原理

光电容积脉搏波原理引言:光电容积脉搏波(Photoplethysmography,PPG)是一种非侵入性的生物测量技术,通过测量皮肤血管中的血液容积变化来获取脉搏波信号。

该技术广泛应用于医疗领域,用于监测心率、血压、血氧饱和度等生理指标。

本文将介绍光电容积脉搏波的原理及其在临床中的应用。

一、光电容积脉搏波的原理光电容积脉搏波是基于光电效应的测量原理,通过红外光源照射皮肤组织,被照射的组织反射出的光线被光电传感器接收并转化为电信号。

当心脏搏动时,血液流动使得皮肤血管的容积发生变化,从而引起被照射组织的反射光强发生变化。

光电传感器将接收到的光信号转化为电信号,并经过放大和滤波等处理后,得到脉搏波信号。

二、光电容积脉搏波信号的特点光电容积脉搏波信号具有以下几个特点:1. 信号波形:脉搏波信号呈现出典型的起伏波形,其中的波峰表示心脏收缩时的血液流动峰值,波谷表示心脏舒张时的血液流动最小值。

2. 信号幅度:脉搏波信号的幅度与皮肤血管的血液容积变化有关,因此可以通过信号的幅度变化来反映血液容积的变化情况。

3. 信号频率:脉搏波信号的频率与心率有关,通过计算信号的周期,可以得到心率的信息。

三、光电容积脉搏波的应用1. 心率监测:光电容积脉搏波可以实时监测心率的变化,通过连续监测心率,可以及时发现心律失常等心脏疾病。

2. 血压监测:通过测量光电容积脉搏波信号的幅度变化,可以估计血压的变化趋势,从而提供血压监测的参考依据。

3. 血氧饱和度监测:光电容积脉搏波可以间接估计血氧饱和度,通过分析脉搏波信号中的波峰和波谷,可以得到血氧饱和度的信息。

4. 运动监测:通过测量光电容积脉搏波信号的幅度和频率变化,可以评估人体在运动过程中的代谢情况,为运动训练提供指导。

四、光电容积脉搏波的优势和局限性光电容积脉搏波作为一种非侵入性的生物测量技术,具有以下优势:1. 无创伤:不需要穿刺皮肤,避免了传统测量方法的疼痛和感染风险。

2. 实时性:光电容积脉搏波可以实时监测生理指标的变化,提供即时反馈。

光电监测心率方案

光电监测心率方案

光电监测心率方案1. 引言光电监测心率是一种非侵入式的监测心率的方法,通过使用光电传感器来检测心率的变化。

本文将介绍光电监测心率的原理、应用场景、硬件和软件方案,以及相关的优缺点和注意事项。

2. 原理光电监测心率的原理基于反射式光电技术。

通过一个发光二极管(LED)发出红外光或绿色光,血液中的红色血红蛋白能够吸收这些光线,而血液中的脉搏会导致血液的流动和光线的吸收程度发生变化。

光电传感器接收到反射回来的光线,并通过计算光线的变化来获取心率数据。

3. 应用场景光电监测心率方案广泛应用于健康监测设备和运动追踪设备中。

以下是一些常见的应用场景:•智能手环和智能手表:通过佩戴在手腕上的设备,可以实时监测用户的心率,并提供健康报告和提醒功能。

•运动耳机:通过在耳机上集成光电传感器,可以在运动过程中监测用户的心率,为用户提供运动数据和健身建议。

•医疗设备:光电监测心率方案也可以应用于一些医疗设备中,用于监测和记录患者的心率变化。

4. 硬件方案4.1 发光二极管(LED)选择合适的发光二极管是设计光电监测心率方案的重要一环。

常见的有红外光LED和绿色光LED两种选择。

红外光LED对肤色的影响较小,适用于长时间佩戴,但对环境光的影响较大。

绿色光LED的环境光干扰较小,但对皮肤过敏较敏感的人可能产生不适。

4.2 光电传感器光电传感器用于接收反射回来的光线,并将其转换为电信号。

常见的光电传感器有光电二极管(Photodiode)和光电三极管(Phototransistor)。

光电二极管具有较高的灵敏度和响应速度,适用于高精度的心率监测。

光电三极管灵敏度较低,但成本更低。

4.3 信号处理器信号处理器主要用于对光电传感器的信号进行滤波、放大等处理,以提取出准确的心率数据。

常见的信号处理器包括专用的心率处理芯片和通用的微控制器(MCU)。

4.4 供电和通信模块光电监测心率方案通常需要电池供电,并通过蓝牙、无线电频率等模块与手机或其他设备进行通信。

hk2000c型人体脉搏传感器原理

hk2000c型人体脉搏传感器原理

hk2000c型人体脉搏传感器原理HK2000C型人体脉搏传感器是一种基于光电式原理的传感器,用于测量人体脉搏的频率和节律。

其工作原理是通过发射一束红外光线到皮肤上,并通过光电二极管接收反射回来的光信号,从而获取脉搏波的信息。

人体脉搏是心脏搏动引起的动脉血液脉动,其主要特点是规律、有节律、有一定的脉压和脉搏波形。

脉搏传感器通过测量脉搏波形的频率和节律,可以获取人体的心率和心律信息,为健康监护等应用提供基础数据。

在HK2000C型脉搏传感器中,红外光源和光电二极管被安装在同一个传感器头部的外壳中。

红外光源通常使用红外发光二极管(IR LED),其工作波长为940nm,属于人眼不可见的红外光。

光电二极管则可以是光电晶体管(photodiode)或光电二极管传感器(phototransistor),它负责接收从皮肤反射回来的红外光信号。

当传感器头部接触到皮肤表面时,红外光源会发出一束红外光穿过皮肤组织,并被血液吸收或反射。

根据光的吸收特性,当光线穿过皮肤组织时,会被不同程度的血液吸收。

因此,当血液通过动脉时,会引起光强度的微小变化。

这些微小的光强度变化可以被光电二极管敏感地接收到。

光电二极管接收到反射回来的红外光信号后,将其转化为相应的电信号。

这个电信号经过放大和滤波处理,然后通过模数转换器(ADC)转换为数字信号。

这样就得到了一个脉搏波的数字信号,可以通过计算脉搏波的时间间隔来计算心率和心律。

在实际使用中,为了提高测量的准确性和稳定性,HK2000C型脉搏传感器通常会使用了一些技术手段来对信号进行处理和优化。

例如,可以使用滤波和放大电路来提高信号的质量和强度。

另外,还可以使用数字信号处理算法来消除环境光的干扰,以及对脉搏信号进行分析和提取特征。

总结起来,HK2000C型人体脉搏传感器的工作原理是通过发射红外光并接收反射回来的红外光信号来测量人体脉搏的频率和节律。

通过将红外光信号转化为电信号,经过处理和分析,可以得到心率和心律等相关的生理信息。

光电心率传感器原理

光电心率传感器原理

光电心率传感器原理
光电心率传感器是一种通过测量心脏跳动产生的脉搏波信号来监测心率的装置。

其原理基于脉搏波信号的特征,该信号可以在皮肤表面被光电传感器捕捉到。

光电心率传感器的工作原理可以简单分为两个步骤:光照射和光电传感。

首先,光照射。

传感器通常包括一个红外光源和一个光敏元件。

红外光源发出红外光,该光能够透过皮肤表面,达到血液中的血管。

接下来,光电传感。

光敏元件位于皮肤表面附近,它会接收由红外光照射到皮肤上的血管导致的反射光信号。

这个反射光信号的强度会随着血流量的变化而产生变化。

当心脏跳动时,血流量增加,将导致较强的反射光信号;当心脏放松时,血流量减少,反射光信号会变弱。

通过测量这些不同的光信号强度,传感器可以确定心脏的跳动频率。

为了确保准确性,该传感器通常会采集多次心脏跳动产生的脉搏波信号,并对其进行平均处理。

这样可以减少由于外界干扰或信号噪声引起的偏差。

值得注意的是,由于皮肤的透明度和血管位置的不同,不同人群和不同部位的测量结果可能会稍有差异。

因此,在使用光电心率传感器时,应该按照使用说明书进行正确的操作并进行数据的适当分析和解读。

光电心率原理

光电心率原理

光电心率原理光电心率监测技术是一种通过光电传感器来监测人体心率的技术。

它利用光电传感器对皮肤微血管的血流情况进行监测,从而得出心率数据。

这种技术已经被广泛运用在各类智能手环、智能手表等可穿戴设备上,成为了现代健康管理的重要工具之一。

在光电心率监测技术中,光电传感器发射出的光线会穿透皮肤,并被微血管所吸收。

由于心跳会导致微血管的血流量发生变化,因此光电传感器接收到的光线强度也会随之发生变化。

通过对这种光线强度的变化进行监测和分析,就可以得出人体的心率数据。

光电心率监测技术的原理主要包括两个方面,光的吸收和光的散射。

在皮肤组织中,血液对不同波长的光有不同的吸收能力,因此可以通过测量不同波长光线的吸收情况来得出血液的含氧量,从而间接得出心率数据。

另一方面,当心跳导致微血管的血流量发生变化时,会导致皮肤组织对光的散射情况也发生变化,通过监测这种光线散射的变化,同样可以得出心率数据。

光电心率监测技术相比传统的心率监测方式具有许多优势。

首先,它不需要使用传统心率带那样需要紧贴皮肤并且容易滑落的设备,而是通过佩戴在手腕上的设备就可以实现心率监测,使用起来更加方便。

其次,光电心率监测技术可以实现24小时不间断的心率监测,能够更加全面地了解个体的心率变化情况。

此外,光电心率监测技术还可以实现对运动中的心率变化进行实时监测,能够更好地指导运动健身。

然而,光电心率监测技术也存在一些局限性。

首先,由于光线的穿透深度和血管的深度有限,因此在某些情况下可能无法准确监测到心率数据,例如在手部运动时。

其次,光电心率监测技术对设备本身的精度要求较高,需要保证光电传感器的稳定性和准确性,这也增加了设备的制造成本。

总的来说,光电心率监测技术作为一种新型的心率监测技术,具有许多优势和潜力。

随着科技的不断进步和人们对健康管理的重视程度的提高,相信光电心率监测技术将会在未来得到更广泛的应用和发展。

光电式脉搏传感器的原理

光电式脉搏传感器的原理

光电式脉搏传感器的原理根据郎伯-比尔(lamber-beer)定律,物质在一定波长处的吸光度和他的浓度成正比,当恒定波长的光照射到人体组织上时,通过人体组织吸收、反射衰减后测量到的光强在一定程度上反映了被照射部位组织的结构特征。

脉搏主要由人体动脉舒张和收缩产生的,在人体指尖,组织中的动脉成分含量高,而且指尖厚度相对其他人体组织而言比较薄,透过手指后检测到的光强相对较大,因此光电式脉搏传感器的测量部位通常在人体指尖。

手指组织可以分成皮肤、肌肉、骨骼等非血液组织和血液组织,其中非血液组织的光吸收量是恒定的,而在血液中,静脉血的搏动相对于动脉血是十分微弱的,可以忽略,因此可以认为光透过手指后的变化仅由动脉血的充盈而引起的,那么在恒定波长的光源的照射下,通过检测透过手指的光强可以间接测量到人体的脉搏信号。

一、光电式脉搏传感器的结构从光源发出的光除被手指组织吸收以外,一部分由血液漫反射返回。

其余部分透射出来。

光电式脉搏传感器按照光的接收方式可分为透射形式和反射式2种[2],其中透射式的发射光源与光敏接收器件的距离相等并且对称布置,接收的是透射光,这种方法可较好地反映出心律的时间关系,但不能精确测量出血液容积量的变化;反射式的发射光源和光敏器件位于同一侧,接收的是血液漫反射回来的光,此信号可以精确地测得血管内容积变化。

本文讨论的是透射式脉搏传感器,侧重于脉搏信号的测量。

二、光电式脉搏传感器的制作1、光敏器件光电式脉搏传感器由于采用不同的光敏元件有着多种实现方法,其中光敏元件主要有光敏电阻、光敏二极管、光敏三极管和硅光电池,在传统的光电式脉搏传感器设计中,通常采用的是独立光敏元件,利用半导体和光电效应改变输出的电流,通常光敏元器件输出的电流极低,容易受到外界干扰,而且对后续的放大器的要求比较严格,需要放大器空载时的电流输出较小,避免放大器空载输出电流对脉搏信号测量的干扰,这样对于普通的放大器就不能直接应用在光敏元件的后端。

光电传感器测脉搏原理

光电传感器测脉搏原理

光电传感器测脉搏原理
光电传感器是一种能够将光的信号转换成电信号的传感器,广泛应用于医疗、健身等领域。

其中,光电传感器测脉搏原理是一种常见的应用场景。

下面,我们来分步骤阐述光电传感器测脉搏原理。

第一步:脉搏检测
脉搏检测是首先需要完成的步骤。

通常情况下,我们可以在手腕、脚踝等部位感知到脉搏。

通过手指或其他工具将脉搏感知到后,即可进行下一步操作。

第二步:光电传感器测量
为了使用光电传感器进行测量,我们需要将传感器通过电缆连接至读取设备,例如运动手环、智能手表等。

通过连接设备,传感器可以将感知的光信号和读取设备进行交互,将脉搏信息转化成电信号,并传递给读取设备。

第三步:数据显示
读取设备会将传感器采集到的数据进行处理,将脉搏信号转换成数值,然后通过显示屏幕、App等方式进行展示。

用户可以通过查看屏幕或App上的数据,了解自己的脉搏情况。

需要注意的是,由于光电传感器本身具有一定的误差,因此在使用时需注意一些误差因素,例如传感器的位置、使用时间等因素。

总之,光电传感器测脉搏原理是一种简单、便捷的测量方式,能够在医疗、健身等领域得到广泛应用。

用户可以通过了解和掌握相关使用方法,更好地利用和管理自己的健康数据。

光电传感器原理及应用领域

光电传感器原理及应用领域

光电传感器原理及应用领域光电传感器是一种能够将光信号转换为电信号的传感器。

它利用光电效应和半导体材料的特性来实现光信号的转换。

光电传感器具有高灵敏度、高精度和快速响应的特点,广泛应用于工业、农业、医疗、环境监测、安防等领域。

光电传感器的原理主要基于光电效应。

光电效应是指当光线照射到物质表面时,会激发出电子从物质表面跃迁到导带中。

光电传感器通常由光电二极管或光电三极管组成。

当光线照射到光电传感器的敏感区域,光电二极管或光电三极管中的半导体材料会吸收光能,产生电子-空穴对。

电子将被推向导电层,形成电流。

通过测量电流的大小,我们可以知道光线的强度。

光电传感器的应用领域非常广泛。

以下是一些常见的应用:1. 工业自动化:在工业自动化领域,光电传感器常用于检测和计数产品。

例如,在生产线上,光电传感器可以用来检测产品的存在和位置,以便进行适当的操作和控制。

2. 机器人技术:光电传感器可以用于机器人技术中的姿态感知和避障。

通过在机器人周围安装光电传感器,可以检测到障碍物并避免碰撞。

3. 光电开关:光电开关是一种基于光电传感器原理的开关装置。

它可以通过光束的中断或反射来触发电路的开关动作。

光电开关在自动化控制系统中广泛应用,例如自动门、自动售货机等。

4. 医疗设备:光电传感器在医疗设备中有广泛应用。

例如,在心率监测仪中,光电传感器可以检测到脉搏的变化,以实时监测病人的心率。

在血氧饱和度测量仪中,光电传感器可以用来测量血液中的氧气含量。

5. 环境监测:光电传感器可以用于环境监测中的气体检测。

例如,通过测量光电传感器上氧化剂的氧化速率,可以确定大气中有毒气体的浓度。

6. 安防系统:光电传感器在安防系统中的应用也非常常见。

例如,在入侵报警系统中,光电传感器可以用来检测到房间内是否有人进入,从而触发报警。

综上所述,光电传感器通过光电效应实现了光信号到电信号的转换,具有高灵敏度、高精度和快速响应的特点。

它在工业、农业、医疗、环境监测、安防等领域都有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学光电检测技术论文光电型脉搏传感器的原理及其应用The principle of type photoelectric pulse sensor and itsapplication学生姓名:张先绪专业:生物医学工学号:110811117指导教师:庞春颖学院:生命科学技术学院二〇一四年十二月摘要:介绍了光电式脉搏传感器的原理和设计方案,采用集成光敏部件和放大器的光敏芯片代替传统的分立光敏器件实现对脉搏的测量。

芯片的集成化能够有效减小器件间匹配引起的干扰,提高脉搏测量精度。

在实验测试过程中,采用该光电式脉搏传感器对人体的脉搏进行实时测量,对脉搏信号测量可能引起的噪声来源做了分析,并做相应的抗干扰处理,得到比较理想的脉搏波形,为脉搏信息的提取和分析提供了良好的数据。

关键词:脉搏信号;光电容积法;脉搏传感器;噪声分析Abstract:The PPG pulse sensor is attached to the finger base for monitoring beat to beat paring with the traditional design,the pulse sensoruses a new integrated chip,which is integrated the photosensitive unit and the signal amplifier.This design can efficiently remove the system noise and improve the precision of measure.In the experiment,using the newPPG pulse sensor can measure the pulse directly from the pulse in real time.At the same time,making the noise analysis and dealing with the measure noise,and getting a good pulse wave.Keywords:pulse signal;photoplethymograph;pulse sensor;noise anylsis第1章绪论1.1课题研究背景及意义随着人们生活水平的提高,地球环境遭到破坏,多种疾病威胁着人们的生命,而心脏病的发作又是人们难以预防的突发致命疾病。

在医学上,通过测量人的心率,便可初步判断人的健康状况。

因此,心率计很快产生并得到发展。

随着单片机技术的发展、人们的生活节奏加快,设计一种以使用方便为前提,能够快速测出人心率的心率计,不仅是临床者的需要,也是体育训练者和外出旅游者的需要。

1.2国内外现状传统的脉搏测量采用诊脉方式,中医脉象诊断技术就是脉搏测量在中医上卓有成效的应用, 但是受人为的影响因素较大,测量精度不高。

为了克服上述测量方法的不足,国内外脉搏测试不再局限于传统的人工测试法或听诊器测试法。

1.3研究内容利用血液是高度不透明的液体,光照在一般组织中的穿透性要比在血液中大几十倍的特点,可通过光电传感器对脉搏信号进行检测,并通过单片机技术进行数据处理,实现智能化的脉搏测试技术。

生物医学传感器是获取生物信息并将其转换成易于测量和处理信号的一个关键器件。

光电式脉搏传感器作为是根据光电容积法制成的脉搏传感器,通过对手指末端透光度的监测,间接检测出脉搏信号。

光电式脉搏传感器具有结构简单、无损伤、可重复好等优点。

根据光电容积法原理,从改善光源、消除景光噪声、电磁屏蔽和提高信噪比四个方面出发,研究改进方法,对提高使用的灵活性和准确度有着重大意义。

通过光电传感器对脉搏信号进行检测,并用单片机技术进行数据处理,实现智能化的脉搏测试技术。

第2章系统设计2.1光电式脉搏传感器的原理和结构2.1.1 光电式脉搏传感器的原理人体心室周期性的收缩和舒张导致主动脉的收缩和舒张,使血流压力以波的形式从主动脉根部开始沿着整个动脉系统传播,这种波称为脉搏波。

脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息,很大程度上反映出人体心血管系统中许多生理病理的血流特征。

根据郎伯-比尔(Lambert-beer)定律,物质在一定波长处的吸光度和它的浓度成正比,当恒定波长的光照射到人体组织上时,通过人体组织吸收、反射、衰减后测量到的光强在一定程度上反映了被照射部位组织的结构特征。

血液是高度不透明的液体,光在一般组织中的穿透性要比在血液中大几十倍。

一般情况下,当光子穿越介质时,因能量被吸收而导致的强度衰减可描述为:式中错误!未找到引用源。

是入射光强,错误!未找到引用源。

是与组织结构相关的吸收系数(哺乳动物的错误!未找到引用源。

值在0.1至100之间),错误!未找到引用源。

是沿光轴方向的坐标长度。

脉搏主要由人体动脉舒张和收缩产生的,在人体指尖,组织中的动脉成分含量高,而且指尖厚度相对其他人体组织而言比较薄,透过手指后检测到的光强相对较大,因此光电式脉搏传感器的测量部位通常在人体指尖。

图2-1 人体手指端还原蛋白与氧化蛋白光吸收率示意图手指组织可以分成皮肤、肌肉、骨骼等非血液组织和血液组织,其中非血液组织的光吸收量是恒定的,而在血液中,静脉血的搏动相对于动脉血是十分微弱的,可以忽略。

因此可以认为光透过手指后的变化仅由动脉血的充盈而引起的,那么在恒定波长的光源的照射下, 本设计利用透射式的测量方法,通过检测透过手指的光强可以间接测量到人体的脉搏信号。

2.1.2 光电式脉搏传感器的结构从光源发出的光除被手指组织吸收以外,一部分由血液漫反射返回。

其余部分透射出来。

光电式脉搏传感器按照光的接收方式可分为透射形式和反射式2种,其中透射式的发射光源与光敏接收器件的距离相等并且对称布置,接收的是透射光,这种方法可较好地反映出心律的时间关系,但不能精确测量出血液容积量的变化;反射式的发射光源和光敏器件位于同一侧,接收的是血液漫反射回来的光,此信号可以精确地测得血管内容积变化。

本文讨论的是透射式脉搏传感器,侧重于脉搏信号的测量。

2.2 主要元器件选择和功能介绍2.2.1传感器OPT101OPT101型传感器是美国B-B公司研制的集光敏器件(光敏二极管)与信号放大于一体的器件.采用单电源供电,压电输出。

输出电压随照射到光敏器件的光强度呈线性变化。

可用于医疗仪器、实验室仪表、位置与接近探测、图像分析、条线码扫描器、温室的光照度控制等。

OPT101型传感器内部电路结构如图4-2所示。

2.2.1传感器OPT101OPT101型传感器的性能、特点:(1)单电源供电 +2.7V~~+36V(2)光敏二极管的尺寸:0.09*0.09in(3)片内放大器反馈电阻:Rf=1MΩ(4)光敏二极管响应:0.45A/W(650nm时)(5)响应带宽:14K Hz(Rf=1MΩ)(6)静态电流:120mA(7 ) 采用8引脚DIP,5引脚SIP,与8引脚图 4-2 内部电路结构表面贴装封装(8)工作温度:0~70℃应用片内1MΩ与3pF组成的反馈网络,即将引脚4、5连接即构成基本应用电路;这是电路的输出幅度与照射光线波长的关系如图4-3,照射光线的入射角与输出幅度的关系如图3-4所示。

图4-3 输出幅度与照射光线波长的关系图4-4 输出幅度与入射角的关系2.2.2低功率运算放大器LM324LM324系列器件为价格便宜的带有真差动输入的四运算放大器。

与单电源应用场合的标准运算放大器相比,它们有显著的有点:该四放大器可以工作在低到3.0伏或高到32伏的电压下,静态电流大致为MC1741的五分之一(对每个放大器而言),共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性,输出电压范围也包括负电源电压。

其特点为:(1)短路保护输出(2)真差动输入级(3)单电源工作,3.0V~~32V (4)低输入偏置电流,最大100nA[LM324A] (5)每一个封装四个放大器(6)内部补偿(7)共模范围扩展到负电源(8)行业标准引脚输出(9)在输入端的静电放电位增加可靠性而不影响器件的工作2.2.3通用型集成电压比较器AD790双列直插式AD790单集成电压比较器,与集成运放相同,它有同相和反相两个输入端,分别是引脚2和3;正、负两个外接电源±VS,分别为引脚1和4;当单电源供电时,-VS应接地。

此外,引脚8接逻辑电源,其取值决定于负载所需高电平。

为了驱动TTL电路,应接+5V,此时比较器输出高电平为4.3V。

引脚5为锁存控制端,当它为低电平时,锁存输出信号2.3系统硬件设计主要包括信号采集和处理电路、单片机系统及显示电路两大部分。

2.3.1信号采集电路和处理电路本设计采用红色发光二极管发出的光线通过手指照射在OPT101的受光窗,当指尖的血流量随心脏跳动而改变时,从LED通过指尖到达受光窗的光线也随之改变,这样光电流也发生波动性变化,从而采集到心脏脉搏信号。

设计出来的电路图见下:图5-1 信号采集和处理电路具体说明:OPT101芯片的5号引脚输出波动的电压信号,经R2、C2、C3接到LM324放大器的反相输入端,为避免烦扰信号传到U1A的输入端,用C2、C3组成的双极性耦合电容将其隔离。

C4和R5构成低通滤波器,去除高频信号,截止频率为3.33Hz。

通过AD790电压比较器,将信号转换为方波信号输入单片机。

其中,左下方的LM324提供参考电压,R10为电位器,用于调节电压比较器的参考电压,以消除不同人手指的差异性。

2.3.2单片机系统及显示电路在单片机设计中,我们使用12MHz的晶振,用P0、P1和P2引脚控制三个数码管进行显示,P3^2引脚用来接收已转化为方波的脉搏信号,并且带有复位开关。

图5-2 单片机系统电路图2.3.3传感器机械结构设计下图为传感器外形及内部结构图。

左上为正视剖面图,左下为俯视剖面图,右上为左视剖面图,右下为示意图。

2.4单片机系统软件设计我们设计的单片机程序中,采用单片机内部定时器定时检测周期10s,在10s 过程中,P3^2引脚检测方波脉搏信号,每次高电平来临,系统进行判断:相邻两次高电平的时间差是否大于10ms,因为脉搏周期理论最大值为300ms,其中的高电平时间会更小(这跟人的心跳特征有关),此判断能消除电压比较器的误判和弥补个人心跳的差异性。

10s后心率显示在数码管上,并且每10s更新一次显示。

工作流程图见下。

图6 单片机工作流程图2.5光电式脉搏传感器的噪声分析及改进在测量过程中,前端测量到的脉搏信号十分微弱,容易受到外界环境干扰,因此需要对脉搏传感器的干扰噪声进行分析,从光电式脉搏传感器设计的技术角度减少干扰,使之能够准确测量到脉搏信号,光电式脉搏传感器的干扰主要有测量环境光干扰、电磁干扰、测量过程运动噪声,下面对上述情况结合实验测量做进一步的分析。

相关文档
最新文档