数字逻辑第一章作业参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 数字逻辑基础 作业及参考答案
()
P43
1-11 已知逻辑函数A C C B B A F ++=,试用真值表、卡诺图和逻辑图表示该函数。 解:(1)真值表表示如下:
输 入 输出 A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1
1
1
(2)卡诺图表示如下:
00 01 11 10 0 0 1 0 1 1
1
1
1
1
由卡诺图可得
C B C B A F ++==C B C B A ••
(3)逻辑图表示如下:
1-12 用与非门和或非门实现下列函数,并画出逻辑图。 解:(1)BC AB C B A F +=)
,,(BC AB •=
(2))+(•)+(=),,,(D C B A D C B A F D C B A +++=
题1-12 (1) 题1-12 (2)
A BC
1-14 利用公式法化简下列函数为最简与或式。
解:(2)C AB C B BC A AC F +++=C AB C B BC A AC +••= C AB C B C B A C A ++•++•+=)()()( C AB C B C C B C A C A B A ++•++++=)()(
C AB C C B C B C A C AB C A C B A C B A ++++++++= C AB C C B C B C A C AB C A C B A C B A ++++++++= C =
解(3)DE E B ACE BD C A AB D A AD F +++++++= DE E B BD C A A ++++=
E B BD C A +++=
解(5)))()((D C B A D C B A D C B A F +++++++++=
D C AB BCD A ABCD F ++=' D C AB BCD +=ABD BCD += D B AC D B A D C B F ++=)++)(++(=∴
P44
1-15利用卡诺图化简下列函数为最简与或式。 解:(3))+++)(+++)(+++)(+++(=D C B A D C B A D C B A D C B A F 方法1:)+++)(+++)(+++(=D C B A D C B A D C B A F
))((D C B A D CD D A D C C A D B C B B B A AD AC B A ++++++++++++++= ))((D C B A D C A B AC ++++++=
D C BD AD D C A C A C B A D B C B B A D AC ABC AC +++++++++++=
D C BD AD C A D B C B B A AC +++++++=
方法2:D C AB CD B A D BC A F
++=
F
的
卡
诺
图
解(5)),,,,,,,(=),,,(15141210
8
6
5
2
∑m m m m
m m m m m D C B A F
D C B A ABC D B D A D C D C B A F ++++=),,,(
1-16(1)),,,,(),,,,,(),,,(151********
9
6
4
2
d d d d d m m
m m m m D C B A F ∑∑+=
解:画出函数F 的卡诺图如下:
经化简可得ABC AD D A D C B A F ++=),,,(
1-16(3)),,,,,(),,,(),,,(11109321151413
d d d d d d m m m
m D C B A F ∑∑+=
解:画出函数F 的卡诺图如下:
经化简可得AC AD B A D C B A F ++=),,,( 1-18 (1)C B C A B A Z BC
AC AB Y ++=++=
解:画出函数Y 、Z 的卡诺图如下:
Y 的卡诺图
00 011 10
A BC
1
1-18(2)CD AB Z CD AB C B A Y +=+++=))((
解:CD ABC CD B ACD AB CD AB C B A Y ++++=+++=))((
Z 的卡诺图
1-19 已知A 、B 、C 、D 是一个十进制数X 的8421BCD 码,当X 为奇数时,输出Y 为1,否则Y 为0。请列出该命题的真值表,并写出输出逻辑函数表达式。
1-20 已知下列逻辑函数,试用卡诺图分别求出Y 1+Y 2和Y 1·Y 2,并写出逻辑函数表达式。
(1)⎪⎩⎪⎨⎧===∑∑)
,,,(),,(),,(),,(751024201m m m m C B A Y m m m C B A Y
解:分别画出Y 1、Y 2的卡诺图如下:
Y 1的卡诺图
2 将Y 1、Y 2卡诺图中对应最小项相或,得到Y 1+Y 2的卡诺图如下:
Y 1+Y 2的卡诺图 由此可得 将Y 1、Y 2卡诺图中对应最小项相与,得到Y 1·Y 2的卡诺图如下:
Y 1·Y 2的卡诺图 由此可得到 (2)⎪⎩⎪⎨
⎧+++=+++==D
C B A B
D A D C B A ABD D C B A Y BCD
D C B A D C B D C B A D C B A Y ),,,(),,,(21
解:分别画出Y 1、Y 2的卡诺图如下:
1