数据结构 绪论 关键知识点
数据结构的重点知识点
数据结构的重点知识点数据结构是计算机科学中非常重要的基础知识,它主要研究数据的组织、存储和管理方式。
在学习数据结构的过程中,有一些重点知识点需要特别关注和理解。
本文将从以下几个方面介绍数据结构的重点知识点。
一、线性表线性表是数据结构中最基本、最简单的一种结构。
它包括顺序表和链表两种实现方式。
1. 顺序表顺序表是线性表的一种实现方式,它使用一个连续的存储空间来存储数据。
顺序表的主要操作包括插入、删除和查找等。
2. 链表链表是线性表的另一种实现方式,它使用节点来存储数据,并通过指针将这些节点连接起来。
链表的主要操作包括插入、删除和查找等。
二、栈和队列栈和队列是线性表的特殊形式,它们的主要特点是插入和删除操作只能在特定的一端进行。
1. 栈栈是一种先进后出(LIFO)的数据结构,它的插入和删除操作都在栈顶进行。
栈的主要操作包括入栈和出栈。
2. 队列队列是一种先进先出(FIFO)的数据结构,它的插入操作在队尾进行,删除操作在队头进行。
队列的主要操作包括入队和出队。
三、树和二叉树树是一种用来组织数据的非线性结构,它由节点和边组成。
树的重点知识点主要包括二叉树、二叉搜索树和平衡树等。
1. 二叉树二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点。
二叉树的主要操作包括遍历、插入和删除等。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的所有节点的值都小于根节点的值,右子树中的所有节点的值都大于根节点的值。
二叉搜索树的主要操作包括查找、插入和删除等。
四、图图是由节点和边组成的一种复杂数据结构。
图的重点知识点主要包括有向图和无向图、图的遍历和最短路径算法等。
1. 有向图和无向图有向图和无向图是图的两种基本形式,它们的区别在于边是否有方向。
有向图的边是有方向的,而无向图的边没有方向。
2. 图的遍历图的遍历是指对图中的每个节点进行访问的过程。
常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
数据结构重点知识点
数据结构重点知识点数据结构是计算机科学中的重要基础课程,它研究计算机数据的组织、存储、检索和操作方式。
掌握数据结构的重点知识点对于学习和理解编程语言以及设计高效算法非常重要。
本文将介绍数据结构的一些重点知识点,包括线性表、树、图和算法。
一、线性表线性表是数据结构中最简单、最基本的一种结构。
线性表中的数据元素之间存在着一对一的关系,也就是说每个元素只有一个前驱和一个后继。
常见的线性表有数组和链表。
数组是一种连续存储的线性表,它的大小是固定的,一旦定义了数组的大小,就不能再改变。
数组的访问速度是很快的,但是插入和删除元素的速度较慢。
链表是一种离散存储的线性表,它的大小可以动态改变。
链表的插入和删除元素的速度较快,但是访问元素的速度较慢。
链表分为单链表、双链表和循环链表等。
二、树树是一种非线性表结构,它由节点组成,每个节点可以有零个或多个子节点。
树具有层次关系,树的最上层称为根节点,最下层称为叶子节点。
树的一些常见术语有父节点、子节点、兄弟节点和子树等。
二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。
二叉树可以是空树,也可以是只有一个根节点的树,还可以是每个节点都有左右子节点的树。
二叉搜索树是一种特殊的二叉树,它的左子节点的值都小于根节点的值,右子节点的值都大于根节点的值。
二叉搜索树可以提高搜索效率,对于有序的数据可以快速找到目标元素。
三、图图是一种非线性表结构,它由节点和边组成。
节点表示图中的元素,边表示节点之间的关系。
图可以分为有向图和无向图,有向图中的边有方向,无向图中的边没有方向。
图的存储方式有两种常见的方法,邻接矩阵和邻接表。
邻接矩阵是一个二维数组,其中的元素表示两个节点之间是否存在边。
邻接表是一种链表的数组,数组中的元素表示节点及其相邻节点的信息。
图的遍历有两种常见的方法,深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是先访问根节点,然后一直访问其子节点直到叶子节点,再回溯到上一个节点继续遍历。
数据结构大纲知识点
数据结构大纲知识点一、绪论。
1. 数据结构的基本概念。
- 数据、数据元素、数据项。
- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。
2. 算法的基本概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。
1. 线性表的定义和基本操作。
- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。
- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。
3. 链式存储结构。
- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。
1. 栈。
- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。
- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。
1. 串的定义和基本操作。
- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。
- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。
- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。
《数据结构》第一章重点知识梳理
第一章 绪论
求绝对值 abs(表达式) 求不足整数值 floor(表达式) 求进位整数值 ceil(表达式) 判定文件结束 eof(文件变量) (10)逻辑运算 与运算&&:对于A&&B,当A的值为0时,不在对B求值。 或运算||:对于A||B,当A的值为非0时,不在对B求值。 四、算法和算法分析 1.算法 (1)算法的定义
由于算法的时间复杂度考虑的只是对于问题规模n的增长率,因此在难以精确计算基本操作 执行次数(或语句频度)的情况下,只需求出它关于n的增长率或阶即可。 4.算法的存储空间需求
类似于算法的时间复杂度,以空间复杂度(spacecomplexity)作为算法所需存储空间的量 度,记作S(n)=O(f(n))其中n为问题的规模。
18
的表示。
①元素的表示。计算机数据元素用一个由若干位组合 起来形成的一个位串表示。
图1-1四类基本结构的关系图。
5
第一章 绪论
②关系的表示。 计算机中数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象。 并由这两种不同的表示方法得到两种不同的存储结构:顺序存储结构和链式存储结构。 a.顺序映象的特点是借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系。 b.非顺序映象的特点是借助指示元素存储地址的指针(pointer)表示数据元素之间的逻辑
数据元素(dataelement)是数据的基本单位,在计算机程序中通常作为一个整体进行考 虑和处理。
3
第一章 绪论
3.数据对象 数据对象(dataobject)是性质相同的数据元素的集合,是数据的一个子集。
4.数据结构 数据结构(datastructure)是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据结构的基本结构 根据数据元素之间关系的不同特性,通常有下列四类基本结构: ①集合。数据元素之间除了“同属于一个集合”的关系外,别无其它关系。 ②线性结构。数据元素之间存在一个对一个的关系。 ③树形结构。数据元素之间存在一个对多个的关系。 ④图状结构或网状结构。数据元素之间存在多个对多个的关系。
数据结构知识点总结
数据结构知识点总结在计算机科学中,数据结构是一门非常重要的基础学科,它研究的是数据的组织、存储和管理方式,以及如何对这些数据进行高效的操作和处理。
下面就让我们一起来梳理一下数据结构中的一些关键知识点。
一、线性表线性表是最基本的数据结构之一,它是由零个或多个数据元素组成的有限序列。
线性表有两种常见的实现方式:顺序表和链表。
顺序表是将数据元素存储在一段连续的内存空间中,通过数组来实现。
顺序表的优点是可以随机访问任意元素,时间复杂度为 O(1);缺点是插入和删除操作需要移动大量元素,时间复杂度为 O(n)。
链表则是通过指针将各个数据元素链接起来,不要求内存连续。
链表分为单链表、双链表和循环链表等。
链表的优点是插入和删除操作方便,只需修改指针,时间复杂度为 O(1);缺点是不能随机访问,需要从头开始遍历,时间复杂度为 O(n)。
二、栈和队列栈是一种特殊的线性表,它遵循“后进先出”(Last In First Out,LIFO)的原则。
可以将栈想象成一个只有一端开口的桶,先放入的元素被压在底部,后放入的元素在顶部,取出元素时只能从顶部取出。
栈的常见操作有入栈(push)和出栈(pop)。
队列则是遵循“先进先出”(First In First Out,FIFO)原则的线性表。
就像排队买票一样,先到的人先得到服务。
队列的常见操作有入队(enqueue)和出队(dequeue)。
三、数组和字符串数组是一种顺序存储的线性表,它的元素类型相同,并且存储在连续的内存空间中。
数组可以通过下标快速访问元素,但插入和删除操作的效率较低。
字符串是由字符组成的数组,在处理字符串时,常常需要进行字符串的比较、查找、拼接等操作。
常见的字符串算法有字符串匹配算法(如暴力匹配、KMP 算法等)。
四、树树是一种非线性的数据结构,它由节点和边组成。
常见的树结构有二叉树、二叉搜索树、AVL 树、红黑树等。
二叉树每个节点最多有两个子节点,分别称为左子节点和右子节点。
《数据结构》知识点总结
《数据结构》知识点总结数据结构知识点总结数据结构是计算机科学的重要基础学科,它研究各种数据元素之间的关系、组织和存储方式,以及在不同操作下的效率和性能。
掌握数据结构的基本概念和常见算法,对于编程和软件开发等领域都具有重要的意义。
本文将对数据结构的一些关键知识点进行总结和说明。
一、线性表线性表是数据结构中最基本和常见的一种类型,它包含了一组按顺序排列的元素。
线性表常见的表示方法有数组和链表两种。
1.1 数组数组是一段连续的内存空间,其中的元素通过索引来访问。
数组具有随机访问的特性,插入和删除元素的效率较低。
1.2 链表链表是由一系列节点构成,每个节点包含了数据和指向下一个节点的指针。
链表的插入和删除操作具有较高的效率,但随机访问的效率较低。
二、栈和队列栈和队列是两种特殊的线性表,它们限制了数据的插入和删除位置,使得操作具有明确的顺序。
2.1 栈栈是一种后进先出(LIFO)的数据结构,只允许在栈的顶端进行插入和删除操作。
栈的应用场景包括函数调用、表达式求值等。
2.2 队列队列是一种先进先出(FIFO)的数据结构,只允许在队列的一端插入元素,在另一端删除元素。
队列可以用于实现广度优先搜索、任务调度等。
三、树树是一种非线性的数据结构,它由一系列的节点和边构成。
树的组织方式使得运算效率更高,常见的树结构包括二叉树、堆和二叉搜索树等。
3.1 二叉树二叉树是一种每个节点最多有两个子节点的树结构。
它的遍历方式包括前序、中序和后序遍历,常用于表达式求值、文件系统等的表示和操作。
3.2 堆堆是一种特殊的树结构,它满足堆序性质,即父节点的键值总是大于(或小于)子节点的键值。
堆常用于实现优先队列和排序算法。
3.3 二叉搜索树二叉搜索树是一种有序的二叉树,它的左子树中的节点键值都小于根节点的键值,右子树中的节点键值都大于根节点的键值。
二叉搜索树可用于高效地进行查找、插入和删除操作。
四、图图是一种由节点和边构成的非线性数据结构,它用于描述事物之间的相关关系。
数据结构知识点全面总结_精华版
数据结构知识点全面总结_精华版数据结构是计算机科学中的重要概念,它涉及到如何有效地存储和组织数据,以便于程序的操作和管理。
在本文中,我将全面总结数据结构的核心知识点,以帮助读者深入理解和掌握这一领域的基础概念和算法。
一、线性结构1. 数组(Array)数组是一种线性结构,它由相同类型的元素组成,通过索引访问。
数组的特点是随机访问快,但插入和删除操作较慢。
2. 链表(LinkedList)链表由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
链表的特点是插入和删除操作快,但访问元素需要遍历整个链表。
3. 栈(Stack)栈是一种后进先出(LIFO)的数据结构,只允许在栈顶进行插入和删除操作。
栈的应用场景包括表达式求值、函数调用和递归等。
4. 队列(Queue)队列是一种先进先出(FIFO)的数据结构,只允许在队尾插入元素,在队头删除元素。
队列的应用场景包括任务调度和缓冲区管理等。
二、树形结构1. 二叉树(Binary Tree)二叉树是一种每个节点最多只有两个子节点的树形结构,它可以为空树。
二叉树的遍历方式包括前序、中序和后序遍历。
2. 堆(Heap)堆是一种完全二叉树,其中每个节点的值都大于等于(或小于等于)其子节点的值。
堆常用于实现优先队列和排序算法。
3. 平衡二叉树(Balanced Binary Tree)平衡二叉树是一种高度平衡的二叉树,它的左右子树的高度差不超过1。
平衡二叉树的例子包括AVL树和红黑树。
4. B树(B-Tree)B树是一种多路搜索树,它在一个节点中可以存储多个元素。
B树常用于数据库索引和文件系统等。
三、图形结构1. 图(Graph)图由节点和边组成,节点表示数据元素,边表示节点之间的关系。
图分为有向图和无向图,常用的表示方式有邻接矩阵和邻接表。
2. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历算法,它从起始节点开始,沿着一条路径尽可能深入,直到不能继续为止,然后回溯到前一个节点继续搜索。
数据结构知识点总结归纳整理
第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。
例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
数据类型是一个值的集合和定义在此集合上一组操作的总称。
•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。
抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。
通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。
#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。
分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。
2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。
3.数据的运算:包括运算的定义和实现。
运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。
一个算法有零个或多个的输入,有一个或多个的输出。
时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。
一般指最坏情况下的时间复杂度。
空间复杂度定义为该算法所耗费的存储空间。
算法原地工作是指算法所需辅助空间是常量,即O(1)。
第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。
数据结构知识点
数据结构需要熟练掌握的知识点第1章绪论1.1数据、数据结构的基本概念与重要性1.2 算法的概念与特征1.3 数据的基本存储结构1.4 计算机解决问题时基本方法第2章线性表2.1 线性表的顺序表示与链式表示2.2 顺序表的灵活操作如元素交换、元素移动,熟悉掌握其程序实现第3章栈和队列3.1 基本栈操作及特点3.2 栈满、栈空的判断3.3 基本队列操作及特点3.4 队满、队空的判断3.5 循环队列操作3.6 链栈、队列基本操作第4章串4.1 串的基本概念4.2 串的基本操作如求子串、匹配、连接、替换第5章数组与广义表5.1 数组的两种存储方式及地址计算5.2 稀疏矩阵的存储与压缩方式第6章树与二叉树6.1 二叉树结点度与结点、叶结点数的关系6.2 二叉树的链式表示,空指针域6.3 完全二叉树的顺序存储6.4 二叉树深度与结点个数关系6.5 二叉树的遍历,根据遍历结果画出二叉树6.6 二叉树与森林的转换6.2 哈夫曼树的建立、哈夫曼编码及带权路径长度第7章图7.1 图的基本概念如有向图/无向图、连通性、结点的度7.2 图的邻接矩阵、邻接表、逆邻接表表示7.3 图的强连通分量7.3 图的深度优先与广度优先遍历,以及其使用的辅助数据结构7.3 回路的判断7.4 最小生成树算法,获得每步结果7.5 拓朴排序原理第9章查找9.1 折半查找的具体步骤9.2折半查找的判定树及平均查找长度的计算9.3 二叉排序树的构建、结点插入和删除9.4 哈希表的基本概念9.5 各种哈希函数及其冲突解决机制9.6 链地址法、线性探测法所导致的散列表及平均查找长度的计算9.7 关键字比较次数第10章内排序5.1 内排序各类算法特点5.2 排序算法的稳定性概念5.3 直接插入排序、简单选择排序、冒泡排序、快速排序、归并排序的逐趟结果输出5.4 堆的建立与判断。
408-数据结构考研知识点整理
408-数据结构考研知识点整理一.绪论(一)数据结构1.基本概念a)数据●信息的载体b)数据元素●描述一个个体●是数据的基本单位c)组合项●构成数据元素的单位d)数据项●构成数据元素或组合项的不可分割的最小单位e)数据对象●具有相同性质的数据元素的集合f)数据类型●一个值的集合和定义在此集合上的一组操作的总称●原子类型●不可再分的数据类型●结构类型●其值可以再分解的数据类型●抽象数据类型●抽象数据组织及与之相关的操作●定义了数据结构的逻辑结构和运算g)数据结构●相互之间存在一种或多种特定关系的数据元素的的集合2.逻辑结构a)定义:数据元素之间的逻辑关系b)线性结构●线性表c)非线性结构●集合●树形结构●网状结构3.存储结构a)定义:数据结构在计算机中的表示(又称映像),也称物理结构b)顺序存储●逻辑上相邻的元素存储在物理位置也相邻的存储单元中●优点:可以实现随机存储,每个元素占用最少的存储空间●缺点:只能使用相邻的一整块的存储单元,可能产生较多的外部碎片c)链式存储●不要求物理位置相邻,借助指示元素存储位置的指针来表示元素之间的逻辑关系●优点:不会出现碎片现象,能充分利用所有存储单元●缺点:因存储位置指针而占用额外的存储空间,且只能实现顺序存储d)索引存储●在存储元素信息的同时,还建立附加的索引表●优点:检索速度快●缺点:附加的索引表额外占用存储空间,增加和删除数据时因修改索引表而耗时较长e)散列存储●根据元素关键字直接计算出元素的存储位置,又称哈希(Hash)存储●优点:检索、增加、删除结点速度都很快●缺点:可能出现元素单元冲突,处理冲突会增加时间和空间开销4.运算a)运算的定义●针对逻辑结构,指出运算的功能b)运算的实现●针对物理结构,指出运算的具体操作步骤(二)算法与算法评价1.基本概念出入穷定行a)定义:对特定问题求解步骤的一种描述b)5个特性●有穷性●一个算法可以在有穷时间内完成●确定性●算法中每条指令有其确定的含义,对于相同的输入有相同的输出●可行性●算法可以实现●输入●一个算法有0个或多个输入●输出●一个算法有1个或多个输出c)好的算法应达到的目标●正确性●正确求解问题●可读性●可读性高,易于理解●健壮性●合理处理非法输入,不易崩溃●效率和低存储量需求●时间复杂度低●空间复杂度低2.算法效率评价a)时间复杂度●一般不考虑最好时间复杂度●两个复杂度相加即取高阶●两个复杂度相乘即相乘●常见时间复杂度:常对幂指阶b)空间复杂度●算法所需的辅助空间,不包括指令、常数、变量和输入数据占用空间,即局部变量●算法原地工作指的是算法所需的辅助空间为常量二.线性表(一)逻辑结构1.具有相同数据类型的n (n≥0)个数据元素的有限序列2.表中元素具有逻辑上的顺序性,表中元素有其先后次序即线性有序3.次序从1开始,数组下标从0开始(二)线性表的顺序表示(顺序表)1.定义a)用一组地址连续的存储单元一次存储线性表中的数据元素,一个变量存储当前线性表长度b)支持随机存储的存储结构c)特点:表中元素的逻辑顺序与物理顺序相同d)静态分配●一旦空间占满,再加入新的数据就会产生溢出e)动态分配●一旦空间占满,就另外开辟一块更大的存储空间,用以替换原来的存储空间f)优点:支持随机存取,存储密度高g)缺点:插入删除操作需要大量移动元素2.实现a)插入●在顺序表L第i个位置插入新元素,第i个元素及其后所有元素依次往后移动一个位置●平均时间复杂度O(n)b)删除●删除顺序表L中第i个位置的元素,第i个元素之后的所有元素依次往前移动一个位置●平均时间复杂度O(n)c)查找●依次遍历所有值●平均时间复杂度O(n)(三)线性表的链式表示(链表)1.单链表a)定义●结点结构分为数据域和指针域●分为带头结点的单链表和不带头结点的单链表●头结点不存储数据b)操作●利用头插法建立单链表●读入数据的顺序和生成的链表的顺序是相反的●时间复杂度为O(1)●利用尾插法建立单链表●增加一个指向当前链表的尾指针r,使时间复杂度为O(1)2.双链表a)单链表中只有一个指向其后继结点的指针,双链表增加了一个指向其前驱结点的指针3.循环链表a)最后一个结点指向头结点b)判空条件:头结点的指针是否指向头结点4.循环双链表a)判空条件:头结点的前驱结点后驱结点是否指向头结点5.静态链表a)借助数组来描述线性表的链式存储结构b)结点的指针是结点的相对地址(数组下标)又称游标c)需要预先分配一块连续的内存空间d)主要用于不支持指针的高级语言中实现链表(四)顺序表和链表的比较1.存储(读写)方式a)顺序表:可顺序存取也可随机存取b)链表:只能从表头顺序存取元素2.逻辑结构与物理结构a)顺序表:逻辑结构相邻的元素,物理结构也相邻b)链表:不一定相邻,对应的逻辑关系通过指针链接来表示3.查找、插入和删除操作a)按值查找●顺序表无序时,两者的时间复杂度均为O(n)●顺序表有序时,可采用折半查找,时间复杂度为O(log2n)b)按序号查找●顺序表:O(1)●链表:O(n)c)插入、删除●顺序表:O(n)●链表:O(n)4.空间分配a)顺序表●静态分配:不能扩充●动态分配:空间可以扩充,但需移动大量元素b)链表●只要有内存可分配就可扩充(五)如何选取存储结构1.基于存储考虑a)难以估计数据规模时,不宜采用顺序表2.基于运算考虑a)顺序表适用于访问频繁的场景b)链表适用于插入、删除频繁的场景3.基于环境考虑a)高级语言中顺序表易于实现三.栈、队列和数组(一)栈1.后入后出2.操作受限的线性表3.n个不同元素进栈,出栈元素不同排列的个数为\frac{1}{n+1}C^{n}_{2n}(卡特兰数)4.出栈入栈注意栈顶指针的初值5.存储结构a)顺序栈●共享栈:两个顺序栈共享一个一维数组空间(为了更有效地利用存储空间)b)链栈●优点:便于多个栈共享存储空间和提高其效率,且不存在栈上溢的情况(二)队列1.先进先出2.假溢出-->循环队列3.判断循环队列是否队满a)牺牲一个单元b)设置变量:元素个数c)设置变量:tag,最近一次操作入队为true,出队为false4.链队列5.双端队列(三)栈和队列的应用1.栈a)括号匹配b)中缀表达式转后缀表达式c)计算后缀表达式d)递归、函数调用2.队列a)树的层次遍历b)数据缓冲区c)操作系统调度算法3.数组和特殊矩阵a)数组●定长的线性表,一经初始化即不可改变长度●按行优先和按列优先b)特殊矩阵的压缩存储●对称矩阵●特征:关于主对角线对称●三角矩阵●特征:只有主对角线以上或以下的位置有值,其他位置为同一常量●三对角矩阵●也称带状矩阵●特征:主对角线两侧有值,其余位置为0●稀疏矩阵●矩阵中非零元素个数远远小于矩阵大小●存储方式●三元组●十字链表●稀疏矩阵压缩存储后失去了随机存储的特性四.串(一)由零个或多个字符构成的有限序列(二)存储结构1.定长顺序存储,即静态数组2.堆分配存储,即动态数组3.块链存储,即以链表形式存储,每个结点由一个或多个字符组成(三)模式匹配1.朴素模式匹配2.K MP算法a)求next数组b)求nextval数组(改进KMP)五.树与二叉树(一)树1.基本概念和术语a)n个结点的优先集。
数据结构
数据结构知识整理(部分)第一章:绪论1.数据:数据是外部信息的载体,他能够被计算机识别、存储和加工处理,是计算机程序加工的原料;2.数据元素:数据元素是数据的基本单位,在计算机中通常被作为一个整体进行考虑和处理;3.一个数据元素可由若干个数据项组成。
数据项是不可分割的、含有独立意义的最小数据单位,数据项有时也称为字段或域;4.数据结构是相互之间存在的一种或多种特定关系的数据元素的集合。
在任何问题中,数据元素之间都不是孤立的,而是存在着一定的关系,这种关系称为结构;5.4种基本数据结构:集合:只有“同属一个集合”的关系;线性结构:存在着一对一的关系;树形结构:存在着一对多的关系;图状结构:存在着多对多的关系;6.数据结构包括数据的逻辑结构和物理结构。
逻辑结构:从具体问题抽象出来的数学模型,与数据在计算机中的具体储存没有关系。
从逻辑上可以把数据结构分为线性结构和非线性结构,其中集合、树、图形结构属于非线性结构;7.数据的物理结构又叫存储结构,是数据在计算机中的表示和存储,包括数据元素的表示和存储以及数据元素之间关系的表示和存储,存储结构必须依赖于计算机。
数据元素之间的关系在计算机中的表示有两种:顺序映像和非顺序映像。
分别对应两和数据的存储结构:顺序存储结构和链式存储结构;顺序存储结构是指把逻辑上相邻的数据元素存储在物理位置相邻的存储单元中;链式存储结构不要求必须相邻。
链式存储结构中的数据元素叫做结点,在结点中附近设地址域来存储与该结点相邻的结点的地址来实现结点之间逻辑关系;8.在软件设计中,抽象数据类型通常包括定义、表示和实现三部分9.算法:是指在有限的时间范围之内为解决某一问题而采取的方法和步骤的准确完整的描述,他是一个有穷的规则序列,这些规则决定了解决某一特定问题的一系列运算;10算法的特征:有穷性,确定性,可行性,输入,输出;算法+数据结构=程序;11.评价一个算法的主要标准:正确性,可读性,健壮性,运行时间,占用空间;健壮性要求算法要全面细致的考虑所有可能出现的边界情况和异常情况;实际上,算法的时间效率和空间效率经常是一对矛盾,相互抵触,我们要根据实际问题进行处理,有时要牺牲空间换取时间,有时要牺牲时间换取空间。
数据结构 知识点总结
数据结构知识点总结数据结构是计算机科学中一个非常关键的概念,它涵盖了一系列组织和管理数据的方法和技巧。
在计算机科学领域中,数据结构是构建和优化算法的基础,对于解决复杂问题以及实现高效的计算和存储非常重要。
这篇文章将总结数据结构的一些关键知识点。
一、基本概念1.数据和数据元素:数据是对客观事物的符号表示,数据元素时数据的基本单位。
2.数据类型:数据类型是一组值和定义在这组值上的操作的集合。
常见的数据类型包括整型、浮点型、字符型等。
3.逻辑结构:逻辑结构描述数据元素之间的关系,包括线性结构、树形结构、图形结构等。
二、线性表1. 单链表:单链表是一种线性表的链式实现方式,每个节点包含一个数据元素和一个指向下一个节点的指针。
2. 双链表:双链表是在单链表的基础上每个节点增加一个指向上一个节点的指针。
3. 循环链表:循环链表是一种特殊的链表,尾节点的指针指向头节点,形成一个环。
4. 静态链表:静态链表使用数组来实现链表的结构,通过指针来连接数组中的元素。
三、栈和队列1. 栈是一种后进先出(LIFO)的数据结构,只能在一端进行插入和删除操作。
2. 队列是一种先进先出(FIFO)的数据结构,可以在一端插入元素,在另一端删除元素。
3. 双端队列:双端队列支持在队列的两端插入和删除操作。
4. 优先队列:优先队列中的元素按照一定的优先级进行排列,插入和删除操作都会考虑元素的优先级。
四、树和二叉树1. 树是一种非线性的数据结构,由节点和边组成,每个节点可能有零个或多个子节点。
2. 二叉树是一种特殊的树结构,每个节点最多有两个子节点。
3. 二叉搜索树:二叉搜索树的左子树的值都小于根节点的值,右子树的值都大于根节点的值。
4. 平衡二叉树:平衡二叉树是一种高度平衡的二叉搜索树,左右子树的高度差不超过1。
5. 堆:堆是一种特殊的二叉树,具有一定的顺序特性,常用来实现优先队列。
五、图1. 图是一种非线性的数据结构,由节点和边组成,用来表示多对多的关系。
《数据结构》知识点
第1章绪论1.1 数据是表示客观事物的符号,是对客观事物的抽象,是信息的载体。
对计算机科学而言,经抽象(数字化)后,能被计算机识别、存储和加工处理的客观事物均称作数据。
1.2 具有某种共同属性的数据集合称作数据对象。
数据集中的元素称作数据元素,简称元素,又称结点、顶点、记录等。
数据对象={数据元素,数据元素,…,数据元素}1.3 就数据的自身结构而言,分为原子型和结构型,前者是不可分解或无须分解的数据,后者可分解为若干个数据项。
1.4 通常,数据项是无须分解或不可分解的所谓最小数据单位,数据元素是作为整体对待的基本数据单位。
1.5 数据集和其上定义的一组操作合称数据类型,即,数据类型=数据集+一组操作=(数据集,一组操作)[了解]狭义地说,数据类型侧重于数据的值,不区分值相同的数据,忽略数据的自身结构。
例. 复数类=(复数集,运算集),复数集以复数为基本元素,复数由两个数据项组成:实部和虚部或模和幅角。
1.6 数据集和其元素间的一组关系合称数据结构,即,数据结构=数据对象+数据关系=(数据对象,数据关系)1.7 数据结构的抽象描述称作逻辑结构。
逻辑结构分为:①集合结构;②线性结构;③树形结构(简称树结构);④图形结构(简称图结构)。
1.8 树结构和图结构统称非线性结构。
1.9 数据结构在计算机上的具体实现称作存储结构或物理结构。
存储结构分为:①顺序存储;②链式存储;③索引存储;④散列存储。
1.10 数据结构和其上定义的一组操作的抽象描述合称抽象数据类型,即,抽象数据类型=数据结构+基本操作=数据对象+数据关系+基本操作1.11 求解问题的步骤称作算法,是合法指令的有限序列,具有以下主要特性:①有穷性;②确定性;③可行性。
1.12 算法所用的总时间称作时间复杂度,通常用算法中执行次数最多(频度最高)的操作的执行次数(频度)或数量级表示。
时间复杂度又称时间效率,但两者的高低是相反的。
1.13 算法所用最大存储量称作空间复杂度。
数据结构知识点全面总结—精华版
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2)插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
数据结构(从概念到算法)第一章 绪论
(2)可读性:算法的变量命名、格式符合行业规范,并在关键处给出注释,
以提升算法的可理解性。
(3)健壮性:算法能对不合理的输入给出相应的提示信息,并做出相应处
理。
(4)高执行效率与低存储量开销:涉及算法的时间复杂度和空间复杂度评
判。
算法设计的一般步骤
1.3.1算法定义与性质
算法设计出来后有多种表述方法,一般有如下几种描述工具:第一种是自然语
良好基础,数据结构与算法设计密不可分。算法是对特定问题求解步骤的一种描述。
换言之,算法给出了求解一个问题的思路和策略。
一个算法应该具有以下 5 个特征。
(1)有穷性,即算法的最基本特征,要求算法必须在有限步(或有限时间)
之后执行完成。
(2)确定性,即每条指令或步骤都无二义性,具有明确的含义。
(3)可行性,即算法中的操作都可以通过已经实现的基本运算执行有限次
成的集合,数据对象是数据的一个子集。实例说明如下。
由 4 个整数组成的数据对象: D1={20,- 30,88,45}
由正整数组成的数据对象: D2={1,2,3,…}
数据结构的基本概念
(5)数据结构。数据结构是相互之间存在一种或多种特定关系的数据元素
的集合。数据元素之间的关系称为结构,主要有 4 类基本结构,如下图所示。
址,数据'C'的指针指向数据'D'的结点地址,具体如图所示。
数据结构的基本概念
上图数据元素存储的地址在整体上具有前后次序,但实际对单链表数据元素
所分配的存储空间是随机的。如下图 所示,数据元素'A'在物理存储地址上可能位
于数据元素'B'和'D'存储地址之后。
数据结构重点知识点
数据结构重点知识点第一章概论1. 数据是信息的载体。
2. 数据元素是数据的基本单位。
3. 一个数据元素可以由若干个数据项组成。
4. 数据结构指的是数据之间的相互关系,即数据的组织形式。
5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。
②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。
数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。
③数据的运算,即对数据施加的操作。
最常用的检索、插入、删除、更新、排序等。
6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。
线性表是一个典型的线性结构。
栈、队列、串等都是线性结构。
②非线性结构:一个结点可能有多个直接前趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
通常借助程序语言的数组描述。
(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。
通常借助于程序语言的指针类型描述。
(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。
索引表由若干索引项组成。
若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。
若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。
索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。
数据结构期末复习重点知识点总结
第一章绪论一、数据结构包括:逻辑结构、存储结构、运算(操作)三方面内容。
二、线性结构特点是一对一。
树特点是一对多图特点是多对多三、数据结构的四种存储结构:顺序存储、链式存储、索引存储、散列存储顺序存储结构和链式存储结构的区别?线性结构的顺序存储结构是一种随机存取的存储结构。
线性结构的链式存储是一种顺序存取的存储结构。
逻辑结构分类:集合线性树图,各自的特点。
或者分为线性结构和非线性结构。
四、算法的特征P13五、时间复杂度(1) i=1; k=0;while(i<n){ k=k+10*i;i++;}分析:i=1; //1k=0; //1while(i<n) //n{ k=k+10*i; //n-1i++; //n-1}由以上列出的各语句的频度,可得该程序段的时间消耗:T(n)=1+1+n+(n-1)+(n-1)=3n可表示为T(n)=O(n)六、数据项和数据元素的概念。
第二章线性表一、线性表有两种存储结构:顺序存储和链式存储,各自的优、缺点。
二、线性表的特点。
三、顺序表的插入、思想、时间复杂度o(n)、理解算法中每条语句的含义。
(1)插入的条件:不管是静态实现还是动态实现,插入的过程都是从最后一个元素往后挪动,腾位置。
静态是利用数组实现,动态是利用指针实现。
不管静态还是动态,在表中第i个位置插入,移动次数都是n-i+1。
四、顺序表的删除、思想、时间复杂度o(n)、理解算法中每条语句的含义。
(1)删除的条件:不管是静态实现还是动态实现,删除的过程都是从被删元素的下一位置向前挪动。
静态是利用数组实现,动态是利用指针实现。
不管静态还是动态,删除表中第i个元素,移动次数都是n-i。
五、顺序表的优缺点?为什么要引入链表?答:顺序表的优点是可以随机存取,缺点是前提必须开辟连续的存储空间且在第一位置做插入和删除操作时,数据的移动量特别大。
如果有一个作业是100k,但是内存最大的连续存储空间是99K,那么这个作业就不能采用顺序存储方式,必须采用链式存储方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本门课程研究的对象为:数据结构、算法。
一、算法
1.算法具有五个基本特征:
(1)有穷性,算法的执行必须在有限步内结束。
(2)确定性,算法的每一步骤必须是确定无二义性的。
(3)可行性,算法中的运算都必须是可以实现的。
(4)输入,算法可以有0个或多个输入。
(5)输出,算法一定有输出结果。
算法具有有穷性,程序不需要具备有穷性。
一般的程序都会在有限时间内终止,但有的程序却可以不在有限时间内终止,如一个操作系统在正常情况下是永远都不会终止的。
2.如何衡量一个算法的好坏:
时间复杂度:对一个算法执行效率的度量。
空间复杂度:是指一个算法在执行过程中所占用的存储空间的度量。
3.时间复杂度的计算:
事前分析估算法:通常用高级程序设计语言编写的程序在计算机上运行时消耗的时间取决于下列因素。
(1)算法选用何种策略。
(2)问题的规模。
(3)所使用的程序设计语言,就同一个算法而言,用级别越高的语言实现,其执行的效率越
低。
(4)编译程序所产生的机器代码的质量。
(5)机器执行指令的速度。
4.时间复杂度简单判别:
(1)若算法中不存在循环,则算法平均时间复杂度为常量T(n)=O(1);
(2)若算法中仅存在单重循环,则决定算法时间复杂度的基本操作是算法中该循环中语句对
应的基本操作。
n为循环语句基本操作执行的次数,平均时间复杂度为T(n)=O(n);(3)若算法中存在多重循环,则决定算法时间复杂度的基本操作是算法中循环嵌套层数最多
的语句对应的基本操作重复的次数。
例如两重循环,外层循环n次,内层循环n次,则平均时间复杂度T(n)=O(n2)
二、数据结构分为两个方面
1.逻辑结构。
研究一种数据结构怎么抽象成通用的描述和表示,包括这种结构是什么样的,怎么去操作这种结构以及结构里的元素。
这是一种逻辑上的概念,是抽象的。
2.存储结构。
研究怎么将一种数据的逻辑结构存储在我们的计算机内存里面,以及怎么使用计算机编程语言实现其对应的操作。
这是一种物理上的概念。
而从逻辑上讲,数据结构可以划分为:线性结构、集合结构、树形结构、图状(网状)结构。
后三种是非线性的。
而从存储上讲,数据结构可以换分为:顺序存储结构、链式存储结构、索引存储结构、哈希(或散列)存储结构。
顺序存储结构、链式存储结构是我们主要学习的对象。