回归分析的基本思想应用

合集下载

回归分析的基本思想及其应用(三)

回归分析的基本思想及其应用(三)

第42课时 回归分析基本思想及其初步应用( 三)学习目标:1、掌握线性回归模型与线性回归方程的关系及其参数、变量的意义;2、了解将非线性回归问题转化为线性回归问题的方法; 教学重点;非线性回归问题转化为线性回归问题的方法 教学难点:非线性回归问题转化为线性回归问题 教学工具:Powerpoint 、Excel 教学过程:(一) 复习引入1、(1))(∧∧+-=-=a x b y y y e i i i i i (i =1,2,……,n )称为相应于点(x i ,y i )的残差(residual ),它是随机误差e i =y i -(bx i +a ) (i =1,2,……,n )的估计值. (2)回归模型拟合效果评价①残差分析法:残差点比较均均地落在水平的带状区域中,说明选用的模型比较适合. 这样的带状区域越窄,说明模型的拟合精度越高,回归方程的预报精度越高.②相关指数法:定义相关指数∑∑==∧---=ni i ni i i y y y y R 12122)()(1, 其表示解释变量对预报变量变化的贡献率,R 2越接近1,表示回归效果越好.(二) 推进新课例1为了研究某种细菌随时间x (天)变化繁殖的个数,收集数据如右:(1)用天数作解释变量,繁殖个数为预报变量,作出这些数据的散点图; (2)描述解释变量与预报变量之间的关系,试建立y 关于x 回归方程. 解:根据收集的数据作出散点图.在散点图中,样本点并没有分布在某个带状区域内,因此两个变量不呈线性相关关系,不能直接利用线性回归模型来刻画两个变量之间的关系.根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线xc ec y 21=的周围,其中21c c 和是待定参数.或者也可以认为样本点集中某二次曲线423c xc y +=的附近,其中43c c 和是待定参数.(方案一)若用xc ec y21=模型拟合,则令abx z c b c a y z+====时,21,ln ,ln 为线性直线的附近,因此可以且线性回归方程来拟合.由上表中的数据,用计算器或Excel 得到线性回归方程为:116.16902.0+=∧x z ,因此细菌繁殖个数关于天数的非线性回归方程为:116.16902.0+∧=x ey(方案二)若用423c xc y+=模型拟合,令2xt=,则43c t c y+=为线性回归模型,下面是布在一条直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次函数423c xc y +=来拟合y 和x 之间的关系.当然对于上表中的数据用计算器或Excel 也可以得到“线性回归”方程为:46.14096.5-='∧t y ,因此细菌繁殖个数关于天数的另一个非线性回归方程为:46.14096.52-='∧xy思考:怎样评价以上两个模型的拟合效果?其中∧e =116.16902.0+∧-=-x ey y y,)46.14096.5(2--='-='∧∧xy y y e从表中的残差∧e 、∧'e 可以看出,指数函数模型的|∧e |显然要比二次函数模型的|∧'e |小,因此指数函数模型拟合效果比二次函数模型的拟合效果好. 方法二:相关指数法下面给出两个回归模型的相关指数22,R R '计算由上面的残差分析法易知:54.6)(261612=-=∑∑=∧=∧i i i i i y y e ,73.1403)(261612='-='∑∑=∧=∧i i i i i y y e又因83.24642)(261=-∑=i i y y , 所以2R=9997.083.2464254.61=-,2R '=94304.083.2464273.14031=-显然22R R '>,因此指数函数模型拟合效果比二次函数模型的拟合效果好.知识形成:1、两个非线性相关回归模型确定 (1)画散点图;(2)观察图并根据经验判断适合何种模型; (3)恰当变换,转化成线性回归模型;(4)检验模型的拟合效果.(根据相关指数R 2越大,模型拟合精度越高来优选.)(三)典例分析1、对于下列非线性回归模型相应的回归方程,请做适当的变换,使成为线性回归方程;(1)y =cx 2+d ,令t =x 2,可得dct y+=∧;(2),c xk y +=令xt 1=,可得ckt y+=∧;(3),ln d x c y +=令x t ln =,可得dct y+=∧;(4))0(>=c ceydx,令ytln =,可得cdx tln +=∧;2、已知两个变量的非线性回归方程为xy22.1⨯=∧,则样本点(1,4)的残差为 1.6 .3、已知样本点(1,2.25)、(2,1.85)、(3,1.64)、(4,1.46)满足的回归模型,c xk y+=则通过变换变成线性回归模型后新的样本点的中心为( D )A (0.50,1.72)B (0.50,1.74)C (0.54,1.76)D (0.52,1.80) 4、如果用指数函数模型xc ec y 21=拟合原始模型,设yzln =,且(z x ,)为(165.25,3.99),则回归方程为( C )A 712.85849.0-=x e y B712.85849.0--=x ey C3295.10161.0+=x ey D3295.10161.0+-=x ey5、已知两相关变量 x ,y 的三组观测值如下表: 根据经验知y 对x 的回归模型为abxy+=2,试求出该回归方程.解:令t =x 2,则y 与t 的回归方程为y =bt +a . 相关数据为:则30431=∑=i i i y t ,338,667.7,667.8612===∑=i it y t所以有929.033261231≈-⨯-=∑∑==∧tt yt y t b i ii i ixb y a ∧∧-==-0.385,所以y 与t 的回归方程为385.0929.0-='∧t y ,由t =x 2得y 与x 的回归方程为385.0929.02-='∧x y(四)巩固练习P 导航66页T 1-4 (五)课时小结1非线性回归模型求解及拟合效果检验;2常见非线性回归模型变换为线性回归模型 (六)作业P 教材90页,T 2。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的结果解读和评估
回归分析的结果应该经过详细的解读和评估。我们可以通过检验假设、计算回归系数的显著性、解释模 型的可解释性等来个领域都有广泛的应用,包括经济学、社会科学、医学、市场 营销等。它可以帮助我们理解变量之间的关系、预测未来的趋势,并支持决 策和策略制定。
回归分析的数据准备
在进行回归分析之前,需要准备好相关的数据。这包括收集和整理数据、处 理缺失值和异常值、选择合适的变量和转换方法等。良好的数据准备可以提 高回归分析的准确性和可靠性。
回归分析的基本思想及其 初步应用
回归分析是一种用来研究变量之间关系的统计方法。它的基本思想是通过建 立数学模型来描述变量之间的关系,并利用统计学方法来判断这种关系的显 著性和可靠性。
回归分析的定义与含义
回归分析是一种通过建立数学模型来描述两个或多个变量之间关系的统计学方法。它可以帮助我们理解 变量之间的因果关系,预测未来的变化趋势,并进行决策和策略制定。
回归分析的基本原理
回归分析的基本原理是通过最小化预测值与观察值之间的差异来确定最佳拟 合线。它使用最小二乘法来估计模型参数,并通过假设检验来评估模型的显 著性。
回归分析的常用模型
回归分析有多种常用模型,包括简单线性回归、多元线性回归、逻辑回归等。 每个模型都适用于不同的数据类型和研究问题,选择合适的模型可以提高分 析的准确性和可解释性。

回归分析的基本思想

回归分析的基本思想
个原因.
思考:相关系数r与随机误差e有什么关系?
13
14
课后作业
作业
见B本第5a bx e
其中a和b为模型的未知参数,e是y与 y bx a 之间的误差,通常e为随机变量,称为随机误差.
y bx a e 线性回归模型的完整表达式为: 2 E (e ) 0, D(e )
线性回归模型适用范围比一次函数的适用范围大得多.
虽然这种向中心回归的现象只是特定领域里的结论,并不具有 普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种 变量间的关系看,和我们现在的回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变 化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论 5 研究和实证研究中也发挥着重要作用。
当随机误差e恒等于0时,线性回归模型就变成一次函 数模型.即:一次函数模型是线性回归模型的特殊形式, 线性回归模型是一次函数模型的一般形式.
12
其中:均值E(e)=0,方差D(e)=σ2>0
其他因素的影响
ˆ 与真实值y之间的误差的原因 随机误差是引起预报值 y 之一,其大小取决于随机误差的方差. ˆ 为截距和斜率的估计值,它们与真实值a和b之间 ˆ和 b a ˆ 与真实值y之间的误差的另一 存在误差是引起预报值 y
估计值 60.316kg. P83 认为她的平均体重的估计值是
10
因为所有的样本点不共线,所以线性函数 模型只能近似地刻画身高和体重之间的关系, 即:体重不仅受身高的影响,还受其他因素的 影响,把这种影响的结果用e来表示,从而把 线性函数模型修改为线性回归模型: y=bx+a+e.其中,e包含体重不能由身高的线性 函数解释的所有部分(如:饮食/运动/遗传…).

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型(1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x -,其中x -=1n ∑ni =1x i ,y -=1n∑ni =1y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量.[注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具.(2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^为基数,x 每增加1个单位,y 相应地平均增加b ^个单位.3.刻画回归效果的方式方式方法计算公式 刻画效果R 2R 2=1-∑ni =1(y i -y ^i )2∑n i =1(y i -y )2R 2越接近于1,表示回归的效果越好残差图e ^i 称为相应于点(x i ,y i )的残差,e ^i =y i -y ^i残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高残差平方和∑ni =1(y i -y ^i )2 残差平方和越小,模型的拟合效果越好判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( )(2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )(3)利用线性回归方程求出的值是准确值.( ) 答案:(1)× (2)√ (3)×变量x 与y 之间的回归方程表示( )A .x 与y 之间的函数关系B .x 与y 之间的不确定性关系C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 答案:D在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98 B .模型2的相关指数R 2为0.80 C .模型3的相关指数R 2为0.50 D .模型4的相关指数R 2为0.25 答案:A已知线性回归方程y ^=0.75x +0.7,则x =11时,y 的估计值为________. 答案:8.95探究点1 线性回归方程在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间的一组观察值如下表.x (s) 5 10 15 20 30 40 50 60 70 90 120 y (μm)610101316171923252946(1)画出散点图;(2)求y 对x 的线性回归方程;(3)利用线性回归方程预测时间为100 s 时腐蚀深度为多少. 【解】 (1)散点图如图所示.(2)从散点图中,我们可以看出y 对x 的样本点分布在一条直线附近,因而求回归直线方程有意义.x =111(5+10+15+ (120)=51011,y =111(6+10+10+…+46)=21411,a ^=y -b ^x ≈21411-0.304×51011= 5.36. 故腐蚀深度对腐蚀时间的线性回归方程为y =0.304x + 5.36.(3)根据(2)求得的线性回归方程,当腐蚀时间为100 s 时,y ^=5.36+0.304×100=35.76(μm),即腐蚀时间为100 s 时腐蚀深度大约为35.76 μm.求线性回归方程的三个步骤(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系. (2)求回归系数:若存在线性相关关系,则求回归系数.(3)写方程:写出线性回归方程,并利用线性回归方程进行预测说明.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炼料熔化完毕到出钢的时间)的数据(x i ,y i )(i =1,2,…,10)并已计算出=1589,i =110y i =1 720,故冶炼时间y 对钢水的含碳量x 的回归直线方程为y ^=1.267x -30.47. 探究点2 线性回归分析假定小麦基本苗数x 与成熟期有效穗y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗; (3)计算各组残差,并计算残差平方和;(4)求相关指数R 2,并说明残差变量对有效穗的影响占百分之几? 【解】 (1)散点图如下.(2)由图看出,样本点呈条状分布,有比较好的线性相关关系,因此可以用回归方程刻画它们之间的关系.设回归方程为y ^=b ^x +a ^,x -=30.36,y -=43.5,(1)该类题属于线性回归问题,解答本题应先通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模x 15.0 25.8 30.0 36.6 44.4 y39.442.942.943.149.2型的拟合效果,在此基础上,借助回归方程对实际问题进行分析. (2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适; ②残差平方和法:残差平方和 i =1n(y i -y ^i )2越小,模型的拟合效果越好;关于x 与y 有如下数据:x 2 4 5 6 8 y3040605070由(2)可得y i -y ^i 与y i -y -的关系如下表:y i -y ^i -1 -5 8 -9 -3 y i -y --20-101020由于R 21=0.845,R 22=0.82,0.845>0.82, 所以R 21>R 22.所以(1)的拟合效果好于(2)的拟合效果. 探究点3 非线性回归分析某地今年上半年患某种传染病的人数y (人)与月份x (月)之间满足函数关系,模型为y =a e bx ,确定这个函数解析式.月份x /月 1 2 3 4 5 6 人数y /人526168747883【解】 设u =ln y ,c =ln a , 得u ^=c ^+b ^x ,则u 与x 的数据关系如下表:x12 3 4 56u =ln y 3.95 4.114.224.3044.356 7 4.418 8非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程. (4)分析拟合效果:通过计算相关指数或画残差图来判断拟合效果. (5)根据相应的变换,写出非线性回归方程.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:x(千册)1 2 3 5 10 20 30 50 100 200 y (元)10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y (元)与印刷册数的倒数1x之间是否具有线性相关关系,如有,求出y 对x 的回归方程,并画出其图形.解:首先作变量置换u =1x,题目中所给的数据变成如下表所示的10对数据.u i 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y i10.155.524.082.852.111.621.411.301.211.15然后作相关性检测.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系,由公式得a ^≈1.125,b ^≈8.973,所以y ^=1.125+8.973u ,最后回代u =1x ,可得y ^=1.125+8.973x.这就是题目要求的y 对x 的回归方程.回归方程的图形如图所示,它是经过平移的反比例函数图象的一个分支.1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,预报变量在y 轴C .回归模型中一定存在随机误差D .散点图能明确反映变量间的关系解析:选D.用散点图反映两个变量间的关系时,存在误差. 2.下列关于统计的说法:①将一组数据中的每个数据都加上或减去同一个常数,方差恒不变; ②回归方程y ^=b ^x +a ^必经过点(x ,y ); ③线性回归模型中,随机误差e =y i -y ^i ;④设回归方程为y ^=-5x +3,若变量x 增加1个单位,则y 平均增加5个单位. 其中正确的为________(写出全部正确说法的序号).解析:①正确;②正确;③线性回归模型中,随机误差的估计值应为e ^i =y i -y ^i ,故错误;④若变量x 增加1个单位,则y 平均减少5个单位,故错误. 答案:①②3.某商场经营一批进价是30元/台的小商品,在市场试销中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:x 35 40 45 50 y56412811(1)画出散点图,并判断y 与x 是否具有线性相关关系;(2)求日销售量y 对销售单价x 的线性回归方程(方程的斜率保留一个有效数字); (3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量具有线性相关关系.(2)因为x -=14×(35+40+45+50)=42.5,(3)依题意有P =(161.5-3x )(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎪⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.故预测当销售单价为42元时,能获得最大日销售利润.知识结构深化拓展线性回归模型的模拟效果(1)残差图法:观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.(2)残差的平方和法:一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.残差平方和越小的模型,拟合的效果越好.(3)R 2法:R 2的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.[注意] r 的绝对值越大说明变量间的相关性越强,通常认为r 的绝对值大于等于0.75时就是有较强的相关性,同样R 2也是如此,R 2越大拟合效果越好.[A 基础达标]1.废品率x %和每吨生铁成本y (元)之间的回归直线方程为y ^=256+3x ,表明( ) A .废品率每增加1%,生铁成本增加259元 B .废品率每增加1%,生铁成本增加3元 C .废品率每增加1%,生铁成本平均每吨增加3元 D .废品率不变,生铁成本为256元解析:选C.回归方程的系数b ^表示x 每增加一个单位,y ^平均增加b ^,当x 为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.2.已知某产品连续4个月的广告费用为x i (i =1,2,3,4)千元,销售额为y i (i =1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息:①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y ^=b ^x +a ^中,b ^=0.8(用最小二乘法求得),那么当广告费用为6千元时,可预测销售额约为( )A .3.5万元B .4.7万元C .4.9万元D .6.5万元解析:选B.依题意得x =4.5,y =3.5,由回归直线必过样本点中心得a ^=3.5-0.8×4.5=-0.1,所以回归直线方程为y ^=0.8x -0.1.当x =6时,y ^=0.8×6-0.1=4.7.3.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得的线性回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x 解析:选A.由题中数据得x =6.5,y =28.5,a ^=y -b ^x =28.5-2.62×6.5=11.47,所以y 与x 的线性回归方程是y ^=2.62x +11.47.故选A.4.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5.如果今年该地区财政收入10亿元,则年支出预计不会超过( )A .10亿元B .9亿元C .10.5亿元D .9.5 亿元解析:选C.代入数据y =10+e ,因为|e |≤0.5, 所以9.5≤y ≤10.5,故不会超过10.5亿元.5.某种产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表:y 与x 的线性回归方程为y =6.5x +17.5,当广告支出5万元时,随机误差的效应(残差)为________.解析:因为y 与x 的线性回归方程为y ^=6.5x +17.5,当x =5时,y ^=50,当广告支出5万元时,由表格得:y =60,故随机误差的效应(残差)为60-50=10. 答案:106.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),且e i 恒为0,则R 2为________.解析:由e i 恒为0,知y i =y ^i ,即y i -y ^i =0, 故R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2=1-0=1.答案:17.某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系见表:已知∑7i =1x 2i =280,∑7i =1x i y i =3 487. (1)求x ,y ;(2)已知纯利y 与每天销售件数x 线性相关,试求出其回归方程. 解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917=5597.(2)因为y 与x 有线性相关关系,所以b ^=∑7i =1x i y i-7x y ∑7i =1x 2i -7x 2=3 487-7×6×5597280-7×36=4.75,a ^=5597-6×4.75=71914≈51.36.故回归方程为y ^=4.75 x +51.36.8.已知某校5个学生的数学和物理成绩如下表:(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程; (3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?参考数据和公式:y ^=b ^x +a ^,其中.解:(1)记事件A 为“恰有2名学生的物理成绩是自己的实际成绩”, 则P (A )=2C 25A 55=16.(2)因为x =80+75+70+65+605=70,y =70+66+68+64+625=66,学生的编号i 1 2 3 4 5 数学x i 80 75 70 65 60 物理y i7066686462[B 能力提升]9.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如表的统计资料:使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.010.(选做题)某地区不同身高的未成年男性的体重平均值如表所示:身高x(cm)60708090100110体重y(kg) 6.137.909.9912.1515.0217.50身高x(cm)120130140150160170体重y(kg)20.9226.8631.1138.8547.2555.05 (1)(2)如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175 cm 、体重82 kg 的在校男生体重是否正常? 解:(1)根据题表中的数据画出散点图如图所示.由图可看出,样本点分布在某条指数函数曲线y =c 1e c 2x的周围, 于是令z =ln y ,得下表:x 60 70 80 90 100 110 z 1.81 2.07 2.30 2.50 2.71 2.86 x 120 130 140 150 160 170 z3.043.293.443.663.864.01作出散点图如图所示:由表中数据可得z 与x 之间的回归直线方程为 z ^=0.662 5+0.020x ,则有y ^=e 0.662 5+0.020x .(2)当x =175时,预报平均体重为y ^=e 0.662 5+0.020×175≈64.23, 因为64.23×1.2≈77.08<82,所以这个男生偏胖.。

回归分析的基本思想及其应用

回归分析的基本思想及其应用

回归分析的基本思想及其应用
回归分析是目前统计学中应用最为广泛的一种统计分析方法,它主要用于探索
两种或两种以上变量之间的因果关系。

回归分析可以用来以定量和定性的方式了解因变量和自变量之间的关系,以及模拟出和可视化出这类关系是怎样的,它们能不能进行预测以及解释变量间的逻辑关系。

需要指出的是,回归分析不能解释所有的关系,要进行回归分析,必须满足一定的条件——自变量和因变量之间存在某种线性关系。

所以,当处理非线性关系的时候,线性模型的优势就很大,因为它们可以直接处理非线性的变量之间的关联过程。

回归分析在实际应用中有很多,如分析客户识别,以及预测客户购买行为等,
在营销及管理策略制定过程中也非常有用。

比如,商家可以在不同地区以不同的价格定价,作为消费者行为调研的基础,以及预测消费者对Stock的需求量,预估市场营销的投资和回报等,回归分析对行业营销等方面也有重要作用。

此外,随着技术的发展,回归分析被广泛应用于金融,医学,社会科学等多个
领域。

例如,股市投资者可以通过回归分析来估算两个或多个股票价格之间的相关性;研究人员也可以借助它分析不同因素如气候变化对作物产量以及城市拥挤对失业率的影响;医学专家则可以根据其病人的病史以及治疗方法的不同,来判断哪种治疗方法最有效,以及患者痊愈情况与哪些因素有关。

回归分析也可以被用在其他许多领域,如分析电子商务交易的消费者行为,了
解购买力对房地产销售的影响,分析不同的社会现象,探究教育影响职业绩效的因素,以及分析汽车销量与消费价格之间关系等等,可以说回归分析几乎在各个行业中都得到了广泛应用,它以基础科学分析的作用在最大化商业企业的价值。

回归分析的基本思想及初步应用

回归分析的基本思想及初步应用

回归分析的基本思想及初步应用回归分析是一种用于研究变量之间关系的统计方法。

其基本思想是通过建立一个数学模型来描述自变量(独立变量)和因变量(依赖变量)之间的关系,并根据已有数据对模型进行拟合和估计,以了解两个变量之间的关系程度。

回归分析最早是由英国统计学家弗朗西斯·高尔顿在19世纪中叶提出的。

他注意到,人口增长与时间之间似乎存在其中一种关系,于是使用统计方法将时间作为自变量,人口数量作为因变量,建立了一个数学模型。

这个数学模型称为“回归方程”,后来成为了回归分析的基础。

在建模阶段,我们首先要确定自变量和因变量,并根据问题目标和已有数据选取适当的变量。

然后,我们需要选择一个适当的回归模型来描述自变量和因变量之间的关系。

常见的回归模型包括线性回归模型、多项式回归模型、指数回归模型等。

模型的选择通常基于对自变量和因变量之间关系的推测和理论的支持。

同时,还需要根据数据特点和拟合效果选择回归模型的阶数和形式。

在推断阶段,我们需要对模型进行估计和检验。

首先,我们使用已有数据对回归模型进行拟合,根据最小二乘法估计出回归系数的值,并计算出模型预测的因变量值。

然后,通过各种统计方法对模型的拟合程度进行评估。

常用的评估指标有残差分析、R平方和调整R平方等。

此外,还可以进行t检验和F检验来检验回归系数和模型整体的显著性。

这些检验能够帮助我们判断回归模型是否能够很好地描述自变量和因变量之间的关系,并对未来值进行预测和推断。

回归分析的应用非常广泛。

它在社会科学、经济学、医学、生态学等领域都有着重要的应用。

在经济学中,回归分析可以用于预测和解释宏观经济变量之间的关系,如GDP与就业率之间的关系。

在医学中,回归分析可以用于研究因素对疾病发生的影响,如吸烟与肺癌之间的关系。

此外,回归分析还可以用于分析市场需求、产品定价、销售预测等问题,为决策提供科学依据。

总而言之,回归分析是一种用于研究变量关系的重要统计方法。

通过建立数学模型,估计和检验回归系数,可以帮助我们了解变量之间的关系程度,并利用这种关系进行预测和推断。

回归分析基本思想及应用条件

回归分析基本思想及应用条件

回归分析基本思想及应用条件回归分析是一种常用的统计分析方法,用于研究变量之间的关系,并预测一个或多个自变量对因变量的影响。

本文将介绍回归分析的基本思想以及应用条件。

一、回归分析的基本思想回归分析的基本思想是基于最小二乘法,通过拟合曲线或平面,找到自变量与因变量之间的最佳关系模型。

这个模型可以用来预测因变量在给定自变量的情况下的取值。

回归分析的思想可以用以下数学公式表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1~Xn表示自变量,β0~βn表示回归系数,ε表示误差项。

回归分析的目标是通过最小化误差项来确定回归系数的值,使得拟合曲线与实际观测值之间的误差最小化。

二、回归分析的应用条件回归分析适用于以下条件:1. 自变量与因变量之间存在线性关系:回归分析假设自变量与因变量之间存在线性关系。

因此,在应用回归分析之前,需要通过观察数据和作图等方式来验证自变量与因变量之间的线性关系。

2. 自变量之间相互独立:回归分析要求自变量之间相互独立,即自变量之间不应存在多重共线性的问题。

多重共线性会导致回归系数的估计出现问题,降低模型的准确性。

3. 自变量和误差项之间不存在系统性关联:回归分析假设误差项与自变量之间不存在系统性关联。

如果存在系统性关联,会导致回归系数的估计出现偏差,影响模型的准确性。

4. 数据具有代表性:回归分析要求样本数据具有代表性,能够反映总体的特征。

因此,在进行回归分析之前,需要对样本数据的采集方法和样本容量进行科学设计,以确保数据的可靠性和准确性。

5. 误差项满足正态分布:回归分析假设误差项满足正态分布。

如果误差项不满足正态分布,可能会导致回归系数的估计出现偏差,使得模型的准确性降低。

总之,回归分析是一种重要的统计分析方法,可以用于研究变量之间的关系并进行预测。

但在应用回归分析时,需要注意以上提到的应用条件,以保证分析结果的准确性和可靠性。

回归分析的基本思想及其初步应用分解

回归分析的基本思想及其初步应用分解
真实值a,b,y
是真实值 与估计值 的差!
yˆi 0.849xi 85.712, ei yi yi ,
如e3 y3 y3 50 47.581 2.419
相关关系的测度
(相关系数取值及其意义)
完全负相关
无线性相关
完全正相关
-1.0 -0.5
0
+0.5 +1.0
r
负相关程度增加 正相关程度增加
编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。
残差图的制作及作用。
•几点坐说标明纵:轴为残差变量,横轴可以有不同的选择; 的错第•误一。个若如样果模本数点据型和采选第集6有择个错样的误本,点正就的确予残以差,纠比残正较,大差然,图后需再要中重确新的认利在点用采线应集性过该回程归中分模是布型否拟有在合人以数为 据;如果横数据轴采集为没心有错的误带,则形需区要寻域找;其他的原因。 样的另•带外状,对区残域差于的点宽远比度较离越均窄横匀,地轴说落明的在模水点型平拟,的合带要精状度区特越域别高中,,注回说归意明方选。程用的的预模报型精计度较越合高适。,这
例1 从某大学中随机选取8名女大学生,其身高和 体重数据如下表所示:
编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59
求根据女大学生的身高预报她的体重的回归方程, 并预报一名身高为172cm的女大学生的体重.
(3)对回归模型进行统计检验; (4)利用回归模型,根据自变量去估计、预测、预 报因变量。
最小二乘法求线性回归直线方程:yˆ = bˆ x + aˆ
(x,y)称为样本点的中心。

高中数学《1.1回归分析的基本思想及其初步应用》教案2 新人教A版选修1-2

高中数学《1.1回归分析的基本思想及其初步应用》教案2 新人教A版选修1-2

11.1回归分析的基本思想及其初步应用(二)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑. 回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑. (2)学习要领:①注意i y 、 i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即222111()()()n n ni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数 22121()1()nii i n ii yy R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好. 2. 教学例题:为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论. (答案:52211521()155110.8451000()i i i ii y y R y y ==-=-=-=-∑∑,221R =-521521()18010.821000()iii ii y y y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.第三课时。

1.11 回归分析的基本思想及其初步应用(文、理)

1.11 回归分析的基本思想及其初步应用(文、理)

1.1 回归分析的基本思想及其初步应用【学习目标】1. 通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤。

2. 能作出散点图,能求其回归直线方程。

3. 会用所学的知识对简单的实际问题进行回归分析。

【要点梳理】要点一、变量间的相关关系1. 变量与变量间的两种关系:(1) 函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S 与半径r 之间的关系S=πr 2为函数关系.(2)相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。

例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系. 2. 相关关系的分类:(1)在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量; (2)两个变量均为随机变量,如某学生的语文成绩与化学成绩. 3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据. 4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。

要点二、线性回归方程:1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。

2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为:121()()ˆ()niii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中x 表示数据x i (i=1,2,…,n )的均值,y 表示数据y i (i=1,2,…,n )的均值,xy 表示数据x i y i (i=1,2,…,n )的均值.a、b 的意义是:以 a 为基数,x 每增加一个单位,y 相应地平均变化b 个单位. 要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用
t检验
t检验用于检验单个自变量对因变量的影响是否显著。如果t检验的P值小于显著性水平,则认为该自变 量对因变量的影响是显著的。
回归系数的解释
偏效应
回归系数表示在其他自变量保持不变 的情况下,某一自变量变化一个单位 时因变量的平均变化量。它反映了自 变量对因变量的偏效应。
标准化回归系数
为了消除自变量量纲的影响,可以对 回归系数进行标准化处理。标准化回 归系数表示自变量和因变量的标准化 值之间的相关系数,具有可比性。
03
回归分析的初步应用
一元线性回归分析
01
建立一元线性回归模型
通过收集样本数据,以自变量 和因变量的线性关系为基础, 建立一元线性回归模型。
02
参数估计
利用最小二乘法等估计方法, 对模型中的参数进行估计,得 到回归方程的系数。
03
假设检验
对回归方程进行显著性检验, 判断自变量和因变量之间是否 存在显著的线性关系。
通过调整模型参数或引入新的 变量等方式优化模型,提高模 型的拟合精度和预测能力。
逐步回归分析
1 引入变量
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
2 检验与调整
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
3 逐步筛选
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。

详细阐述了线性回归模型的构建 过程,包括模型的假设、参数的 估计和模型的检验等步骤。
回归分析的初步应

通过实例演示了回归分析在解决 实际问题中的应用,包括预测、 解释变量关系和控制变量等方面 的应用。
对未来学习的建议与展望
深入学习回归分析的理论知识

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

相关系数
n
(xi - x)(yi - y)
n
__
xiyi n x y
r=
i=1
i1
n
n
(xi - x)2 (yi - y)2
i=1
i=1
n i1
xi2
n
_
x
2
n i1
yi2
n
_
y
2
相关系数的性质
(1)|r|≤1.
(2)|r|越接近于1,相关程度越强;|r|越接近于0, 相关程度越弱.
问题四:结合例1思考:用回归方程预报体重时应注意什么?
1.回归方程只适用于我们所研究的样本的总体。 2.我们建立的回归方程一般都有时间性。 3.样本取值的范围会影响回归方程的适用范围。 4.不能期望回归方程得到的预报值就是预报变量的精确值。
涉及到统计的一些思想: 模型适用的总体;模型的时间性; 样本的取值范围对模型的影响;模型预报结果的正确 理解。
相关指数 R 2 0.98
因此y关于x的非线性回
^
y e 归方程为
0.272 x3.489
当x=28 C 时,y ≈44 ,指数回归模型中温度解释了98%的产卵数的变化
最好的模型是哪个?
显然,指数函数模型最好!
yˆ (1) e0.272 x3.849 yˆ (2) 0.367 x2 202.543
21 23 25 27 29 32 35 7 11 21 24 66 115 325
(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵 数目。
(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?
解:选取气温为解释变量x,产卵数
选变量
350

回归分析的基本思想及其应用(一)

回归分析的基本思想及其应用(一)

第40课时 回归分析基本思想及其初步应用(一)学习目标:1、了解相关关系的概念及其与函数关系的区别;2、掌握线性回归方程的求法及其步骤;3、了解线性回归模型及随机误差的含义。

教学重点; 线性回归方程 教学难点: 线性回归模型 教学工具: Powerpoint 教学过程:(一) 复习引入1、相关关系:对于两个变量,当自变量的取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。

2、函数关系:两个变量之间是一种确定性关系;3、两个具有线性相关关系的变量的统计分析步骤(板书): 设样本点(x 1,y 1),(x 2,y 2),……,(x n ,y n ) (1) 画出散点图; (2) 求回归直线方程abx y+=∧,其中∑∑∑∑====∧--=---=ni i ni i i ni i ni i i xn x yx n y x x x y y x x b 1221121)())((………①xb y a ∧∧-= ………②(3) 利用线性回归方程进行预报 这种方法叫做回归分析,是对具有相关关系的两个变量进行统计分析的一种常用方法。

板书:(y x ,)叫做样本点的中心,回归直线过样本点的中心。

(二)推进新课60.316kg 的女大学生的身高(精确到1cm )。

解:由于问题中要求根据体重预报身高,因此选取体重为自变量x ,身高为因变量y.作出散点图如下:从图中可以看出,样本点呈条状分布,体重和身高有比较好的线必相关关系,因此可以用回归直线y=bx+a 来近似刻画它们之间的关系。

又据表中数据计算得:5.54=x ,25.165=y,24116812=∑=i i x ,218774812=∑=i i y ,7231581=∑=i i i y x于是根据前面的公式①②,可以得∧b=7514.05.54102411625.1655.5410723152=⨯-⨯⨯-xb y a ∧∧-==165.25-0.7514×54.5=124.3于是得到回归方程:124.30.7514x y+=∧∧b=0.7514是回归直线的斜率的估计值,说明体重每增加1单位时,身高就增加0.7514个单位,这表明身高y 和体重x 具有正的线性相关关系.因此,对于体重为60.316kg 的女大学生,由回归方程可以预报其身高为:cm17062.169124.360.3160.7514y ≈=+⨯=∧探究(1)体重60.316kg 的女大学生的身高一定是170cm 吗?如果不是,其原因是什么? 显然,体重60.316kg 的女大学生的身高不一定是170cm ,但一般可以认为她的身高在170cm 左右。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

我们可以用相关指数R2来刻画回归的效果,其计算公式是
显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。
在线性回归模型中,R2表示解释量对预报变量变化的贡献率。
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的线性相关性越强)。
我们可以用相关指数R2来刻画回归的效果,其计算公式是
如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。
总的来说: 相关指数R2是度量模型拟合效果的一种指标。 在线性模型中,它代表自变量刻画预报变量的能力。
我们可以用相关指数R2来刻画回归的效果,其计算公式是
例1的R2≈0.64 ,解释变量对总效应约贡献了64%,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。
回归方程:
3、回归分析的基本步骤:
画散点图
求回归方程
用回归直线方程预报、决策
这种方法称为回归分析.
回归分析是对具有相关关系的两个变量进行统计 分析的一种常用方法.
函数模型与回归模型之间的差别
函数模型:
回归模型:
线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解释部分y的变化。
错误数据 模型问题
几点说明: 第1个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用学习任务:进一步了解与线性回归模型有关的一些统计思想(引入残差变量的必要性;残差分析和相关指数的作用;对模型预报结果的正确认识等)。

主要知识点:回归模型与函数模型的区别;线性回归模型的数学表达式;建立回归模型的基本步骤;随机误差产生的原因;回归方程的预报结果(相关系数、相关指数、残差分析等角度);非线性相关关系转化为线性回归模型。

重点:回归模型与函数模型的区别;回归模型拟合效果的刻画——相关指数与残差分析。

难点:残差变量的解释;偏差平方和分解的思想。

一、函数关系与相关关系函数关系是两个变量之间的一种确定性的关系,而相关关系是一种非确定性的关系。

相关关系有线性相关关系与非线性相关关系。

用统计方法解决问题的基本步骤为:提出问题、收集数据、分析整理数据、预测或决策。

例1 为了预报一名身高为172cm的女大学生的体重,从某大学中随机选取8名女大学生作为样本,收集她们的身高和体重的数据如下表所示.。

从散点图中可以看出,图像同时经过这8个样本点的函数是不存在的,因此,这里的体重变量y与身高变量x不具有确定的函数关系;事实上,注意到当x=165时,y有48,57,61三个不同的取值,根据函数概念可知,这里的变量y与变量x根本就不可能具有函数关系;但由于这8个样本点分布在从左下方到右上方的一个带形区域内,使我们初步感觉到身高变量x与体重变量y并非没有关系,因此,应存在某一直线l,使这8个点都落在该直线附近,从而说明这里的变量y与变量x具有非确定性的线性相关关系。

那么,这条直线l的方程是什么?如何根据直线l的方程预报一名身高为172cm的女大学生的体重?预报值的含义是什么?预报的精确度又如何呢?回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其最基本的过程为:画散点图→求回归方程→用回归方程进行预报。

二、最小二乘估计公式(求回归直线方程的一种方法)例1中的8名女大学生是一个随机抽样样本,所获得的8组身高和体重的数据对称为观测数据(或样本数据).一般地,设对变量x 与y 有一组观测数据),...,3,2,1)(,(n i y x i i =,这些样本点都分布在直线l 的附近,直线l 的方程为:αβ+=x y (称变量x 为解释变量,变量y 为预报变量或观测变量).方程中αβ,是客观存在的真实值,但由于变量x 与y 并不具有线性函数关系,我们无法确切地知道αβ,具体是何值。

3.1回归分析的基本思想及其初步应用

3.1回归分析的基本思想及其初步应用
的关系(如是否存在线性关系等).
(3)由经验确定回归方程的类型(如我们观察到数据呈 线性关系,则选用线性回归方程). ( 4)按 一 定 规 则 ( 如 最 小 二 乘 法 )估 计 回 归 方 程 中 的 参 数 .
(5)得出结果后分析残差图是否有异常(如个别数据对 应残差过大,残差呈现不随机的规律性等),若存在异常, 则检查数据是否有误,或模型是否合适等.
对于一组具有线性相关关系的数据
x1, y1 ,x2, y2 ,,xn , yn ,
我们知道其回归直线y = bx + a的斜率和截距 的最小二乘估计分别为
n
xi x yi y
bˆ i1 n
,
1
aˆ y bˆx,
2
xi x 2
i 1
这正是我们所要推导的公式.
下面我们通过案例 ,进一步学习回归分析的基本 思想及其应用.
例1 从某大学中随机选取8名女大学生,其身高和体 重数据如表 3-1所示.
表 3-1 编号 1 2 3 4 5 6 7 8
身 高 / cm 165 165 157 170 175 165 155 170 体 重 /kg 48 57 50 54 64 61 43 59
4.不能期望回归方程得到的预报值就是预报变量的 精 确 值.事 实 上, 它 是 预 报 变 量 的 可 能 取 值 的 平 均 值. 一 般 地 ,建 立 回 归 模 型 的 基 本 步 骤 为 :
( 1)确 定 研 究 对 象 ,明 确 哪 个 变 量 是 解 释 变 量 ,哪 个 变 量是预报变量. ( 2)画 出 解 释 变 量 和 预 报 变 量 的 散 点 图 ,观 察 它 们 之 间
第三章 统计案例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档