回归分析基本思想

合集下载

回归分析的基本思想

回归分析的基本思想
个原因.
思考:相关系数r与随机误差e有什么关系?
13
14
课后作业
作业
见B本第5a bx e
其中a和b为模型的未知参数,e是y与 y bx a 之间的误差,通常e为随机变量,称为随机误差.
y bx a e 线性回归模型的完整表达式为: 2 E (e ) 0, D(e )
线性回归模型适用范围比一次函数的适用范围大得多.
虽然这种向中心回归的现象只是特定领域里的结论,并不具有 普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种 变量间的关系看,和我们现在的回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变 化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论 5 研究和实证研究中也发挥着重要作用。
当随机误差e恒等于0时,线性回归模型就变成一次函 数模型.即:一次函数模型是线性回归模型的特殊形式, 线性回归模型是一次函数模型的一般形式.
12
其中:均值E(e)=0,方差D(e)=σ2>0
其他因素的影响
ˆ 与真实值y之间的误差的原因 随机误差是引起预报值 y 之一,其大小取决于随机误差的方差. ˆ 为截距和斜率的估计值,它们与真实值a和b之间 ˆ和 b a ˆ 与真实值y之间的误差的另一 存在误差是引起预报值 y
估计值 60.316kg. P83 认为她的平均体重的估计值是
10
因为所有的样本点不共线,所以线性函数 模型只能近似地刻画身高和体重之间的关系, 即:体重不仅受身高的影响,还受其他因素的 影响,把这种影响的结果用e来表示,从而把 线性函数模型修改为线性回归模型: y=bx+a+e.其中,e包含体重不能由身高的线性 函数解释的所有部分(如:饮食/运动/遗传…).

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型(1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x -,其中x -=1n ∑ni =1x i ,y -=1n∑ni =1y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量.[注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具.(2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^为基数,x 每增加1个单位,y 相应地平均增加b ^个单位.3.刻画回归效果的方式方式方法计算公式 刻画效果R 2R 2=1-∑ni =1(y i -y ^i )2∑n i =1(y i -y )2R 2越接近于1,表示回归的效果越好残差图e ^i 称为相应于点(x i ,y i )的残差,e ^i =y i -y ^i残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高残差平方和∑ni =1(y i -y ^i )2 残差平方和越小,模型的拟合效果越好判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( )(2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )(3)利用线性回归方程求出的值是准确值.( ) 答案:(1)× (2)√ (3)×变量x 与y 之间的回归方程表示( )A .x 与y 之间的函数关系B .x 与y 之间的不确定性关系C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 答案:D在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98 B .模型2的相关指数R 2为0.80 C .模型3的相关指数R 2为0.50 D .模型4的相关指数R 2为0.25 答案:A已知线性回归方程y ^=0.75x +0.7,则x =11时,y 的估计值为________. 答案:8.95探究点1 线性回归方程在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间的一组观察值如下表.x (s) 5 10 15 20 30 40 50 60 70 90 120 y (μm)610101316171923252946(1)画出散点图;(2)求y 对x 的线性回归方程;(3)利用线性回归方程预测时间为100 s 时腐蚀深度为多少. 【解】 (1)散点图如图所示.(2)从散点图中,我们可以看出y 对x 的样本点分布在一条直线附近,因而求回归直线方程有意义.x =111(5+10+15+ (120)=51011,y =111(6+10+10+…+46)=21411,a ^=y -b ^x ≈21411-0.304×51011= 5.36. 故腐蚀深度对腐蚀时间的线性回归方程为y =0.304x + 5.36.(3)根据(2)求得的线性回归方程,当腐蚀时间为100 s 时,y ^=5.36+0.304×100=35.76(μm),即腐蚀时间为100 s 时腐蚀深度大约为35.76 μm.求线性回归方程的三个步骤(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系. (2)求回归系数:若存在线性相关关系,则求回归系数.(3)写方程:写出线性回归方程,并利用线性回归方程进行预测说明.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炼料熔化完毕到出钢的时间)的数据(x i ,y i )(i =1,2,…,10)并已计算出=1589,i =110y i =1 720,故冶炼时间y 对钢水的含碳量x 的回归直线方程为y ^=1.267x -30.47. 探究点2 线性回归分析假定小麦基本苗数x 与成熟期有效穗y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗; (3)计算各组残差,并计算残差平方和;(4)求相关指数R 2,并说明残差变量对有效穗的影响占百分之几? 【解】 (1)散点图如下.(2)由图看出,样本点呈条状分布,有比较好的线性相关关系,因此可以用回归方程刻画它们之间的关系.设回归方程为y ^=b ^x +a ^,x -=30.36,y -=43.5,(1)该类题属于线性回归问题,解答本题应先通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模x 15.0 25.8 30.0 36.6 44.4 y39.442.942.943.149.2型的拟合效果,在此基础上,借助回归方程对实际问题进行分析. (2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适; ②残差平方和法:残差平方和 i =1n(y i -y ^i )2越小,模型的拟合效果越好;关于x 与y 有如下数据:x 2 4 5 6 8 y3040605070由(2)可得y i -y ^i 与y i -y -的关系如下表:y i -y ^i -1 -5 8 -9 -3 y i -y --20-101020由于R 21=0.845,R 22=0.82,0.845>0.82, 所以R 21>R 22.所以(1)的拟合效果好于(2)的拟合效果. 探究点3 非线性回归分析某地今年上半年患某种传染病的人数y (人)与月份x (月)之间满足函数关系,模型为y =a e bx ,确定这个函数解析式.月份x /月 1 2 3 4 5 6 人数y /人526168747883【解】 设u =ln y ,c =ln a , 得u ^=c ^+b ^x ,则u 与x 的数据关系如下表:x12 3 4 56u =ln y 3.95 4.114.224.3044.356 7 4.418 8非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程. (4)分析拟合效果:通过计算相关指数或画残差图来判断拟合效果. (5)根据相应的变换,写出非线性回归方程.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:x(千册)1 2 3 5 10 20 30 50 100 200 y (元)10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y (元)与印刷册数的倒数1x之间是否具有线性相关关系,如有,求出y 对x 的回归方程,并画出其图形.解:首先作变量置换u =1x,题目中所给的数据变成如下表所示的10对数据.u i 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y i10.155.524.082.852.111.621.411.301.211.15然后作相关性检测.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系,由公式得a ^≈1.125,b ^≈8.973,所以y ^=1.125+8.973u ,最后回代u =1x ,可得y ^=1.125+8.973x.这就是题目要求的y 对x 的回归方程.回归方程的图形如图所示,它是经过平移的反比例函数图象的一个分支.1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,预报变量在y 轴C .回归模型中一定存在随机误差D .散点图能明确反映变量间的关系解析:选D.用散点图反映两个变量间的关系时,存在误差. 2.下列关于统计的说法:①将一组数据中的每个数据都加上或减去同一个常数,方差恒不变; ②回归方程y ^=b ^x +a ^必经过点(x ,y ); ③线性回归模型中,随机误差e =y i -y ^i ;④设回归方程为y ^=-5x +3,若变量x 增加1个单位,则y 平均增加5个单位. 其中正确的为________(写出全部正确说法的序号).解析:①正确;②正确;③线性回归模型中,随机误差的估计值应为e ^i =y i -y ^i ,故错误;④若变量x 增加1个单位,则y 平均减少5个单位,故错误. 答案:①②3.某商场经营一批进价是30元/台的小商品,在市场试销中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:x 35 40 45 50 y56412811(1)画出散点图,并判断y 与x 是否具有线性相关关系;(2)求日销售量y 对销售单价x 的线性回归方程(方程的斜率保留一个有效数字); (3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量具有线性相关关系.(2)因为x -=14×(35+40+45+50)=42.5,(3)依题意有P =(161.5-3x )(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎪⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.故预测当销售单价为42元时,能获得最大日销售利润.知识结构深化拓展线性回归模型的模拟效果(1)残差图法:观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.(2)残差的平方和法:一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.残差平方和越小的模型,拟合的效果越好.(3)R 2法:R 2的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.[注意] r 的绝对值越大说明变量间的相关性越强,通常认为r 的绝对值大于等于0.75时就是有较强的相关性,同样R 2也是如此,R 2越大拟合效果越好.[A 基础达标]1.废品率x %和每吨生铁成本y (元)之间的回归直线方程为y ^=256+3x ,表明( ) A .废品率每增加1%,生铁成本增加259元 B .废品率每增加1%,生铁成本增加3元 C .废品率每增加1%,生铁成本平均每吨增加3元 D .废品率不变,生铁成本为256元解析:选C.回归方程的系数b ^表示x 每增加一个单位,y ^平均增加b ^,当x 为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.2.已知某产品连续4个月的广告费用为x i (i =1,2,3,4)千元,销售额为y i (i =1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息:①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y ^=b ^x +a ^中,b ^=0.8(用最小二乘法求得),那么当广告费用为6千元时,可预测销售额约为( )A .3.5万元B .4.7万元C .4.9万元D .6.5万元解析:选B.依题意得x =4.5,y =3.5,由回归直线必过样本点中心得a ^=3.5-0.8×4.5=-0.1,所以回归直线方程为y ^=0.8x -0.1.当x =6时,y ^=0.8×6-0.1=4.7.3.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得的线性回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x 解析:选A.由题中数据得x =6.5,y =28.5,a ^=y -b ^x =28.5-2.62×6.5=11.47,所以y 与x 的线性回归方程是y ^=2.62x +11.47.故选A.4.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5.如果今年该地区财政收入10亿元,则年支出预计不会超过( )A .10亿元B .9亿元C .10.5亿元D .9.5 亿元解析:选C.代入数据y =10+e ,因为|e |≤0.5, 所以9.5≤y ≤10.5,故不会超过10.5亿元.5.某种产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表:y 与x 的线性回归方程为y =6.5x +17.5,当广告支出5万元时,随机误差的效应(残差)为________.解析:因为y 与x 的线性回归方程为y ^=6.5x +17.5,当x =5时,y ^=50,当广告支出5万元时,由表格得:y =60,故随机误差的效应(残差)为60-50=10. 答案:106.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),且e i 恒为0,则R 2为________.解析:由e i 恒为0,知y i =y ^i ,即y i -y ^i =0, 故R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2=1-0=1.答案:17.某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系见表:已知∑7i =1x 2i =280,∑7i =1x i y i =3 487. (1)求x ,y ;(2)已知纯利y 与每天销售件数x 线性相关,试求出其回归方程. 解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917=5597.(2)因为y 与x 有线性相关关系,所以b ^=∑7i =1x i y i-7x y ∑7i =1x 2i -7x 2=3 487-7×6×5597280-7×36=4.75,a ^=5597-6×4.75=71914≈51.36.故回归方程为y ^=4.75 x +51.36.8.已知某校5个学生的数学和物理成绩如下表:(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程; (3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?参考数据和公式:y ^=b ^x +a ^,其中.解:(1)记事件A 为“恰有2名学生的物理成绩是自己的实际成绩”, 则P (A )=2C 25A 55=16.(2)因为x =80+75+70+65+605=70,y =70+66+68+64+625=66,学生的编号i 1 2 3 4 5 数学x i 80 75 70 65 60 物理y i7066686462[B 能力提升]9.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如表的统计资料:使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.010.(选做题)某地区不同身高的未成年男性的体重平均值如表所示:身高x(cm)60708090100110体重y(kg) 6.137.909.9912.1515.0217.50身高x(cm)120130140150160170体重y(kg)20.9226.8631.1138.8547.2555.05 (1)(2)如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175 cm 、体重82 kg 的在校男生体重是否正常? 解:(1)根据题表中的数据画出散点图如图所示.由图可看出,样本点分布在某条指数函数曲线y =c 1e c 2x的周围, 于是令z =ln y ,得下表:x 60 70 80 90 100 110 z 1.81 2.07 2.30 2.50 2.71 2.86 x 120 130 140 150 160 170 z3.043.293.443.663.864.01作出散点图如图所示:由表中数据可得z 与x 之间的回归直线方程为 z ^=0.662 5+0.020x ,则有y ^=e 0.662 5+0.020x .(2)当x =175时,预报平均体重为y ^=e 0.662 5+0.020×175≈64.23, 因为64.23×1.2≈77.08<82,所以这个男生偏胖.。

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。

它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。

回归分析的初步应用包括简单线性回归和多元线性回归。

1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。

其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。

独立性检验的初步应用包括卡方检验和Fisher精确检验。

第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。

演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。

两种推理方法都有其适用的场合,需要根据具体情况进行选择。

2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。

间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。

第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。

复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。

复数的引入扩充了数系,使得一些原本无解的方程可以得到解。

3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。

复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。

第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。

它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。

流程图可以帮助人们更好地理解算法或过程,从而提高效率。

4.2 结构图结构图是一种用于描述程序结构的图形表示方法。

它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。

1.1回归分析的基本思想及初步应用

1.1回归分析的基本思想及初步应用

返回
[类题通法] 求线性回归方程的步骤
(1)列表表示 xi,yi,xiyi;
(2)计算-x
-y ,
n
x2i ,
n
xiyi;
i=1
i=1
(3)代入公式计算^a,^b的值; (4)写出回归直线方程.
返回
[活学活用] 某种产品的广告费支出x(单位:百万元)与销售额y(单位:百 万元)之间有如下对应数据:
Hale Waihona Puke yi 100 200 210 185 155 135 170 205 235
36 39 32 22 18 25
47
xiyi 10 400
39 155
000 900 745 785 090 500
940
121 125
15 125
x =159.8, y =172,
10
10
x2i =265 448,xiyi=287 640
x
14
16
18
20
22
y
12
10
7
5
3
求y关于x的回归直线方程,并说明回归模型拟合效果的 好坏.
返回
解: x =15(14+16+18+20+22)=18, y =15(12+10+7+5+3)=7.4,
5
x2i =142+162+182+202+222=1 660,
i=1
5
xiyi=14×12+16×10+18×7+20×5+22×3=620,
返回
[类题通法] 残差分析应注意的问题
利用残差分析研究两个变量间的关系时,首先要根据 散点图来粗略判断它们是否线性相关,是否可以用线性回 归模型来拟合数据.然后通过图形来分析残差特性,用残 差^e1,^e2,…,^en 来判断原始数据中是否存在可疑数据,用 R2 来刻画模型拟合的效果.

回归分析的基本思想及其初步应用三

回归分析的基本思想及其初步应用三
实际业务中的回归分析应用非常广泛,包括商品销量预测、客户群体分析、金融预测、流量分析和医学 研究等。
常用的回归分析软件介绍
常用的回归分析软件包括R、Python、SPSS和Excel等。这些软件提供了丰富的函数和工具,可以帮助 我们进行数据分析和回归分析。
怎样设计合适的回归分析实验
设计合适的回归分析实验需要明确问题、确定自变量和因变量、选择合适的模型和方法、并进行数据预 处理和模型评价。关键是理清思路,严谨可靠,才能得出具有实际意义的结论。
多元线性回归分析
多元线性回归分析可以同时涉及多个自变量和一个因变量。这种方法十分灵活,可用于分析更加复杂的 问题和模型。
模型的拟合程度
模型的拟合程度是指回归方程对数据的拟合优度。一个好的模型应该拟合得 越好,R-squared 值越高。
残差分析及其意义
残差是因变量与回归方程预测值之间的差异。残差分析是评估模型拟合优度 的一种方式。
神经网络回归分析
神经网络回归分析是一种拟合嵌套非线性模型的回归分析方法。它可以允许多层非线性关系,并适用于 多维度问题。
回归分析与时间序列分析的联 系
回归分析和时间序列分析都是用来分析数据和预测未来的方法。回归分析可 以用于研究变量之间的关系,时间序列分析可以用于预测时间趋势。
实际业务中的回归分析应用
回归方程的含义
回归方程是描述自变量和因变量之间关系的数学公式。通过回归方程,我们可以预测因变量的值,也可 以研究自变量的影响。
回归分析的基本假设
回归分析有三个基本假设:线性性、独立性、和正态性。只有这些假设得到了满足,回归分析才能有效 地进行。
简单线性回归分析
简单线性回归分析是指只涉及一个自变量和一个因变量的回归分析。这种方法简单易懂,但是其时间序 列结果并不完全准确,需要更加复杂的分析方法。

回归分析基本思想及应用条件

回归分析基本思想及应用条件

回归分析基本思想及应用条件回归分析是一种常用的统计分析方法,用于研究变量之间的关系,并预测一个或多个自变量对因变量的影响。

本文将介绍回归分析的基本思想以及应用条件。

一、回归分析的基本思想回归分析的基本思想是基于最小二乘法,通过拟合曲线或平面,找到自变量与因变量之间的最佳关系模型。

这个模型可以用来预测因变量在给定自变量的情况下的取值。

回归分析的思想可以用以下数学公式表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1~Xn表示自变量,β0~βn表示回归系数,ε表示误差项。

回归分析的目标是通过最小化误差项来确定回归系数的值,使得拟合曲线与实际观测值之间的误差最小化。

二、回归分析的应用条件回归分析适用于以下条件:1. 自变量与因变量之间存在线性关系:回归分析假设自变量与因变量之间存在线性关系。

因此,在应用回归分析之前,需要通过观察数据和作图等方式来验证自变量与因变量之间的线性关系。

2. 自变量之间相互独立:回归分析要求自变量之间相互独立,即自变量之间不应存在多重共线性的问题。

多重共线性会导致回归系数的估计出现问题,降低模型的准确性。

3. 自变量和误差项之间不存在系统性关联:回归分析假设误差项与自变量之间不存在系统性关联。

如果存在系统性关联,会导致回归系数的估计出现偏差,影响模型的准确性。

4. 数据具有代表性:回归分析要求样本数据具有代表性,能够反映总体的特征。

因此,在进行回归分析之前,需要对样本数据的采集方法和样本容量进行科学设计,以确保数据的可靠性和准确性。

5. 误差项满足正态分布:回归分析假设误差项满足正态分布。

如果误差项不满足正态分布,可能会导致回归系数的估计出现偏差,使得模型的准确性降低。

总之,回归分析是一种重要的统计分析方法,可以用于研究变量之间的关系并进行预测。

但在应用回归分析时,需要注意以上提到的应用条件,以保证分析结果的准确性和可靠性。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用
t检验
t检验用于检验单个自变量对因变量的影响是否显著。如果t检验的P值小于显著性水平,则认为该自变 量对因变量的影响是显著的。
回归系数的解释
偏效应
回归系数表示在其他自变量保持不变 的情况下,某一自变量变化一个单位 时因变量的平均变化量。它反映了自 变量对因变量的偏效应。
标准化回归系数
为了消除自变量量纲的影响,可以对 回归系数进行标准化处理。标准化回 归系数表示自变量和因变量的标准化 值之间的相关系数,具有可比性。
03
回归分析的初步应用
一元线性回归分析
01
建立一元线性回归模型
通过收集样本数据,以自变量 和因变量的线性关系为基础, 建立一元线性回归模型。
02
参数估计
利用最小二乘法等估计方法, 对模型中的参数进行估计,得 到回归方程的系数。
03
假设检验
对回归方程进行显著性检验, 判断自变量和因变量之间是否 存在显著的线性关系。
通过调整模型参数或引入新的 变量等方式优化模型,提高模 型的拟合精度和预测能力。
逐步回归分析
1 引入变量
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
2 检验与调整
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
3 逐步筛选
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。

详细阐述了线性回归模型的构建 过程,包括模型的假设、参数的 估计和模型的检验等步骤。
回归分析的初步应

通过实例演示了回归分析在解决 实际问题中的应用,包括预测、 解释变量关系和控制变量等方面 的应用。
对未来学习的建议与展望
深入学习回归分析的理论知识

回归分析基本思想

回归分析基本思想

i
y) y)
2
2
2
i
i
R2 1,说明回归方程拟合的越好;R20,说明回归 方程拟合的越差。
26
归纳建立回归模型的基本步骤
一般地,建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。 (2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系 (如是否存在线性关系等)。 (3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则 选用线性回归方程y=bx+a).
思考P3
产生随机误差项e 的原因是什么?
3、从散点图还看到,样本点散布在某一条直线的附 我们可以用下面的线性回归模型来表示: 近,而不是在一条直线上,所以不能用一次函数 y=bx+a+e,其中a和b为模型的未知参数, y=bx+a 简单描述它们关系。 e称为随机误差。
思考P3 产生随机误差项e的原因是什么?
必修3(第二章 统计)知识结构
收集数据
(随机抽样) 整理、分析数据 估计、推断
用样本估计总体
变量间的相关关系
简 单 随 机 抽 样
分 层 抽 样
系 统 抽 样
用样本 的频率 分布估 计总体 分布
用样本 数字特 征估计 总体数 字特征
线 性 回 归 分 析
问题1:现实生活中两个变量间的关系有哪 些呢? 不相关
(2)画出确定好的解析变量和预报变量的散点图,观察 它们之间的关系(如是否存在线性关系等)。
(3)由经验确定回归方程的类型(如我们观察到数据呈线 性关系,则选用线性回归方程y=bx+a).
(4)按一定规则估计回归方程中的参数(如最小二乘法)。
(5)得出结果后分析残差图是否有异常(个别数据对应残差 过大,或残差呈现不随机的规律性,等等),过存在异常,则 检查数据是否有误,或模型是否合适等。

回归分析的基本思想及其初步应用ppt

回归分析的基本思想及其初步应用ppt
预测精度可以通过计算预测值与实际值之间的均方误 差(MSE)或均方根误差(RMSE)来衡量。
线性回归模型的评估是检验模型预测效果的重 要步骤。评估的指标包括模型的拟合优度、显 著性检验和预测精度等。
显著性检验可以通过F检验和t检验来实现,用于 检验模型的参数是否显著不为零。
03
非线性回归分析
多项式回归
04
回归分析的初步应用
经济预测
总结词
通过分析历史数据和相关经济指标,回归分 析可以预测未来的经济趋势和变化。
详细描述
回归分析在经济预测中应用广泛,例如,通 过分析历史GDP、消费、投资等数据,可以 预测未来经济增长速度、通货膨胀率等经济 指标。这种预测有助于企业和政府制定经济 政策,进行资源分配和投资决策。
结果解读
查看回归分析结果,包括系数、标 准误、显著性等。
03
02
线性回归分析
选择回归分析模块,设置自变量和 因变量。
模型评估
根据回归分析结果评估模型的性能 。
04
THANKS
感谢观看
05
回归分析的注意事项
数据质量
01
02
03
完整性
确保数据集中的所有观测 值都完整无缺,没有遗漏 或缺失的数据。
准确性
数据应准确无误,避免误 差或错误的测量和记录。
一致性
不同来源或不同时间点的 数据应具有一致的格式和 标准,以便进行比较和分 析。
过拟合与欠拟合
过拟合
模型在训练数据上表现良好,但 在测试数据上表现较差。原因是 模型过于复杂,导致对训练数据 的过度拟合。
它通过找出影响因变量的因素,并确 定这些因素对因变量的影响程度,来 预测因变量的取值。
回归分析的分类

回归分析的基本思想及其初步应用方法规律总结

回归分析的基本思想及其初步应用方法规律总结

《回归分析的基本思想及其初步应用》方法规律总结1.线性回归分析的过程:(1)随机抽取样本,确定数据,形成样本点;(2)由样本点形成散点图,判定是否具有线性相关关系;(3)由最小二乘法求线性回归方程;(4)进行残差分析,分析模型的拟合效果,不合适时,分析错因,予以纠正;(5)依据回归方程作出预报.2.用散点图可粗略判断两个变量间有无线性相关关系,用相关指数R2可以描述两个变量之间的密切程度.3.随机误差及其产生的原因从散点图中我们可以看到,样本点散布在某一条直线附近,而不是在一条直线上,所以不能用一次函数y =bx +a 来描述它们之间的关系,而是用线性回归模型y =bx +a +e 来表示,其中e 称为随机误差.产生随机误差的主要原因有以下3个方面:(1)用线性回归模型近似真实模型所引起的误差.可能存在非线性的函数能更好地描述y 与x 之间的关系,但是现在却用线性函数来表述这种关系,结果会产生误差.这种由模型近似所引起的误差包含在e 中.(2)忽略了某些因素的影响.影响变量y 的因素不只变量x ,可能还包括其他许多因素(例如在描述身高和体重关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),它们的影响都体现在e 中.(3)观测误差.由于测量工具等原因,导致y 的观测值产生误差(比如一个人的体重是确定的数,但由于测量工具的影响和测量人技术的影响可能会得到不同的观测值,与真实值之间存在误差),这样的误差也包含在e 中.4.正确理解预报变量的变化与解释变量和随机误差的关系预报变量的变化程度可以分解为解释变量引起的变化程度与随机误差e 的变化程度之和.为了衡量回归直线方程y ^=b ^x +a ^的拟合效果,作残差e ^i =yi -y ^i ,其中xi 、yi 为观测到的样本点,y ^i =b ^xi +a ^是由回归模型得到的值,残差图的带状区域越窄,模型的拟合精度就越高,由回归方程作出的预报精度就越高.模型的拟合效果通过相关指数R2来刻画.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率.R2越接近于1,表示解释变量和预报变量的线性相关性越强;反之,R2越小,说明随机误差对预报变量的效应越大。

回归分析的基本思想及其应用(一)

回归分析的基本思想及其应用(一)

第40课时 回归分析基本思想及其初步应用(一)学习目标:1、了解相关关系的概念及其与函数关系的区别;2、掌握线性回归方程的求法及其步骤;3、了解线性回归模型及随机误差的含义。

教学重点; 线性回归方程 教学难点: 线性回归模型 教学工具: Powerpoint 教学过程:(一) 复习引入1、相关关系:对于两个变量,当自变量的取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。

2、函数关系:两个变量之间是一种确定性关系;3、两个具有线性相关关系的变量的统计分析步骤(板书): 设样本点(x 1,y 1),(x 2,y 2),……,(x n ,y n ) (1) 画出散点图; (2) 求回归直线方程abx y+=∧,其中∑∑∑∑====∧--=---=ni i ni i i ni i ni i i xn x yx n y x x x y y x x b 1221121)())((………①xb y a ∧∧-= ………②(3) 利用线性回归方程进行预报 这种方法叫做回归分析,是对具有相关关系的两个变量进行统计分析的一种常用方法。

板书:(y x ,)叫做样本点的中心,回归直线过样本点的中心。

(二)推进新课60.316kg 的女大学生的身高(精确到1cm )。

解:由于问题中要求根据体重预报身高,因此选取体重为自变量x ,身高为因变量y.作出散点图如下:从图中可以看出,样本点呈条状分布,体重和身高有比较好的线必相关关系,因此可以用回归直线y=bx+a 来近似刻画它们之间的关系。

又据表中数据计算得:5.54=x ,25.165=y,24116812=∑=i i x ,218774812=∑=i i y ,7231581=∑=i i i y x于是根据前面的公式①②,可以得∧b=7514.05.54102411625.1655.5410723152=⨯-⨯⨯-xb y a ∧∧-==165.25-0.7514×54.5=124.3于是得到回归方程:124.30.7514x y+=∧∧b=0.7514是回归直线的斜率的估计值,说明体重每增加1单位时,身高就增加0.7514个单位,这表明身高y 和体重x 具有正的线性相关关系.因此,对于体重为60.316kg 的女大学生,由回归方程可以预报其身高为:cm17062.169124.360.3160.7514y ≈=+⨯=∧探究(1)体重60.316kg 的女大学生的身高一定是170cm 吗?如果不是,其原因是什么? 显然,体重60.316kg 的女大学生的身高不一定是170cm ,但一般可以认为她的身高在170cm 左右。

回归分析的基本思想

回归分析的基本思想

回归模型的诊断
1 1. 残差分析
通过检查回归模型的残差,我们可以评估模型的拟合程度和模型是否符合假设。
2 2. 多重共线性检验
多Hale Waihona Puke 共线性是指自变量之间存在高度相关性,影响回归模型的稳定性和可解释性。
3 3. 异常值检测
异常值可能会对回归分析结果产生重大影响,因此需要进行异常值检测和处理。
回归系数的解释和显著性检验
回归分析可以帮助市场营销人员 了解产品销售与营销投入之间的 关系,并制定更有效的营销策略。
回归分析在医疗研究中被用于研 究疾病发病率与风险因素之间的 关系,以及疗效评估。
回归分析的基本思想
回归分析是一种统计方法,用于探究变量之间的关系,帮助我们了解和预测 数据的趋势。通过建立回归模型,我们可以分析自变量对因变量的影响,并 进行预测和解释。
回归分析的定义
回归分析是一种用于研究变量之间关系的统计方法。通过建立数学模型,我们可以根据自变量的变化来预测因 变量的值。
回归分析的基本原理
1. 线性关系
回归分析基于假设自变量和因 变量之间存在线性关系,这意 味着随着自变量的变化,因变 量的值也会相应地改变。
2. 最小二乘法
回归分析使用最小二乘法来估 计回归模型的参数,这意味着 我们寻找一个最佳拟合直线, 使得观测值与拟合值的残差平 方和最小。
3. 残差分析
回归分析的一个重要步骤是对 回归模型的残差进行分析,以 评估模型的拟合程度和模型是 否符合假设。
简单线性回归
简单线性回归是回归分析的一种常见形式,它研究了一个自变量和一个因变量之间的关系。通过拟合一条直线, 我们可以预测因变量的值。
多元线性回归
多元线性回归是回归分析的另一种形式,它研究多个自变量与一个因变量之 间的关系。通过建立一个多元线性回归模型,我们可以预测因变量的值并分 析不同自变量对因变量的贡献。

最新人教版高中数学选修1-2《回归分析的基本思想及其初步应用》教材梳理

最新人教版高中数学选修1-2《回归分析的基本思想及其初步应用》教材梳理

庖丁巧解牛知识·巧学 一、回归分析回归分析是根据变量观测数据分析变量间关系的常用统计分析方法.通常把变量观测数据称为样本.1.散点图与回归方程(1)设对y 及x 做n 次观测得数据(x i ,y i )(i=1,2,…,n).以(x i ,y i )为坐标在平面直角坐标系中描点,所得到的这张图便称之为散点图.其中x 是可观测、可控制的普通变量,常称它为自变量,y 为随机变量,常称其为因变量.知识拓展 散点图是直观判断变量x 与y 是否相关的有效手段. (2)a 与回归系数b 的计算方法若散点呈直线趋势,则认为y 与x 的关系可以用一元回归模型来描述.设线性回归方程为y=a+bx+ε.其中a 、b 为未知参数,ε为随机误差,它是一个分布与x 无关的随机变量.最小二乘估计aˆ和b ˆ是未知参数a 和b 的最好估计. x b y aˆˆ-=,b ˆ=∑∑==---ni ini i ix xy y x x121)())((.深化升华 bˆ的计算还可以用公式b ˆ=∑∑==--ni ini ii x n xyx n yx 1221来计算,这时只需列表求出相关的量代入即可. 2.相关性检验如下图中的两个散点图,很难判断这些点是不是分布在某条直线附近.假如不考虑散点图,按照最小二乘估计计算a 与b ,我们可以根据一组成对数据,求出一个回归直线方程.但它不能反映这组成对数据的变化规律.为了解决上述问题,我们有必要对x 与y 作线性相关性的检验,简称相关性检验.对于变量x 与y 随机抽取到的n 对数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),检验统计量是样本相关系数r.r=∑∑∑∑∑∑======---=----ni i ni i ni ii ni i n i i ni i iy n y x n x yx n yx y y x x y y x x122122112121)()()()())((.r 具有以下性质:当r 大于0时,表明两个变量正相关,当r 小于0时,表明两个变量负相关;|r|≤1;|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱.通常当|r|大于0.75时,认为两个变量有很强的线性相关关系.相关性检验临界值如下表所示.相关性检验的临界值表深化升华 相关性检验的步骤也可如下: (1)作统计假设:X 与Y 不具有线性相关关系.(2)根据小概率0.05与n-2在相关性检验的临界值表中查出r 的一个临界值r 0.05. (3)根据样本相关系数计算公式算出r 的值.(4)作出统计推断.如果|r|>r 0.05,表明有95%的把握认为X 与Y 之间具有线性相关关系.如果|r|≤r 0.05,我们没有理由拒绝原来的假设.这时寻找回归直线方程是没有意义的. 3.回归分析的基本概念(1)在数学上,把每个效应(观测值减去总的平均值)的平方和加起来,即用∑=-ni iy y12)(表示总的效应,称为总偏差平方和.(2)数据点和它在回归直线上相应位置的差异(y i -i yˆ)是随机误差的效应,称i e ˆ=(y i -i y ˆ)为残差.(3)分别将残差的值平方后回来,用数学符号表示为∑=-ni i iy y12)(称为残差平方和.它代表了随机误差的效应.(4)总偏差平方和与残差平方和的差称为回归平方和.(5)回归效果的刻画我们可以用相关指数R 2反映.R 2=1-∑∑==--n i ini i iy y yy1212)()ˆ(.显然,R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.4.非线性回归问题 在实际问题中,当变量之间的相关关系不是线性相关关系时,不能用线性回归方程描述它们之间的相关关系,需要进行非线性回归分析,然而非线性回归方程一般很难求,因此把非线性回归化为线性回归应该说是解决问题的好方法.首先,所研究对象的物理背景或散点图可帮助我们选择适当的非线性回归方程yˆ=μ(x;a,b).其中a及b为未知参数,为求参数a及b的估计值,往往可以先通过变量置换,把非线性回归化为线性回归,再利用线性回归的方法确定参数a及b的估计值.问题·探究问题函数关系是一种确定性关系,而对一种非确定性关系——相关关系,我们如何研究?导思:由于相关关系不是一种确定性关系,我们经常运用统计分析的方法,即回归分析,按照画散点图,求回归方程,用回归方程预报等步骤进行.探究:我们可以知道,相关关系中,由部分观测值得到的回归直线,可以对两个变量间的线性相关关系进行估计,这实际上是将非确定性问题转化成确定性问题来研究.由于回归直线将部分观测值所反映的规律性进行了延伸,它在情况预报、资料补充等方面有着广泛的应用,从某种意义上看,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还要使我们对函数关系的认识上升到一种新的高度.典题·热题思路解析:散点图是表示具有相关关系的两个变量的一组数据的图形.解:散点图如下:例2每立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压强度(单位:kg/cm2)之间的关系有如下数据:(2)如果y与x之间具有线性相关关系,求回归直线方程.思路解析:求回归直线方程和相关系数,可以用计算器来完成.在有的较专门的计算器中,可通过直接按键得出回归直线方程的系数和相关系数,而如果要用一般的科学计算器进行计算,则要先列出相应的表格,有了表格中的那些相关数据,回归方程中的系数和相关系数就都容易求出了.解:(1)r=)6.721294.64572)(20512518600(6.722051218294322⨯-⨯-⨯⨯-≈0.999>0.75.说明变量y 与x 之间具有显著的线性正相关关系.bˆ=143004347205125186006.72205121829432=⨯-⨯⨯-≈0.304, x b y aˆˆ-==72.6-0.304×205=10.28. 于是所求的线性回归方程为yˆ=0.304x+10.28. 深化升华 为了进行相关性检验,通常将有关数据列成表格,然后借助于计算器算出各个量,为求回归直线方程扫清障碍.若由资料知y 对x 有线性相关关系.试求:(1)线性回归方程yˆ=b ˆx+a ˆ的回归系数a ˆ,b ˆ. (2)使用年限为10年时,估计维修费用是多少?思路解析:因为y 对x 有线性相关关系,所以可以用一元线性相关的方法解决问题.利用公式bˆ=∑∑==--ni i ni ii x n x yx n yx 1221,aˆ=y -b ˆx 来计算回归系数.有时为了方便常列表对应写出x i y i ,x i 2,以利于求和.解:(1)x =4,y =5,∑=ni ix12=90,∑=ni ii yx 1=112.3,于是bˆ=245905453.112⨯-⨯⨯-=1.23,aˆ=y -b ˆx =5-1.23×4=0.08. (2)回归直线方程为yˆ=1.23x+0.08.当x=10年时,y ˆ=1.23×10+0.08=12.38(万元),即估计使用10年的维修费用是12.38万元.方法归纳 知道y 与x 呈线性相关关系,就无需进行相关性检验,否则,应首先进行相关性检验.如果本身两个变量不具有相关关系,或者说,它们之间相关关系不显著,即使求出了回归方程也是毫无意义的,而且估计和预测的量也是不可信的.例4一只红铃虫的产卵数y与x有关,现收集了7组观测数据列于表中,试建立y与x之间思路解析:首先要作出散点图,根据散点图判定y与x之间是否具有线性相关关系,若具有线性相关关系,再求线性回归方程.在散点图中,样本点并没有分布在某个带状区域内,因此两个变量不呈线性相关关系,所以不能直接利用线性回归方程来建立两个变量之间的关系.根据已有的函数知识,可以发现样本分布在某一指数函数曲线的周围.解:散点图如下所示:由散点图可以看出:这些点分布在某一条指数函数y=pe qx(p,q为待定的参数)的周围.现在,问题变为如何估计待定的参数p和q,我们可以通过对数变换把指数关系变为线性关系.令z=lny,则变换后样本点应该分布在直线z=bx+a(a=lnp,b=q)周围.这样就可以利用线性回归模型来建立y与x之间的非线性回归方程了.由下图可看出,变换后的样本点分布在一条直线的附近,因此可以用线性回归方程来拟合.经过计算得到线性回归方程为zˆ=0.272x-3.843.因此红铃虫的产卵数对温度的非线性回归方程为yˆ=e0.272x-3.843.方法归纳线性回归问题在解决前可以先画散点图,通过散点图判断是否为线性回归,如果不是线性回归,要先转换为线性回归问题.。

3.1回归分析的基本思想及其初步应用

3.1回归分析的基本思想及其初步应用
的关系(如是否存在线性关系等).
(3)由经验确定回归方程的类型(如我们观察到数据呈 线性关系,则选用线性回归方程). ( 4)按 一 定 规 则 ( 如 最 小 二 乘 法 )估 计 回 归 方 程 中 的 参 数 .
(5)得出结果后分析残差图是否有异常(如个别数据对 应残差过大,残差呈现不随机的规律性等),若存在异常, 则检查数据是否有误,或模型是否合适等.
对于一组具有线性相关关系的数据
x1, y1 ,x2, y2 ,,xn , yn ,
我们知道其回归直线y = bx + a的斜率和截距 的最小二乘估计分别为
n
xi x yi y
bˆ i1 n
,
1
aˆ y bˆx,
2
xi x 2
i 1
这正是我们所要推导的公式.
下面我们通过案例 ,进一步学习回归分析的基本 思想及其应用.
例1 从某大学中随机选取8名女大学生,其身高和体 重数据如表 3-1所示.
表 3-1 编号 1 2 3 4 5 6 7 8
身 高 / cm 165 165 157 170 175 165 155 170 体 重 /kg 48 57 50 54 64 61 43 59
4.不能期望回归方程得到的预报值就是预报变量的 精 确 值.事 实 上, 它 是 预 报 变 量 的 可 能 取 值 的 平 均 值. 一 般 地 ,建 立 回 归 模 型 的 基 本 步 骤 为 :
( 1)确 定 研 究 对 象 ,明 确 哪 个 变 量 是 解 释 变 量 ,哪 个 变 量是预报变量. ( 2)画 出 解 释 变 量 和 预 报 变 量 的 散 点 图 ,观 察 它 们 之 间
第三章 统计案例

回归分析的基本思想及其初步应用要点回归

回归分析的基本思想及其初步应用要点回归

回归分析的基本思想及其初步应用要点回归 回归分析的基本思想及初步应用是在学习了抽样、用样本估计总体、线性回归等基本知识基础上,通过对案例的讨论,了解和使用回归分析的统计方法,进一步体会运用回归分析解决实际问题的基本思想,认识回归分析在实际决策中的作用. 一.线性回归方程的确定 如果一组具有相关关系的数据作出散点图大致分布在一条直线附近,那么我们称这样的变量之间的关系为线性相关关系(也称一元线性相关),这条直线就是回归直线,记为. 在所求回归直线方程中,当取时,与实际收集到的数据之间的偏差为,偏差的平方为(如图1).即以 来刻画出个点与回归直线在整体上偏差的平方和,显然Q取最小值时的的值就是我们所求的。

1 23423y图1y图2 二、最小二乘法求的几种方法: 1.配方法 将展开,再合并,然后配方整理,从而求得.此解法求参数的思想及方法是简单的,但是运算量较大,我们只要明白其思想方法即可. 2.二次函数法 下面举例说明如何用二次函数法求参数。

例1.已知变量与由下列四对对应数据: 用最小二乘法求关于的回归直线方程. 分析:要理解最小二乘法的隐含的数学思想方法,区别公式求法。

解答:设所求回归方程为,则各数据点与回归直线距离的偏差平方和为: 整理成关于的二次函数为: 所以当(1),有最小值 整理成关于的二次函数为: 所以当(2),有最小值 解(1),(2)得, 因此,所求回归方程为. 解题剖析:这里通过特例给出了较为简单的最小二乘法求回归方程,同学们可以以此法求线性回归方程中的参数,这也体现了由特殊到一般的数学思想方法. 3.添项法 可以用添项法较为简捷的求出截距和斜率分别是使取最小值时的值. (过程略). 这就是我们所要求的公式(无特殊要求时以此公式求回归方程中的、).其中为样本数据,为样本平均数,称为样本点中心,且所求线性回归直线经过样本点中心点(如图2所示).当回归直线斜率时,为线性正相关, 时为线性负相关. 三.线性回归分析: 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.前面我们给出了线性回归方程,这里我们主要结合教材分析一元线性回归问题. 1.以散点图分析线性相关关系,散点图是较粗略地分析和判断两个具有相关关系的变量是否线性相关的问题,如果是线性相关的,我们可以求其线性回归方程,如果不是线性向相关的,即使求得线性回归方程,也是无效的;也就是说不能对一些数据进行分析判断,不能应用它解决和解释一些实际问题. 2.以相关系数分析线性相关关系的强弱 两个变量之间的相关关系的样本相关系数: 可衡量是否线性相关,以及线性相性关系的强弱.由于分子与线性回归方程中的斜率的分子一样(这也给出了公式的内在联系以及公式的记法),因此,当时,两个变量正相关;当时两个变量负相关.当的绝对值接近1,表明两个变量的线性相关性很强;当的绝对值接近0,表明两个变量之间几乎不存在线性相关关系.规定当时,我们认为两个变量有很强的线性相关关系. 3.解释变量与随机误差对预报精度的影响以及残差分析 (1)有关概念 由于样本数据点与一元线性回归方程上的点还有一定的差距,这说明了另外的一个因素随机误差的影响.图3y 于是有线性回归模型其中和为模型的未知参数;称为解释变量,称为预报变量;是与之间的误差,叫随机误差。

回归分析的基本思想及初步应用

回归分析的基本思想及初步应用

1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 了解线性回归模型与函数模型的差异,了解衡量两个变量之间线性相关关系得方法---相关系数. 24 问题1:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?复习1:函数关系是一种 关系,而相关关系是一种 关系.复习2:回归分析是对具有 关系的两个变量进行统计分析的一种常用方法,其步骤: → → → .二、新课导学 ※ 学习探究实例问题:画出散点图,172cm 的女大学生的体重.解:由于问题中要求根据身高预报体重,因此 选 自变量x , 为因变量. (1)做散点图:从散点图可以看出 和 有比较好的 相关关系.(2) x = y =81i ii x y==∑821ii x==∑所以81822188i ii ii x yx y bxx==-==-∑∑ ay bx =-≈ 于是得到回归直线的方程为(3)身高为172cm 的女大学生,由回归方程可以预报其体重为 y =问题:身高为172cm 的女大学生,体重一定是上述预报值吗?思考:线性回归模型与一次函数有何不同?新知:用相关系数r 可衡量两个变量之间 关系.计算公式为r =r >0, 相关, r <0 相关;相关系数的绝对值越接近于1,两个变量的线性相关关系 ,它们的散点图越接近 ;r >,两个变量有 关系.※ 典型例题例1某班5名学生的数学和物理成绩如下表:(2)求物理成绩y对数学成绩x的回归直线方程;(3)该班某学生数学成绩为96,试预测其物理成绩;变式:该班某学生数学成绩为55,试预测其物理成绩;小结:求线性回归方程的步骤:※动手试试练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a=+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=)三、总结提升※学习小结1. 求线性回归方程的步骤:2. 线性回归模型与一次函数有何不同※知识拓展※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列两个变量具有相关关系的是()A. 正方体的体积与边长B. 人的身高与视力C.人的身高与体重D.匀速直线运动中的位移与时间2. 在画两个变量的散点图时,下面哪个叙述是正确的()A. 预报变量在x 轴上,解释变量在y 轴上B. 解释变量在x 轴上,预报变量在y 轴上C. 可以选择两个变量中任意一个变量在x 轴上D. 可选择两个变量中任意一个变量在y 轴上3. 回归直线y bx a=+必过()A. (0,0)B. (,0)x C. (0,)y D. (,)x y4.r越接近于1,两个变量的线性相关关系.5. 已知回归直线方程 0.50.81y x=-,则25x=时,y的估计值为.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有(2)求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10 个,那么机器的运转速度应控制在什么范围内?回归分析的基本思想及其初步应用(二)1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.3.会用相关指数,残差图评价回归效果.47复习1:用相关系数r可衡量两个变量之间关系.r>0, 相关,r<0 相关;r越接近于1,两个变量的线性相关关系,它们的散点图越接近;r>,两个变量有关系.复习2:评价回归效果的三个统计量:总偏差平方和;残差平方和;回归平方和.二、新课导学※学习探究探究任务:如何评价回归效果?新知:1、评价回归效果的三个统计量(1)总偏差平方和:(2)残差平方和:(3)回归平方和:2、相关指数:2R表示对的贡献,公式为:2R=2R的值越大,说明残差平方和,说明模型拟合效果.3、残差分析:通过来判断拟合效果.通常借助图实现.残差图:横坐标表示,纵坐标表示.残差点比较均匀地落在的区的区域中,说明选用的模型,带状区域的宽度越,说明拟合精度越,回归方程的预报精度越.※典型例题为了对x、y两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x=+, 717y x=+,试比较哪一个模型拟合的效果更好?小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.例2 假定小麦基本苗数x与成熟期有效苗穗y之间存在相关关系,今测得5组数据如下:(2)求回归方程并对于基本苗数56.7预报期有效穗数;(3)求2R,并说明残差变量对有效穗数的影响占百分之几.(参考数据:2115101.51,6746.76,n ni i ii ix x y====∑∑521()50.18iiy y=-=∑,521()9.117i iiy y=-=∑)※ 动手试试练1. 某班5名学生的数学和物理成绩如下表:(4)求学生A,B,C,D,E 的物理成绩的实际成绩和回归直线方程预报成绩的差 2i i e y y =-.并作出残差图评价拟合效果.小结:1. 评价回归效果的三个统计量:2. 相关指数评价拟合效果:3. 残差分析评价拟合效果:三、总结提升 ※ 学习小结一般地,建立回归模型的基本步骤:1、确定研究对象,明确解释、预报变量;2、画散点图;3、确定回归方程类型(用r 判定是否为线性);4、求回归方程;5、评价拟合效果. ※ 知识拓展在现行回归模型中,相关指数2R 表示解释变量对预报变量的贡献率,2R 越接近于1,表示回归效果越好.如果某组数据可以采取几种不同的回归方程进行回归分析,则可以通过比较2R 作出选2.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两个变量 y 与x 的回归模型中,分别选择了 4 个不同模型,它们的相关指数 2R 如下 ,其中拟合效果最好的模型是( ).A. 模型 1 的相关指数2R 为 0.98B. 模型 2 的相关指数2R 为 0.80C. 模型 3 的相关指数2R 为 0.50D. 模型 4 的相关指数2R 为 0.252. 在回归分析中,残差图中纵坐标为( ). A. 残差 B. 样本编号 C. x D. n e3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为( ). A.回归分析 B.独立性检验分析 C.残差分析 D. 散点图分析 4.2R 越接近1,回归的效果 .5. 在研究身高与体重的关系时,求得相关指数2R = ,可以叙述为“身高解释了69%的体重变化,而随机误差贡献了剩余 ”所以身高对体重的效应比随机误差的 . 练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=) (4)求相关指数评价模型.回归分析的基本思想及其初步应用(三)1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.3. 了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 47 复习1:求线性回归方程的步骤复习2:作函数2x y =和20.25y x =+的图像二、新课导学 ※ 学习探究探究任务:如何建立非线性回归模型?实例一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间(1)根据收集的数据,做散点图上图中,样本点的分布没有在某个 区域,因此两变量之间不呈 关系,所以不能直接用线性模型.由图,可以认为样本点分布在某一条指数函数曲线bx a y e +=的周围(,a b 为待定系数).对上式两边去对数,得ln y =令ln ,z y =,则变换后样本点应该分布在直线y 和x 的非线性回归方程.i i由上表中的数据得到回归直线方程z =因此红铃虫的产卵数y 和温度x 的非线性回归方程为※ 典型例题例1一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,(散点图如由图,可以认为样本点集中于某二次曲线234y c x c =+的附近,其中12,c c 为待定参数)试建立y 与x 之间的回归方程.思考:评价这两个模型的拟合效果.小结:利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.三、总结提升 ※ 学习小结利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.※ 知识拓展非线性回归问题的处理方法: 1、 指数函数型bx a y e +=① 函数bx a y e +=的图像:② 处理方法:两边取对数得ln ln()bx a y e +=,即ln y bx a =+.令ln ,z y =把原始数据(x,y )转化为(x,z ),再根据线性回归模型的方法求出,b a . 2、对数曲线型ln y b x a =+ ① 函数ln y b x a =+的图像② 处理方法:设ln x x '=,原方程可化为y bx a '=+ 再根据线性回归模型的方法求出,a b . 3、2y bx a =+型处理方法:设2x x '=,原方程可化为y bx a '=+,再根据线性回归模型的方法求出,a b .※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两个变量 y 与x 的回归模型中,求得回归方程为0.232x y e -=,当预报变量10x =时( ).A. 解释变量30y e -=B. 解释变量y 大于30e -C. 解释变量y 小于30e -D. 解释变量y 在30e -左右2. 在回归分析中,求得相关指数20.89R =,则( ). A. 解释变量解对总效应的贡献是11% B. 解释变量解对总效应的贡献是89% C. 随机误差的贡献是89% D. 随机误差的贡献是0.89%3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析称为( ). A .回归分析 B .独立性检验分析 C .残差分析 D. 散点图分析4.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线bx a y e +=的周围,令ln z y =,求得回归直线方程为0.25 2.58z x =- ,则该模型的回归方程为 .5. 已知回归方程 0.5ln ln 2y x =-,则100x =时,y 的估计值为 .为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下:(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图; (2)试求出预报变量对解释变量的回归方程.§1.2.1 独立性检验的基本思想及其初步应用1.通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的必要性;2.会根据22⨯列联表求统计量2K .1214复习1:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.二、新课导学 ※ 学习探究 新知1:1.分类变量: .2. 22⨯列联表: .试试:你能列举出几个分类变量吗?探究任务:吸烟与患肺癌的关系1.由列联表可粗略的看出:(1)不吸烟者有 患肺癌; (2)不吸烟者有 患肺癌.因此,直观上课的结论: .2.用三维柱柱图和二维条形图直观反映: (1)根据列联表的数据,作出三维柱形图:由上图可以直观地看出, 吸烟与患肺癌.(2) 根据列联表的数据,作出二维条形图:由上图可以直观地看出, 吸烟与患肺癌.根据列联表的数据,作出等高条形图:由上图可以直观地看出, 吸烟与患肺癌 .反思:(独立性检验的必要性)通过数据和图形,我们得到的直观印象是患肺癌有关.那是否有一定的把握认为“吸烟与患肺癌有关”呢?新知2:统计量2K吸烟与患肺癌列联表假设0H :吸烟与患肺癌没关系,则在吸烟者和不吸烟者中患肺癌不患肺癌者的相应比例 .即因此, 越小,说明吸烟与患肺癌之间关系 ;反之, .2K =※ 典型例题例1 吸烟与患肺癌列联表 求2K .※ 动手试试求K .三、总结提升 ※ 学习小结1. 分类变量:. 2. 22⨯列联表: .3. 统计量2K : . ※ 知识拓展1. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”. 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:求2K.§1.2.2 独立性检验的基本思想及其初步应用通过探究“秃顶是否与患心脏病有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示患心脏病的秃顶比例比患其它病的秃顶比例高,让学生亲身体验独立性检验的实施1416复习1:统计量2K:复习2:独立性检验的必要性:二、新课导学※学习探究新知1:独立性检验的基本思想:1、独立性检验的必要性:探究任务:吸烟与患肺癌的关系第一步:提出假设检验问题H:第二步:根据公式求2K观测值k=(它越小,原假设“H:吸烟与患肺癌没有关系”成立的可能性越;它越大,备择假设“H1:”成立的可能性越大.)第三步:查表得出结论※典型例题例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?小结:用独立性检验的思想解决问题: 第一步: 第二步: 第三步:例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300由表中数据计算得到K 的观察值 4.513k ≈. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?※ 动手试试练1. 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表: 请问有多大把握认为“高中生学习状况与生理健康有关”?三、总结提升 ※ 学习小结1. 独立性检验的原理:2. 独立性检验的步骤:※ 知识拓展.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A. 若k =6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99个患肺病.B. 从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能性患肺病.C. 若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使推断出现错误.D. 以上三种说法都不对. 2. 下面是一个22⨯列联表 则表中a,b 的之分别是( ) A. 94,96 B. 52,50 C. 52,54 D. 54,52 3.某班主任对全班50名学生进行了作业量多少的调查,数据如下表: 则认为喜欢玩游戏与认为作业量多少有关系的把握大约为( ) A. 99% B. 95% C. 90% D.无充分依据4. 在独立性检验中,当统计量2K 满足时,我们有99%的把握认为这两个分类变量有关系.5. 在22⨯列联表中,统计量2K = .为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表 能以97.5%的把握认为药物有效吗?为什么?统计案例检测题测试时间:90分钟 测试总分:100分一、选择题(本大题共12小题,每题4分) 1、散点图在回归分析中的作用是 ( ) A .查找个体数目 B .比较个体数据关系 C .探究个体分类D .粗略判断变量是否呈线性关系2、对于相关系数下列描述正确的是 ( ) A .r >0表明两个变量相关 B .r <0表明两个变量无关C .r 越接近1,表明两个变量线性相关性越强D .r 越小,表明两个变量线性相关性越弱3、预报变量的值与下列哪些因素有关 ( ) A .受解释变量影响与随机误差无关 B .受随机误差影响与解释变量无关 C .与总偏差平方和有关与残差无关 D .与解释变量和随机误差的总效应有关4、下列说法正确的是 ( ) A .任何两个变量都具有相关系 B .球的体积与球的半径具有相关关系 C .农作物的产量与施肥量是一种确定性关系 D .某商品的产量与销售价格之间是非确定性关系5、在画两个变量的散点图时,下面哪个叙述是正确的 ( ) A. 预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上 C. 可以选择两个变量中任意一个变量在x 轴上 D. 可以选择两个变量中任意一个变量在 y 轴上6、回归直线 y bx a =+ 必过 ( ) A .(0,0) B .(,0)x C .(0,)y D .(,)x y7、三维柱形图中,主、副对角线上两个柱形高度的 相差越大,要推断的论述成立的可能性就越大( )A .和B .差C .积D .商 8、两个变量 y 与x 的回归模型中,求得回归方程为0.232x y e -=,当预报变量10x = ( )A. 解释变量30y e -=B. 解释变量y 大于30e -C. 解释变量y 小于30e -D. 解释变量y 在30e -左右 9、在回归分析中,求得相关指数20.89R =,则( ) A. 解释变量解对总效应的贡献是11% B. 解释变量解对总效应的贡献是89% C. 随机误差的贡献是89% C. 随机误差的贡献是0.89%10、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A .若k =6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99个患肺病.B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能 性患肺病.C .若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使得推断出现错误.D .以上三种说法都不对.11、3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析称为( )A .回归分析B .独立性检验分析C .残差分析 D. 散点图分析12、在独立性检验时计算的2K 的观测值k =3.99,那么我们有 的把握认为这两个分类变量有关系 ( )A .90%B .95%C .99%D .以上都不对 二、填空题(本大题共4小题,每题4分)13、已知回归直线方程 0.50.81y x =-,则25x =时,y 的估计值为 . 14、如下表所示:22计算2K = . 15、下列关系中:(1)玉米产量与施肥量的关系; (2)等边三角形的边长和周长; (3)电脑的销售量和利润的关系;(4)日光灯的产量和单位生产成本的关系. 不是函数关系的是 .16、在一项打鼾与患心脏病的调查中,共调查1768人,经计算的2K =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是 的.(填“有关”“无关”) 三、解答题(本大题共2小题,每题18分)18、为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表能以97.5%的把握认为药物有效吗?为什么?18、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《回归分析的基本思想及初步应用》课例反思
一、教材分析
1、教材的地位和作用
在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在人教A版选修1-2第一章第一节“回归分析的基本思想及其初步应用”这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容共计4课时,第一课时:复习必修三内容,介绍线性回归模型的数学表达式;第二课时:解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第三课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第四课时:介绍两个变量非线性相关关系,回归分析的应用. 本节课是第二课时的内容.
2、教学目标
知识和技能:认识随机误差,认识残差以及相关指数。

根据散点分布特点,建立线性回归模型。

了解模型拟合效果的分析工具——残差分析。

过程与方法:经历数据处理全过程,培养对数据的直观感觉,体会统计方法的应用。

通过一次函数模型和线性回归模型的比较,使学生体会函数思想。

情感、态度与价值观:
通过案例分析,了解回归分析的实际应用,感受数学“源于生活,用于
生活”,提高学习兴趣。

教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他
人合作的重要性.。

3、教学重难点
重点:1、了解回归模型与函数模型的区别
2、了解任何模型只能近似描述实际问题
3、了解模型拟合效果的分析工具——残差分析
难点:参差分析
二、教法学法分析
通过创设情境——运用已有知识——发现新问题——启发引导——合作交流——得到新知识。

整个活动过程,学生始终是学习活动的主体,教师是组织者、引导者、合作者。

三、学情分析
1.通过必修3的学习,学生已掌握了线性回归方程的相关知识和应用,已具有一定的对数据的直观感觉,具备了较好的数据整理和分析能力。

2.学生思维活泼,积极性高,但探究问题的能力和合作交流的能力发展还不够。

3.普高学生层次参次不齐,个体差异比较明显。

四、教学过程
五、课后反思
1、为使教学真正做到以学生为本,我对教材的知识进行了适当地重组和加工,力求给学生提供研究、探讨的时间与空间,让学生充分经历“做数学”的过程,促使学生在自主中求知,在合作中获取,在探究中发展.
2、本节课的教法特点:通过分析教材和学生认知规律,创造性地使用教材,做到既重视教材,更重视学生.具体说来有以下改造:(1)创设生活情景.利用学生的“体检经验”设置问题,既没有脱离课本例题1的相关内容,又能激发学生对数学的亲切感,引发学生看个究竟的冲动,兴趣盎然地投入学习. (2)充分体现随机观念.课本上仅仅希望利用8组数据就要学生体会到统计的思想和后继课程中回归分析的必要性,实在是为难学生了.在本课教学设计学生操作时强调“增多数据,加强比较”. 帮助学生体会“不同事件(如课本例1女大学生和高二女生)”,则统计结果不同、“同一事件(如都是高二女生),采样不同结果也不同”的基本事实.
本课教学以问题引导学习活动,通过恰时恰点地提出问题,提好问题,给学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动和有兴趣地学,逐步培养学生的问题意识,孕育创新精神.例如,在“结果的分析”中预测出的体重值都不同,那么它还有参考价值吗?”目的是让学生充分认识随机误差e的来源和对预报变量的影响,而这一问题的提出,立刻吸引学生细细体会随机观念,同时激发出学生的好奇心,提升深入探求的欲望。

3 合作、探究的学习方式。

本节课的合作学习体现在两个方面:除了体现在每个小组
内部成员之间,还体现在整堂课的教学结构上.小组成员内部提倡“不同的人作不同的事”,面对不同分组,学生可以自主选择的不同工作,动手带动动脑,遇到小的问题,通过探讨和帮助,能做到“学生的问题由学生自己解决”,促进对某一问题更清晰的认识,还能感受到团结合作的好处与必要.同时,每个小组的劳动成果共同构成课堂教学需要的多条回归方程,组与组之间的合作推动整节课的比较与区分得以实现. 通过本节课的教学实践,我再次体会到什么是由“关注知识”转向“关注学生”,在教学过程中,注意到了由“给出知识”转向“引起活动”,由“完成教学任务”转向“促进学生发展”,课堂上的真正主人应该是学生.一堂好课,师生一定会有共同的、积极的情感体验.本节课的教学中,知识点均是学生通过探索“发现”的,学生充分经历了探索与发现的过程.教学中没有以练习为主,而是定位在知识形成过程的探索,注重数学的思想性,如统计思想、随机观念、函数思想、数形结合的思想方法等,引导学生体验数学中的理性精神,加强数学形式下的思考和推理。

相关文档
最新文档