连续时间信号与系统的频域分析报告

合集下载

实验二--连续时间信号的频域分析

实验二--连续时间信号的频域分析

实验二连续时间信号的频域分析专业班级通信1601 姓名宁硕学号 20 评分:实验日期: 2017 年 12 月 13日指导教师: 张鏖峰一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT、DTFT的若干重要性质。

基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB编程完成相关的傅里叶变换的计算。

以看得很清楚。

二、实验原理及方法任何一个周期为T1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。

其中三角傅里叶级数为:2.1或:2.2指数形式的傅里叶级数为:2.3其中,为指数形式的傅里叶级数的系数,按如下公式计算:2.4傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。

傅里叶变换和其逆变换定义如下:2.52.6连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。

按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号ejt的线性组合构成的,每个频率所对应的周期复指数信号ejt称为频率分量(frequency component),其相对幅度为对应频率的|X(j)|之值,其相位为对应频率的X(j)的相位三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。

实验二 连续时间信号的频域分析

实验二 连续时间信号的频域分析

实验二连续时间信号的频域分析专业班级通信1601 姓名宁硕学号20 评分:实验日期: 2017 年 12 月 13日指导教师:张鏖峰一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握连续时间傅里叶变换的分析方法及其物理意义;4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质;5、学习掌握利用MATLAB语言编写计算CTFS、CTFT和DTFT的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。

基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用MATLAB 编程完成相关的傅里叶变换的计算。

以看得很清楚。

二、实验原理及方法任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。

其中三角傅里叶级数为:∑∞=++=1000)]sin()cos([)(k k k t k b t k a a t x ωω或: ∑∞=++=100)cos()(kk k t k A A t x ϕω指数形式的傅里叶级数为:∑∞-∞==kt jk k e F t x 0)(ω 其中,k F 为指数形式的傅里叶级数的系数,按如下公式计算:⎰--=2/2/111)(1T Tt jk k dt e t x T F ω傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。

傅里叶变换和其逆变换定义如下:⎰∞∞--=dt e t x j X t j ωω)()(⎰∞∞-=ωωπωd e j X t x tj )(21)( 连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。

按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j?t 的线性组合构成的,每个频率所对应的周期复指数信号e j?t 称为频率分量(frequency component ),其相对幅度为对应频率的|X(j?)|之值,其相位为对应频率的X(j?)的相位三、实验内容和要求Q2-1 编写程序Q2_1,绘制下面的信号的波形图:Λ-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ其中,?0 = π,要求将一个图形窗口分割成四个子图,分别绘制cos(?0t)、cos(3?t)、cos(5?t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。

第四章 连续时间信号与系统的复频域表示与分析

第四章 连续时间信号与系统的复频域表示与分析
北京理工大学珠海学院信息学院
信号与系统 2
第四章 连续时间信号和系统的复频域表示与分析
单边指数信号 e at ut
1 e ut , sa
at
Res a
说明
知道 e at u( t ) 的 L 变换可以推导出其他许多函数 的 L 变换。
北京理工大学珠海学院信息学院
信号与系统
e
at
1 ( a j ) t costu( t ) (e e ( a j ) t )u( t ) 2 1 1 1 sa ( s a )2 2 j2 s a j s a j
北京理工大学珠海学院信息学院
北京理工大学珠海学院信息学院
信号与系统
第四章 连续时间信号和系统的复频域表示与分析

1
常用信号的拉普拉斯变换
t 和 t
L t 1,
L t s,
推广 :
Res Res
L n t s n
北京理工大学珠海学院信息学院
信号与系统
第四章 连续时间信号和系统的复频域表示与分析
例题
求下列信号的Laplace变换的收敛域
1ut ut 2ut 3sin0 tut 4tut , t n ut 5e 3t ut 6t t ut , e t ut
记作 f t L 1 F s
北京理工大学珠海学院信息学院
信号与系统
第四章 连续时间信号和系统的复频域表示与分析
f t F s
L
注意
信号 f(t) 必须是单边信号,即 t <0, f (t)=0。 积分下线的选取。 为了可以从 s域分析在0时刻包含冲激的信号,以 及由s域分析系统的零输入响应,所以采用 0- 定义。 习惯上把下线简写为0,其含义于 0- 相同。

实验三 连续信号与系统的频域分析

实验三 连续信号与系统的频域分析
郑慧乐
学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);

信号与系统第四章连续系统的频域分析

信号与系统第四章连续系统的频域分析

极点对系统频率响应的影响更为显著。极点 会使系统频率响应在某些频率处产生谐振峰 或反谐振峰,具体取决于极点的位置和数量。 极点越靠近虚轴,对频率响应的影响越显著。 同时,极点的实部决定了系统的阻尼程度, 虚部决定了谐振频率。
05 连续系统频域性能指标评 价方法
幅频特性曲线绘制方法
确定系统的传递函数
周期信号频谱特性
离散性
周期信号的频谱是离散的,即只在某些特定的频率点 上有值。
谐波性
周期信号的频谱由基波和各次谐波组成,各次谐波的 频率是基波频率的整数倍。
收敛性
随着谐波次数的增加,谐波分量的幅度逐渐减小,即 周期信号的频谱具有收敛性。
02 傅里叶变换及其在频域分 析中应用
傅里叶变换定义与性质
信号调制与解调
在通信系统中,通过傅里叶 变换实现信号的调制与解调 过程,将信息加载到载波信 号上进行传输。
信号滤波与处理
利用傅里叶变换设计数字滤 波器,对信号进行滤波处理 以去除噪声或提取特定频率 成分。
03 拉普拉斯变换及其在频域 分析中应用
拉普拉斯变换定义与性质
定义
拉普拉斯变换是一种线性积分变换,用于 将时间域的函数转换为复平面上的函数。 对于连续时间信号$x(t)$,其拉普拉斯变 换定义为$X(s) = int_{0}^{infty} x(t) e^{st} dt$,其中$s$是复数频率。
VS
性质
拉普拉斯变换具有线性性、时移性、频移 性、微分性、积分性、初值定理和终值定 理等重要性质。这些性质使得拉普拉斯变 换在信号与系统的分析中非常方便和有效 。
典型信号拉普拉斯变换举例
单位阶跃信号
指数信号
正弦信号
余弦信号
单位阶跃信号的拉普拉斯变 换为$frac{1}{s}$。

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

0 21
/4
/2
(b)相位图
图2.1-2例2.1-2的频谱图
二、指数形式的傅里叶级数
利用欧拉公式将三角形式的傅里叶级数,表示为 复指数形式的傅氏级数
其中
f t F n1 e jn1t
n
F n1
1 T
t0 T t0
f t e jn1tdt
F n1 是复常数,通常简写为 Fn 。
21t
5
4
2
sin
1t
1 2
sin
31t
解:将 f t 整理为标准形式
f
(t)
1
2cos 1t来自4cos 21t
5
4
1 2
cos
31t
2
1
2
cos
1t
4
cos
21t
4
1 2
cos
31t
2
振幅谱与相位谱如图2-1所示。
cn
2
1
1
1/2
0 1 21 31
(a) 振幅图
n
/4
31
第二章 连续时间信号与系统的频域分析 ——Fourier变换
2. 1 周期信号的傅里叶级数分析 2. 2 非周期信号的频谱--傅里叶变换 2. 3 傅里叶变换的性质及定理 2. 4 系统的频域分析方法 2. 5 无失真传输系统与滤波
LTI系统分析的一个基本任务,是求解系统对任意 激励信号的响应,基本方法是将信号分解为多个基本信 号元。
一、三角形式傅里叶级数
周期信号: f t f t nT
其中
T
是信号的最小重复时间间隔,f1
1 是信号的基波频率。 T
若 f t 满足狄里赫利条件,则 f t 可以展开为三角形

第4章 连续时间信号与系统的复频域分析

第4章 连续时间信号与系统的复频域分析


在实际中,信号是有始(因果)信号,即t<0 时,f(t)=0,因此
F ( s ) f (t )e st dt
0



上式称为f(t)的单边拉氏变换。积分下限 t=0- ,是将起始状态考虑进去,并且用拉氏 变换求解微分方程,无需专门计算0- 到0+ 的 跳变。 而拉氏反变换的积分限并不改变。

信号f(t)可分解为复指数函数est=eσtejωt 的线性组合。在这里由于σ可正、可负, 也可为零,因此这些复指数函数可以是增 幅的、减幅的或等幅的振荡信号,这与傅 里叶分析中作为基本信号的等幅振荡信号 ejωt相比,具有更普遍的意义。 复频率函数F(s)与傅里叶变换F(jω)相似, 是一个频谱密度函数,它反映了信号的基 本特征,因此可以利用拉普拉斯变换在复 频域对信号进行分析。

4.1.3单边拉普拉斯变换的收敛域

若满足


0
| f (t )e t | dt



则f(t)的单边拉普拉斯变换F(s)存在。使F(s)存在 的σ取值范围,称为f(t)的单边拉普拉斯变换F(s) 的收敛域。 单边拉普拉斯变换收敛域与因果信号双边拉普拉斯 变换的收敛域是相同的,即单边拉普拉斯变换的收 敛域为 Re[s]=σ>σ0(σ0为某一确定的实数) 它是以收敛轴Re[s]=σ0为收敛边界的S平面的右边 区域。σ0与信号f(t)在t≥0时的特性有关,信号 一经给定,则σ0就是确定的。
f ( t ) e at ( t ) lim f ( t )e t ] 0 [
t

( a 0)
若f ( t )乘以e t,并满足 a,就可以得到 即信号f ( t )e t 满足绝对可积条件,其傅里叶变换存在。

第5章连续时间信号与系统的复频域分析

第5章连续时间信号与系统的复频域分析

5.4.2 电路元件的复频域模型
对于比较复杂的网络(支路或结点较 多),列写微分方程本身也是一件烦琐的 事情。对于线性时不变电路,可不必列写 微分方程,直接把时域的电路模型转换为s 域电路模型,在s域内写出电路的代数方程 形式,然后进行求解。
1.电路元件的s域串联模型
图5.3 元件s域模型(串联形式)
5.4.1 应用拉普拉斯变换求解微分方 程
当电路或系统的输入输出微分方程已 知时,可直接对微分方程应用单边拉普拉 斯变换,利用时域微分性质求出s域输出 Y(s),对其取逆变换得到时域解y(t)。
从该例可看出,用拉普拉斯变换法求 解微分方程不需要专门求解t=0+时刻的输 出及其导数,并且可直接得到全响应。通 过上例可以看到,利用拉普拉斯变换可以 避开烦琐的求解微分方程的过程。特别是 对于高阶微分方程,拉氏变换法可以使计 算量大大减小。
图5.17
(9) 若二阶共轭极点位于虚轴, 即p1,2=jω0,p3,4=-jω0
图5.18
综上所述,若系统函数H(s)的极点位 于s左半平面,则冲激响应h(t)的波形呈衰 减变化,若H(s)的极点位于s右半平面,则 h(t)呈增幅变化。当一阶极点位于虚轴时, 对应的h(t)成等幅振荡或阶跃变化。若二阶 极点位于虚轴,则相应的h(t)呈增幅变化。
以上讨论的稳定性条件都是在时域判 定的。在s域中,对于线性非时变因果系统, 可根据上述定义和系统的零极点分布与系 统冲激响应的关系得出系统极点分布与稳 定性的关系如下。
(1)稳定因果系统的系统函数H(s)的极点 只能在s左半平面,不能在s右半平面有极 点,否则不满足式(5-36),系统不稳定。
(2)如果H(s)的一阶极点位于虚轴, 则该系统为临界稳定系统。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

实验四连续时间信号与系统的频域分析一、实验目的掌握连续时间信号的傅里叶变换及傅里叶逆变换的实现方法,掌握连续时间系统的频域分析方法,熟悉MATLAB 相应函数的调用格式和作用,掌握使用MATLAB 来分析连续时间信号与系统的频域特性及绘制信号频谱图的方法。

二、实验原理(一)连续时间信号与系统的频域分析原理1、连续时间信号的额频域分析 连续时间信号的傅里叶变换为:()()dt e t f j F t j ωω-∞∞-⎰=傅里叶逆变换为:()()ωωπωd e j F t f t j ⎰∞∞-=21()ωj F 称为频谱密度函数,简称频谱。

一般是复函数,可记为:()()()ωϕωωj e j F j F =()ωj F 反映信号各频率分量的幅度随频率ω的变化情况,称为信号幅度频谱。

()ωϕ反映信号各频率分量的相位随频率ω的变化情况,称为信号相位频谱。

2、连续时间系统的频域分析 在n 阶系统情况下,数学模型为:()()()()()()()()t f b dtt df b dt t f d b dt t f d b t y a dtt dy a dt t y d a dt t y d a o m m n m m n o n n n n n n ++++=++++------11111111 令初始条件为零,两端取傅里叶变换,得:()()[]()()()[]()ωωωωωωωωj F b j b j b j b j Y a j a j a j a m n m n n n nn01110111++++=++++----表示为()()()()ωωωωj F j b j Y j a kmk kkn k k∑∑===0则 ()()()()()()()()()∑∑==----=++++++++==nk kk mk kk n n n n m m mm j a j b a j a j a j a b j b j b j b j F j Y j H 0001110111ωωωωωωωωωωω3、系统传递函数 系统传递函数定义为:()()()ωωωj H j Y j H =系统传递函数反映了系统内在的固有的特性,它取决于系统自身的结构及参数,与外部 激励无关,是描述系统特性的一个重要参数。

信号分析与处理(修订版) 课件 吴京ch03、4 连续时间信号的频域分析、 连续时间信号及系统的复频

信号分析与处理(修订版) 课件 吴京ch03、4 连续时间信号的频域分析、 连续时间信号及系统的复频
当周期信号波形具有某种对称性时,其傅里叶级数中有些项就不出现。掌握傅里叶级 数的这一特点,就可以迅速判断信号中包含哪些谐波成分,从而简化系数的计算。另外, 有些信号经简单处理也可能具有对称性,这时就可利用信号的潜在对称性进行简化分析。
02 周期信号的傅里叶级数
二、指数函数形式的傅里叶级数
即周期为T的信号x(t),可以在任意(t0 ,t0+T)区间,在虚指数信号集 上分解为一系列不同频率的虚指数信号
里叶反变换,可简记为
二者的关系也可记作x(t)→X(jω) ,双箭头 x(t)与频域频谱X(jω)是一对傅里叶变换对。
表示对应关系,说明时域信号来自03 非周期信号的傅里叶变换
二、常用信号的傅里叶变换 1 .单边指数信号的频谱 单边指数信号的表达式为 由于所得频谱是复函数,故有
其时域波形图及频谱图 如图所示。

(2) x(t)的极大值和极小值的数目应有限;
(3) x(t)如有间断点,间断点的数目应有限。
02 周期信号的傅里叶级数
一、三角函数形式的傅里叶级数
周期为T的信号x(t) ,可以在任意(t0,t0 十T)区间,用三角函数信号集{ sinkω0t,cosk ω0t,1;k= 1,2,…;ω0 = 2π/T}精确分解为下面的三角形式的傅里叶级数,即
高等院校公共课系列精品教材
高等院校公共课系列精品教材
第四章
连续时间信号及系 统的复频域分析
电子信息科学与工程类
高等院校公共课系列精品教材
01 拉普拉斯 变换
01 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
式(4.6)和式(4. 7)称为拉普拉斯变换对,简称拉氏变换对,记为x(t)→X(s)。
X(s)称为x(t)的拉氏变换,又称为象函数,记为

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

连续时间信号与系统的频域分析

连续时间信号与系统的频域分析
3
目录
5-12 信号的时域抽样与抽样定理 5-13 调制与解调 5-14 频分复用与时分复用
4
引言
• 用时间作为变量描述信号我们称为信号的时域表示,显 示信号随时间变换的快慢、出现先后、存在时间的长短以 及信号是否按一定的时间间隔重复出现等。 • 用频率作为变量描述信号称为频域描述,揭示了信号各 个频率分量的大小,信号的能量主要集中在哪个频率范 围等特性。 • 信号的时域表示和频域表示是从信号的两个不同方面 对信号进行描述, • 在正交函数的基础上对时域信号的进行分解。最常用的 分解就是傅立叶分解,也称为信号的傅立叶分析。
能使信号 f(t)进行正交分解的基底函数,并且分解后均方 差为零的一组正交基底函数称为完备的正交函数集。
一个信号可用完备的正交函数集表示,正交函数集有许 多,如:
• 正弦函数集 • 指数函数集 • walsh函数集 • ……
正交函数集有许多重要的用途,例如进行频谱分析、信道 编码等。
13
5-2 周期信号的傅立叶级数分析
1
T
t0 T t0
f
(t) cos n1tdt
j1 T
t0 t0
T
sin
n1tdt
(5-22)
Fn
1 T
t0 T f (t)e dt j(n)1t
t0
(n取 ~ 之间的整数)
1
T
t0 T t0
f
(t)[cos n1t
j sin n1t]dt
通过比较可以得到指数形式的傅里叶系数与三角形式的傅 里叶系数有以下关系:
当周期信号 f (t)满足狄里赫利条件时,就可以用复指数函 数集或三角函数集的线性组合来表示,这种线性组合的表 示称为傅立叶级数展开。 狄里赫利条件:

信号与系统 实验四、五 实验报告

信号与系统 实验四、五 实验报告

实验五:基于Matlab的连续信号生成及时频域分析一、实验要求1、通过这次实验,学生应能掌握Matlab软件信号表示与系统分析的常用方法。

2、通过实验,学生应能够对连续信号与系统的时频域分析方法有更全面的认识。

二、实验内容一周期连续信号1)正弦信号:产生一个幅度为2,频率为4Hz,相位为π/6的正弦信号;2)周期方波:产生一个幅度为1,基频为3Hz,占空比为20%的周期方波。

非周期连续信号3)阶跃信号;4)指数信号:产生一个时间常数为10的指数信号;5)矩形脉冲信号:产生一个高度为1、宽度为3、延时为2s的矩形脉冲信号。

三、实验过程一1)t=0:0.001:1;ft1=2*sin(8*pi*t+pi/6);plot(t,ft1);2)t=0:0.001:2;ft1=square(6*pi*t,20);plot(t,ft1),axis([0,2,-1.5,1.5]);3)t=-2:0.001:2;y=(t>0);ft1=y;plot(t,ft1),axis([-2,2,-1,2]);4)t=0:0.001:30;ft1=exp(-1/10*t);plot(t,ft1),axis([0,30,0,1]);5)t=-2:0.001:6;ft1=rectpuls(t-2,3);plot(t,ft1),axis([-2,6,-0.5,1.5]);四、实验内容二1)信号的尺度变换、翻转、时移(平移)已知三角波f(t),用MATLAB画信号f(t)、f(2t)和f(2-2t) 波形,三角波波形自定。

2)信号的相加与相乘相加用算术运算符“+”实现,相乘用数组运算符“.*”实现。

已知信号x(t)=exp(-0.4*t),y(t)=2cos(2pi*t),画出信号x(t)+y(t)、x(t)*y(t)的波形。

3)离散序列的差分与求和、连续信号的微分与积分已知三角波f(t),画出其微分与积分的波形,三角波波形自定。

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym(&#39;Heaviside(2*t+1)-Heaviside(2*t-1)&#39;);Gt1=sym(&#39;Heaviside(t1+1)-Heaviside(t1-1)&#39;);Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple(&#39;convert&#39;,Fw,&#39;piecewise&#39;);FFw1=maple(&#39;convert&#39;,Fw1,&#39;piecewise&#39;);FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym(&#39;(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)&#39;);Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)&#39;);ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym(&#39;((i*w)+5*i*w-8)/((i*w)+6*i*w+5)&#39;);ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

连续时间系统的频域分析

连续时间系统的频域分析

第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。

●简化电路分析与运算,总响应=单元响应之和。

1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。

一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。

2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。

令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。

3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。

物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。

二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

连续时间系统的复频域分析

连续时间系统的复频域分析

信号与系统实验报告实验题目: 实验三:连续时间系统的复频域分析实验仪器: 计算机,MATLAB 软件101b s b a s a ++++++称为系统的特征多项式,征根,也称为系统的固有频率(或自然频率)。

为将个特征根,这些特征根称为()F s 极点。

根据求函数21()(1)F s s s =-的拉氏逆变换。

源代码:num = [1]; 结果为:r =-1 1 1 a=conv([1 -1],[1 -1]);den = conv([1 0], a); p =1 1 0 [r,p,k] = residue(num, den); k=03.示例3:求函数2224()(4)s F s s -=+的拉氏逆变换源代码:num = [1 0 -4];den = conv([1 0 4], [1 0 4]); [r,p,k] = residue(num, den);结果为:r =-0.0000-0.0000i 0.5000+0.0000i -0.0000+0.0000i 0.5000-0.0000ip =-0.0000+2.0000i -0.0000+2.0000i -0.0000-2.0000i -0.0000-2.0000i k=04.示例4:已知系统函数为:321()221H s s s s =+++,利用Matlab 画出该系统的零极点分布图,分析系统的稳定性,并求出该系统的单位冲激响应和幅频响应。

源代码: num=[1];den=[1 2 2 1]; sys=tf(num,den); poles=roots(den); figure(1);pzmap(sys);xlabel('Re(s)');ylabel(' Im(s)');title('zero-pole map'); t=0:0.02:10;h=impulse(num,den,t); figure(2);plot(t,h);xlabel('t(s)');ylabel('h(t)');title('Impulse Response'); [H,w]=freqs(num,den);figure(3);plot(w,abs(H));xlabel('\omega(rad/s)');ylabel('|H(j\omega)|');title('Magenitude Response'); 结果为:poles =-1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i (2) 已知象函数,试调用residue 函数完成部分分式分解,并写出逆变换。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

连续时间信号与系统的复频域分析课件

连续时间信号与系统的复频域分析课件

子e-t使之变为收敛函数,满足绝对可积条件;从物理意义
上看,是将频率ω变换为复频率s,ω只能描述振荡的重复
频率,而s不仅能给出重复频率,还可以表示振荡的增长的
速率或衰减速率。
例:求信号f(t)= e-atu(t)在a>0时的拉普拉斯变换。
解: f(t)的拉普拉斯变换为
F (s) f (t)estdt eatestdt 1
性质4 若f(t)是右边信号,即有始信号,则其收敛域为 从最右边极点开始的右半平面。
性质5 若f(t)是左边信号,即有终信号,则其收敛域为 从最左边极点开始的左半平面。
性质6 若f(t)是双边信号,则其收敛域是S平面的一条带 状区域。
例:已知信号f(t)=e-b|t|,试对b>0及b<0两种情况求其拉普拉斯 变换及收敛域。
0
sa
Re{s} a
如果a=0,f(t)就是阶跃函数,其拉普拉斯变换对为
u(t) 1 s
Re s 0
再来看一下信号f(t)= -e-atu(-t)的拉普拉斯变换。
F (s) eatu(t)estdt 0 e(sa)tdt 1
sa
Re{s} a
不同信号的拉氏变换表示式是一样的,但使表示式有
4. 尺度特性
若 f (t) F(s) 收敛域为:R
则 f (at) 1 F ( s ) aa
R1 aR
若a=-1,则有 f (t) F(s)
如: eatu(t) 1 sa
Re{s} a
R1 R
则 eatu(t) 1
saΒιβλιοθήκη eatu(t) 1Re{s} a
sa
Re{s} a eatu(t) 1 sa
A
A1
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续时间信号与系统的频域分析报告
1. 引言
连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换
到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域
分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示
连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同
频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示
连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的
响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与
输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析
频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的
频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析
频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了
解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析
以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能
量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、
滤波等操作。

7. 结论
连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行
频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估
和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域
分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理
具有重要意义。

希望本报告对读者对连续时间信号与系统的频域分析有所帮助。

8. 傅里叶
变换与频域表示
傅里叶变换是一种将时域信号转换为频域信号的数学工具。

它将连续时间信号x(t)表示为
频率连续的复指数函数的线性加权和。

傅里叶变换的表达式为:
X(ω) = ∫[x(t) * exp(-jωt)] dt
其中,X(ω)表示信号在频率ω处的复幅。

傅里叶变换是通过将信号分解成不同频率的正
弦和余弦波的和来表示信号的频谱特性。

9. 频域分析方法
在频域分析中,常用的分析方法包括功率谱密度估计和谱线估计。

功率谱密度估计是一种估计信号功率谱密度的方法。

它可以通过将信号分成一系列相互重
叠的窗口,并将每个窗口上的信号进行傅里叶变换得到频谱图。

最后通过对频谱图求平均
得到信号的功率谱密度。

谱线估计是一种估计信号频谱特性的方法。

它可以通过对信号进行模型拟合来估计信号的
频率成分和频谱特性。

常见的谱线估计方法包括最小二乘法、自相关法、最大似然法等。

10. 连续时间系统的频域分析
在连续时间系统的频域分析中,我们关注的是系统的频率响应。

频率响应是系统对不同频
率的输入信号的响应情况。

通过对系统函数H(ω)进行傅里叶变换,可以得到系统的频率
响应。

系统函数H(ω)是频域中系统的输出与输入离散傅里叶变换结果的比值。

它可以表示为:
H(ω) = Y(ω) / X(ω)
其中,Y(ω)表示系统的输出在频率ω处的复幅,X(ω)表示系统的输入在频率ω处的复幅。

系统函数H(ω)描述了系统对不同频率信号的响应情况,可以通过分析H(ω)来了解系统的
频率增益和相位响应特性。

11. 实例分析:音频信号的频域分析
以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能
量分布情况。

对于音频信号的频域分析,我们可以采用功率谱密度估计的方法。

首先,将音频信号分成一系列相互重叠的窗口,然后对每个窗口上的信号进行傅里叶变换得到频谱图。

最后,对频谱图求平均,得到音频信号的平均功率谱密度。

通过音频信号的频域分析,我们可以了解音频信号的频率成分、频谱特性以及信号与系统之间的关系。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

另外,通过频域分析,我们还可以分析音频信号在不同频段的声音强度和音质特点,对音频设备的调试和优化具有重要意义。

12. 结论
通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以通过傅里叶变换将信号和系统转换到频域,从而更好地理解和分析信号的频谱特性和系统的频响特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

希望本报告对读者对连续时间信号与系统的频域分析有所帮助。

相关文档
最新文档