竖直面内的圆周运动

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

动能定理和竖直面内的圆周运动

动能定理和竖直面内的圆周运动

动能定理与竖直面内的圆周运动在高中物理中,竖直面内的圆周运动问题较为常见。

相关内容是学生普遍感觉比较难以理解、难以处理的。

竖直面内的圆周运动(不含带电粒子在匀强磁场中的运动问题)运动过程看似复杂,运动速度大小和方向随时随刻在发生变化,但是在高中物理中通常只研究两个特殊位置——最高点和最低点.......。

对于最高点的考查,我们暂且把竖直面内的圆周运动归纳为两类模型——有支撑模型和无支撑模型。

有支撑(球与轻杆连接、球在圆形管道内运动等) 无支撑(球与轻绳连接、球在圆形轨道内运动等)模型图过最高点的临界条件恰好能通过最高点时,小球只受重力作用,即重力充当向心力:Rvm mg 20=解得:所以临界条件为:gR v ≥注:、“安全通过最高点”等。

【例1】如图是某游乐园过山车轨道的一部分,其中圆形轨道的半径为R ,其中B 点为圆形轨道的最高点,那么其通过B 点的速度不得少于多少?(已知重力加速度为g )【解】假设过山车恰好能通过B 点,且过山车的质量为m.那么:解得:而对于最低点...的考查,一般将弹力与速度结合考查,分为两种情况: 情况一:已知弹力求速度。

情况二:已知速度求弹力。

【例2】如图所示,半径为R 的半圆形轨道竖直放置,左右两端高度相同,质量为m 的小球从端点A 由静止开始运动,通过最低点B 时对轨道压力为2mg ,求小球经过B 点时速度的大小。

【解】对于最低点受力分析结合牛顿第二定律得:代入数据解得:那么,我们有没有办法知道竖直面内最高点或最低点中其中一个点的运动或受力情况,求另外一个点运动或受B A轻杆 轻绳C≥v gRv =0Rvm mg 2=gRv =0R v m mg F B N 2-=gRv B =力情况呢?下面我们就来看这样的一个例子:【例3】如图所示,半径为R 的光滑圆形过得竖直放置,小球m 在圆形轨道内侧做圆周运动,对于圆形轨道,小球通过最高点是恰好对轨道没有相互作用力,不考虑空气阻力的影响,则小球通过最低点时对轨道的作用力是多少?【分析】本题中小球从最高点运动到最低点的过程中,由于忽略空气阻力的影响,则小球除最高点外受到了竖直向下的重力、轨道对它的随时与轨道切向方向垂直支持力的作用,所以小球从最高点到最低的过程中,只有重力做功,因此我们就知道该过程中的总功就等于重力所做的功,所以本题可以通过动能定理求出到达最低点的速度,然后再根据圆周运动与牛顿运动定律求出作用力。

高中物理:物体在竖直面内的圆周运动

高中物理:物体在竖直面内的圆周运动

1、轻绳或细杆作用下物体在竖直面内的圆周运动(1)轻杆作用下的运动如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内做圆周运动,小球在最高点A时,若杆与小球m之间无相互作用力,那么小球做圆周运动的向心力仅由重力提供:得=,由此可得小球在最高点时有以下几种情况:当=0时,杆对球的支持力F N = mg,此为过最高点的临界条件。

②当=时,,=0③当0<<时,m g>>0且仍为支持力,越大越小④当>时,>0,且为指向圆心的拉力,越大越大(2)细绳约束或圆轨道约束下的运动:如图所示为没有支撑的小球(细绳约束、外侧轨道约束下)在竖直平面内做圆周运动过最高点时的情况。

①当,即当==时,为小球恰好过最高点的临界速度。

②当<,即>=时(绳、轨道对小球还需产生拉力和压力),小球能过最高点③当>,即<=时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了圆周轨道。

竖直面内的圆周运动一般不是匀速圆周运动,而是变速圆周运动,此时由物体受到的合力沿半径方向的分力来提供向心力,一般只研究最高点和最低点,此情况下,经常出现临界状态,应注意:(1)绳模型:临界条件为物体在最高点时拉力为零(2)杆模型:临界条件为物体在最高点时速度为零例1、一根绳子系着一个盛水的杯子,演员抡起绳子,杯子就在竖直面内做圆周运动,到最高点时,杯口朝下,但杯中的水并不流出来,如图所示,为什么呢?解析:对杯中水,当=时,即=时,杯中水恰不流出,若转速增大,<时,>时,杯中水还有远离圆心的趋势,水当然不会流出,此时杯底对水有压力,即N+=,N=-;而如果>,<时,水会流出。

例2、如图所示,轻杆OA长l=0.5m,在A端固定一小球,小球质量m=0.5kg,以O点为轴使小球在竖直平面内做圆周运动,当小球到达最高点时,小球的速度大小为=0.4m/s,求在此位置时杆对小球的作用力。

(g取10 m/s 2)解法一:先判断小球在最高位置时,杆对小球有无作用力,若有作用力,判断作用力方向如何小球所需向心力==0.5×=0.16 N小球受重力=0.5×10=5 N重力大于所需向心力,所以杆对小球有竖直向上的作用力F,为支持力以竖直向下为正方向,对小球有-F=解得:F= 4.84 N解法二:设杆对小球有作用力F,并设它的方向竖直向下,对小球则有-F=F=-=-4.84 N“-”表示F方向与假设的方向相反,支持力方向向上。

高中物理必修二 第二章 专题强化5 竖直面内的圆周运动

高中物理必修二 第二章 专题强化5 竖直面内的圆周运动
1 2 3 4 5 6 7 8 9 10 11 12
6.在游乐园乘坐如图所示的过山车时,质量为m的人随车在竖直平面内 沿圆周轨道运动,已知重力加速度为g,下列说法正确的是 A.车在最高点时人处于倒坐状态,全靠保险带拉
住,若没有保险带,人一定会掉下去 B.人在最高点时对座位仍会产生压力,但压力一定
小于mg C.人在最高点和最低点时的向心加速度大小相等
√D.人在最低点时对座位的压力大于mg
1 2 3 4 5 6 7 8 9 10 11 12
过山车上人经过最高点及最低点时,受力如图,
在最高点,由 mg+FN=mvR12,可得:FN=m(vR12-g)

在最低点,由 FN′-mg=mvR22,可得:FN′=m(vR22+g)

1 2 3 4 5 6 7 8 9 10 11 12
当 v1≥ gR时,在最高点无保险带也不会掉下,且还可能会对座位 有压力,大小因 v1 而定,A、B 错误. 最高点、最低点两处向心力大小不相等,向心加速度大小也不相等 (变速率),C错误. 由②式知,在最低点FN′>mg,根据牛顿第三定律知,D正确.
1 2 3 4 5 6 7 8 9 10 11 12
二、竖直面内圆周运动的轻杆(管)模型
导学探究
如图所示,细杆上固定的小球和在光滑管形轨道内运动的小球在重 力和杆(管道)的弹力作用下在竖直平面内 做圆周运动,这类运动称为“轻杆模型”. 1.分析求解小球通过最高点的最小速度. 答案 由于杆和管在最高点处能对小球产生向上的支持力,故小球 恰能到达最高点的最小速度v=0,此时小球受到的支持力FN=mg.
2.(多选)如图所示,质量为m的小球在竖直平面内的光滑圆环内侧做圆周 运动.圆环半径为R,小球半径不计,小球经过圆环内侧最高点时刚好不 脱离圆环,则其通过最高点时下列表述正确的是(重力加速度为g) A.小球对圆环的压力大小等于mg

竖直面内的圆周运动模型

竖直面内的圆周运动模型

竖直面内的圆周运动模型
圆周运动是一种常见的物理运动,也是许多物理运动中最重要的基础组成之一。

它出
现在自然界中的各个角落,给人们惊喜和鼓舞,引发科学家们深远的思考。

本文中,我们
将讨论竖直面内的圆周运动模型。

竖直面内的圆周运动是指空间坐标内的跟踪运动,它满足物体存在平方摩擦力(当它
的线速度与圆心的位置有关时)的要求。

在这种情况下,可以用以下方程来描述物体在竖直面上的圆周运动:
其中F是重力力,m是物体的质量,ω是角速度,θ是指定的时刻的角度,t是时间,a0是速度的初始值,∆t是时间间隔,R是圆的半径。

平方摩擦力的方程为:
其中μ是空气阻力系数,v是物体的速度,∆v是物体速度变化的量。

由于圆周运动中存在着速度,加速度和受力等变量,所以可以将其表示成动量方程:
根据以上方程,可以得出物体在竖直面内的圆周运动的具体运动轨迹,即:
从上面的计算公式可以看出,竖直面内的圆周运动模型是一个复杂的数学模型,其中
包括外力矩、时间等因素,它可以用来描述物体在单位机械作用下的数量运动规律,同时
还涉及到空气阻力和摩擦力等概念。

总而言之,竖直面内的圆周运动模型是一种综合的物理运动模型。

它可以满足大多数
物理实验的要求,并且可以用来更好地揭示物体在空间中的动态变化规律。

它也将为人类
在研究物理运动规律中提供更多新的思路。

竖直面内的圆周运动模型(解析版)--2024届新课标高中物理模型与方法

竖直面内的圆周运动模型(解析版)--2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法竖直面内的圆周运动模型目录一.一般圆周运动的动力学分析二.竖直面内“绳、杆(单、双轨道)”模型对比分析三.竖直面内圆周运动常见问题与二级结论三.过拱凹形桥模型一.一般圆周运动的动力学分析如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2r作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。

Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2ρ,ρ为曲率圆半径。

二.竖直面内“绳、杆(单、双轨道)”模型对比分析轻绳模型(没有支撑)轻杆模型(有支撑)常见类型过最高点的临界条件由mg=mv2r得v临=gr由小球能运动即可得v临=0对应最低点速度v低≥5gr对应最低点速度v低≥4gr绳不松不脱轨条件v低≥5gr或v低≤2gr不脱轨最低点弹力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力最高点弹力过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N=mv2r-mg向下压力(1)当v=0时,F N=mg,F N为向上支持力(2)当0<v<gr时,-F N+mg=m v2r,F N向上支持力,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=m v2r,F N为向下压力并随v的增大而增大在最高点的F N 图线取竖直向下为正方向取竖直向下为正方向三.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。

竖直平面内的圆周运动

竖直平面内的圆周运动

竖直平面内的圆周运动一.竖直平面内的圆周运动属于圆周运动二.两种情况:1、没有支撑物的物体在竖直平面内的圆周运动①临界条件:小球到达最高点时绳的拉力(或轨道的弹力)刚好等于零,小球重力提供其圆周运动的向心力,即mg=mv02/R∴刚过最高点的临界速度(最小速度)v=②当v≥v0时小球通过最高点③当v<v0时小球不能到达最高点。

2、有支撑物的物体在竖直平面内的圆周运动v=0弹力的大小b图中的弹力a图中的弹力速度范围课堂练习1、绳系着装水的桶,在竖直平面内做圆周运动,水的质量m=0.5kg,绳长=0.4m.求(1)桶在最高点水不流出的最小速率?(2)水在最高点速率=3m/s时水对桶底的压力?(g取10m/s2)2、细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它做圆周运动,a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是()A.a处为拉力,b处为拉力B.a处为拉力,b处为推力C.a处为推力,b处为拉力D.a处为推力,b处为推力作业1.长度为0.5m的轻质细杆,A端有一质量为3kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s,取g=10m/s2,则此时轻杆OA将()A.受到6.0N的拉力B.受到6.0N的压力C.受到24N的拉力D.受到54N的拉力2.一轻杆一端固定一质量为m的小球,另一端以O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A、小球过最高点时,杆所受的弹力可以等于0B、小球过最高点时的最小速度为√gRC、小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定大于杆对球的作用力D、小球过最高点时,杆对球的作用力一定与小球所受重力方向相反3.质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度值为V,当小球以2V的速度经过最高点时,对轨道的压力值是()(A)0 (B)mg (C)3mg (D)5mg4.一质量为0.5kg的小球,用0.4m长的细线拴住在竖直面内作圆周运动,求:当小球在圆上最高点速度为4m/s时,细线的拉力是多少?(g=10m/s2)5. 如图,质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度是v,当小球以3v 的速度经过最高点时,对轨道的压力大小是多少?6.用钢管做成半径为R=0.5m的光滑圆环(管径远小于R)竖直放置,一小球(可看作质点,直径略小于管径)质量为m=0.2kg在环内做圆周运动,求:小球通过最高点A时,下列两种情况下球对管壁的作用力. 取g=10m/s2(1) A的速率为1.0m/s (2) A的速率为4.0m/s。

第四章 第3-3讲竖直面内的圆周运动

第四章 第3-3讲竖直面内的圆周运动

【典例透析2】小明站在水平地面上,手握不可伸长的轻绳一 端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直 平面内做圆周运动,当球某次运动到最低点时,绳突然断掉, 球飞行水平距离d后落地,如图所示。已知握绳的手离地面高 度为d,手与球之间的绳长为 3 d ,重力加速度为g。忽略手的运
4
动半径和空气阻力。求:
(1)绳断时球的速度大小v1; (2)绳能承受的最大拉力; (3)改变绳长(绳承受的最大拉力不变),保持手的位置不动, 使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球 抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
【解析】(1)设绳断后球做平抛运动时间为t1,
竖直方向:
1 4
d
1 2
第3-3讲 竖直面内的圆周运动
【考点解读】 1.竖直面内的圆周运动一般是变速圆周运动。 2.只有重力做功的竖直面内的变速圆周运动机械能守恒。 3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问 题,又有能量守恒的问题,要注意物体运动到圆周的最高点速 度不为零。 4.一般情况下,竖直面内的圆周运动问题只涉及最高点和最低 点的两种情形。
【规范解答】已知a、b绳长均为1 m,即:
Am Bm 1 m,AO 1 AB 0.8 m 2
在△AOm中,cos AO 0.8 0.8
Am 1
sinθ=0.6,θ=37° 小球做圆周运动的轨道半径为
r Om Amsin 1 0.6 m 0.6 m
b绳被拉直但无张力时,小球所受的重力mg与a绳拉力FTa的合 力F为向心力,其受力分析如图所示: 由牛顿第二定律得:F=mgtanθ=mrω2 解得直杆和球的角速度为
【解析】(1)物块做平抛运动,竖直方向有
H 1 gt2 2

022竖直面内圆周运动之绳”模型和“杆”模型及其临界问题

022竖直面内圆周运动之绳”模型和“杆”模型及其临界问题

一.竖直面内的圆周运动——“绳”模型和“杆”模型1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的物体等),称为“绳(环)约束模型”;二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”。

2.绳、杆模型涉及的临界问题绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球受力特征除重力外,物体受到的弹力向下或等于零除重力外,物体受到的弹力向下、等于零或向上受力示意图过最高点的临界条件由mg=mv2r得v临=gr由小球恰能做圆周运动得v临=0讨论分析(1)过最高点时,v≥gr,F N+mg=mv2r,绳、圆轨道对球产生弹力F N(2)不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心(2)当0<v<gr时,mg-F N=mv2r,F N背离圆心,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=mv2r,F N指向圆心,并随v的增大而增大3.竖直面内圆周运动问题的解题思路二. 杆—球模型经典例题讲解与对点演练(一)例题例1:一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,重力加速度为g ,则下列说法正确的是( ) A .小球过最高点时,杆所受到的弹力可以等于零 B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 答案 A解析 当小球在最高点所受的弹力为零时,有mg =m v 2R ,解得v =gR ,即当速度v =gR时,轻杆所受的弹力为零,所以A 正确.小球通过最高点的最小速度为零,所以B 错误.小球在最高点,若v <gR ,则有:mg -F =m v 2R ,轻杆的作用力随着速度的增大先减小后反向增大,若v >gR ,则有:mg +F =m v 2R ,轻杆的作用力随着速度增大而增大,所以C 、D 错误.(二)杆—球模型对点演练:1.如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力,重力加速度为g ,则球B 在最高点时( ) A .球B 的速度为零 B .球A 的速度大小为2gL C .水平转轴对杆的作用力为1.5mg D .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,则有mg =m v B 22L ,解得v B =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v A =122gL ,故B 错误;B 球在最高点时,对杆无弹力,此时A 球受到的重力和拉力的合力提供向心力,有F -mg =m v A 2L ,解得:F =1.5mg ,根据牛顿第三定律可知,C 正确,D 错误.2.(2020·全国卷Ⅰ)如图,一同学表演荡秋千。

5.7-3竖直平面内的圆周运动与临界问题

5.7-3竖直平面内的圆周运动与临界问题

壁对小球有压力,什么时候内管壁
;
F1
对小球有支持力?什么时候内外管
V1
壁都没有压力?
G
临界速度: F 0,v0 gR
当v<v0,内壁对球有向上的支持力; 当v>v0,外壁对球有向下的压力。
第17页,共28页。
例4:如图所示,质量m=0.2kg的小球固定在长为L =0.9m的轻杆的一端,杆可绕O点的水平轴在竖直 平面内转动,g=10m/s2,求: (1)当小球在最高点的速度为多 大时,小球对杆的作用力为零?
第21页,共28页。
轻绳模型
轻杆模型
(1)过最高点时,v≥ gr, FN+m g=mvr2,绳、轨道对
球产生弹力 FN
(1)当 v=0 时,FN=mg,FN 为支持力,沿半径背离圆心
(2)当 0<v< gr 时,-FN+mg =mvr2,FN 背离圆心且随 v
讨论 (2)不能过最高点时 v< gr ,
(2)当小球在最高点的速度分别
为6m/s和1.5m/s时,杆对小球的 作用力的大小和方向
(3)小球在最高点的速度能否等 于零?
第18页,共28页。
例题5:如图所示,一质量为m
的小球,用长为L轻杆固定住,
使其在竖直面内作圆周运
N
动.(1)若过小球恰好能通过最
高点,则小球在最高点和最低
mg
点的速度分别是多少?小球的
竖直平面内做圆周运动。 试分析:
B
(1)当小球在最低点A的速度为 v2时,杆的受力与速度的关系怎
样?
(2)当小球在最高点B的速度为 v1时,杆的受力与速度的关系怎样?
A
第12页,共28页。
问题2:杆球模型:

高中物理《竖直面内的圆周运动》教案

高中物理《竖直面内的圆周运动》教案

竖直面内的圆周运动教案xxxxxxxxx竖直面内的圆周运动教学目标1.知识目标(1)理解竖直面内圆周运动的两种模型及其特点。

(2)学会应用处理竖直面内圆周运动问题的基本方法解题。

2.能力目标(1)能够运用竖直面内圆周运动的两种模型及其特点分析解题。

(2)学生会自己动手推导,讨论,分析竖直面内圆周运动的问题。

(3)培养学生逻辑思维能力。

3.情感目标(1)通过这节课的学习激发学生的学习兴趣。

(2)让学生发现并体会物理学中的逻辑性。

(3)通过自己的推理去感受物理学习中的乐趣。

教学重点1.理解竖直面内圆周运动的两种模型及其特点。

2.应用处理竖直面内圆周运动问题的基本方法解题。

教学难点应用处理竖直面内圆周运动问题的基本方法解题。

教学方法在教法上采用师生讨论的教学方法。

学法上让学生用已学的知识、探究、讨论等,使学生主动、积极参与到学习中来,充分体现了学生的主体地位,让学生在动手探究的过程中体验和发现成功的喜悦。

教学过程前面我们学习圆周运动的知识,在生活中我们会碰到像竖直面内圆周运动问题,这节课我们就来复习竖直面内的圆周运动。

一. 竖直面内圆周运动的两种模型:轻绳模型轻杆模型1:轻绳模型用长为L 的细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,如图所示。

试分析: V 1oA LB V 2(1)当小球在最低点A 的速度为V1时,向心力的来源和绳的张力大小(2)当小球在最高点B 的速度为V2时,向心力的来源和绳的张力大小(3)若小球能做完整的圆周运动,则最高点的速度应满足什么条件?2:轻杆 模 型V 2V 1 讨论在最高点杆对小球无作用力,小球速度v 满足什么条件 ?在最高点杆对小球是支持力,小球速度v 满足什么条件 ? 在最高点杆对小球是拉力,小球速度v 满足什么条件 ?vo v o o v o v没有支撑物的物体,能通过最高点做圆周运动的条件有支撑物的物体,能通过最高点做圆周运动的条件二.处理竖直面内圆周运动问题的基本方法: 1. 对圆周运动过程的某一状态点,常用牛顿运动定律和向心力公式建立方程。

高中物理必修二64专题:竖直面内的圆周运动及圆周运动的临界问题(解析版)

高中物理必修二64专题:竖直面内的圆周运动及圆周运动的临界问题(解析版)

6.4 专题:竖直面内的圆周运动及圆周运动的临界问题一、基础篇1.如图所示,可视为质点的木块A、B叠放在一起,放在水平转台上随转台一起绕固定转轴OO′匀速转动,木块A、B与转轴OO′的距离为1 m,A的质量为5 kg,B的质量为10 kg。

已知A与B间的动摩擦因数为0.2,B与转台间的动摩擦因数为0.3,若木块A、B与转台始终保持相对静止,则转台角速度ω的最大值为(最大静摩擦力等于滑动摩擦力,g取10 m/s2)()A.1 rad/s B. 2 rad/sC. 3 rad/s D.3 rad/s解析:选B对A有μ1m A g≥m Aω2r,对A、B整体有(m A+m B)ω2r≤μ2(m A+m B)g,代入数据解得ω≤ 2 rad/s,故B正确。

2.如图所示,内壁光滑的竖直圆桶绕中心轴做匀速圆周运动,一物块用细绳系着,绳的另一端系于圆桶上表面圆心,且物块贴着圆桶内表面随圆桶一起转动,则()A.绳的拉力可能为零B.桶对物块的弹力不可能为零C.若它们以更大的角速度一起转动,绳的张力一定增大D.若它们以更大的角速度一起转动,绳的张力仍保持不变解析:选D由于桶的内壁光滑,所以桶不能提供给物块竖直向上的摩擦力,所以绳子的拉力一定不能等于零,故A错误。

绳子沿竖直方向的分力与物块重力大小相等,若绳子沿水平方向的分力恰好提供向心力,则桶对物块的弹力为零,故B错误。

由题图可知,绳子与竖直方向的夹角不会随桶的角速度的增大而增大,所以绳子的拉力也不会随角速度的增大而增大,故C 错误,D 正确。

3.如图所示,杂技演员在表演节目时,用细绳系着的盛水的杯子可以在竖直平面内做圆周运动,甚至当杯子运动到最高点时杯里的水也不会流出来。

下列说法中正确的是( )A .在最高点时,水对杯底一定有压力B .在最高点时,盛水杯子的速度可能为零C .在最低点时,细绳对杯子的拉力充当向心力D .在最低点时,杯和水受到的拉力大于重力解析:选D 水和杯子恰好能通过最高点时,在最高点细绳的拉力为零,由它们的重力提供向心力,它们的加速度为g ,此时水对杯底恰好没有压力。

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示\异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图-力学方程mg+F N=mv2Rmg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0*即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则( )A .小球的质量为aR bB .当地的重力加速度大小为R bC .v 2=c 时,小球对杆的弹力方向向上&D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = m 的绳系着装有m = kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大 【答案】 (1) m/s (2) N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =错误! m/s ≈ m/s((2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

浅析竖直平面内的圆周运动的临界问题

浅析竖直平面内的圆周运动的临界问题

浅析竖直平面内的圆周运动的临界问题竖直平面内的圆周运动往往是在一些理想模型约束下进行的,常见的有轻绳、轻杆、轨道、管道等, 下面将对这类临界状态问题进行综合分析。

一、轻绳模型绳或光滑圆轨道的内侧。

如图所示,它的特点是:在运动到最高点时均没有物体支撑着小球。

下面讨论小球(质量为m)在竖直平面内做圆周运动(半径为R)通过最高点时的情况:1.临界条件:小球到达最高点时受到绳子的拉力恰好等于零,这时小球做圆周运动所需要的向心力仅由小球的重力提供。

根据牛顿第二定律得,mg=m,即v临界=Rg。

这个速度可理解为小球恰好通过最高点或恰好通不过最高点时的速度;也可认为是小球通过最高点时的最小速度,通常叫临界速度。

2.小球能通过最高点的条件:当v>Rg时,这时绳子对球有作用力,称为拉力。

当v=Rg 时,小球刚好能通过最高点,此时绳子对球不产生作用力。

3.小球不能通过最高点的条件:v<Rg时,实际上小球还没有到达最高点就已经脱离了轨道(如图)。

二、轻杆模型杆和光滑管道。

如图所示,它的特点是:在运动到最高点时有物体支撑着小球。

下面讨论小球(质量为m)在竖直平面内做圆周运动(半径为R)通过最高点时的情况:1.临界条件:由于硬杆的支撑作用,小球恰能到达最高点,临界速度是:v临界=0。

此时,硬杆对物体的支持力恰等于小球的重力mg。

2.如上图所示的小球通过最高点时,硬杆对小球的弹力情况为:当v=0时,硬杆对小球有竖直向上的支持力FN,其大小等于小球的重力,即FN=mg;当0<v<Rg时,杆对小球的支持力竖直向上,大小随速度的增加而减小,其取值范围为0<FN<mg;当v=Rg时,FN=0。

这时小球的重力恰好提供小球做圆周运动的向心力;当v>Rg时,硬杆对小球有指向圆心(即方向向下)的拉力,其大小随速度的增大而增大。

三、两种模型分析比较1.轻绳模型:均是没有支撑的小球,由mg=m得v临=gr。

竖直面内的圆周运动模型分析

竖直面内的圆周运动模型分析



2 . 轻杆 模型
运 动质点 在一轻杆 的作用下 ,绕 中心点作变速圆周运动 ,由于轻 杆能对质点提供支持力和拉力 , 所 以质点过最高点时受的合力可以为 零 ,质点在最高点可 以处于平衡状态。 所 以质点过最高点的最小速度为零 , ( 临界速度 )


由①⑥式得
5 系统的优点 采用变频器- P L C自动灌溉装置有以下几个优点 : A :节电效益高。传统水泵电机均采用大容量 电机 , 用 阀门控制水 量恒定 , 造成 电能浪 费。变频系统 ,无论工作参数如何 ,电机 的效率
参考 文 献
[ 1 】 宫淑 贞 王 冬青 《 可编 程控 制 器原 理及 应用 》 ,人 民 邮 电出版 社 2 0 0 2 [ 2 ] 丁斗 章 《 变频 调 速技 术 与系统 应 用 》 ,机 械 工业 出版 社 2 0 0 5
— .
1 09— .
科 学 技 术
谈楞 次定律 中的安培 力
c :结构简单 , 操作 简便。装置的控制系统采用 集成 度高 ,配套 方案灵活多样 ,由可编程控制器得到水泵运行的各种组合 。调速范 围 广 ,对水量变化的适应能力强。 D :使用 寿命长 ,自 动化程度高 ,维护量少 。以上系统在实际的应 用 中效果 显著 ,如将 P L C 与变频器中 自带编程器的功能集成 ,可开发 成一些专用 的变频器 ,这样系统的可靠性与健 壮性大 大增强 ,应用更 加简单 ,系统 的总成本也会下降。
圆心的拉力 ; ̄ [ 1 Mg+F = 二一


两类模型—— 轻绳横慰和轻杆模型
1 . 轻绳 模型
( 4 )当0 < v < 时,质点的重力六于其所需的向心力 , 轻杆对质

竖直平面内的圆周运动

竖直平面内的圆周运动

分析:
F2
A
最高点:
V1(V2)
v mg F1 m R

2 1
v mg F2 m R
2 2
F1 G
;
R
F3
V3 G
v 最低点: F3 mg m R
思考:小球在最高点的最小速度 可以是多少?什么时候外管壁对 小球有压力,什么时候内管壁对 小球有支持力?什么时候内外管 壁都没有压力?
要通过最高点,此时轻杆的拉力需要大 于等于5mg,速度 V 5gR
拓展:物体在管型轨道内的运动
如图,有一内壁光滑竖直放 置的管型轨道半径为R,内 有一质量为m的小球,沿其 竖直方向上的做变速圆周运 动,小球的直径刚好与管的 内径相等
(1)小球在运动到最高点的时候速度与受力 的关系是怎样的? (2)小球运动到最低点的时候速度与受力的 关系又是怎样?
练习5
杆长为 L ,球的质量为 m ,杆连球在竖直平面内绕 轴 O 自由转动,已知在最高点处,杆对球的弹力大小 为F=1/2mg,求这时小球的速度大小。 解:小球所需向心力向下,本题中 F=1/2mg<mg, 所以弹力的方向可能向上,也可能向下。
⑴若F 向上,则
mv 2 mg F , L
⑵若F 向下,则
v vmin gr

当质点的速度小于这一值时,质点将运动不到最
2、最低点: 最低点的向心力方程:
mV FN mg R
2
V
可知此时绳子的拉力不可能为零,其最小值为 mg,速度为零,但不能通过最高点。 要通过最高点,此时绳子的拉力需要大于等 于6mg,速度 V 5gR
拓展:物体沿竖直内轨运动
练习1
绳系着装有水的桶,在竖直平面内做圆周运动, 水的质量为0.5Kg,绳长60Cm,求: (1)最高点水不流出的最小速率; (2)水在最高点速率为3m/s时,水对桶底的压力。

人教版高一物理必修二第五章第七节《竖直面内的圆周运动》教学设计

人教版高一物理必修二第五章第七节《竖直面内的圆周运动》教学设计

竖直面内的圆周运动(教学设计)一、教学目标1.知识目标(1)了解竖直平面内的圆周运动的特点。

(2)了解变速圆周的运动物体受到的合力产生的两个效果,知道做变速圆周运动的物体受到的合力不指向圆心。

(3)掌握轻杆、轻绳、管道内的小球做圆周运动的临界条件。

2.能力目标通过轻杆、轻绳物理模型的巩固,体会物理模型在物理学习中的重要性. 掌握牛顿第二定律在圆周运动中的方法。

3.情感目标培养学生建立物理模型的能力,理论联系实际,增强学生处理实际问题的能力二、教学要点(1)知道轻杆、轻绳、管道等物理模型;(2)会分析小球在特殊位置的受力;(3)了解小球在竖直平面内的运动情况。

三、教学难点轻杆、轻绳、管道等物理模型中的小球在竖直平面内做圆周运动的临界条件及应用四、教学流程教学流程教师活动学生活动设计意图环节一:课程导入【课堂引入】观看摩托车杂技表演视频并回答问题:1、摩托车做什么运动呢?在哪个平面内呢?为什么在最高点时摩托车不下落?2、生活中还有哪些竖直面内的圆周运动?交流、探讨激发学生的探究欲望和学习兴趣。

明确本章主要目标环节二:讲授新课类型一轻绳牵拉型(轻绳模型)1.讲述:绳拴小球在竖直面内做圆周运动【演示1】用一细绳拴住一重物在竖直面内做圆周运动。

【问题探讨】【问题探讨1】(1)最高点:小球要在竖直平面内做完整的圆周运动,则在最高点速度满足的关系?(2)最低点:分析小球在最低点的受力情况和运动情况的关系;(3)在向上转的任意位置受力和速度的关系:(4)在向下转的任意位置受力和速度的关系:【演示2】过山车模型小组讨论:小球在最高点不掉下来速度满足的条件?【演示3】水流星的表演思考:在最高点水不流出,速度满足的关系?解:思考并利用自己已有的知识经验进行问题的回答。

独立思考小组讨论后作答(2):思考并利用自己已有的知识经验进行问题的回答。

小组讨论后作答(4):学生上台做实验,并进行讨论加以理解。

学生上台做实验,并进行讨论加以理解。

竖直面内圆周运动问题

竖直面内圆周运动问题

竖直面内圆周运动问题物体在竖直面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并有“最大”、“最小”、“刚好”等词语,常有两种模型——轻绳模型和轻杆模型,分析比较如下:v 2[例](2013·重庆模拟)如图4-3-8所示,半径为R 、内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同的速度进入管内。

A 通过最高点C 时,对管壁上部压力为3 mg ,B 通过最高点C 时,对管壁下部压力为0.75 mg ,求A 、B 两球落地点间的距离。

[解析] A 球通过最高点时,由牛顿第二定律F N A +mg =m v 2AR已知F N A =3mg ,得v A =2RgB 球通过最高点时,由牛顿第二定律 mg -F N B =m v 2B R已知 F N B =0.75mg ,得v B =12Rg 平抛落地时间t = 4R g故两球落地点间的距离Δl =(v A -v B )t 解得Δl =3R练习1.(2013·佛山模拟)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g (R +r )B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力解析:选BC 小球沿管上升到最高点的速度可以为零,故A 错误,B 正确;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与球重力在背离圆心方向的分力F mg 的合力提供向心力,即:F N -F mg =m v 2R +r ,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C 正确;小球在水平线ab 以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D 错误。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竖直面内的圆周运动
绳模型:如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为m ,绳长为r ,过最高点时,小球的速度为v , 总结:(1)当
,向心力由重力和绳的拉力共同提供,小球做圆周运动能过最高点。

(2)当
,绳的拉力为0.,只有重力提供向心力,小球做圆周运动刚好能过最高点。

(3)当
,小球不能通过最高点,在到达最高点之前要脱离圆周。

注:小球在圆形轨道内侧运动过圆周最高点的情况与此相同。

杆模型:如图,小球在轻杆的约束下在竖直平面内做匀速圆周运动,小球质量为m ,杆长为r ,过最高点时小球的速度为v , (
1)当,mg=mv 2/r ,重力恰好提供向心力,这时杆和小球 (有、无)
(2)当
,重力和杆对小球的拉力F N 共同提供向心力,。

(3)当
,重力和杆对小球支持力F
N 共同提供向心力,。

1、用长为l 的细绳拴着质量为m A 小球在圆周最高点时所受的向心力一定为重力 B 小球在圆周最高点时绳子的拉力不可能为0
C 若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为
gr
D 小球在圆周最低点时拉力一定大于重力
2、游乐场的翻滚过山车,人和车的总质量为5吨,轨道的半径为10m ,到达轨道最高点的速度至少为多少时,才能保证游客的安全。

3、质量为m 的小球在竖直平面内的圆形轨道内侧运动,若经过最高点不脱离轨道的临界速度为v ,则当小球以2v 的速度经过最高点时,小球对轨道压力的大小为( ) A 0 B mg C 3mg D 5mg
4、质量为m 的滑块滑到半径为R 的圆形轨道的顶端时速度为v ,求滑块在最高点时对轨道的压力为
5、细杆的一端与一小球相连,可绕O 点的水平轴自由转动,现在给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是( ) A a 处为拉力,b 处为拉力 B a 处为拉力,b 处为推力 C a 处为推力,b 处为拉力 D a 处为推力,b 处为推力
6、用长为L 的细绳将质量为m 的小球悬在O 点,使之在竖直平面内做圆周运动,小球通过最低点时的速度为v ,则小球在最低点时细绳的张力大小为
7、绳系着装水的桶,在竖直平面内做圆周运动,水的质量m=0.5kg ,绳长=40cm.求 (1)桶在最高点水不流出的最小速率?
(2)水在最高点速率=3m/s 时水对桶底的压力?(g 取10m/s 2) 8、如图质量为m=0.2kg 的小球固定在长为L=0.9m 的轻杆一端,杆可绕O 点的水平转轴在竖直平面内转动,g=10m/s 2,求: (1)小球在最高点的速度为多大时,球对杆的作用力为0?
(2)当小球在最高点的速度分别为6m/s 、1.5m/s 时,球对杆的作用力和方向。

9长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动,在A 通过最高点,试讨论在下列两种情况下杆的受力:
①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时
水平面内的圆周运动
例1,如图,已知绳长a=0.2m,水平杆长b=0.1m,小球质量m=0.3kg,整个装置可绕竖直轴转动。

(1)要使绳子与竖直方向成450角,试求该装置必须以多大的角速度旋转?
(2)此时绳子对小球的拉力为多大?
例2,如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?
例3,如图所示,用细绳一端系着的质量为M=0.6kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg的小球B,A的重心到O点的距离为0.2m.若A与转盘间的最大静摩擦力为f=2N,为使小球B保持静止,求转盘绕中心O旋转的角速度ω的取值范围.(取g=10m/s2)
练习:
1,如图8所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其下压力的μ倍。

求:
⑴当转盘角速度ω1=μg
2r时,细绳的拉力T1。

⑵当转盘角速度ω2=3μg
2r时,细绳的拉力T2。

2,如图9所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为m的小物体(物体可看质点),物体以速率v绕圆锥体的轴线做水平匀速圆周运动。

⑴当v=1
6gL 时,求绳对物体的拉力;
⑵当v=3
2gL 时,求绳对物体的拉力。


8
图9。

相关文档
最新文档