物理圆周运动8种模型

合集下载

专题08 水平面内的圆周运动模型---2024届新课标高中物理模型与方法(解析版)

专题08 水平面内的圆周运动模型---2024届新课标高中物理模型与方法(解析版)

2024版新课标高中物理模型与方法专题08水平面内的圆周运动模型目录【模型一】圆锥摆、圆锥斗、圆碗模型 (1)【模型二】火车转弯模型 (13)【模型三】水平路面转弯模型 (19)【模型四】圆盘模型 (27)越大,则摆线的拉力越大,向心力越大,向心加速度也越大,转结论是:在同一地点,摆球的质量相等、摆长不等但高度相同的圆锥摆,转动的快慢相等,但锥摆,摆线的拉力大,向心力大,向心加速度大,运动得快。

4.多绳圆锥摆问题二.圆锥斗1.结构特点:内壁为圆锥的锥面,光滑,轴线垂直于水平面且固定不动,可视为质点的小球紧贴着内壁在图中所示的水平面内做匀速圆周运动。

2.受力特点:小球质量为m,受两个力即竖直向下的重力mg和垂直内壁沿斜向上方向的支持力N F。

两个力的合力,就是摆球做圆周运动的向心力结论是:在同一地点,同一锥形斗内在不同高度的水平面内做匀速圆周运动的同一小球,支持力大小相等,向心力大小相等,向心加速度大小相等,若高度越高,则转动的越慢,而运动的越快。

三.圆碗受力分析运动分析正交分解x 轴指向心列方程求解规律mgθRF N x :F N sinθ=mω2r y :F N cosθ=mg r =RsinθAB Ca n =gtanθ;①同角同向心加速度(B 和C )②同高同角速度(A 和C )【模型演练1】.(2023·福建厦门·厦门外国语学校校考模拟预测)智能呼啦圈轻便美观,深受大众喜爱。

如图甲,腰带外侧带有轨道,将带有滑轮的短杆穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示。

可视为质点的配重质量为0.5kg ,绳长为0.5m ,悬挂点P 到腰带中心点O 的距离为0.2m 。

水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看作不动,重力加速度g 取210m /s ,sin370.6= ,下列说法正确的是()A .匀速转动时,配重受到的合力恒定不变B .若增大转速,腰带受到的合力不变C .当θ稳定在37︒时,配重的角速度为15rad /s ω=D .当θ由37︒缓慢增加到53︒的过程中,绳子对配重做正功【答案】CD【详解】A .匀速转动时,配重做匀速圆周运动,合力大小不变,但方向在变化,故A 错误;B .运动过程中腰带可看作不动,所以腰带合力始终为零,故B 错误;C .对配重,由牛顿第二定律2tan sin mg m l r θωθ=+()即A.甲容器中A球的线速度比B球大B.乙容器中C.丙容器中两球角速度大小相等D.丙容器中【答案】ABC【详解】A.设容器对小球弹力方向与竖直方向夹角为A.球A和球B的向心加速度大小分别为B.两球所受漏斗支持力大小之比与其所受向心力大小之比相等C.球A和球B的线速度大小之比为D.从图示时刻开始,球B旋转两周与球【答案】BD的半球形陶罐,固定在可以绕竖A.向心力大小为mRω2B.θ越小则ω越小C.在保持物块位置不变的情况下增大D.在保持物块位置不变的情况下增大【答案】BC由受力图可得解得由此可知θ越小则ω越小,故B正确;水平方向竖直方向可知增大角速度,陶罐对小物块的弹力增大,故故选BC。

六种圆周运动模型 ppt课件

六种圆周运动模型 ppt课件

F合
mg
tan
F心
F心
mv2 r
mw2r
解得:
v gr
tan
w g
tan r
规律:稳定状态下,小球所处的位置越高,半径r越
大,角速度越小,线速度越大,而小球受到的支持
力和向心力并不随位置六的种圆变周运化动而模型变化。
4
三、火车转弯模型:
六种圆周运动模型
5
四、汽车过桥模型:
F向
ma
ห้องสมุดไป่ตู้
mv2 R
F向
ma
mv2 R
FN
G mv2 R
六种圆周运动模型
6
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
gR
:绳子或外轨道对物体的弹力:
v2 F m G
R
方向竖直向下
v = g R :绳子或外轨道对物体的弹力:F=0
v< gR:物体不能过最高点!!!
v = g R 是物体所六种受圆周弹运力动模方型 向变化的临界速度。 7
六种圆周运动模型分析
六种圆周运动模型
1
一、圆盘模型:
F合f F心mr2vm2w r
当f最大值时: f mg 线速度有最大值:v gr
g
角速度有最大值:w r
六种圆周运动模型
2
二、圆锥摆模型: 由拉力F和重力G的合力提供向心力
六种圆周运动模型
3
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

2020年高考物理一轮复习热点题型归纳与变式演练专题09 圆周运动七大常考模型【专题导航】目录题型一水平面内圆盘模型的临界问题 (1)热点题型二竖直面内圆周运动的临界极值问题 (3)球—绳模型或单轨道模型 (4)球—杆模型或双轨道模型 (6)热点题型三斜面上圆周运动的临界问题 (8)热点题型四圆周运动的动力学问题 (9)圆锥摆模型 (9)车辆转弯模型 (11)【题型演练】 (13)【题型归纳】题型一水平面内圆盘模型的临界问题1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=mv2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大【答案】ABD【解析】当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,Kmg+Kmg=mω2L+mω2·2L,解得:ω=2Kg3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=m·2L·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B项正确;当ω>Kg2L时,B已达到最大静摩擦力,则ω在Kg2L<ω<2Kg3L范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<2Kg3L范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以F f-F T=mLω2,当ω增大时,静摩擦力也增大,D项正确.【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动【答案】ABC【解析】由题意可知两轮盘边缘的线速度v大小相等,由v=ωr,r甲∶r乙=3∶1,可得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A、B的角速度之比为1∶3,故A正确;滑块相对盘开始滑动前,根据加速度公式:a =Rω2,又R A∶R B=2∶1,ωA:ωB=1∶3,所以A、B的向心加速度之比为a A∶a B=2∶9,故B正确;滑块的最大静摩擦力分别为F f A=μm A g,F f B=μm B g,则最大静摩擦力之比为F f A∶F f B=m A∶m B;转动中所受的静摩擦力之比为F f A′∶F f B′=m A a A∶m B a B=m A∶4.5m B,由上可得滑块B先达到最大静摩擦力而先开始滑动,故C正确,D错误.【变式2】(多选)(2019·广东省惠州市第二次调研)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmg B.此时A所受摩擦力方向沿半径指向圆内C.此时圆盘的角速度为2μgr D.此时烧断绳子,A仍相对盘静止,B将做离心运动【答案】AC【解析】两物体A和B随着圆盘转动时,合外力提供向心力,则F=mω2r,B的半径比A的半径大,所以B所需向心力大,细绳拉力相等,所以当圆盘转速加快到两物体刚好还未发生滑动时,B的静摩擦力方向指向圆心,A的最大静摩擦力方向指向圆外,有相对圆盘沿半径指向圆内的运动趋势,根据牛顿第二定律得:F T-μmg=mω2r,F T+μmg=mω2·2r,解得:F T=3μmg,ω=2μgr,故A、C正确,B错误.烧断细绳瞬间A物体所需的向心力为2μmg,此时烧断细绳,A的最大静摩擦力不足以提供向心力,则A做离心运动,故D错误.热点题型二竖直面内圆周运动的临界极值问题1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“轻绳模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“轻杆模型”.2.竖直平面内圆周运动的两种模型特点及求解方法球—绳模型或单轨道模型【例2】(多选)(2019·哈尔滨三中期中)如图所示,长为L的细绳一端拴一质量为m小球,另一端固定在O 点,绳的最大承受能力为11mg,在O点正下方O′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O′为轴完成竖直面完整的圆周运动,则钉的位置到O点的距离为()A.最小为25L B.最小为35L C.最大为45L D.最大为910L【答案】BC【解析】当小球恰好到达圆周运动的最高点时小球的转动半径为r,重力提供向心力,则有mg=mv2r,根据机械能守恒定律可知,mg(L-2r)=12mv2,联立解得:r=25L,故钉的位置到O点的距离为L-25L=35L;当小球转动时,恰好达到绳子的最大拉力时,即F=11mg,此时一定处在最低点,设半径为R,则有:11mg-mg =m v 20R ,根据机械能守恒定律可知,mgL =12mv 20,联立解得:R =15L ,故此时离最高点距离为45L ,则可知,距离最小为35L ,距离最大为45L ,故B 、C 正确,A 、D 错误.【变式1】(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mg C .3mg D .23mg【答案】A【解析】小球在运动过程中,A 、B 两点与小球所在位置构成等边三角形,由此可知,小球圆周运动的半径R =L ·sin 60°=32L ,两绳与小球运动半径方向间的夹角为30°,由题意,小球在最高点的速率为v 时,mg =m v 2R ,当小球在最高点的速率为2v 时,应有:F +mg =m (2v )2R ,可解得:F =3mg .由2F T cos 30°=F ,可得两绳的拉力大小均为F T =3mg ,A 项正确.【变式2】(2018·甘肃省兰州一中模拟)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为mb aB .当地的重力加速度为a mC .当v 2=c 时,轻质绳最高点拉力大小为acb +a D .若v 2=b ,小球运动到最低点时绳的拉力为6a【答案】 ABD【解析】 在最高点,F T +mg =m v 2L ,解得:F T =m v 2L -mg ,可知纵截距的绝对值为a =mg ,g =am,图线的斜率k =a b =m L ,解得绳子的长度L =mb a ,故A 、B 正确;当v 2=c 时,轻质绳的拉力大小为:F T =m cL -mg=ac b -a ,故C 错误;当v 2=b 时拉力为零,到最低点时根据动能定理得:2mgL =12mv 22-12mv 2,根据牛顿第二定律:F T ′-mg =m v 22L,联立以上可得拉力为:F T ′=6mg =6a ,故D 正确.【变式2】如图所示,半径为R 的光滑半圆轨道竖直放置,一小球以某一速度进入半圆轨道,通过最高点P 时,对轨道的压力为其重力的一半,不计空气阻力,则小球落地点到P 点的水平距离为( )A.2RB.3RC.5RD.6R【答案】D【解析】小球从P 点飞出后,做平抛运动,设做平抛运动的时间为t ,则2R =12gt 2,解得t =2Rg,在最高点P 时,有mg +12mg =m v 2R ,解得v =3gR2,因此小球落地点到P 点的水平距离为x =vt =6R ,选项D 正确.球—杆模型或双轨道模型【例3】(2019·烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径 为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】A【解析】轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R ,随v 增大,F 增大,故C 、D 均错误.【变式1】(2019·山东省济南一中期中)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】 A【解析】 当小球到达最高点弹力为零时,有mg =m v 2R ,解得v =gR ,即当速度v =gR 时,轻杆所受的弹力为零,所以A 正确.小球通过最高点的最小速度为零,所以B 错误.小球在最高点,若v <gR ,则有:mg -F =m v 2R ,轻杆的作用力随着速度的增大先减小后反向增大,若v >gR ,则有:mg +F =m v 2R ,轻杆的作用力随着速度增大而增大,所以C 、D 错误.【变式2】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 m B .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【答案】AC.【解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR ,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.热点题型三 斜面上圆周运动的临界问题在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、轻绳控制、轻杆控制,物体的受力情况和所遵循的规律也不相同.【例4】(2019·江西吉安一中段考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2,则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 【答案】C【解析】 当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:μmg cos 30°-mg sin 30°=mω2rω=g (μcos 30°-sin 30°)r=10×(32×32-12)2.5rad/s =1.0 rad/s ,故选项C 正确.【变式】.(2019·沈阳东北育才中学模拟)如图所示,在倾角θ=30°的光滑斜面上,长为L 的细线一端固定, 另一端连接质量为m 的小球,小球在斜面上做圆周运动,A 、B 分别是圆弧的最高点和最低点,若小球在A 、 B 点做圆周运动的最小速度分别为v A 、v B ,重力加速度为g ,则 ( )A .v A =0B .v A =gLC .v B =1210gL D .v B =3gL【答案】C【解析】在A 点,对小球,临界情况是绳子的拉力为零,小球靠重力沿斜面方向的分力提供向心力,根据牛顿第二定律得:mg sin θ=m v 2AL,解得A 点的最小速度为:v A =12gL ,对AB 段过程研究,根据机械能守恒得:12mv 2A +mg ·2L sin 30°=12mv 2B ,解得B 点的最小速度为:v B =5gL 2=1210gL ,故C 正确,A 、B 、D 错误.热点题型四 圆周运动的动力学问题 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型 圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。

高中物理圆周运动模型_概述及解释说明

高中物理圆周运动模型_概述及解释说明

高中物理圆周运动模型概述及解释说明1. 引言1.1 概述在高中物理学习中,圆周运动是一个非常重要的概念。

它涉及到物体在环形轨道上运动过程中所受到的力和速度的变化,以及与之相关的各种数学描述和公式推导。

通过深入理解圆周运动模型,我们可以更好地理解自然界中许多现象和实际问题,并能够应用这些知识来解决相应的物理问题。

本文将对高中物理课程中关于圆周运动模型的基本概念进行概述和解释说明,旨在帮助读者更加全面和深入地理解圆周运动这一重要物理概念,并能够应用相关知识解决实际问题。

1.2 文章结构本文分为五个主要部分。

首先是引言部分,简要介绍了本文的主题和目标。

其次是圆周运动模型的基本概念部分,包括对圆周运动简介、特点以及在圆周运动中物体受力分析等内容进行阐述。

第三部分涉及到圆周运动的数学描述与公式推导,具体包括角度与弧长关系、角速度与线速度关系以及加速度与半径、角速度之间的关系的推导过程。

第四部分是实例解析,通过求解常见的圆周运动问题,演示不同类型问题的解题方法和思路。

最后一部分是结论与总结,对圆周运动模型进行认识与理解、应用与意义以及局限性和未来研究方向进行讨论。

1.3 目的本文旨在向读者介绍并详细解释高中物理课程中涉及到的圆周运动模型,帮助读者全面理解圆周运动概念的含义和特点,并且能够应用相应知识解决实际问题。

通过本文内容的学习,读者可以更好地把握物体在圆周运动中所受到力和速度变化规律,并能够利用这些知识来分析和解决相关问题。

同时,对于未来进一步研究圆周运动模型以及其在现实生活中应用领域的读者来说,本文还可以为其提供一定的参考和启发。

2. 圆周运动模型的基本概念:2.1 圆周运动简介:圆周运动是物体围绕某一固定点以圆形轨迹进行的运动。

这种运动常见于日常生活中,如旋转的车轮、风扇叶片的转动等。

2.2 圆周运动的特点:在圆周运动中,物体围绕固定点做匀速或变速旋转,具有以下特点:首先,圆周运动中物体离心加速度恒定,大小与距离固定点的距离成正比。

高中物理 圆周运动典型例题详解

高中物理    圆周运动典型例题详解

B、作匀速圆周运动的物体,在所受合外力突然消失时,
将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,
维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
【例4】以下属于离心现象应用的是( BC ) A、水平抛出去的物体,做平抛运动 B、链球运动员加速旋转到一定的速度后将链球抛开 C、离心干燥器使衣物干燥 D、锤头松了,将锤柄在石头上磕风下就可以把柄安牢
解题感悟
2.两个圆周运动临界问题
v0
v0
杆连球(管通球)模型的临界问题
小球速度 运动情况 弹力的方向
弹力的大小
v=0 平衡状态 竖直向上的支持力
v gr 圆周运动 竖直向上的支持力
FN=mg
FN

mg
m
v2 r
v gr
圆周运动
v gr 圆周运动 指向圆心的拉力
FN

FN=0 mg
m
解题感悟
解决竖直平面内的变速圆周运动问题的关键是掌握两个圆周 运动模型和两个圆周运动临界问题: 1.两种圆周运动模型:
最低点圆周运动模型
最高点圆周运动模型
v0
v0
第四章 曲线运动和万有引力→3圆周运动
(三)考点应用,精讲精析 典型问题三:曲线运动中的动力学问题(四)------竖直平面内的变速圆周运动
例1 下列关于离心现象的说法正确的是( ) A.当物体所受的离心力大于向心力时产生离心现 象 B.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都
突然消失后,物体将沿切线做匀速直线运动 D.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做曲线运动 【解析】向心力是根据效果命名的,做匀速圆周 运动的物体所需要的向心力是它所受的某个力或 几个力的合力提供的,因此,它并不受向心力的 作用.它之所以产生离心现象是由于F合=Fn<mω2r,

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

高一物理生活中的圆周运动以及模型

高一物理生活中的圆周运动以及模型

高一物理生活中的圆周运动以及模型高一物理生活中的圆周运动以及模型圆周运动在我们的生活中无处不在。

从地球公转的运动,到车轮不断旋转的场景,都是我们日常所接触到的圆周运动案例。

那么,我们应该如何通过模型来更好地了解圆周运动呢?在本文中,将为大家详细介绍圆周运动及其模型。

一、圆周运动的基本概念圆周运动是指一个物体绕着同心圆运动的过程。

其中,物体的运动轨迹为圆周,圆心为轴心。

在物体绕着同心圆运动的过程中,可以比较清晰地看到运动的周期性、旋转方向、角速度等特征。

二、圆周运动的公式对于圆周运动,我们可以通过以下公式来进行计算1. 圆周运动的速度公式:v = 2πr÷T其中,v为速度,r为圆周半径,T为周期2. 圆周运动的角速度公式:ω = 2π÷T其中,ω为角速度,T为周期3. 圆周运动的向心加速度公式:a = v²÷r 或a = ω²r其中,a为向心加速度,v为速度,r为圆周半径,ω为角速度三、圆周运动的模型1. 均匀圆周运动模型均匀圆周运动指的是物体沿着半径相等且时间相等的圆弧运动的过程。

在这种情况下,物体在同一段时间内所旋转的角度相同,角速度不变,速度也不变。

因此,我们可以通过简单的公式计算出速度、角速度等。

2. 非均匀圆周运动模型非均匀圆周运动指的是物体沿着半径不等或时间不等的圆弧运动的过程。

由于半径、时间的不同,物体在相同时间内所旋转的角度就会不同,角速度也会发生变化。

因此,我们需要更加复杂的公式来计算速度、角速度等。

四、圆周运动的应用1. 摩托车甩尾摩托车甩尾是一种基于圆周运动的极限运动。

通过使摩托车侧滑时绕圆周运动,骑手可以通过调整路线,达到加速或者刹车等目的。

2. 银河系环形摆动在银河系中,恒星和气体等物体绕着银河系中心旋转,这就是一种基于圆周运动的现象。

而由于各种因素的干扰,这种圆周运动会产生摆动,产生银河系的环形构造。

这为我们研究宇宙结构构造提供了重要线索。

专题一 11 圆周运动(知识点完整归纳)

专题一 11 圆周运动(知识点完整归纳)

11 圆周运动1.两种传动方式(1)皮带传动(摩擦传动、齿轮传动):两轮边缘线速度大小相等. (2)同轴转动:轮上各点角速度相等. 2.匀速圆周运动(1)常见模型:物体随水平平台转动、火车或汽车转弯、圆锥摆模型、天体的运动、带电粒子在匀强磁场中的运动等.(2)向心力:由合外力提供,只改变速度的方向,不改变速度的大小. (3)动力学规律:F 向=ma =m v 2r =mrω2=mr 4π2T 2=mr 4π2n 2=mωv .3.竖直平面内的非匀速圆周运动(1)轻绳(圆轨道内侧)模型:物体能做完整圆周运动的条件是在最高点F +mg =m v 2R ≥mg ,即v ≥gR ,物体在最高点的最小速度(临界速度)为gR .(2)拱形桥模型:在最高点有mg -F =m v 2R <mg ,即v <gR ;在最高点,当v ≥gR 时,物体将离开桥面做平抛运动.(3)细杆(管形轨道)模型:在最高点的临界条件是v =0,当0<v <gR 时物体受到的弹力向上;当v >gR 时物体受到的弹力向下;当v =gR 时物体受到的弹力为零. (4)常利用动能定理来建立最高点和最低点的速度联系.1.两类临界问题(1)与摩擦力有关的临界极值图1由摩擦力及其他力的合力提供向心力,发生相对滑动的临界条件是静摩擦力达到最大值,如图1,小物体随倾斜圆盘匀速转动的最大角速度,就是在最下端时摩擦力达到最大静摩擦力,由μmg cos 30°-mg sin 30°=mω2r ,可求得ω的最大值. (2)与弹力有关的临界极值压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且无弹力或绳上拉力恰好为最大承受力. 2.两个结论(1)如图2,在同一水平面上做匀速圆周运动(圆锥摆)的两个小球,由mg tan θ=mω2h tan θ,知角速度(周期)相同.图2(2)如图3,小球能沿粗糙半圆周从P 经最低点Q 到R ,由于机械能的损失,在前半程的速度(摩擦力)总是大于后半程等高处的速度(摩擦力),P 到Q 克服摩擦力所做的功大于Q 到R 克服摩擦力所做的功.图3示例1 (描述圆周运动的物理量)(多选)(2019·江苏卷·6)如图4所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )图4A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R答案 BD解析 由题意可知座舱运动周期为T =2πω,线速度为v =ωR ,受到的合力为F =mω2R ,选项B 、D 正确,A 错误;座舱的重力为mg ,座舱做匀速圆周运动受到的向心力(即合力)大小不变,方向时刻变化,故座舱受摩天轮的作用力大小时刻在改变,选项C 错误.示例2 (水平面内圆周运动的临界问题)(多选)(2014·全国卷Ⅰ·20)如图5所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图5A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即F f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :F f a =mωa 2l ,当F f a =kmg 时,kmg =mωa 2l ,ωa =kgl;对木块b :F f b =mωb 2·2l ,当F f b =kmg 时,kmg =mωb 2·2l ,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω=2kg 3l 时,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 示例3 (竖直面内的圆周运动)(2020·全国卷Ⅰ·16)如图6,一同学表演荡秋千.已知秋千的两根绳长均为10 m ,该同学和秋千踏板的总质量约为50 kg.绳的质量忽略不计.当该同学荡到秋千支架的正下方时,速度大小为8 m/s ,此时每根绳子平均承受的拉力约为( )图6A .200 NB .400 NC .600 ND .800 N答案 B解析 取该同学与踏板为研究对象,到达最低点时,受力如图所示,设每根绳子中的平均拉力为F .由牛顿第二定律知:2F -mg =m v 2r ,代入数据得F =405 N ,故每根绳子平均承受的拉力约为405 N ,选项B 正确.示例4 (拋体与圆周的结合)(2018·全国卷Ⅲ·25改编)如图7所示,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:图7(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球从C 点落至水平轨道所用的时间. 答案 (1)34mg5gR 2 (2)355Rg解析 (1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α① F 2=(mg )2+F 02②设小球到达C 点时的速度大小为v ,由牛顿第二定律得 F =m v 2R③由①②③式和题给数据得F 0=34mg ④v =5gR2⑤ (2)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ○10 v ⊥=v sin α⑪又CD =R (1+cos α)⑫ 由⑤⑦⑩⑪⑫式和题给数据得 t =355R g。

圆周运动的几个模型

圆周运动的几个模型

圆周运动的几个模型一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度时,细绳的拉力。

(2)当转盘的角速度时,细绳的拉力。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。

(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。

(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为,离轴心,B 的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?角速度为多大?()图2.02 (1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。

再增大,AB间绳子开始受到拉力。

由,得:(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。

如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。

设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3.如图2.03所示,两个相同材料制成的靠摩擦传动的轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。

人教版2020届高考物理考点--点对点专题强化--圆周运动的经典常考模型

人教版2020届高考物理考点--点对点专题强化--圆周运动的经典常考模型

人教版2020年高考物理考点---点对点专题强化-----圆周运动的经典常考模型知识点:r Tm r mw r v m ma F F n n 22224π=====合常见圆周运动模型的特点:一、水平面内圆盘模型的临界问题: 1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m =mv 2r ,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心. 2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力. 二、竖直面内圆周运动的临界极值问题: 1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“轻绳模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“轻杆模型”. 2.竖直平面内圆周运动的两种模型特点及求解方法三、斜面上圆周运动的临界问题:在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、轻绳控制、轻杆控制,物体的受力情况和所遵循的规律也不相同.四、圆周运动的动力学问题:1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型 (一)圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。

2.受力特点:摆球质量为m ,只受两个力即竖直向下的重力mg 和沿摆线方向的拉力T F 。

六种圆周运动模型

六种圆周运动模型

m v2 FN G R
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
v2 gR :绳子或外轨道对物体的弹力: F m R G
方向竖直向下
v = gR :绳子或外轨道对物体的弹力:F=0
:物体不能过最高点!!! v< gR
v = gR 是物体所受弹力方向变化的临界速度。
m v2 F心 m w2 r r
解得:
v
w
gr tan
g tan r
规律:稳定状态下,小球所处的位置越高,半径r越 大,角速度越小,线速度越大,而小球受到的支持 力和向心力并不随位置的变化而变化。
三、火车转弯模型:
四、汽车过桥模型:
m v2 F向 m a R
m v2 F向 m a R
六、轻杆模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v> gR :绳子或轨道对物体的弹力:
v2 F m G R
方向竖直向下
v = gR :轻杆或管道对物体的弹力:F=0
:轻杆或管道对物体的弹力: v< gR
v2 FN G m R
方向竖直向上
v = gR
是物体所受弹力方向变化的临界速度。
六种圆周运动模型分析
一、圆盘模型:
m v2 F合 f F心 m w2 r r
当f最大值时:
f m g
线速度有最大值:v
grHale Waihona Puke 角速度有最大值:w
g
r
二、圆锥摆模型:
由拉力F和重力G的合力提供向心力
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力

六种圆周运动模型

六种圆周运动模型
六种圆周运动模型
XX,a click to unlimited possibilities
汇报人:XX
目录
01 匀 速 圆 周 运 动
02 变 速 圆 周 运 动
03 斜 抛 圆 周 运 动
04 竖 直 上 抛 圆 周 运 动
05 自 由 落 体 圆 周 运 动
06 平 抛 圆 周 运 动
Part One
轨迹是圆或圆的一部分
是一种特殊的曲线运动
公式
角速度公式:ω=θ/t,其中θ为转过的角度,t为时间 线速度公式:v=s/t,其中s为弧长,t为时间 向心加速度公式:a=v²/r,其中v为线速度,r为半径 周期公式:T=2πr/v,其中T为周期,r为半径,v为线速度
Part Two
变速圆周运动
定义
运动轨迹为抛物线
水平方向做匀速直 线运动
竖直方向做自由落 体运动
公式
平抛圆周运动的线速度公式: v=ωr
平抛圆周运动的角速度公式: ω=√(g/r)
平抛圆周运动的向心加速度 公式:a=ω^2r
平抛圆周运动的周期公式: T=2π√(r/g)
THANKS
汇报人:XX
添加标题
添加标题
添加标题
添加标题
运动方向:竖直上抛圆周运动方向 不断变化
运动周期:竖直上抛圆周运动周期 为定值
公式
竖直上抛圆周运动的速度公式:v = ωr
竖直上抛圆周运动的角速度公式:ω = v/r
竖直上抛圆周运动的周期公式:T = 2πr/v
竖直上抛圆周运动的向心加速度公式:a = v²/r
变速圆周运动是指物体在圆周运动过程中速度大小或方向发生变化的运动。
变速圆周运动中,物体受到的向心力和离心力也会发生变化,与匀速圆周运动不同。

高中物理圆周运动 复习课 最全的圆周运动模型二

高中物理圆周运动   复习课     最全的圆周运动模型二

圆周运动模型一、匀速圆周运动模型1.随盘匀速转动模型1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:A.受重力、支持力、静摩擦力和向心力的作用B.摩擦力的方向始终指向圆心OC.重力和支持力是一对平衡力D.摩擦力是使物体做匀速圆周运动的向心力2.如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。

轻绳长度为L 。

现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求:(1)物体运动一周所用的时间T ;(2)绳子对物体的拉力。

3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B,A、B 两球的质量相等。

圆盘上的小球A 作匀速圆周运动。

问(1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止?(2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止?4、如图4所示,a、b、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a、b 离轴距离为R,c 离轴距离为2R 。

当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)()A.这时c 的向心加速度最大B.这时b 物体受的摩擦力最小C.若逐步增大圆台转速,c 比b 先滑动D.若逐步增大圆台转速,b 比a 先滑动O ωωm2.转弯模型1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[]A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用2.火车通过半径为R的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度?3、铁路在弯道处的内外轨道高低是不同的,已知内外轨道水平面倾角为θ(图),弯道处的圆弧半径为R,若质量为m的火车转弯时速度小于,则()A.内轨对内侧车轮轮缘有挤压;B.外轨对外侧车轮轮缘有挤压;C.这时铁轨对火车的支持力等于mg/cosθ;D.这时铁轨对火车的支持力大于mg/cosθ.4.汽车通过一个半径为133m,路面水平的弯道,汽车与地面之间的摩擦因数为0.3,求汽车转弯时的安全速度。

高考物理总复习 常见的圆周运动动力学模型

高考物理总复习 常见的圆周运动动力学模型
(1)若要小球离开锥面,则小球的角速度 ω0 至少为多大? (2)若细线与竖直方向的夹角为 60°,则小球的角速度 ω′为多大?
52 答案 (1) 2 rad/s (2)2 5 rad/s 解析 (1)小球刚好离开锥面时,小球受到重力和细线拉力,如图所示。
小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方 向运用牛顿第二定律及向心力公式得 mgtanθ=mω02lsinθ
答案 (1)2 m/s (2)15 N (3)4 2 m/s 解析 (1)在最高点,对小球受力分析如图甲,由牛顿第二定律得 mg +F1=mvR2① 由于轻绳对小球只能提供指向圆心的拉力,即 F1 不可能取负值,亦即 F1≥0② 联立①②式得 v≥ gR 代入数值得 v≥2 m/s 所以,小球要做完整的圆周运动,在最高点的速度至少为 2 m/s。
最高点的速度 v≥ gR
最高点的速度 v≥0
过最低点 受力分析
轻绳模型
轻杆模型
FT-mg=mvR2,轻绳或圆轨 FT-mg=mvR2,存在对杆拉力 道受拉力或压力最大,存在
或对管压力最大值问题 绳断的临界条件
注:汽车过凸形拱桥最高点相当于杆只有支持力而没有压力的情况, 此时 mg-FN=mvR2,过最高点的临界条件是 FN=0 时,v= gR。
模型 1 轻绳模型 [例 1] 如图所示,一质量为 m=0.5 kg 的小球,用长 为 0.4 m 的轻绳拴着在竖直平面内做圆周运动。g 取 10 m/s2,求: (1)小球要做完整的圆周运动,在最高点的速度至少为 多大? (2)当小球在最高点的速度为 4 m/s 时,轻绳拉力多大? (3)若轻绳能承受的最大张力为 45 N,小球的速度不能超过多大?
解析
能力命题点三 水平面、斜面内 的圆周运动临界问题
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理圆周运动8种模型
1、天体绕行模型。

2、汽车过桥模型。

3、绳模型。

4、杆模型。

5、火车转弯模型。

6、圆锥摆模型。

7、飞车走壁模型。

8、物块随圆盘一起转动模型。

其中杆模型也就是物体在竖直平面内做圆周运动,有支撑,如:小球和杆相连、小球在弯管内运动。

例题如下:
一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,则下列说法正确的是(A)
A、小球过最高点时,杆所受到的弹力可以等于零。

B、小球过最高点的最小速度是√gR。

C、小球过最高点时,杆对球的作用力一定随速度增大而增大。

D、小球过最高点时,杆对球的作用力一定随速度增大而减小。

解析:
轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,
当小球过最高点的速度v=√gR时,杆所受的弹力等于零,A正确,B错误;若v<√gR,则杆在最高点对小球的弹力竖直向上,mg-F=mv2/R,随v增大,F减小,若v>√gR,则杆在最高点对小球的弹力竖直向下,
mg+F=mv2/R,随v增大,F增大,故C、D均错误。

杆模型的运动规律:
1、小球在最高点的速度v可以等于零。

2、当小球的速度v=√gR,杆对小球的支持力为零,小球只受重力。

3、当小球的速度v<√gR时,杆对小球有支持力。

4、当小球的速度v>√gR时,杆对小球有拉力。

相关文档
最新文档