(完整word版)影响胀差的原因
#1燃气轮机#2胀差异常变化的原因与处理对策
#1燃气轮机#2胀差异常变化的原因与处理对策
#1 燃气轮机
燃气轮机(Gas Turbine)是一种将燃料能转化为机械能的设备,也是发电厂常用的一种发电设备之一。
燃气轮机的工作原理是利用燃气燃烧产生的高温高压气体通过高速旋转
的转子产生功。
燃气轮机具有高效率、低排放、快速启动等优点,被广泛应用于发电、航
空和石化等领域。
燃气轮机的运行过程中常常会出现一些问题,其中之一就是胀差异常变化。
胀差(Gap)是指机械零部件在热膨胀过程中产生的间隙变化。
燃气轮机中的胀差异常变化通常是指由于工作温度的变化造成的机械部件的热膨胀不均匀,导致胀差发生改变。
胀差异常变化可能会导致燃气轮机出现不正常的振动、噪音、磨损等问题,甚至可能导致
设备故障。
胀差异常变化的主要原因有以下几点:
1. 燃气轮机运行温度的变化:燃气轮机在启动、停机、负荷变化等情况下,燃烧室
和燃气轮机内部的温度会发生变化,从而导致机械部件的热膨胀不均匀。
2. 材料热膨胀系数不匹配:燃气轮机中的机械部件由不同材料组成,每种材料的热
膨胀系数不同。
当燃气轮机温度变化时,材料热膨胀系数不匹配会导致胀差异常变化。
3. 安装误差:燃气轮机的安装过程中,机械部件的安装精度和装配质量会影响胀差
的稳定性。
如果安装过程中存在误差,会导致胀差异常变化。
胀差异常变化是燃气轮机常见的问题之一,其主要原因包括燃气轮机运行温度的变化、材料热膨胀系数不匹配和安装误差等。
针对这些问题,可以通过加强温度控制、选择合适
的材料和优化安装过程等措施来处理和预防胀差异常变化的问题。
汽轮机胀差大的原因
汽轮机胀差大的原因汽轮机是一种利用燃烧热能转化为机械能的设备,在工业生产和发电领域广泛应用。
而汽轮机的胀差是指在运行过程中,由于不同部件受热膨胀程度不同而引起的尺寸变化差异。
胀差的存在会对汽轮机的正常运行和性能产生一定的影响,下面将从几个方面探讨造成汽轮机胀差大的原因。
温度变化是导致汽轮机胀差的主要原因之一。
在汽轮机运行过程中,各个部件会受到高温蒸汽的冲击和热辐射,从而导致局部温度升高。
由于不同部件的材料性质和结构特点不同,其热膨胀系数也会有所差异。
因此,在温度变化过程中,不同部件的尺寸会发生不同程度的变化,从而产生胀差现象。
材料的热膨胀性能是影响汽轮机胀差的关键因素。
不同材料具有不同的热膨胀特性,有些材料的热膨胀系数较大,而有些材料的热膨胀系数较小。
在汽轮机中,各个部件多采用不同的材料,如铁、钢、铜、铝等。
由于材料的热膨胀系数不同,当汽轮机在运行过程中受到热膨胀影响时,不同材料的部件会产生不同程度的胀差。
汽轮机的结构设计也会影响到胀差的大小。
在汽轮机的设计中,需要考虑到部件的热膨胀特性以及运行时受到的温度变化,合理安排各个部件的间距和连接方式,以减小胀差的影响。
如果结构设计不合理,部件之间的连接方式不牢固,容易受到温度变化的影响,从而导致胀差增大。
汽轮机运行过程中的热应力也是导致胀差的重要因素。
由于汽轮机在运行过程中会受到高温蒸汽的冲击,各个部件会承受不同程度的热应力。
当热应力超过材料的承受范围时,就会导致部件的变形和破坏,进而增大胀差。
总结起来,汽轮机胀差大的原因主要包括温度变化、材料的热膨胀性能、结构设计和热应力等因素。
为了减小汽轮机胀差的影响,可以采取以下措施:合理选择材料,尽量使用热膨胀系数较小的材料;优化结构设计,合理安排部件间的间距和连接方式;加强温度控制,减小温度变化范围;加强材料性能测试和质量控制,确保部件的承受能力符合要求。
通过这些措施的实施,可以有效减小汽轮机胀差,提高其运行效率和可靠性。
胀差大原因分析
关于1-2#机胀差大原因的分析讨论我公司1-2#汽轮机冷态启动时胀差较大的原因如下:A.轴封送汽与冲转时的时间间距过长,使冲转前的汽缸胀差值已经较大(高压缸胀差约2mm,低压缸胀差约4mm)。
如7月24日四值四班(值长:贺云伟,班长:高江波)的运行记录:19时8分,送轴封汽;1时30分机组未冲转,高压缸胀差:2.178 mm和2.137 mm,低压缸胀差:4.1 mm 和4.0 mm;1时41分,机组冲转。
其后,胀差超标。
如7月31日13时46分挂闸记录:高压缸热膨胀:1.751 mm和1.835 mm;高压缸胀差:1.964 mm和2.011 mm,低压缸胀差:3.943 mm和3.842 mm;14时11分冲转时,高压缸热膨胀:1.747 mm和1.833 mm;高压缸胀差:2.041 mm和2.033 mm,低压缸胀差:4.084 mm和3.961 mm。
B.因为汽封自密封系统失常(见2.3项),前后轴封送汽温度无法控制在较低的适当范围内。
冷态启动前,较高的送汽温度长时间加热汽轮机的高低压转子,使转子的热膨胀大于汽缸。
C.疏水管道的连接、管径大小、管道阻力可能存在问题。
据运行人员反映,前期曾将主蒸汽管道的疏水与汽缸疏水并接入高压疏水扩容器。
如此,汽缸疏水受高压阻碍难以畅通导出,只能慢慢汽化,金属温度上升缓慢。
D.疏水的开启、关闭,后汽缸喷水的时机可能不妥。
如7月24日的运行记录:17时24分:开甲、乙侧主汽电动门;20时44分:开前中后缸疏水电动门;21时10分:低压缸排汽温度67℃,投低压缸喷水;6时:再启主汽管道以及双减疏水门。
此次启动,未见带负荷记录。
为安全起见,电力行业的一般要求是,主汽管道和汽缸的疏水,应该在机组带约10%的额定负荷后,再逐渐依次关闭。
E.滑参数冷态启动时,建议采取四个调节汽阀同时节流的进汽方式,将主蒸汽的过热度控制在80℃左右,减小500转摩擦检查时的暖机时间,延长中速暖机时间,使汽缸受热充分、均匀(试运行阶段,主蒸汽过热度较大,500转时停留时间过长)。
影响胀差的原因范文
影响胀差的原因范文
胀差指的是在材料受热膨胀或冷却收缩前后,由于温度变化产生的体积变化而引起的压力变化。
胀差的产生会对材料和结构产生影响,其中包括热应力的产生、结构的变形以及对连接部件的松弛等现象。
影响胀差的原因有以下几个方面:
1.材料的热膨胀系数不同:不同材料在相同温度变化的情况下,其热膨胀系数不同,导致体积变化也不同。
当不同材料之间相互连接时,由于它们的热膨胀系数不同,就会产生胀差。
2.温度变化的范围:温度变化的范围越大,胀差的影响就越大。
当温度变化范围大时,材料的体积变化也会相应增大,从而导致更大的胀差。
3.结构的约束程度:结构的约束程度越大,胀差的影响也越大。
当结构的约束程度较高时,材料的体积变化受到限制,由此产生的胀差会引起应力集中和结构畸变。
4.结构的设计和制造问题:结构的设计和制造问题也会影响胀差的产生。
例如,在设计和制造连接件时,如果不考虑胀差的影响,或者连接件安装不当,就会使胀差的影响加剧。
5.温度变化速率:温度变化的速率也会影响胀差的产生。
当温度变化速率较快时,材料无法迅速适应,从而产生胀差。
6.材料的组织结构和残余应力:材料的组织结构和残余应力也会影响胀差的产生。
例如,晶粒的尺寸和方向性对材料的热膨胀系数有所影响,残余应力也会增大热膨胀引起的胀差。
以上是影响胀差的一些主要原因,不同材料和结构在不同条件下都会有不同的胀差表现。
为了减小胀差的影响,可以采取一些措施,例如合理选择材料、减小温度变化范围、合理设计结构和连接件、降低温度变化速率等。
#1燃气轮机#2胀差异常变化的原因与处理对策
#1燃气轮机#2胀差异常变化的原因与处理对策#1 燃气轮机燃气轮机是一种利用燃气作为热源并将其转化为机械能的热动力机械。
它主要由压气机、燃烧室、涡轮和发电机等组成。
燃气轮机的工作原理是将空气通过压气机压缩,然后加入燃料在燃烧室内燃烧,进而驱动涡轮旋转,最终转化为机械能输出。
燃气轮机广泛应用于发电、航空、石油、化工、船舶等领域。
燃气轮机的优点主要有以下几个方面:1. 高效节能:燃气轮机的热效率高达60%以上,比传统的蒸汽轮机高出10%-20%。
2. 灵活性好:燃气轮机启动快速,可以在瞬间达到额定负载,因此在发电、响应负荷变化等方面具有较强的灵活性。
3. 可靠性高:燃气轮机采用模块化设计,对于单元的损坏可以进行局部维修或更换,因此具有较高的可靠性。
4. 环保节能:燃气轮机的NOx、CO等排放量比传统锅炉低,其排放达到国际先进水平。
总之,燃气轮机是一种功能齐全、性能卓越的热动力设备,因此在现代工业生产中得到广泛应用。
膨胀差(Delta T)指的是燃气轮机的进口温度和出口温度之间的温度差。
正常情况下,燃气轮机的膨胀差应该保持在一个合理的范围内,以确保其正常运转。
一旦膨胀差异常变化,就可能导致燃气轮机运行不稳定,影响其可靠性和经济性。
造成燃气轮机膨胀差异常变化的原因可能有以下几方面:1. 进气温度异常:如果进气温度过高或过低,都可能导致膨胀差异常变化。
进气温度过高可能是由于外界环境变化、进气滤芯堵塞等原因导致的,而进气温度过低则可能是由于进口管路漏风、缺乏加热设备等原因导致的。
2. 燃烧室异常:如果燃烧室内出现过多的进气不均匀或燃料未完全燃烧等情况,都可能导致膨胀差异常变化。
这可能与燃烧室内废气逆流、燃烧室内积碳、燃烧室内喷油系统失效等问题有关。
3. 涡轮叶片异常:涡轮叶片扭曲或损坏会导致其失去平衡,从而导致膨胀差异常变化。
涡轮叶片问题可能与温度过高、振动过大、流量不均匀等问题有关。
针对膨胀差异常变化的原因,我们可以采取以下对策:1. 检查进气温度,确保其处于正常范围内,并定期清洗进气滤芯。
(完整word版)汽轮机的胀差控制
汽轮机的胀差控制汽轮机在启停过程中,转子与汽缸的热交换条件不同。
因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。
汽轮机转子与汽缸的相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向消息间隙的变化情况。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差。
胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。
转子的相对胀差过大,会使动、静轴向间隙消失而产生摩擦,造成转子弯曲,引起机组振动,甚至出现重大事故。
一、分析胀差时,需考虑的因素:轴封供汽温度和供汽时间的影响:在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。
在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。
应尽量缩短冲转前轴封供汽时间。
真空的影响:在升速热机的过程中,真空变化会引起涨差值改变。
认真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀,其涨差值随之增加。
认真空进步时,则反之。
使高压转子胀差减少。
但真空高低对中、低压缸通流部分的胀差影响与高压转子相反。
进汽参数影响:当进汽参数发生变化时,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样也会引起胀差变化,而且参数变化速度越快,影响越大。
因此,在汽轮机启停过程中,控制蒸汽温度和流量变化速度,就可以达到控制差胀的目的。
汽缸和法兰加热的影响:汽缸水平法兰在升速过程中温度比汽缸要低,阻碍汽缸膨胀,引起胀差增加。
转速影响:泊桑效应也就是汽轮机的轴在转速增加的时候,受到离心力的作用,而变粗,变短.转速减小的时候,而变细,变长滑销系统影响:在运行中,必须加强对汽缸尽对膨胀的监视,防止左右侧膨胀不均以及卡涩造成的消息部分摩擦事故。
汽缸保温顺疏水的影响:汽缸保温不好,会造成汽缸温度分布不均且偏低,从而影响汽缸的充分膨胀,使汽机膨胀差增大;疏水不畅可能造成下缸温度偏低,影响汽缸膨胀,并轻易引起汽缸变形,从而导致相对差胀的改变。
汽轮机启动时胀差大的原因
汽轮机启动时胀差大的原因胀差是指在汽轮机启动过程中,由于热胀冷缩的不均匀性导致的零部件间的间隙变化。
在汽轮机启动初期,由于机组处于冷态,各个零部件的温度不均匀,热胀冷缩不一致,从而引起胀差现象。
汽轮机启动时胀差大会对机组运行安全和可靠性产生不利影响。
本文将从几个方面探讨汽轮机启动时胀差大的原因。
汽轮机启动时胀差大的原因之一是机组处于冷态,各个零部件的温度差异较大。
在长时间停机后重新启动汽轮机时,由于机组内部温度下降,各个零部件的温度差异较大,导致热胀冷缩不均匀。
例如,汽轮机的叶片、轴承等零部件冷却后会收缩,而轴、壳体等零部件由于处于低温下,胀缩程度较小。
这样就会导致零部件之间的配合间隙变大,出现胀差现象。
汽轮机启动时胀差大的原因还与机组内部的温度分布不均匀有关。
在汽轮机启动初期,由于各个零部件的热容量和传导能力不同,热量分布不均匀。
例如,汽轮机的叶片、轴承等零部件会因为受到高温蒸汽的冲击而迅速升温,而壳体等零部件由于热容量大、传导能力差,升温较慢。
这样就会导致零部件之间的温差较大,引起胀差现象。
汽轮机启动时胀差大的原因还与机组内的热应力有关。
在汽轮机启动过程中,由于温度变化较大,零部件会产生相应的热应力。
例如,汽轮机的叶片由于受到高温蒸汽的冲击,会产生较大的热应力。
而壳体等零部件由于热容量大、传导能力差,温度变化较小,热应力较小。
这样就会导致不同零部件之间的热应力差异较大,引起胀差现象。
汽轮机启动时胀差大的原因还与机组内的材料性质有关。
不同材料的热胀冷缩系数不同,热胀系数大的材料在温度变化时胀缩程度较大,而热胀系数小的材料胀缩程度较小。
在汽轮机启动初期,由于机组内部的温度变化较大,不同材料之间的胀缩程度差异较大,从而引起胀差现象。
汽轮机启动时胀差大的原因主要包括机组处于冷态、机组内部温度分布不均匀、机组内的热应力以及材料性质等因素。
为了减少汽轮机启动时的胀差现象,可以采取一些措施。
例如,在汽轮机启动前可以进行预热,提高机组的温度,减少温度差异;在设计和制造过程中,可以优化零部件的配合间隙,减少胀差现象的发生;在运行过程中,可以合理控制汽轮机的启动速度,减少温度变化的幅度。
[VIP专享]21差胀大小与哪些因素有关
21差胀大小与哪些因素有关?答;汽轮机在起动、停机及运行过程中,差胀的大小与下列因素有关:⑴起动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。
⑵暖机过程中,升速率太快或暖机时间过短。
⑶正常停机或滑参数停机时,汽温下降太快。
⑷增负荷速度太快。
⑸甩负荷后,空负荷或低负荷运行时间过长。
⑹汽轮机发生水冲击。
⑺正常运行过程中,蒸汽参数变化速度过快。
22.轴向位移与差胀有何关系?答;轴向位移与差胀的零点均在推力瓦块处,而且零点定位法相同。
轴向位移变化时,其数值虽然较小,但大轴总位移发生变化。
轴向位移为正值时,大轴向发电机方向位移,差胀向负值方向变化;当轴向位移向负值方向变化时,汽轮机转子向机头方向位移,差胀值向正值方向增大。
如果机组参数不变,负荷稳定,差胀与轴向位移不发生变化。
机组起停过程中及蒸汽参数变化时,差胀将会发生变化,而轴向位移并不发生变化。
运行中轴向位移变化,必然引起差胀的变化。
23.差胀在什么情况下出现负值?答;由于汽缸与转子的钢材有所不同,一般转子的线膨胀系数大于汽缸的线膨胀系数,加上转子质量小受热面大,机组在正常运行时,差胀均为正值。
当负荷下降或甩负荷时,主蒸汽温度与再热蒸汽温度下降,汽轮机水冲击;机组起动与停机时汽加热装置使用不当,均会使差胀出现负值。
24.机组起动过程中,差胀大如何处理?答;机组起动过程中,差胀过大,司机应做好如下工作:⑴检查主蒸汽温度是否过高,联系锅炉运行人员,适当降低主蒸汽温度。
⑵使机组在稳定转速和稳定负荷下暖机。
⑶适当提高凝汽器真空,减少蒸汽流量。
⑷增加汽缸和法兰加热进汽量,使汽缸迅速胀出。
25.汽轮机起动时怎样控制差胀?可根据机组情况采取下列措施:⑴选择适当的冲转参数。
⑵制定适当的升温、升压曲线。
⑶及时投用汽缸、法兰加热装置,控制各部件金属温差在规定的范围内。
⑷控制升速速度及定速暖机时间,带负荷后,根据汽缸温度掌握升负荷速度。
⑸冲转暖机时及时调整真空。
⑹轴封供汽使用适当,及时进行调整。
#1燃气轮机#2胀差异常变化的原因与处理对策
#1燃气轮机#2胀差异常变化的原因与处理对策#1 燃气轮机燃气轮机是一种以燃气为能源的动力机械,它具有高效率、灵活性、节能、环保等特点。
燃气轮机广泛应用于工业、航空、船舶、发电等领域。
燃气轮机的组成部分包括压气机、燃烧室和涡轮机。
压气机将空气压缩,送入燃烧室中加热;燃烧室中的燃气与空气混合燃烧,产生高温高压燃气,驱动涡轮机旋转,从而产生动力输出。
燃气轮机有多种类型,如航空燃气轮机、工业燃气轮机、发电用燃气轮机等。
不同类型的燃气轮机具有不同的特点,也适用于不同的领域。
燃气轮机的优点是高效节能,一般能达到50%以上的热效率,比传统燃煤发电效率高出很多。
另外,燃气轮机启动快、停机灵活,适应能力强,还可以灵活地调节负载和功率,非常适合用于发电、工业生产等领域。
不过,燃气轮机也存在一些问题,如噪音大、高温高压下易导致组件疲劳、寿命短等。
因此,需要对燃气轮机进行科学合理的设计和规范化运行。
胀差是指燃气轮机中高温高压燃气通过涡轮机转化为输出功率时,涡轮机叶片和转子之间由于热膨胀引起的间隙变化。
如果胀差过大或变化过快,会导致燃气轮机的性能下降或甚至损坏。
胀差异常变化的原因有多方面,如:1、温度过高:燃气轮机进气温度、燃烧室温度过高会导致叶轮胀差变大。
3、加速过快:燃气轮机启动或负载变化过快会导致叶轮胀差变大。
4、材料裂纹、疲劳、损伤等缺陷:叶轮、轴承等组件出现裂纹、疲劳等缺陷会导致叶轮胀差变化异常。
处理对策有多种,如:1、控制温度和压力:加强监控系统,及时发现并控制燃气轮机进气温度、燃烧室温度、进气压力、排气压力等。
2、控制加速度:尽量控制燃气轮机的启动过程或负载变化过程,适当延长升温升压时间,使叶轮胀差变化缓慢平稳。
3、定期检修:定期对叶片、轴承等组件进行检测和维护,防止裂纹和损伤等缺陷出现。
4、优化设计:在燃气轮机的设计中,尽量减小叶轮和转子之间的间隙,以降低叶轮胀差的变化幅度。
综上所述,燃气轮机是一种高效、灵活的动力机械,但也存在一定的问题,如胀差异常变化等。
汽轮机胀差的影响因素及控制措施
电力系统70丨电力系统装备 2020.9Electric System2020年第9期2020 No.9电力系统装备Electric Power System Equipment1 机组概况国家能源集团铜陵发电厂两台汽轮机均是超临界压力、一次中间再热、单轴、三缸四排汽、双背压、纯凝汽式汽轮机,型号为:N630–24.2/566/566。
汽轮机具有八级非调整回热抽汽,高中压缸采用高中压合缸、双层缸结构,两个低压缸都是双层缸结构,采用对称双分流结构,中部进汽。
横向固定板埋在每个汽缸两端的基础内,以保持横向对中时允许轴向膨胀,两块轴向固定板安置在低压缸Ⅰ进汽中心线附近的基础中,以保持轴向对中时允许横向膨胀。
2 胀差的影响因素蒸汽进入汽轮机后,转子及汽缸均要受热膨胀,由于转子质量相对汽缸较小,温升较快,膨胀比汽缸更为迅速。
转子与汽缸沿轴向膨胀的差值称为胀差。
汽轮机胀差的影响因素较多,根据机组实际运行状况,概括起来主要有以下几点。
(1)进汽参数。
当汽轮机进汽参数发生变化时,由于转子质量较小,首先对转子受热状态发生影响,而对汽缸的影响要滞后一段时间,这样会引起胀差变化,参数变化速度越快,影响越大。
(2)轴封供汽温度。
机组冷态启动,向轴封系统通入辅助蒸汽,由于轴封供汽温度高于转子温度,转子局部受热而伸长且超过了汽缸的膨胀量,出现正胀差。
(3)凝汽器真空。
对于高中压缸,当真空降低时,为了保持机组转速不变,必须增加进汽量,摩擦鼓风损失增大,使高压转子受热膨胀明显,高压胀差值随之增加;对于低压缸,真空降低会导致低压缸排汽温度上升,缸体的膨胀量大于低压缸转子,低压胀差值下降。
(4)大机转速。
转子的泊桑效应表明,当转速升高时,离心力会使转子内部原子受向外的张力,产生向外运动的趋势,会使转子的直径增大,进而引起转子长度缩短;当转速减小时,转子的直径减小,进而引起转子长度伸长。
(5)汽缸保温和疏水。
汽缸保温不好,会造成汽缸温度分布不均,特别是在严冬季节汽机房室温太低时,会影响汽缸的充分膨胀,导致汽机胀差值增大;机组启动时要保持大机本体疏水畅通,疏水不畅或者发生水冲击时可能造成下缸温度偏低,影响汽缸膨胀。
汽轮机胀差、轴向位移的产生原因
当凝汽器真空升高时,排汽温度降低,可能导致负胀差增大 ;反之,真空降低时,胀差可能增大。
轴封供汽温度的影响
轴封供汽温度过高或过低会影响轴封的间隙大小,进而影 响汽轮机的热膨胀。
若轴封供汽温度与汽缸温度不匹配,可能导致胀差异常波 动。
02 汽轮机轴向位移的产生原因
CHAPTER
推力轴承故障
推力轴承损坏或磨损
机组负荷的快速变化
负荷突增或突减
汽轮机在运行过程中,如果机组负荷发生突增或突减,会导致汽缸和转子受到的蒸汽作用力发生变化,从而引起 轴向位移。
甩负荷
甩负荷是指汽轮机突然失去负荷的情况,如电网故障导致负荷突然消失。甩负荷过程中,汽轮机内部的蒸汽压力 和流量会发生剧烈波动,导致轴向位移的发生。
03 汽轮机胀差和轴向位移的关联性
快速响应蒸汽参数和机组负荷的变化
01
快速响应蒸汽参数和机组负荷的变化也是预防汽轮机胀差和轴向位移的重要措 施之一。蒸汽参数和机组负荷的快速变化可能导致转子热弯曲和动静摩擦等问 题。
02
应加强蒸汽参数和机组负荷的监测和控制,确保在出现异常情况时能够及时发 现并处理。同时,应优化控制系统的算法,提高其对蒸汽参数和机组负荷变化 的响应速度。
CHAPTER
胀差与轴向位移的关系
胀差是指汽轮机转子相对于汽缸发生的膨胀或收缩,而轴向位移是指转子轴心的位 置相对于汽缸的变化。
在汽轮机运行过程中,胀差和轴向位移的变化通常是相互关联的。当转子受热膨胀 时,轴向位移也会随之增大,反之亦然。
胀差和轴向位移的变化通常受到多种因素的影响,如蒸汽参数、机组负荷、润滑油 系统等。
推力轴承是汽轮机的重要部件,负责 承受转子的轴向推力。如果推力轴承 出现故障,如磨损或损坏,会导致轴 向位移的发生。
胀差正值增大的原因及处理
胀差正值增大的原因及处理在我们日常生活中,尤其是机械、工程这些领域,有时候会遇到一个词,那就是“胀差正值”。
乍一听,可能让人觉得像是外星语言,但其实它就是在说设备之间的温度差异所引起的膨胀差。
简单来说,当设备受热时,它们会膨胀,如果这膨胀的幅度大于预期,那就可能出问题了。
那么,今天咱们就来聊聊胀差正值增大的原因以及如何处理这个棘手的问题。
1. 胀差正值增大的原因1.1 温度的变化首先,咱们不得不提的就是温度。
想象一下,外面阳光普照,温度飙升到让人汗流浃背的地步,设备在这种情况下当然也会“热血沸腾”,膨胀得厉害。
这就导致了胀差正值的增大。
要是碰上突然的冷却,比如说一场大雨又或者是空调突然开了,那设备就会迅速收缩。
这样一来,设备之间的差距就变得更大,问题也就随之而来了。
1.2 材料的特性再说说材料的特性。
不同材料的膨胀系数可是天差地别,有的就像刚出生的小猫,膨胀得慢,而有的则像火箭一样,迅速往外撑。
所以,如果你用了一种膨胀性强的材料来拼接两个设备,而另一种材料则相对较弱,结果可想而知,胀差就会增大,甚至造成连接部位的松动。
说到这,大家是不是想起了“强者恒强”的道理呢?没错,选择合适的材料,才能避免这种尴尬的局面。
2. 胀差正值增大带来的问题2.1 设备的损坏那么,胀差正值增大有什么后果呢?首先,设备可能会因为过度膨胀而发生损坏。
试想一下,如果你把一根橡皮筋拉得太长,肯定会断掉。
而设备也是如此,一旦承受不了,就容易出现裂纹,甚至崩溃,后果可不是闹着玩的。
修理费用和停机时间可都是一笔不小的开支,真是让人心疼啊!2.2 影响生产效率其次,设备的损坏还会影响生产效率。
想象一下,工厂里正忙得不可开交,突然某台机器因为胀差正值增大而停了下来,大家都要“停下来,慢半拍”。
这种情况下,不光是损失金钱,还会影响到客户的交期,搞不好还得挨上几句“你们怎么回事”的质问,真是一肚子委屈。
3. 如何处理胀差正值增大3.1 温度控制那么,面对这个棘手的问题,咱们该如何处理呢?首先,温度控制是关键。
(完整word版)机组启动时胀差的分析与控制
机组启动时胀差的分析与控制汽轮机胀差就是指汽轮机转子与汽缸膨胀的差值。
它是反映汽轮机动静部分之间的间隙,是汽轮机启动、运行及变工况运行时的最重要监视和控制的参数之一。
如果胀差控制的好,机组就能按规定启动时间顺利启动,我厂两台N-100-535/8.81汽轮机的胀差控制经历了一个摸索、探讨阶段,目前已基本上得到解决。
汽轮机胀差的出现,发生在以下几个阶段。
一、冷态启动时的成因和控制机组冷态启动时,汽缸、转子及其附件温度与环境温度相同,冲转时,高温蒸汽进入汽轮机冲动转子做功,大量的热能大部分消耗在汽轮机的高压转子上,使汽轮机转子温升较快,在冲转过程中,为了控制其升速,汽轮机进汽量较少,汽缸基本得不到加热,导致汽轮机高压正胀差出现。
在定速成后,为了维持汽轮机空转,低压转子也有部分蒸汽进入做功,3000rpm转速下,低压转子鼓风摩擦发热,而排汽温度较低,低压正胀差也同时出现,控制不好往往会造成启动失败。
2000年5月9日,在#1机冷态启动过程中,由于启动控制参数控制不当和启动方式存在问题,在并网后导致低压胀差+3.02mm,后经采取措施得以顺利启动。
具体地说,在冷态启动过程中,应采取以下措施。
1.严格控制启动初参数,汽温控制在230℃左右,汽压控制在1.0—1.2Mpa,初参数控制低,有利于增加进入汽轮机的蒸汽流量,便于汽轮机暖缸,同时,主蒸汽温度控制低,也会限制汽轮机转子的温升速度,减小正胀差的出现。
2.冲转至低负荷(10MW以下)时,凝汽器真空控制在70Kpa左右,低真空下,在相同转速和负荷情况时,蒸汽流量增加,有利于暖缸,使高压缸绝对热膨胀加快,高胀得以控制。
同时低真空时,低压缸排汽温度上升,有利于减小低胀的发生。
大量蒸汽带走低压转子因鼓风摩擦而产生的热量,使低压转子温升减小,更进一步减小了低压胀差。
3.低加随机启动。
胀差产生的主要原因就是因为转子温升快,而汽缸温升慢,采用低加随机启动时,使下汽缸分汽流动充分,疏水彻底,加快了下缸均匀受热,提高了汽缸绝对膨胀上升速度,从而减小了正胀差。
汽轮机胀差详解
汽轮机胀差详解展开全文一、什么是胀差?机组启停或运行中正胀差过大原因?应采取什么措施?负胀差过大原因?应采取什么措施?答:胀差:汽轮机转子与汽缸的相对膨胀,称为胀差。
汽轮机启动时,随着温度的上升,转子与汽缸分别以各自的死点为基准膨胀。
汽缸质量大,单面接触蒸汽膨胀慢;转子质量小,并旋转在蒸汽中,膨胀快;汽缸-转子的相对膨胀差称为胀差。
转子膨胀大于汽缸膨胀称为正胀差,反之称为负胀差。
根据汽缸分类可分为高差、中差、低I差、低II差。
二、正胀差过大的原因:1)启动时暖及时间短,升速太快或升负荷太快。
2)汽缸夹层、法兰加热装置的加热汽温太低或流量低,加热作用弱。
3)滑销系统或轴承台板的滑动性差、卡涩。
4)轴封温度过高或轴封供气量大,引起轴颈过分伸长。
5)机组启动时,进汽压力、温度、流量参数过高。
6)推力轴承磨损,轴向位移大。
7)汽缸保温效果差,保温层脱落,机房汽温低。
8)双层缸的夹层中流入冷汽。
9)胀差指示器零点不准或触点磨损,引起数字偏差。
10)多转子机组,相邻转子胀差变化带来互相影响。
11)真空及转速变化的影响。
12)各级抽气量的影响。
例如一级抽汽停用,则对高差影响较大。
13)轴承油温太高。
14)机组停机惰走过程中由于'泊桑效应'的影响。
三、正胀差过大时应采取措施:1)检查主蒸汽温度是否过高,适当降低主蒸汽温度;2)使机组在稳定转速和稳定负荷下暖机;3)适当提高凝汽器真空,减小蒸汽流量;4)增加汽缸加热进汽量,使汽缸迅速胀出。
四、负胀差过大的原因:1)负荷迅速下降或机组甩负荷。
2)主汽温剧降或启动时的进汽温度低于金属温度。
3)水冲击4)汽缸夹层、法兰加热装置的加热过度。
5)轴封汽温度太低。
6)轴向位移变化。
7)轴承油温太低。
8)启动时转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。
9)汽缸夹层中流入高温蒸汽。
五、负胀差过大应采取措施:1)机组启动与停机时及时投入加热蒸汽装置,控制各部金属温差在规定范围内;2)当负荷下降或甩负荷时,控制主蒸汽与再热蒸汽温度的下降率。
#1燃气轮机#2胀差异常变化的原因与处理对策
#1燃气轮机#2胀差异常变化的原因与处理对策
燃气轮机是一种以天然气为燃料的热能转换设备,具有高效率、低污染和灵活性等优点,被广泛应用于发电、供热和石化等领域。
在长期运行过程中,燃气轮机可能出现胀差异常变化的问题,给设备的运行和维护带来一定困扰。
胀差是指在燃气轮机运行过程中,由于不同材料受热膨胀系数不同,从而产生的不同胀差。
通常,燃气轮机的高温部件(如燃烧室、涡轮叶片等)会受到较大的热膨胀影响,而低温部件(如压缩机、外壳等)胀差较小。
正常情况下,这种胀差属于设计和运行范围内,不会对设备运行造成影响。
当燃气轮机出现胀差异常变化时,可能是由于以下几个原因引起:
1. 设备设计不合理:燃气轮机的设计应该考虑到不同材料的热膨胀系数,合理安排材料的组合和热膨胀补偿机构。
如果设计不合理,可能导致胀差异常变化。
2. 温度变化过大:燃气轮机在运行过程中,温度变化较大,尤其是在启动和停机的过程中。
如果温度变化过大,可能导致胀差异常变化。
3. 使用环境不适宜:环境温度和湿度等因素对燃气轮机的运行稳定性和胀差影响较大。
如果使用环境不适宜,可能导致胀差异常变化。
4. 维护保养:定期对燃气轮机进行维护保养,包括清洁、检查和更换磨损部件等。
通过维护保养,及时发现和排除胀差异常变化的问题。
燃气轮机胀差异常变化是影响设备运行和维护的一个重要问题。
需要通过合理的设备设计、温度控制、环境改善和维护保养等措施,减小胀差异常变化的可能性,并确保设备的稳定运行和高效率。
胀差概念
1.胀差概念胀差:转子与汽缸沿轴向膨胀之差称为胀差。
当转子轴向膨胀量大于汽缸轴向膨胀量时,胀差为正,反之为负。
汽轮机在启动及加负荷时,胀差为正;在停机或减负荷时,胀差为负。
2.胀差产生的原因:(1)转子和汽缸的金属材料不同,热胀系数不同;(2)汽缸质量大与蒸汽接触面积小,转子质量小与蒸汽接触面积大;转子和汽缸的质面比:转子或汽缸质量与被加热面积之比,通常以m/A表示。
转子质量轻、表面积大,则质面比小,而汽缸质量大、表面积小,则质面比大。
(3)转子转动,故蒸汽对转子表面的放热系数比对汽缸表面的放热系数大。
3.危害:胀差使通流部分动静沿轴向间隙发生变化,造成动静部件的碰撞和摩擦,延误启动时间、引起机组振动、大轴弯曲等严重事故。
当胀差为正时,动叶出口与下级静叶入口间隙减小;当胀差为负时,静叶出口与动叶入口之间的间隙减小;4.影响胀差的主要因素(1)主、再热蒸汽的温升、温降速度及负荷变化速度;(2)轴封供汽温度和供汽时间冷态启动时,在冲转前向轴封供汽,由于供汽温度高于转子温度,转子局部受热而伸长,可能出现轴封摩擦现象。
热态启动时,为防止轴封供汽后胀差出现负值,轴封供汽应选用高温汽源,且要先向轴封供汽,后抽真空。
并尽量缩短冲转前轴封供汽时间。
(3)凝汽器真空在升速和暖机过程中,当真空降低时,若保持机组转速不变,须增加进汽量,使高压转子受热增加,胀差增大。
使中、低压转子鼓风摩擦热量被增加的蒸汽量带走,胀差减少。
(由于中、低压转子叶片较长,其鼓风摩擦热量比高压转子大。
当真空降低时,中低压转子鼓风摩擦热量被增加的蒸汽量带走,故胀差减少;因此,在升速暖机过程中不能用提高真空的办法来减小中、低压通流部分的胀差。
)(4)鼓风摩擦热量鼓风摩擦损失与动叶片长度成正比,与圆周速度三次方成正比,所以低压转子的鼓风摩擦损失远比高、中压转子大,鼓风摩擦损失热量加热通流部分,使胀差增加,在小流量时其影响较大。
随着流量增加,其影响逐渐减小,当流量达到一定值时,鼓风摩擦损失的热量已能全部被带走,这时对胀差的影响就会消失。
影响胀差的原因
一)使胀差向正值增大的主要因素简述如下:1)启动时暖机时间太短,升速太快或升负荷太快。
2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。
3)滑销系统或轴承台板的滑动性能差,易卡涩。
4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。
5)机组启动时,进汽压力、温度、流量等参数过高。
6)推力轴承磨损,轴向位移增大。
7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。
8)双层缸的夹层中流入冷汽(或冷水)。
9)胀差指示器零点不准或触点磨损,引起数字偏差。
10)多转子机组,相邻转子胀差变化带来的互相影响。
11)真空变化的影响。
12)转速变化的影响。
13)各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显。
14)轴承油温太高。
15)机组停机惰走过程中由于“泊桑效应”的影响。
(二)使胀差向负值增大的主要原因:1)负荷迅速下降或突然甩负荷。
2)主汽温骤减或启动时的进汽温度低于金属温度。
3)水冲击。
4)汽缸夹、法兰加热装置加热过度。
5)轴封汽温度太低。
6)轴向位移变化。
7)轴承油温太低。
8)启动进转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。
9)汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽。
启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依*汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。
启动时胀差一般向正方向发展。
汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。
汽轮机转子停止转动后,负胀差可能会更加发展,为此应当维持一定温度的轴封蒸汽,以免造成恶果。
一般来说机组正常运行时胀差是不会大的。
只有在机组启停的过程中或蒸汽参数大幅度变化时才会出现正、负胀差的现象,处理主要是控制汽温的变化速率,稳定汽温,适当延长暖机或滑停过程稳定汽温的时间,加强对汽机的胀差、振动、轴向位移、转子偏心的监视,就地倾听汽轮机内部声音,如发生动静摩擦立即打闸停机。
汽轮机胀差详解课件
胀差的影响
01
02
03
机械性能下降
胀差过大可能导致汽轮机 动静部分摩擦、碰撞,甚 至引起严重事故。
寿命缩短
胀差引起的热应力可能导 致汽轮机部件疲劳裂纹的 产生,缩短设备的使用寿 命。
能耗增加
胀差过大时,蒸汽流量增 大,导致能量损失增加, 汽轮机的效率降低。
02
胀差的分类
正胀差
定义
正胀差是指汽轮机在运行 时,转子膨胀大于汽缸膨 胀的差值。
原因
主要是由于转子受热膨胀 较快,而汽缸受热膨胀较 慢。
影响
正胀差过大可能会引起汽 轮机动静部分摩擦,导致 机组振动或损坏。
负胀差
定义
负胀差是指汽轮机在运行时,转子膨胀小于汽缸 膨胀的差值。
原因
主要是由于转子受热膨胀较慢,而汽缸受热膨胀 较快。
影响
负胀差过大可能会引起汽轮机动静部分脱离接触 ,导致机组振动或损坏。
汽轮机胀差详解课件
• 胀差概述 • 胀差的分类 • 胀差的变化规律 • 胀差的监测与控制 • 胀差异常的处理方法 • 案例分析
01
胀差概述
胀差的定义
胀差
汽轮机转子与汽缸的相对膨胀差 ,通常以转子膨胀值减去汽缸膨 胀值的差值表示。
胀差变化
随着汽轮机负荷、蒸汽参数、冷 却条件等因素的变化,胀差值也 会发生变化。
胀差的监测
定义胀差
胀差是指汽轮机转子与汽缸之间的相对膨胀差,通常以转子轴向位移与汽缸轴向位移的差值来衡量。
胀差监测的重要性
胀差是汽轮机运行中的重要参数之一,如果胀差超过允许范围,可能会导致汽轮机轴向位移变化、动静摩擦、叶片断 裂等严重后果。
胀差监测系统
胀差监测系统用于连续监测汽轮机的胀差值,当胀差值超过预设阈值时,系统会触发报警并采取相应的 控制措施。
什么是胀差?
什么是胀差?第一部分一、汽轮机胀差的定义当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生热膨胀或冷却收缩。
由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。
因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言,故称为相对膨胀差(即胀差)。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,例如当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。
汽缸膨胀大于转子膨胀时的胀差值为负胀差。
当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。
二、差胀保护的意义:汽轮机启动、停机和异常工况下,常因转子加热(或冷却)比汽缸快,产生膨胀差值(简称差胀)。
无论是正差胀还是负差胀,达到某一数值,汽轮机轴向动静部分就要相碰发生摩擦。
为了避免因差胀过大引起动静摩擦,大机组一般都设有差胀保护,当正差胀或负差胀达到某一数值时,立即破坏真空紧急停机,防止汽轮机损坏。
三、胀差大的危害:当胀差超过规定值时,就会使汽轮机动静间的轴向间隙消失,发生动静摩擦,引起汽轮机组振动增大,甚至掉叶片、大轴弯曲等严重事故。
四、汽轮机在启动、停机及运行过程中,胀差的大小与下列因素有关:1.启动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。
2.暖机过程中,升速率太快或暖机时间过短。
3.正常停机或滑参数停机时,汽温下降太快。
4.增负荷速度太快。
5.甩负荷后,空负荷或低负荷运行时间过长。
6.汽轮机发生水冲击。
7.正常运行过程中,蒸汽参数变化速度过快。
8.轴位移变化。
使胀差向正值增大的主要原因如下:1)启动时暖机时间太短,升速太快或升负荷太快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一)使胀差向正值增大的主要因素简述如下:
1)启动时暖机时间太短,升速太快或升负荷太快。
2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。
3)滑销系统或轴承台板的滑动性能差,易卡涩。
4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。
5)机组启动时,进汽压力、温度、流量等参数过高。
6)推力轴承磨损,轴向位移增大。
7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。
8)双层缸的夹层中流入冷汽(或冷水)。
9)胀差指示器零点不准或触点磨损,引起数字偏差。
10)多转子机组,相邻转子胀差变化带来的互相影响。
11)真空变化的影响。
12)转速变化的影响。
13)各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显。
14)轴承油温太高。
15)机组停机惰走过程中由于“泊桑效应”的影响。
(二)使胀差向负值增大的主要原因:
1)负荷迅速下降或突然甩负荷。
2)主汽温骤减或启动时的进汽温度低于金属温度。
3)水冲击。
4)汽缸夹、法兰加热装置加热过度。
5)轴封汽温度太低。
6)轴向位移变化。
7)轴承油温太低。
8)启动进转速突升,由于转子在离心力的作用下轴向尺寸缩小,尤其低差变化明显。
9)汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽。
启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依*汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。
启动时胀差一般向正方向发展。
汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。
汽轮机转子停止转动后,负胀差可能会更加发展,为此应当维持一定温度的轴封蒸汽,以免造成恶果。
一般来说机组正常运行时胀差是不会大的。
只有在机组启停的过程中或蒸汽参数大幅度变化时才会出现正、负胀差的现象,处理主要是控制汽温的变化速率,稳定汽温,适当延长暖机或滑停过程稳定汽温的时间,加强对汽机的胀差、振动、轴向位移、转子偏心的监视,就地倾听汽轮机内部声音,如发生动静摩擦立即打闸停机。
只有胀差稳定并有下降的趋势后才能改变汽轮机进汽参数,以保证汽轮机运行的安全。