题1-集合与常用逻辑用语、函数与导数

合集下载

数学三维设计答案及解析

数学三维设计答案及解析

第一部分 专题复习 培植新的增分点专题一 集合与常用逻辑用语、函数与导数、不等式第一讲 集合与常用逻辑用语基础·单纯考点[例1] 解析:(1)∵A ={x >2或x <0},B ={x |-5<x <5}, ∴A ∩B ={x |-5<x <0或2<x <5}, A ∪B =R .(2)依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9].答案:(1)B (2)D[预测押题1] (1)选A 本题逆向运用元素与集合的关系求参数的取值范围,抓住1∉A作为解题的突破口,1∉A 即1不满足集合A 中不等式,所以12-2×1+a ≤0⇒a ≤1.(2)选B 对于2x (x -2)<1,等价于x (x -2)<0,解得0<x <2,所以A ={x |0<x <2};集合B 表示函数y =ln(1-x )的定义域,由1-x >0,得x <1,故B ={x |x <1},∁R B ={x |x ≥1},则阴影部分表示A ∩(∁R B )={x|1≤x<2}.[例2] 解析:(1)命题p 是全称命题:∀x ∈A ,2x ∈B , 则┐p 是特称命题:∃x ∈A ,2x ∉B .(2)①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一为假,④不正确.答案:(1)D (2)A[预测押题2] (1)选A 因为x 2-3x +6=⎝ ⎛⎭⎪⎫x -322+154>0,所以①为假命题;若ab =0,则a 、b 中至少一个为零即可,②为假命题;x =k π+π4(k ∈R )是tan x =1的充要条件,③为假命题.(2)解析:“∃x ∈R ,2x 2-3ax +9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题,因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.答案:[-22,22][例3] 解析:(1)当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.(2)因为y =-m n x +1n 经过第一、三、四象限,所以-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.答案:(1)A (2)B[预测押题3] (1)选B 由10a >10b 得a >b ,由lg a >lg b 得a >b >0,所以“10a >10b”是“lg a >lg b ”的必要不充分条件.(2)解析:由|x -m |<2,得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2,m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)交汇·创新考点 [例1] 选A 在同一坐标系下画出椭圆x 2+y 24=1及函数y =2x的图象,结合图形不难得知它们的图像有两个公共点,因此A ∩B 中的元素有2个,其子集共有22=4个.[预测押题1] 选B A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,选B.[例2] 解析:对①:取f (x )=x -1,x ∈N *,所以B =N *,A =N 是“保序同构”;对②:取f (x )=92x -72(-1≤x ≤3),所以A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}是“保序同构”;对③:取f (x )=tan ⎝⎛⎭⎪⎫πx -π2(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”,故应填①②③.答案:①②③[预测押题2] 解析:∵A ⊆M ,且集合M 的子集有24=16个,其中“累计值”为奇数的子集为{1},{3},{1,3},共3个,故“累积值”为奇数的集合有3个.答案:3[例3] 解析:对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;对于②当b =a =0时,l 1⊥l 2,故②不正确,易知③正确.所以正确结论的序号为①③.答案:①③[预测押题3] 选D 由y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ),知A 正确;由回归直线方程知B 正确;在△ABC 中,若sin A =sin B ,则A =B ,C 正确.第二讲 函数的图像与性质基础·单纯考点[例1] 解析:(1)由题意,自变量x应满足{x +3>0,1-2x≥0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)设t =1+sin x ,易知t ∈[0,2],所求问题等价于求g (t )在区间[0,2]上的值域.由g (t )=13t 3-52t 2+4t ,得g ′(t )=t 2-5t +4=(t -1)(t -4).由g ′(t )=0,可得t=1或t =4.又因为t ∈[0,2],所以t =1是g (t )的极大值点.由g (0)=0,g (1)=13-52+4=116,g (2)=13×23-52×22+4×2=23,得当t ∈[0,2]时,g (t )∈⎣⎢⎡⎦⎥⎤0,116,即g (1+sin x )的值域是⎣⎢⎡⎦⎥⎤0,116.答案:(1)A (2)⎣⎢⎡⎦⎥⎤0,116[预测押题1] (1)解析:∵f (π4)=-tan π4=-1,∴f (f (π4))=f (-1)=2×(-1)3=-2.答案:-2(2)由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图像关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:-2x 2+2[例2] 解析:(1)曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x向左平移1个单位长度得到y =e -(x +1),即f (x )=e -x -1.(2)由题图可知直线OA 的方程是y =2x ;而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,故g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3=-⎝ ⎛⎭⎪⎫x -32+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0. 综上所述,g (x )的值域为⎣⎢⎡⎦⎥⎤0,94. 答案:(1)D (2)B[预测押题2] (1)选C 因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错.(2)选B 因为f (x )=f (-x ),所以函数f (x )是偶函数.因为f (x +2)=f (x ),所以函数f (x )的周期是2,再结合选项中的图像得出正确选项为B.[例3] 解析:(1)函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项A ,D 是奇函数,不符合;选项B 是偶函数但单调性不符合;只有选项C 符合要求.(2)∵f (x )=ax 3+b sin x +4, ①∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4, ② ①+②得f (x )+f (-x )=8. ③又∵lg(log 210)=lg ⎝ ⎛⎭⎪⎫1lg 2=lg(lg 2)-1=-lg(lg 2),∴f (lg(lg 210))=f (-lg(lg 2))=5.又由③式知f (-lg(lg 2))+f (lg(lg 2))=8, ∴5+f (lg(lg 2))=8, ∴f (lg(lg 2))=3. 答案:(1)C (2)C[预测押题3] (1)选A 依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.(2)解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f ⎝ ⎛⎭⎪⎫x +32=-f (x +3)=-f (x ), ∴f (x )=f (x +3),∴f (x )是以3为周期的周期函数. 则f (2014)=f (671×3+1)=f (1)=3. 答案:3(3)解析:因为函数f (x )的图像关于y 轴对称,所以该函数是偶函数,又f (1)=0,所以f (-1)=0.又已知f (x )在(0,+∞)上为减函数,所以f (x )在(-∞,0)上为增函数.f (-x )+f (x )x<0,可化为xf (x )<0,所以当x >0时,解集为{x |x >1};当x <0时,解集为{x |-1<x <0}.综上可知,不等式的解集为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)交汇·创新考点[例1] 解析:设x <0,则-x >0.∵当x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x ).∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ),∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎪⎨⎪⎧x 2-4x =5,x ≥0,或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观察图像可知由f (x )<5,得-5<x <5.∴由f (x +2)<5,得-5<x +2<5,∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}.答案:{x |-7<x <3}[预测押题1] 解析:根据已知条件画出f (x )图像如图所示.因为对称轴为x =-1,所以(0,1)关于x =-1的对称点为(-2,1).因f (m )<1,所以应有-2<m <0,m +2>0.因f (x )在(-1,+∞)上递增,所以f (m +2)>f (0)=1.答案:>[例2] 解析:因为A ,B 是R 的两个非空真子集,且A ∩B =∅,画出韦恩图如图所示,则实数x 与集合A ,B 的关系可分为x ∈A ,x ∈B ,x ∉A 且x ∉B 三种.(1)当x ∈A 时,根据定义,得f A (x )=1.因为A ∩B =∅,所以x ∉B ,故f B (x )=0.又因为A ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(2)当x ∈B 时,根据定义,得f B (x )=1.因为A ∩B =∅,所以x ∉A ,故f A (x )=0.又因为B ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(3)当x ∉A 且x ∉B ,根据定义,得f A (x )=0,f B (x )=0.由图可知,显然x ∉(A ∪B ),故f A ∪B (x )=0,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=0+10+0+1=1.综上,函数的值域中只有一个元素1,即函数的值域为{1}. 答案:{1}[预测押题2] 解:当x ∈A ∩B 时,因为(A ∩B )⊆(A ∪B ),所以必有x ∈A ∪B .由定义,可知f A (x )=1,f B (x )=1,f A ∪B (x )=1,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+1+1=23. 故函数F (x )的值域为{23}.第三讲 基本初等函数、函数与方程及函数的应用基础·单纯考点[例1] 解析:(1)当x =-1,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32,b =log 510=log 55+log 52=1+log 52,c =log 714=log 77+log 72=1+log 72,∵log 32>log 52>log 72,∴a >b >c .答案:(1)D (2)D[预测押题1] (1)选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)选B 依题意的a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =e ln x ∈(e -1,1),因此b >c >a .[例2] 解析:(1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.答案:(1)B (2)C[预测押题2] 解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.答案:(0,1][例3] 解:(1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈n ,0≤x ≤200),y =18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈n ,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N ,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元).因为y 1max -y 2max =1980-200m -460=1520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.[预测押题3] 解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元),则f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3).所以当t =2时,f (t )max =4,即当集团投入两百万广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告费的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3).对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0,得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增;当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减.∴当x =2时,g (x )max =g (2)=253.故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的受益最大,最大收益为253百万元.交汇·创新考点[例1] 选B ∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在(0,π2)上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增. ∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π.又f (x )是以2π为最小正周期的偶函数,知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点.[预测押题] 选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝ ⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2012=402×5+2,故函数在区间[0,2010]内有402×3=1206个零点,在区间(2010,2012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2012]上零点的个数为1207.第四讲 不等式基础·单纯考点[例1] 解析:(1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以原不等式的解集为⎝ ⎛⎦⎥⎤-12,1. (2)由题意知,一元二次不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |-1<x <12.而f (10x )>0,∴-1<10x <12,解得x <lg 12,即x <-lg 2.答案:(1)A (2)D[预测押题1] (1)选B 当x >0时,f (x )=-2x +1x2>-1,∴-2x +1>-x 2,即x 2-2x+1>0,解得x >0且x ≠1.当x <0时,f (x )=1x>-1,即-x >1,解得x <-1.故x ∈(-∞,-1)∪(0,1)∪(1,+∞).(2)解析:∵f (x )=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -a 24=0,∴f (x )=x2+ax +14a 2=⎝ ⎛⎭⎪⎫x +12a 2.又∵f (x )<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +a 24-c =0的两根.由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9[例2] 解析:(1)曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min =-6.(2)设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈n ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).答案:(1)A (2)C[预测押题2] (1)选C 题中的不等式组表示的平面区域如图阴影部分所示,平移直线x -y =0,当平移经过该平面区域内的点(0,1)时,相应直线在x 轴上的截距达到最小,此时x -y 取得最小值,最小值是x -y =0-1=-1;当平移到经过该平面内区域内的点(2,0)时,相应直线在x 轴上的截距达到最大,此时x -y 取得最大值,最大值是x -y =2-0=2.因此x -y 的取值范围是[-1,2].(2)解析:作出可行域,如图中阴影部分所示,区域面积S =12×⎝ ⎛⎭⎪⎫2a +2×2=3,解得a=2.答案:2[例3] 解析:(1)因-6≤a ≤3,所以3-a ≥0,a +6≥0,∴(3-a )(a +6)≤3-a +a +62=92,当且仅当a =-32时等号成立.(2)f (x )=4x +a x≥24x ·ax =4a (x >0,a >0),当且仅当4x =a x,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36.答案:(1)B (2)36[预测押题3] (1)选D 依题意,点A (-2,-1),则-2m -n +1=0,即2m +n =1(m >0,n >0),∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+⎝ ⎛⎭⎪⎫n m +4m n ≥4+2n m ×4m n =8,当且仅当n m =4m n,即n =2m=12时取等号,即1m +2n的最小值是8. (2)选A 由已知得a +2b =2.又∵a >0,b >0,∴2=a +2b ≥22ab ,∴ab ≤12,当且仅当a =2b =1时取等号.交汇·创新考点[例1] 选C 作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形所有点都在圆的内部,故m ≥2,解得:m ≥2.[预测押题1] 选C 如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝ ⎛⎭⎪⎫122=12,当圆的半径增大到恰好过点A (2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故a 的取值范围是12<a ≤5,故选C.[例2] 选 C z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4yx-3≥2x y ·4y x -3=1.当且仅当x y =4y x ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2.∴当y =1时,x +2y -z 取得最大值2.[预测押题2] 解析:4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝ ⎛⎭⎪⎫2x +y 22+1,∴(2x +y )2≤85,∴(2x +y )max =2105.答案:2105第五讲 导数及其应用基础·单纯考点[例1] 解析:(1)∵点(1,1)在曲线y =x 2x -1上,y ′=-1(2x -1)2,∴在点(1,1)处的切线斜率为y ′|x =1=-1(2-1)2=-1,所求切线方程为y -1=-(x -1),即x +y -2=0.(2)因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.答案:(1)x +y -2=0 (2)12[预测押题1] 选D 由f (x +2)=f (x -2),得f (x +4)=f (x ),可知函数为周期函数,且周期为4.又函数f (x )为偶函数,所以f (x +2)=f (x -2)=f (2-x ),即函数的对称轴是x =2,所以f ′(-5)=f ′(3)=-f ′(1),所以函数在x =-5处的切线的斜率k =f ′(-5)=-f ′(1)=-1.[例2] 解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x(x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x -12.令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.[预测押题2] 解:(1)当m =1时,f (x )=13x 3+x 2-3x +1,又f ′(x )=x 2+2x -3,所以f ′(2)=5.又f (2)=53,所以所求切线方程为y -53=5(x -2),即15x -3y -25=0.所以曲线y =f (x )在点(2,f (2))处的切线方程为15x -3y -25=0.(2)因为f ′(x )=x 2+2mx -3m 2,令f ′(x )=0,得x =-3m 或x =m .当m =0时,f ′(x )=x 2≥0恒成立,不符合题意;当m >0时,f (x )的单调递减区间是(-3m ,m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧-3m ≤-2,m ≥3,解得m ≥3;当m <0时,f (x )的单调递减区间是(m ,-3m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2,-3m ≥3,解得m ≤-2.综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞).[例3] 解:(1)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x=a ,即x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得最小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.(2)当a =1时,f (x )=x -1+1e x .直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1ex (*)在R 上没有实数解.①当k =1时,方程(*)可化为1e x =0,在R 上没有实数解.②当k ≠1时,方程(*)可化为1k -1=x e x.令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x当x =-1时,g (x )min =-e,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的取值范围为⎣⎢⎡⎭⎪⎫-1e ,+∞.所以当1k +1∈⎝ ⎛⎭⎪⎫-∞,-1e 时,方程(*)无实数解,解得k 的取值范围是(1-e ,1).综合①②,得k 的最大值为1.[预测押题3] 解:(1)f ′(x )=a +2x 2-3x ,由题意可知f ′(23)=1,解得a =1.故f (x )=x -2x -3ln x ,∴f ′(x )=(x -1)(x -2)x2,由f ′(x )=0,得x =2.∴f min (2)f ′(x )=a +2x -3x =ax 2-3x +2x(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0.也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h (0)>0.解得0<a <98.交汇·创新考点[例1] 解:(1)证明:设φ(x )=f (x )-1-a ⎝⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0),则φ′(x )=a x -ax2.令φ′(x )=0,则x =1,易知φ(x )在x =1处取到最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x .(2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0,故h (x )在定义域上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在定义域上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以a 的取值范围为[e -1,+∞).[预测押题1] 解:(1)由f (x )=e x (x 2+ax -a )可得,f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0,即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )在[0,+∞)上是增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根.当-(a +2)>0,即a <-2时,f ′(x ),f (x )随由上表可知函数f (x )在[0,+∞)上的最小值为f (-(a +2))=ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥f (-a )=e -a(-a )>-a ,又f (0)=-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .[例2] 选C 法一:曲线y =x 与直线x =1及x 轴所围成的曲边图形的面积S =⎠⎛01xd x =⎪⎪⎪23x 3210=23,又∵S △AOB =12,∴阴影部分的面积为S ′=23-12=16,由几何概型可知,点P 取自阴影部分的概率为P =16.法二:S 阴影=⎠⎛01(x -x )d x =16,S 正方形OABC =1,∴点P 取自阴影部分的概率为P =16.[预测押题2] 解析:画出草图,可知所求概率P =S 阴影S △AOB =⎠⎛04x d x18=⎪⎪⎪23x 324018=16318=827.答案:827[例3] 解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2}.因此区间I =⎝ ⎛⎭⎪⎫0,a 1+a 2,故I 的长度为a1+a 2.(2)设d (a )=a 1+a 2,则d ′(a )=1-a2(1+a 2)2(a >0).令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而d (1-k )d (1+k )=1-k1+(1-k )21+k 1+(1+k )2=2-k 2-k 32-k 2+k3<1,故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k2.[预测押题3] 解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)① 计算得f (1)=a +b 2>0,f (b a )=2ab a +b >0,f (b a )=ab >0.因为f (1)f (ba)=a +b2·2ab a +b =ab =⎣⎢⎡⎦⎥⎤f (b a )2,即f (1)f (b a )=⎣⎢⎡⎦⎥⎤f (b a )2. (*)所以f (1),f (b a),f (b a )成等比数列.因为a +b 2≥ab ,所以f (1)≥f (b a ).由(*)得f (b a )≤f (b a). ②由①知f (b a )=H ,f (b a )=G .故由H ≤f (x )≤G ,得f (b a )≤f (x )≤f (ba ). (**)当a =b 时,(b a )=f (x )=f (b a )=a .这时,x 的取值范围为(0,+∞);当a >b 时,0<ba<1,从而b a <b a ,由f (x )在(0,+∞)上单调递增(**)式,得b a ≤x ≤b a,即x 的取值范围为⎣⎢⎡⎦⎥⎤ba ,b a ;当a <b 时,b a >1,从而b a >b a ,由f (x )在(0,+∞)上单调递减与(**)式,得b a≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .综上,当a =b 时,x 的取值范围为(0,+∞);当a >b时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a ;当a <b 时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .专题二 三角函数、解三角形、平面向量第一讲 三角函数的图像与性质基础·单纯考点 [例1] 解析:(1)1-2sin (π+θ)sin ⎝⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0,故原式=sin θ-cos θ.(2)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z ).所以2sin2α-3tan α=2sin ⎝ ⎛⎭⎪⎫4k π+π3-3tan ⎝ ⎛⎭⎪⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0. 答案:(1)A (2)D[预测押题1] (1)选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.(2)解析:由A 点的纵坐标为35及点A 在第二象限,得点A 的横坐标为-45,所以sin α=35,cos α=-45,tan α=-34.故tan2α=2tan α1-tan 2α=-247. 答案:35 -247[例2] 解析:(1)∵34T =512π-⎝ ⎛⎭⎪⎫-π3=34π,∴T =π,∴2πω=π(ω>0),∴ω=2.由图像知当x =512π时,2×512π+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k∈Z ).∵-π2<φ<π2,∴φ=-π3.(2)y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+φ的图像,整理得y =cos(2x -π+φ).∵其图像与y =sin ⎝⎛⎭⎪⎫2x +π3的图像重合,∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π,即φ=5π6+2k π.又∵-π≤φ<π∴φ=5π6.答案:(1)A (2)5π6[预测押题2] (1)选C 将y =sin ⎝⎛⎭⎪⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位得y =sin ⎝⎛⎭⎪⎫2x +3π4+2的图像,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,得x =π8. (2)选C 根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m 取最小值.又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3.[例3] 解:(1)f (x )4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx ·cos2ωx )+2=2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0,从而由2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π4+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π5,即π8≤x ≤π2时,f (x )单调递减;综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.[预测押题3] 解:(1)因为f (x )=32sin 2x +1+cos 2x 2+a =sin(2x +π6)+a +12,所以T =π.由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x≤2π3+k π,k∈Z .故函数f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ). (2)因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6,-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1.因为函数f (x )在⎣⎢⎡⎦⎥⎤-π6,π3上的最大值与最小值的和为⎝⎛⎭⎪⎫1+a +12+⎝ ⎛⎭⎪⎫-12+a +12=32,所以a =0.交汇·创新考点[例1] 解:(1)f (x )=1+cos (2ωx -π3)2-1-cos2ωx 2=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2ωx -π3+cos2ωx =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12cos2ωx +32sin2ωx +cos2ωx =12⎝ ⎛⎭⎪⎫32sin2ωx +32cos2ωx =32⎝ ⎛⎭⎪⎫12sin2ωx +32cos2ωx =32sin ⎝ ⎛⎭⎪⎫2ωx +π3.由题意可知,f (x )的最小正周期T =π,∴2π|2ω|=π.又∵ω>0,∴ω=1,∴f (π12)=32sin ⎝ ⎛⎭⎪⎫2×π12+π3=32sin π2=32.(2)|f (x )-m |≤1,即f (x )-1≤m ≤f (x )+1.∵对∀x ∈⎣⎢⎡⎦⎥⎤-7π12,0,都有|f (x )-m |≤1,∴m ≥f (x )max -1且m ≤f (x )min +1.∵-7π12≤x ≤0,∴-5π6≤2x +π3≤π3,∴-1≤sin ⎝ ⎛⎭⎪⎫2x +π3≤32,∴-32≤32sin ⎝ ⎛⎭⎪⎫2x +π3≤34,即f (x )max =34,f (x )min =-32,∴-14≤m ≤1-32.故m 的取值范围为⎣⎢⎡⎦⎥⎤-14,1-32.[预测押题1] 解:(1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-⎝ ⎛⎭⎪⎫122=-14.(2)f (x )=cos x ·cos ⎝ ⎛⎭⎪⎫x -π3=cos x ·⎝ ⎛⎭⎪⎫12cos x + 32sin x =12cos 2x +32sin x cos x =14(1+cos2x )+34sin2x =12cos ⎝ ⎛⎭⎪⎫2x -π3+14.f (x )<14等价于12cos ⎝ ⎛⎭⎪⎫2x -π3+14<14,即cos ⎝⎛⎭⎪⎫2x -π3<0.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x |k π+5π12<x <k π+11π12,k ∈Z .[例2] 解析:因为圆心由(0,1)平移到了(2,1,),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切与点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝⎛⎭⎪⎫2-π2=-cos2,|CD |=cos ⎝⎛⎭⎪⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP →的坐标为(2-sin2,1-cos2).答案:(2-sin2,1-cos2)[预测押题2] 选A 画出草图,可知点Q 点落在第三象限,则可排除B 、D ;代入A ,cos∠QOP =6×(-72)+8×(-2)62+82=-502100=-22,所以∠QOP =3π4.代入C ,cos ∠QOP =6×(-46)+8×(-2)62+82=-246-16100≠-22.第二讲 三角恒等变换与解三角形基础·单纯考点[例1] 解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,所以f (-π6)=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=2×22=1. (2)因为θ∈⎝ ⎛⎭⎪⎫3π2,2π,cos θ=35,所以sin θ=1-cos 2θ=-1-⎝ ⎛⎭⎪⎫352=-45,cos2θ=2cos 2θ-1=2×(35)2-1=-275,sin 2θ=2sin θcos θ =2×35×⎝ ⎛⎭⎪⎫-45=-2425.所以f (2θ+π3)=2cos ⎝ ⎛⎭⎪⎫2θ+π3-π12=2cos ⎝ ⎛⎭⎪⎫2θ+π4=2×⎝ ⎛⎭⎪⎫22cos2θ-22sin2θ=cos2θ-sin2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725.[预测押题1] 解:(1)由已知可得f (x )=3cos ωx +3sin ωx =23sin ⎝ ⎛⎭⎪⎫ωx +π3.所以函数f (x )的值域为[-23,23].又由于正三角形ABC 的高为23,则BC =4,所以函数f (x )的周期T =4×2=8,即2πω=8,解得ω=π4.(2)因为f (x 0)=835,由(1)得f (x 0)=23sin ⎝ ⎛⎭⎪⎫πx 04+π3=835,即sin ⎝⎛⎭⎪⎫πx 04+π3=45.由x 0∈⎝ ⎛⎭⎪⎫-103,23得πx 04+π3∈⎝ ⎛⎭⎪⎫-π2,π2.所以cos ⎝ ⎛⎭⎪⎫πx 04+π3=1-⎝ ⎛⎭⎪⎫452=35,故f (x 0+1)=23sin ⎝ ⎛⎭⎪⎫πx 04+π4+π3=23sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫πx 04+π3+π4 =23⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫πx 04+π3cos π4+cos ⎝ ⎛⎭⎪⎫πx 04+π3sin π4=23⎝ ⎛⎭⎪⎫45×22+35×22=765.[例2] 解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos30°=74.故PA =72. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin150°=sin αsin (30°-α),化简得3sin α=4sin α.则tan α=34,即tan ∠PBA =34.[预测押题2] 解:(1)由正弦定理得2sin B cos C =2sin A -sin C .∵在△ABC 中,sin A =sin(B +C )=sin B cos C +sin C cos B ,∴sin C (2cos B -1)=0.又0<C <π,sin C >0,∴cos B =12,注意到0<B <π,∴B =π3.(2)∵S △ABC =12ac sin B =3,∴ac =4,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ≥ac =4,当且仅当a =c =2时,等号成立,∴b 的取值范围为[2,+∞).交汇·创新考点[例1] 解:(1)∵f (x )=cos ⎝ ⎛⎭⎪⎫2x -4π3+2cos 2x =cos ⎝⎛⎭⎪⎫2x +π3+1,∴f (x )的最大值为2.f (x )取最大值时,cos ⎝⎛⎭⎪⎫2x +π3=1,2x +π3=2k π(k ∈Z ),故x 的集合为{x |x =k π-π6,k ∈Z }.(2)由f (B +C )=cos ⎣⎢⎡⎦⎥⎤2(B +C )+π3+1=32,可得cos ⎝⎛⎭⎪⎫2A -π3=12,由A ∈(0,π),可得A =π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,由b +c =2,知bc ≤⎝ ⎛⎭⎪⎫b +c 22=1,当b =c =1时,bc 取最大值,此时a 取最小值1.[预测押题1] 解:(1)由已知得AB →·AC →=bc cos θ=8,b 2+c 2-2bc cos θ=42,故b 2+c 2=32.又b 2+c 2≥2bc ,所以bc ≤16,(当且仅当b =c =4时等号成立),即bc 的最大值为16.即8cos θ≤16,所以cos θ≥12.又0<θ<π,所以0<θ≤π3,即θ的取值范围是(0,π3].(2)f (θ)=3sin2θ+cos2θ+1=2sin ⎝⎛⎭⎪⎫2θ+π6+1.因为0<θ≤π3,所以π6<2θ+π6≤5π6,12≤sin ⎝⎛⎭⎪⎫2θ+π6≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2;当2θ+π6=π2,即θ=π3时,f (θ)max =2×1+1=3.[例2] 解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =AC sin B ,得AB =ACsin B ×sin C =12606365×45=1040(m).所以索道AB 的长为1040m. (2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+5t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已经走了50×(2+8+1)=550(m),还需要走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度控制在⎣⎢⎡⎦⎥⎤125043,62514(单位:m/min)范围内.[预测押题2] 解:(1)因为点C 的坐标为⎝ ⎛⎭⎪⎫35,45,根据三角函数的定义,得sin ∠COA =45,cos ∠COA =35.因为△AOB 为正三角形,所以∠AOB =60°.所以cos ∠BOC =cos (∠COA +60°)=cos ∠COA cos60°-sin ∠COA sin60°=35×12-45×32=3-4310.(2)因为∠AOC =θ⎝⎛⎭⎪⎫0<θ<π2,所以∠BOC =π3+θ.在△BOC 中,|OB |=|OC |=1,由余弦定理,可得f (θ)=|BC |2=|OC |2+|OB |2-2|OC |·|OB |·cos ∠COB =12+12-2×1×1×cos ⎝ ⎛⎭⎪⎫θ+π3=2-2cos ⎝⎛⎭⎪⎫θ+π3.因为0<θ<π2,所以π3<θ+π3<5π6.所以-32<cos ⎝ ⎛⎭⎪⎫θ+π3<12.所以1<2-2cos ⎝ ⎛⎭⎪⎫θ+π3<2+ 3.所以函数f (θ)的值域为(1,2+3).第三讲 平面向量基础·单纯考点[例1] 解析:以向量:a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4[预测押题1] (1)选A 由已知,得AB →=(3,-4),所以|AB →|=5,因此与AB →同方向的单位向量是15AB →=⎝ ⎛⎭⎪⎫35,-45.(2)选C 如图,连接BP ,则AP →=AC →+CP →=b +PR →,① AP →=AB →+BP →=a +RP →-RB →,②①+②,得2AP →=a +b -RB →.③ 又RB →=12QB →=12(AB →-AQ →)=12⎝ ⎛⎭⎪⎫a -12AP →,④将④代入③,得2AP →=a +b -12⎝⎛⎭⎪⎫a -12AP →,解得AP →=27a +47b .[例2] 解析:(1)由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.(2)设AB 的长为a (a >0),又因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE →=(AB→+AD →)·(AD →-12AB →)=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.答案:(1)A (2)12[预测押题2] (1)选D a ⊥(a +b)⇒a ·(a +b )=a 2+a·b =|a |2+|a ||b |cos<a ,b >=0,故cos<a ,b >=-963=-32,故所求夹角为5π6.(2)选C 设BC 的中点为M ,则AG →=23AM →.又M 为BC 中点,∴AM →=12(AB →+AC →),∴AG →=23AM →=13(AB →+AC →),∴|AG →|=13AB →2+AC →2+2AB →·AC →=13AB →2+AC →2-4.又∵AB →·AC →=-2,∠A =120°,∴|AB →||AC →|=4.∵|AG →|=13AB →2+AC →2-4≥132|AB →||AC →|-4=23,当且仅当|AB →|=|AC→|时取等号,∴|AG →|的最小值为23.交汇·创新考点[例1] 解析:设P (x ,y ),则AP →=(x -1,y +1).由题意知AB →=(2,1),AC →=(1,2).由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎪⎨⎪⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0,x -2y -3=0之间的距离d =35,故平面区域D 的面积为S =5×25=3.答案:3[预测押题1] 选D 如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.故选D.[例2] 解:(1)∵g (x )=sin(π2+x )+2cos(π2-x )=2sin x +cos x ,∴OM →=(2,1),∴|OM →|=22+12= 5.(2)由已知可得h (x )=sin x +3cos x =2sin(x +π3),∵0≤x ≤π2,∴π3≤x +π3≤5π6,∴h (x )∈[1,2].∵当x +π3∈[π3,π2]时,即x ∈[0,π6]时,函数h (x )单调递增,且h (x )∈[3,2];当x +π3∈(π2,5π6]时,即x ∈(π6,π2]时,函数h (x )单调递减,且h (x )∈[1,2).∴使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围为[3,2).[预测押题2] 解:(1)由题设,可得(a +b )·(a -b )=0,即|a |2-|b |2=0.代入a ,b的坐标,可得cos 2α+(λ-1)2sin 2α-cos 2β-sin 2β=0,所以(λ-1)2sin 2α-sin 2α=0.因为0<α<π2,故sin 2α≠0,所以(λ-1)2-1=0,解得λ=2或λ=0(舍去,因为λ>0).故λ=2.(2)由(1)及题设条件,知a·b =cos αcos β+sin αsin β=cos(α-β)=45.因为0<α<β<π2,所以-π2<α<β<0.所以sin(α-β)=-35,tan(α-β)=-34.所以tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=-34+431-(-34)×43=724.所以tan α=724.[例3] 选D a ∘b =a·b b 2=|a||b||b|2cos θ=|a||b|cos θ,b ∘a =|a||b|cos θ,因为|a |>0,|b |>0,0<cos θ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,所以|a||b|cos θ=n 2,|a||b|cos θ=m 2,其中m ,n ∈N *,两式相乘,得m ·n 2=cos 2θ.因为0<cos θ<22,所以0<cos 2θ<12,得0<m ·n <2,故m=n =1,即a ∘b =12.[预测押题3] 选D 依题意,MF 1→=(-1-x ,-y )=(-1-x )e 1-y e 2,MF 2→=(1-x ,-y )=(1-x )e 1-y e 2,由|MF 1→|=|MF 2→|,得MF 1→2=MF 2→2,∴[(-1-x )e 1-y e 2]2=[(1-x )e 1-y e 2]2,∴4x +4y e 1·e 2=0.∵∠xOy =45°,∴e 1·e 2=22,故2x +2y =0,即2x +y =0.专题三 数列第一讲 等差数列、等比数列基础·单纯考点[例1] 解析:(1)∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m=-2+(m -1)·1=2,∴m =5.(2)设等比数列{a n }的首项为a 1,公比为q ,则:由a 2+a 4=20得a 1q (1+q 2)=20,①,由a 3+a 5=40得a 1q 2(1+q 2)=40.②由①②解得q =2,a 1=2.故S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.答案:(1)C (2)2 2n +1-2[预测押题1] 解:(1)设等差数列的公差为d ,d >0.由题意得,(2+d )2=2+3d +8,d 2+d -6=(d +3)(d -2)=0,得d =2.故a n =a 1+(n -1)·d =2+(n -1)·2=2n ,故a n =2n .(2)b n =a n +2a n =2n +22n .S n =b 1+b 2+…+b n =(2+22)+(4+24)+…+(2n +22n)=(2+4+6+...+2n )+(22+24+ (22))=(2+2n )·n 2+4·(1-4n )1-4=n 2+n +4n +1-43.[例2] 解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),。

高考数学二轮复习专题1集合、常用逻辑用语、函数与导数第一讲集合与常用逻辑用语理

高考数学二轮复习专题1集合、常用逻辑用语、函数与导数第一讲集合与常用逻辑用语理

专题一 集合、常用逻辑用语、函数与导数第一讲 集合与常用逻辑用语一、集合的含义与表示 1.集合的含义. (1)集合中元素的性质.集合中的元素具有确定性、互异性、无序性三个特征. (2)元素与集合的关系.元素与集合的关系有属于、不属于两种. 2.集合的表示法⎩⎪⎨⎪⎧列举法,描述法,韦恩图.二、集合间的关系 1.包含关系.若任意元素x ∈A ,则x ∈B ,那么集合A 与B 的关系是A ⊆B . (1)相等关系:若A ⊆B 且A ⊇B ,则A =B .三、集合的运算 1.集合的三种运算.(1)并集:A ∪B ={x |x ∈A ,或x ∈B }; (2)交集:A ∩B ={x |x ∈A ,且x ∈B };(3)补集:∁U A ={x |x ∈U ,且x ∉A }其中U 为全集,A ⊆U . 2.运算性质及重要结论.(1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A ; (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A ; (3)A ∩∁U A =∅,A ∪∁U A =U ; (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A .1.四种命题.(1)四种命题之间的相互关系.(2)四种命题的真假关系.①两个命题互为逆否命题,它们有相同的真假性.②两个命题互为逆命题或否命题,它们的真假性没有关系.2.充分条件、必要条件与充要条件.(1)定义:对于“若p,则q”形式的命题,如果已知p⇒q,那么p是q的充分条件;如果q⇒p,那么p是q的必要条件;如果既有p⇒q,又有q⇒p,则记作p⇔q,就是说p 是q的充要条件.(2)若p⇒q但q⇒/p,则p是q的充分不必要条件;若q⇒p但p⇒/ q,则p是q的必要不充分条件.2.全称量词与全称命题.(1)全称量词:短语“对所有的”“对任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)全称命题:含有全称量词的命题叫做全称命题.3.特称量词(存在量词)与特称命题(存在性命题).(1)特称量词(存在量词):短语“存在一个”“至少有一个”等在逻辑中通常叫做特称量词(存在量词),用符号“∃”表示.(2)特称命题(存在性命题):含有特称量词(存在量词)的命题叫做特称命题(存在性命题).判断下面结论是否正确(请在括号中打“√”或“×”).(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(2)若{x2,1}={0,1},则x=0,1.(×)(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(4)若一个命题是真命题,则其逆否命题是真命题.(√) (5)“a =2”是“(a -1)(a -2)=0”的必要不充分条件.(×)(6)(2014·上海卷改编)设a ,b ∈R ,则“a +b >4”是“a >2且b >2”的充分条件.(×)1.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是(B )2.(2014·湛江一模)“α=π3”是“sin α=32”的(B ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件3.(2015·湖南卷)设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的(C ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:∵ A ∩B =A ⇔A ⊆B ,∴ “A ∩B =A ”是“A ⊆B ”的充要条件.4.(2015·安徽卷)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁U B )=(B)A .{1,2,5,6}B .{1}C .{2}D .{1,2,3,4}解析:∵ U ={1,2,3,4,5,6},B ={2,3,4},∴ ∁U B ={1,5,6},∴ A ∩(∁U B )={1}.一、选择题1.(2015·北京卷)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=(A)A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}解析:如图所示,易知A∩B={x|-3<x<2}.2.(2015·新课标Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为(D)A.5 B.4C.3 D.2解析:A∩B={x|x=3n+2,n∈N}∩{6,8,12,14}={8,14},答案选D.3.(2015·陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=(A)A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析:M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},M∪N=[0,1],故选A.4.(2015·湖南卷)设A,B是两个集合,则“A∩B=A”是“A⊆B”的(C)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵ A ∩B =A ⇔A ⊆B ,∴ “A ∩B =A ”是“A ⊆B ”的充要条件. 5.(2014·安徽卷)命题“∀x ∈R,|x |+x 2≥0”的否定是(C ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥0 二、填空题6.下列命题中,②④(填序号)为真命题. ①“A ∩B =A ”成立的必要条件是“”;②“若x 2+y 2=0,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题; ④“圆内接四边形对角互补”的逆否命题. 解析:①A ∩B =A ⇒A ⊆B 但不能得出,∴①不正确;②否命题为:“若x 2+y 2≠0,则x ,y 不全为0”,是真命题;③逆命题为:“若两个三角形是相似三角形,则这两个三角形全等”,是假命题;④原命题为真,而逆否命题与原命题是两个等价命题,所以逆否命题也为真命题.7.(2015·山东卷)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为1. 解析:由题意,原命题等价于tan x ≤m 在区间⎣⎢⎡⎦⎥⎤0,π4上恒成立,即y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值小于或等于m ,又y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值为1,所以m ≥1,即m 的最小值为1.三、解答题8.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,求实数m 的取值范围.解析:∵A ∪B =A ,∴B ⊆A .∵A ={x |x 2-3x -10≤0}={x |-2≤x ≤5}, ①若B =∅,则m +1>2m -1, 即m <2,∴m <2时,A ∪B =A . ②若B ≠∅,如图所示,则m +1≤2m -1,即m ≥2.由B ⊆A 得⎩⎪⎨⎪⎧-2≤m +1,2m -1≤5,解得-3≤m ≤3. 又∵m ≥2,∴2≤m ≤3.由①②知,当m ≤3时,A ∪B =A . 因此,实数m 的取值范围是(-∞,3].9.设p :方程x 2+mx +1=0有两个不等的负根,q :方程4x 2+4(m -2)x +1=0无实根.若“p ∨q ”为真,“p ∧q ”为假,求实数m 的取值范围.解析:若方程x 2+mx +1=0有两个不等的负根, 则⎩⎪⎨⎪⎧Δ=m 2-4>0,x 1+x 2=-m <0,∴m >2,即p :m >2.x 1x 2=1>0. 若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16<0, 即1<m <3,∴q :1<m <3.∵p ∨q 为真,则p ,q 至少一个为真,又p ∧q 为假,则p ,q 至少一个为假, ∴p ,q 一真一假,即p 真q 假或p 假q 真. ∴⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤2,1<m <3.∴m ≥3或1<m ≤2.故实数m 的取值范围为(1,2]∪[3,+∞).10.设a ,b ∈R,集合⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b ,0},求a 2 016+b 2 016的值. 思路点拨:因为a 为分母,所以a ≠0,从而ba=0,故b =0,进而知a 2=1,可求a ,b . 解析:由已知,得a ≠0,∴b a=0,即b =0. 则在集合{a 2,a +b ,0}中,a 2=1.∴a =±1. 又a =1时,不合题意,∴a =-1.∴a2016+b2016=(-1)2016=1.。

集合、常用逻辑用语,函数与导数,等式专题限时规范训练及详细答案

集合、常用逻辑用语,函数与导数,等式专题限时规范训练及详细答案

第1讲集合、常用逻辑用语[限时45分钟,满分60分]一、选择题(每小题5分,共40分)1.(2013·烟台一模)已知集合A={x|x>1},B={x|-1<x<2},则(∁R A)∩B等于A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2} D.{x|1<x<2}解析∁R A={x|x≤1},所以(∁R A)∩B={x|-1<x≤1},选B.答案 B2.(2013·东城模拟)若集合A={x|x≥0},且A∩B=B,则集合B可能是A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R解析因为A∩B=B,所以B⊆A,因为{1,2}⊆A,所以答案选A.答案 A3.若函数f(x)=x2+ax(a∈R),则下列结论正确的是A.∀a∈R,f(x)在(0,+∞)上是增函数B.∀a∈R,f(x)在(0,+∞)上是减函数C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数解析∵f′(x)=2x-ax2=2x3-ax2,∴A,B不正确.在C中,当a=0时,f(x)=x2是偶函数,C正确,显然f(x)不是奇函数,D不正确.答案 C4.(2013·丰台模拟)设全集U={1,3,5,7},集合M={1,|a-5|},∁U M={5,7},则实数a的值为A .2或-8B .-2或-8C .-2或8D .2或8解析 因为∁U M ={5,7},所以|a -5|=3,即a -5=3或a -5=-3,即a =8或2,选D. 答案 D5.(2013·滨州一模)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,4},则(∁U B )∪A 等于 A .{1,2} B .{2,3,4} C .{3,4}D .{1,2,3}解析 因为A ={1,2},B ={2,4},所以∁U B ={1,3}, 即(∁U B )∪A ={1,2,3},选D. 答案 D6.(2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析 ∵綈p 是q 的必要而不充分条件,∴q ⇒綈p ,但綈p ⇏q ,其逆否命题为p ⇒綈q ,但綈q ⇏p ,因为原命题与其逆否命题是等价命题,故选A.答案 A7.(2013·云南师大附中模拟)已知条件p :x 2-3x -4≤0;条件q :x 2-6x +9-m 2≤0,若p 是q 的充分不必要条件,则m 的取值范围是A .[-1,1]B .[-4,4]C .(-∞,-4]∪[4,+∞)D .(-∞,-1]∪[1,+∞)解析 p :-1≤x ≤4,记q :3-m ≤x ≤3+m (m >0)或3+m ≤x ≤3-m (m <0),依题意,⎩⎨⎧m >0,3-m ≤-1,3+m ≥4或⎩⎨⎧m <0,3+m ≤-1,3-m ≥4,解得m ≤-4或m ≥4.选C.答案 C8.(2013·烟台一模)已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使02x <0.下列选项中为真命题的是A .綈pB .(綈p )∨qC .(綈q )∧pD .q解析 命题p 为真,q 为假命题,所以(綈q )∧p 为真,选C. 答案 C二、填空题(每小题5分,共20分)9.(2013·德州一模)命题“∀x ∈R ,x 2-2x =0”的否定是________.解析 全称命题的否定是特称命题,所以命题“∀x ∈R ,x 2-2x =0”的否定是∃x ∈R ,x 2-2x ≠0.答案 ∃x ∈R ,x 2-2x ≠010.(2013·合肥模拟)若集合A ={y |y =x 13,-1≤x ≤1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =2-1x ,0<x ≤1,则A ∩B等于________.解析 A ={y |y =x 13,-1≤x ≤1}={y |-1≤y ≤1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =2-1x ,0<x ≤1={y |y ≤1}, 所以A ∩B ={y |-1≤y ≤1}=[-1,1]. 答案 [-1,1]11.设p :xx -2<0,q :0<x <m ,若p 是q 成立的充分不必要条件,则m 的取值范围是________.解析 不等式xx -2<0等价于x (x -2)<0,解之得0<x <2,即p :0<x <2.又p 是q 成立的充分不必要条件,∴{x |0<x <2}{x |0<x <m },故m >2. 答案 (2,+∞)12.给定下列四个命题:①“x =π6”是“sin x =12”的充分不必要条件; ②若“p ∨q ”为真,则“p ∧q ”为真; ③若a <b ,则am 2<bm 2; ④若集合A ∩B =A ,则A ⊆B .其中为真命题的是________(填上所有正确命题的序号).解析 ①中由x =π6⇒sin x =12,但sin x =12⇏x =π6,故①为真命题. ②中p ∨q 为真,但p 、q 不一定全为真命题, 则推不出p ∧q 为真,故②为假命题. ③中当m 2=0时不成立,故③为假命题. ④中A ∩B =A ⇔A ⊆B ,故④为真命题. 故答案为①④. 答案 ①④第2讲 函数、基本初等函数的图象性质[限时45分钟,满分60分]一、选择题(每小题5分,共45分) 1.函数f (x )=3x1-x+lg(2x -1)的定义域为 A .(-∞,1)B .(0,1]C .(0,1)D .(0,+∞)解析 要使函数有意义,则有⎩⎨⎧ 2x-1>01-x >0,即⎩⎨⎧x >0x <1,所以0<x <1,即函数定义域为(0,1),选C. 答案 C2.(2013·山东)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于 A .-2B .0C .1D .2解析 因为f (x )是奇函数, 所以f (-1)=-f (1)=-2. 答案 A3.(2013·衡水模拟)已知函数f (x )=⎩⎨⎧-log 2x ,x >0,1-x 2,x ≤0,则不等式f (x )>0的解集为 A .{x |0<x <1} B .{x |-1<x ≤0} C .{x |-1<x <1}D .{x |x >-1}解析 若x >0,由f (x )>0得,-log 2x >0, 解得0<x <1;若x ≤0,由f (x )>0,得1-x 2>0, 解得x 2<1,即-1<x ≤0. 综上-1<x <1,选C. 答案 C4.(2013·济南一模)函数y =x -13x 的图象大致为解析 函数为奇函数,图象关于原点对称,所以排除C ,D. 当x =1时,y =0,当x =8时, y =8-38=8-2=6>0,排除B ,选A. 答案 A5.(2013·浦东模拟)已知函数f (x )=14x +2,若函数y =f ⎝ ⎛⎭⎪⎫x +12+n 为奇函数,则实数n 为A .-12B .-14C.14D .0解析 据题意,y =f ⎝ ⎛⎭⎪⎫x +12+n =12142x +++n ,所以当x =0时,102142+++n =0,解得n =-14. 答案 B6.(2013·玉溪模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)解析 根据函数的性质作出函数f (x )的图象如图.把函数f (x )向右平移1个单位,得到函数f (x -1),如图,则不等式f (x -1)<0的解集为(0,2),选D.答案 D7.(2013·玉溪一中月考)函数f (x )=xx 2+a的图象不可能是解析 当a =0时,f (x )=x x 2+a=1x ,C 选项有可能. 当a ≠0时,f (0)=xx 2+a=0,所以D 图象不可能,选D.答案 D8.(2013·海淀模拟)若x ∈R ,n ∈N +,定义E n x =x (x +1)(x +2)…(x +n -1),例如E 4-4=(-4)·(-3)·(-2)·(-1)=24,则f (x )=x ·E 5x -2的奇偶性为A .偶函数不是奇函数B .奇函数不是偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析 由题意知f (x )=x E 5x -2=x (x -2)(x -1)x (x +1)(x +2)=x 2(x 2-4)(x 2-1),所以函数为偶函数,不是奇函数,选A.答案 A9.(2013·潮州一模)定义域为R 的奇函数f (x ),当x ∈(-∞,0)时,f (x )+xf ′(x )<0恒成立,若a =3f (3),b =(log π3)·f (log π3),c =-2f (-2),则A .a >c >bB .c >b >aC .c >a >bD .a >b >c解析 设g (x )=xf (x ),依题意得g (x )是偶函数, 当x ∈(-∞,0)时f (x )+xf ′(x )<0,即g ′(x )<0恒成立,故g (x )在x ∈(-∞,0)单调递减, 则g (x )在(0,+∞)上递增,a =3f (3)=g (3),b =(log π3)·f (log π3)=g (log π3),c =-2f (-2)=g (-2)=g (2). 又log π3<1<2<3,故a >c >b . 答案 A二、填空题(每小题5分,共15分)10.(2013·山东实验中学模拟)若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.解析 因为y =|a x -1|的图象是由y =|a x |向下平移一个单位得到,当a >1时,作出函数y =|a x -1|的图象如图,此时y =2a >2,如图只有一个交点,不成立.当0<a <1时,0<2a <2,要使两个函数的图象有两个公共点,则有0<2a <1,即0<a <12,所以a 的取值范围是⎝ ⎛⎭⎪⎫0,12.答案 ⎝ ⎛⎭⎪⎫0,1211.(2013·海淀模拟)已知函数f (x )=⎩⎨⎧a x, x >0,ax +3a -8, x ≤0,若函数f (x )的图象经过点(3,8),则a =________;若函数f (x )是 (-∞,+∞)上的增函数,那么实数a 的取值范围是________.解析 若函数f (x )的图象经过点(3,8), 则a 3=8,解得a =2.若函数f (x )是(-∞,+∞)上的增函数, 则有⎩⎨⎧ a >1f (0)≤1,即⎩⎨⎧a >13a -8≤1,所以⎩⎨⎧a >1a ≤3,即1<a ≤3,所以实数a 的取值范围是(1,3]. 答案 2 (1,3]12.(2013·西城模拟)已知函数f (x )的定义域为R .若∃常数c >0,对∀x ∈R ,有f (x +c )>f (x -c ),则称函数f (x )具有性质P .给定下列三个函数:①f (x )=2x ;②f (x )=sin x ;③f (x )=x 3-x . 其中,具有性质P 的函数的序号是________.解析 由题意可知当c >0时,x +c >x -c 恒成立,若对∀x ∈R ,有f (x +c )>f (x -c ). ①若f (x )=2x ,则由f (x +c )>f (x -c )得2x +c >2x -c ,即x +c >x -c ,所以c >0,恒成立. 所以①具有性质P .②若f (x )=sin x ,由f (x +c )>f (x -c )得sin(x +c )>sin(x -c ),整理cos x sin c >0,所以不存在常数c >0,对∀x ∈R ,有f (x +c )>f (x -c )成立,所以②不具有性质P .③若f (x )=x 3-x ,则由f (x +c )>f (x -c )得由(x +c )3-(x +c )>(x -c )3-(x -c ),整理得6x 2+c 2>2,所以当只要c >2,则f (x +c )>f (x -c )成立,所以③具有性质P ,所以具有性质P 的函数的序号是①③.答案 ①③第3讲 函数与方程及函数的应用[限时45分钟,满分75分]一、选择题(每小题4分,共24分) 1.函数f (x )=|x |-k 有两个零点,则 A .k <0B .k =0C .k >0D .0≤k <1解析 函数f (x )有两个零点,即方程|x |=k 有两个不等的实数根,在同一坐标系内作出函数y =|x |和y =k 的图象,如图所示,可知当k >0时,二者有两个交点,即f (x )有两个零点.答案 C2.若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表那么方程x 3+x 2-2x A .1.2B .1.3C .1.4D .1.5解析 根据所给表格与函数零点的存在性定理可知f (1.375)f (1.438)<0,即函数f (x )的零点在区间(1.375,1.438)内,故方程x 3+x 2-2x -2=0的一个近似根(精确到0.1)为1.4.答案 C3.(2013·惠州模拟)已知函数f (x )=3x +x -9的零点为x 0,则x 0所在区间为 A.⎣⎢⎡⎦⎥⎤-32,-12 B.⎣⎢⎡⎦⎥⎤-12,12 C.⎣⎢⎡⎦⎥⎤12,32D.⎣⎢⎡⎦⎥⎤32,52 解析 因为f (x )为增函数.又f ⎝ ⎛⎭⎪⎫32=27+32-9<0,f ⎝ ⎛⎭⎪⎫52=243+52-9>0.故选D. 答案 D4.已知f (x +1)=f (x -1),f (x )=f (-x +2),方程f (x )=0在[0,1]内有且只有一个根x =12,则f (x )=0在区间[0,2 013]内根的个数为A .2 011B .1 006C .2 013D .1 007解析 由f (x +1)=f (x -1),可知f (x +2)=f (x ),所以函数f (x )的周期是2, 由f (x )=f (-x +2)可知函数f (x )关于直线x =1对称, 因为函数f (x )=0在[0,1]内有且只有一个根x =12,所以函数f (x )=0在区间[0,2 013]内根的个数为2 013个,选C. 答案 C5.设函数f (x )=x 3-4x +a (0<a <2)有三个零点x 1、x 2、x 3,且x 1<x 2<x 3,则下列结论正确的是A .x 1>-1B .x 2<0C .0<x 2<1D .x 3>2解析 因为f (-3)=a -15<0,f (-1)=3+a >0,f (0)=a >0,f (1)=a -3<0,f (2)=a >0,所以函数的三个零点分别在(-3,-1),(0,1),(1,2)之间,又因为x 1<x 2<x 3,所以-3<x 1<-1,0<x 2<1<x 3<2,选C.答案 C6.(2013·滨州一模)定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧log 12(x +1),x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数F (x )=f (x )-a,0<a <1的所有零点之和为A .1-2aB .2a -1C .1-2-aD .2-a -1解析 当0≤x <1时,f (x )≤0.当x ≥1时,函数f (x )=1-|x -3|,关于x =3对称,当x ≤-1时,函数关于x =-3对称,由F (x )=f (x )-a =0,得y =f (x ),y =a .所以函数F (x )=f (x )-a 有5个零点.当-1≤x <0时,0<-x ≤1,所以f (-x )=12log (-x +1)=-log 2(1-x ),即f (x )=log 2(1-x ),-1≤x <0.由f (x )=log 2(1-x )=a ,解得x =1-2a ,因为函数f (x )为奇函数,所以函数F (x )=f (x )-a,0<a <1的所有零点之和为x =1-2a ,选A.答案 A二、填空题(每小题5分,共15分)7.方程12log (a -2x )=2+x 有解,则a 的最小值为________.解析 方程12log (a -2x)=2+x 等价为⎝ ⎛⎭⎪⎫122+x=a -2x ,即a =2x +⎝ ⎛⎭⎪⎫122+x =2x +14×12x ≥22x ×14×12x =1,当且仅当2x =14×12x ,即2x =12,x =-1时取等号,所以a 的最小值为1. 答案 18.(2013·滨州一模)定义在R 上的偶函数f (x ),且对任意实数x 都有f (x +2)=f (x ),当x ∈[0,1)时,f (x )=x 2,若在区间[-1,3]内,函数g (x )=f (x )-kx -k 有4个零点,则实数k 的取值范围是________.解析 由f (x +2)=f (x )得函数的周期为2.由g (x )=f (x )-kx -k =0,得f (x )=kx +k =k (x +1),分别作出函数y =f (x ),y =k (x +1)的图象,要使函数有4个零点,则直线y =k (x +1)的斜率0<k ≤k AB ,因为k AB =1-03-(-1)=14,所以0<k ≤14,即实数k 的取值范围是⎝ ⎛⎦⎥⎤0,14.答案 ⎝ ⎛⎦⎥⎤0,149.(2013·房山区一模)某商品在最近100天内的单价f (t )与时间t 的函数关系是f (t )=⎩⎪⎨⎪⎧t 4+22, 0≤t <40,t ∈N ,-t 2+52, 40≤t ≤100,t ∈N ,日销售量g (t )与时间t 的函数关系是g (t )=-t 3+1093,0≤t ≤100,t ∈N .则这种商品的日销售额的最大值为________.解析 由条件可知,当0≤t <40,t ∈N 时,这种商品的日销售额为y =⎝ ⎛⎭⎪⎫t 4+22⎝ ⎛⎭⎪⎫-t 3+1093,则当t =10或t =11时,y max =808.5;当40≤t ≤100,t ∈N 时,这种商品的日销售额为y =⎝ ⎛⎭⎪⎫-t 2+52⎝ ⎛⎭⎪⎫-t 3+1093,则当t =100时,y max =736. 答案 808.5三、解答题(每小题12分,共36分)10.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是p =⎩⎨⎧t +20, 0<t <25,t ∈N ,-t +100, 25≤t ≤30,t ∈N .该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40,0<t ≤30,t ∈N ,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?解析 由题意得y =pQ =⎩⎨⎧(-t +40)(t +20), 0<t <25,(-t +40)(-t +100), 25≤t ≤30,所以当0<t <25时,y max =f (10)=900, 当25≤t ≤30时,y max =f (25)=1 125, 综上所述,y max =f (25)=1 125.所以这种商品的日销售金额的最大值为1 125元,是30天中的第25天.11.已知函数f (x )=ax 2+bx +c (a ,b ,c ∈R ,a ≠0),f (-2)=f (0)=0,f (x )的最小值为-1. (1)求函数f (x )的解析式;(2)设函数h (x )=12[()]n f x ---1,若函数h (x )在其定义域上不存在零点,求实数n 的取值范围. 解析 (1)由题意设f (x )=ax (x +2), ∵f (x )的最小值为-1,∴a >0,且f (-1)=-1,∴a =1,∴f (x )=x 2+2x .(2)∵函数h (x )=12[()]n f x ---1在定义域内不存在零点,必须且只须有n -f (x )>0有解,且n -f (x )=1无解.∴n >f min (x ),且n 不属于f (x )+1的值域. 又∵f (x )=x 2+2x =(x +1)2-1,∴f (x )的最小值为-1,f (x )+1的值域为[0,+∞), ∴n >-1,且n <0, ∴n 的取值范围为(-1,0).12.祖国大陆开放台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作实验区和台湾农业创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务.某台商到大陆创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万元.设f (n )表示前n 年的纯收入(f (n )=前n 年的总收入-前n 年的总支出-投资额).(1)从第几年开始获取纯利润?(2)若干年后,该台商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂,问哪种方案最合算?解析 (1)设从第n 年开始获取纯利润,则f (n )=50n -⎣⎢⎡⎦⎥⎤12n +n (n -1)2·4+72=-2n 2+40n -72>0, 整理得n 2-20n +36<0,解得:2<n <18, ∴从第三年开始获取纯利润.(2)方案1 年平均利润为f (n )n =-2n 2+40n -72n =40-2⎝ ⎛⎭⎪⎫n +36n ≤40-4 n ·36n =16,当且仅当n =36n ,即n =6时取等号, ∴总利润为y 1=16×6+48=144(万元).方案2 纯利润总和为f (n )=-2n 2+40n -72=-2(n -10)2+128, ∴n =10时,f (n )max =128,∴总利润为y 2=128+16=144(万元). 由于方案1用时较短,故方案1最合算.第4讲 不等式[限时45分钟,满分75分]一、选择题(每小题4分,共24分) 1.下列不等式可以推出a <b 的是 A .ac 2<bc 2B.1a >1b C .a 2<b 2D.a c <b c解析 因为ac 2<bc 2,所以c ≠0,即c 2>0,故ac 2<bc 2⇒a <b ,选A ;对于B ,当a =1,b =-1时,满足1a >1b ,但a >b ;对于C ,当a =1,b =-2时,满足a 2<b 2,但a >b ;对于D ,当c <0时,有a >b .答案 A2.若点(a ,a )和点(a +2,a )分别在直线x +y -3=0的两侧,则实数a 的取值范围是 A .(-∞,1)∪(3,+∞) B .(1,3) C.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞D.⎝ ⎛⎭⎪⎫12,32 解析 据题意知(a +a -3)(a +2+a -3)<0,即(2a -3)(2a -1)<0,解得12<a <32,故选D. 答案 D3.已知函数f (x )=⎩⎨⎧-1, x ≥0,x 2-1, x <0,则满足不等式f (3-x 2)<f (2x )的x 的取值范围为A .[-3,0)B .(-3,0)C .(-3,1)D .(-3,-3)解析 由函数图象可知,函数f (x )在(-∞,0)上单调递减,在(0,+∞)上是一条平行于x 轴的射线,则原不等式的解为⎩⎨⎧3-x 2>2x ,2x <0,即x ∈(-3,0),故选B.答案 B4.(2013·深圳模拟)已知a >0,c >0,设二次函数f (x )=ax 2-4x +c (x ∈R )的值域为[0,+∞),则1c +9a 的最小值为A .3B.92C .5D .7解析 因为二次函数f (x )=ax 2-4x +c (x ∈R )的值域为[0,+∞),所以Δ=16-4ac =0,即ac =4,1ac =14,又1c +9a =2 1c ×9a =29ac =294=3,当且仅当1c =9a ,ac =4,即c =23,a =6时等号成立.答案 A5.(2013·潍坊一模)在约束条件⎩⎪⎨⎪⎧y ≤x y ≥12xx +y ≤1下,目标函数z =x +12y 的最大值为A.14B.34C.56D.53解析 由z =x +12y 得y =-2x +2z .作出可行域如图阴影部分,平移直线y =-2x +2z ,由平移可知,当直线经过点C 时,直线y =-2x +2z 的截距最大,此时z 最大.由⎩⎪⎨⎪⎧y =12xx +y =1,解得⎩⎪⎨⎪⎧x =23y =13,代入z =x +12y 得z =23+12×13=56,选C.答案 C6.(2013·枣庄一模)设z =x +y ,其中实数x ,y 满足⎩⎨⎧x +2y ≥0x -y ≤00≤y ≤k,若z 的最大值为6,则z 的最小值为A .-3B .-2C .-1D .0解析 由z =x +y 得y =-x +z ,作出⎩⎨⎧x +2y ≥0,x -y ≤0的区域BCO ,平移直线y =-x +z ,由图象可知当直线经过C 时,直线的截距最大,此时z =6,由⎩⎨⎧ y =x y =-x +6解得⎩⎨⎧x =3y =3,所以k =3,解得B (-6,3)代入z =x +y 的最小值为z =-6+3=-3,选A.答案 A二、填空题(每小题5分,共15分)7.已知不等式x 2+mx +n <0的解集是{x |-1<x <6},则mx +n >0的解集是________.解析 据题意知x 2+mx +n =0的两根为-1和6,由根与系数关系得m =-5,n =-6,则不等式mx +n >0为-5x -6>0,其解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-65. 答案⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-65 8.(2013·杭州一模)若正数x ,y 满足2x +y -3=0,则x +2yxy 的最小值为________. 解析 由题意:2x +y -3=0⇒2x 3+y3=1,x +2y xy =2x +1y =⎝ ⎛⎭⎪⎫2x +1y ·⎝ ⎛⎭⎪⎫2x 3+y 3=23⎝ ⎛⎭⎪⎫y x +x y +53≥23·2+53=3. 答案 39.(2013·滨州一模)设实数x ,y 满足约束条件⎩⎨⎧x -2y ≤0,2x -y ≥0,x 2+y 2-2x -2y ≤0,则目标函数z =x +y 的最大值为________.解析 由z =x +y 得y =-x +z .作出不等式组对应的区域,平移直线y =-x +z ,由图象可知,当直线y =-x +z 与圆在第一象限相切时,直线y =-x +z 的截距最大,此时z 最大.直线与圆的距离d =|z |2=2,即z =±4,所以目标函数z =x +y 的最大值是4.答案 4三、解答题(每小题12分,共36分)10.已知不等式ax 2-3x +2>0的解集为{x |x <1,或x >b }. (1)求a 、b 的值;(2)解关于x 的不等式x 2-b (a +c )x +4c >0.解析 (1)由题意知a >0且1,b 是方程ax 2-3x +2=0的根, ∴a =1;又1×b =2a ,∴b =2.(2)不等式可化为x 2-2(c +1)x +4c >0, 即(x -2c )(x -2)>0,当2c >2,即c >1时不等式的解集为{x |x <2,或x >2c }, 当2c =2,即c =1时不等式的解集为{x |x ≠2},当2c <2,即c <1时不等式的解集为{x |x >2,或x <2c }, 综上:当c >1时不等式的解集为{x |x <2,或x >2c }, 当c =1时不等式的解集为{x |x ≠2}.当c <1时不等式的解集为{x |x >2,或x <2c }. 11.已知函数f (x )=x 2+12x +a ,a ∈R . (1)当a =-1516时,解不等式f (x )<0;(2)当a =-⎝ ⎛⎭⎪⎫12n时,若对任意n ∈N +,当x ∈(-∞,λ]时不等式f (x )≥0恒成立,求实数λ的取值范围.解析 (1)把a =-1516代入f (x )=x 2+12x +a <0得x 2+12x -1516<0,即16x 2+8x -15<0,分解因式得(4x -3)(4x +5)<0,解之得-54<x <34,所以不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-54<x <34. (2)当a =-⎝ ⎛⎭⎪⎫12n 时,由f (x )=x 2+12x -⎝ ⎛⎭⎪⎫12n ≥0,得x 2+12x ≥⎝ ⎛⎭⎪⎫12n,即x 2+12x ≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12n max 恒成立,因为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12n max =12,即x 2+12x ≥12在x ∈(-∞,λ]时恒成立.令y =x 2+12x ,则y =x 2+12x =⎝ ⎛⎭⎪⎫x +142-116,二次函数图象的开口向上,且对称轴为x =-14, 令y =x 2+12x =12, 解得x =-1,或x =12,结合二次函数y =x 2+12x 的图象可知,要使当x ∈(-∞,λ]时不等式x 2+12x ≥12恒成立,则λ≤-1.12.城建部门计划在浑南新区建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A 1B 1=x 米,求公园ABCD 所占面积S 关于x 的函数S (x )的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?解析 (1)由A 1B 1=x ,知B 1C 1=4 000x ,S =(x +20)⎝ ⎛⎭⎪⎫4 000x +8=4 160+8x +80 000x (x >0).(2)S =4 160+8x +80 000x ≥4 160+28x ·80 000x=5 760, 当且仅当8x =80 000x ,即x =100时取等号.∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.第5讲 导数的简单应用[限时45分钟,满分75分]一、选择题(每小题4分,共24分)1.(2013·邯郸模拟)设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为A .y =3x +1B .y =-3xC .y =-3x +1D .y =3x -3解析 函数的导数为f ′(x )=3x 2+2ax +(a -3),若f ′(x )为偶函数,则a =0,所以f (x )=x 3-3x ,f ′(x )=3x 2-3.所以f ′(0)=-3.所以在原点处的切线方程为y =-3x ,选B.答案 B2.已知f (x )=ax 3+bx 2+c ,其导函数f ′(x )的图象如图,则函数f (x )的极小值是A .a +b +cB .8a +4b +cC .3a +2bD .c解析 由导函数f ′(x )的图象知当x <0时,f ′(x )<0,当0<x <2时,f ′(x )>0,所以函数f (x )的极小值为f (0)=c ,选D.答案 D3.曲线y =13x 3+x 在点⎝ ⎛⎭⎪⎫1,43处的切线与坐标轴围成的三角形面积为 A.29B.19C.13D.23解析 y ′=f ′(x )=x 2+1,在点⎝ ⎛⎭⎪⎫1,43的切线斜率为k =f ′(1)=2.所以切线方程为y -43=2(x-1),即y =2x -23,与坐标轴的交点坐标为⎝ ⎛⎭⎪⎫0,-23,⎝ ⎛⎭⎪⎫13,0,所以三角形的面积为12×13×⎪⎪⎪⎪⎪⎪-23=19,选B.答案 B4.函数f (x )=x 3+3x 2+3x -a 的极值点的个数是A .2B .1C .0D .由a 确定 解析 函数的导数为f ′(x )=3x 2+6x +3=3(x 2+2x +1)=3(x +1)2≥0,所以函数f (x )在定义域上单调递增,所以没有极值点,选C.答案 C5.若函数y =e (a -1)x +4x (x ∈R )有大于零的极值点,则实数a 的范围是A .a >-3B .a <-3C .a >-13D .a <-13解析 因为函数y =e (a -1)x +4x ,所以y ′=(a -1)e (a -1)x +4(a <1),所以函数的零点为x 0=1a -1ln 4-a +1. 因为函数y =e (a -1)x +4x (x ∈R )有大于零的极值点,故1a -1ln 4-a +1>0,得到a <-3,选B. 答案 B6.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .R 解析 令g (x )=f (x )-(2x +4),则g ′(x )=f ′(x )-2>0,∴g (x )在R 上单调递增.又∵g (-1)=f (-1)-(-2+4)=0,∴g (x )>0,即f (x )>2x +4的解集为(-1,+∞).答案 B二、填空题(每小题5分,共15分)7.(2013·临沂模拟)若曲线f (x )=x ,g (x )=x a 在点P (1,1)处的切线分别为l 1,l 2,且l 1⊥l 2,则a 的值为________.解析f′(x)=12x,g′(x)=ax a-1,所以在点P处的斜率分别为k1=12,k2=a.因为l1⊥l2,所以k1k2=a2=-1,所以a=-2.答案-28.函数f(x)=x(e x-1)-12x2的单调增区间为________.解析f′(x)=e x-1+x·e x-x=(e x-1)(x+1),令f′(x)>0,解得x<-1或x>0,所以f(x)的单调增区间为(-∞,-1)和(0,+∞).答案(-∞,-1)和(0,+∞)9.若函数f(x)=x-a x+ln x(a为常数)在定义域上是增函数,则实数a的取值范围是________.解析∵f(x)=x-a x+ln x在(0,+∞)上是增函数,∴f′(x)=1-a2x+1x≥0在(0,+∞)上恒成立,即a≤2x+2x.而2x+2x≥22x×2x=4,当且仅当x=1x,即x=1时等号成立,∴a≤4.答案(-∞,4]三、解答题(每小题12分,共36分)10.(2013·杭州一模)设函数f(x)=x2-(a+2)x+a ln x,(其中a>0).(1)当a=1时,求函数f(x)的极小值;(2)当a=4时,给出直线l1:5x+2y+m=0和l2:3x-y+n=0,其中m,n为常数,判断直线l1或l2中,是否存在函数f(x)的图象的切线?若存在,求出相应的m或n的值,若不存在,说明理由.解析(1)当a=1时,f′(x)=2x-3+1x=(x-1)(2x-1)x,当0<x<12时,f′(x)>0;当12<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以当x=1时,f(x)取极小值-2.(2)当a =4时,f ′(x )=2x +4x -6.∵x >0,∴f ′(x )=2x +4x -6≥42-6,故l 1中,不存在函数图象的切线.由2x +4x -6=3得x =12与x =4,当x =12时,求得n =-174-4ln 2,当x =4时,求得n =4ln 4-20.11.(2013·惠州模拟)已知f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线与函数f (x ),g (x )的图象都相切于点(1,0).(1)求直线的方程及g (x )的解析式;(2)若h (x )=f (x )-g ′(x )(其中g ′(x )是g (x )的导函数),求函数h (x )的极大值.解析 (1)直线是函数f (x )=ln x 在点(1,0)处的切线,故其斜率k =f ′(1)=1,∴直线的方程为y =x -1.又因为直线与g (x )的图象相切,且切于点(1,0),∴g (x )=13x 3+12x 2+mx +n 在点(1,0)的导函数值为1,∴⎩⎨⎧ g (1)=0g ′(1)=1⇒⎩⎪⎨⎪⎧ m =-1n =16,∴g (x )=13x 3+12x 2-x +16.(2)∵h (x )=f (x )-g ′(x )=ln x -x 2-x +1(x >0),∴h ′(x )=1x -2x -1=1-2x 2-x x =-(2x -1)(x +1)x, 令h ′(x )=0,得x =12或x =-1(舍),当0<x <12时,h ′(x )>0,h (x )递增;当x >12时,h ′(x )<0,h (x )递减,因此,当x =12时,h (x )取得极大值,∴[h (x )]极大=h ⎝ ⎛⎭⎪⎫12=ln 12+14.12.(2013·大兴区一模)已知函数f (x )=x -a (x -1)2,x ∈(1,+∞). (1)求函数f (x )的单调区间;(2)函数f (x )在区间[2,+∞)上是否存在最小值?若存在,求出最小值,若不存在,请说明理由.解析 (1)f ′(x )=(x -1)(-x +2a -1)(x -1)4,x ∈(1,+∞). 由f ′(x )=0,得x 1=1,或x 2=2a -1.①当2a -1≤1,即a ≤1时,在(1,+∞)上,f ′(x )<0,f (x )单调递减;②当2a -1>1,即a >1时,在(1,2a -1)上,f ′(x )>0,f (x )单调递增,在(2a -1,+∞)上,f ′(x )<0,f (x )单调递减.综上所述:a ≤1时,f (x )的减区间为(1,+∞);a >1时,f (x )的增区间为(1,2a -1),f (x )的减区间为(2a -1,+∞).(2)①当a ≤1时,由(1)f (x )在[2,+∞)上单调递减,不存在最小值;②当a >1时,若2a -1≤2,即a ≤32时,f (x )在[2,+∞)上单调递减,不存在最小值;若2a -1>2,即a >32时,f (x )在[2,2a -1)上单调递增,在(2a -1,+∞)上单调递减,因为f (2a -1)=a -1(2a -2)2>0, 且当x >2a -1时,x -a >a -1>0,所以x ≥2a -1时,f (x )>0.又因为f (2)=2-a ,所以当2-a ≤0,即a ≥2时,f (x )有最小值2-a ;2-a >0,即32<a <2时,f (x )没有最小值.综上所述:当a ≥2时,f (x )有最小值2-a ;当a <2时,f (x )没有最小值.第6讲 导数的综合应用和定积分[限时45分钟,满分75分]一、选择题(每小题4分,共24分)1.(2013·山师大附中模拟)设a =⎠⎛01cos x d x ,b =⎠⎛01sin x d x ,下列关系式成立的是 A .a >b B .a +b <1 C .a <b D .a +b =1解析 a =⎠⎛01cos x d x =sin x |10=sin 1, b =⎠⎛01sin x d x =(-cos x ) |10=1-cos 1, 所以a =sin 1>sin π6=12.又cos 1>cos π3=12,所以-cos 1<-12,b =1-cos 1<1-12=12,所以a >b ,选A.答案 A2.(2013·惠州模拟)如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x (x >0)图象下方的阴影部分区域,则阴影部分E 的面积为A .ln 2B .1-ln 2C .2-ln 2D .1+ln 2解析 S =1×1+⎠⎛121y d y =1+ln y |21=1+ln 2.故选D. 答案 D3.(2013·宿州模拟)方程x 3-6x 2+9x -10=0的实根个数是A .3B .2C .1D .0解析 设f (x )=x 3-6x 2+9x -10,f ′(x )=3x 2-12x +9=3(x -1)(x -3),由此可知函数的极大值为f (1)=-6<0,极小值为f (3)=-10<0,所以方程x 3-6x 2+9x -10=0的实根个数为1个,选C.答案 C4.(2013·郑州模拟)设函数f (x )=x n+x -1(n ∈N +,n ≥2),则f (x )在区间⎝ ⎛⎭⎪⎫12,1内 A .存在唯一的零点x n ,且数列x 2,x 3,…,x n …单调递增B .存在唯一的零点x n ,且数列x 2,x 3,…,x n …单调递减C .存在唯一的零点x n ,且数列x 2,x 3,…,x n …非单调数列D .不存在零点解析 f ′(x )=nx n -1+1,因为n ≥2,x ∈⎝ ⎛⎭⎪⎫12,1,所以f ′(x )>0, 所以函数在⎝ ⎛⎭⎪⎫12,1上单调递增. f (1)=1+1-1=1>0,f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12n +12-1=⎝ ⎛⎭⎪⎫12n -12.因为n ≥2,所以f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12n -12<0, 所以函数在⎝ ⎛⎭⎪⎫12,1上只有一个零点,选A. 答案 A5.(2013·诸城市高三月考)对于R 上可导的任意函数f (x ),若满足1-x f ′(x )≤0,则必有 A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1) 解析 当x <1时,f ′(x )<0,此时函数递减.当x >1时,f ′(x )>0,此时函数递增,即当x =1,函数取得极小值同时也是最小值f (1),所以f (0)>f (1),f (2)>f (1),即f (0)+f (2)>2f (1),选A.答案 A6.若直线y =m 与y =3x -x 3的图象有三个不同的交点,则m 的取值范围为A .-2<m <2B .-2≤m ≤2C .m <-2或m >2D .m ≤-2或m ≥2 解析 y ′=3(1-x )(1+x ),由y ′=0得x =±1,∴y 极大=2,y 极小=-2,∴-2<m <2.答案 A二、填空题(每小题5分,共15分)7.由曲线y =x 2和直线x =0,x =1,y =t 2,t ∈(0,1)所围成的图形(如图阴影部分)的面积的最小值为________.解析 S =⎠⎛0t (t 2-x 2)d x +⎠⎛t1(x 2-t 2)d x =⎝ ⎛⎭⎪⎫t 2x -13x 3 |t 0+⎝ ⎛⎭⎪⎫13x 3-t 2x |1t =43t 3-t 2+13,t ∈(0,1). S ′=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12,S (t )在⎝ ⎛⎭⎪⎫0,12上是减函数,在⎝ ⎛⎭⎪⎫12,1上是增函数, 则S 最小=S ⎝ ⎛⎭⎪⎫12=43×18-14+13=14. 答案 148.函数y =x +2cos x 在⎣⎢⎡⎦⎥⎤0,π2上取得最大值时,x 的值为________. 解析 y ′=(x +2cos x )′=1-2sin x ,令1-2sin x =0,且x ∈⎣⎢⎡⎦⎥⎤0,π2时,x =π6. 当x ∈⎣⎢⎡⎦⎥⎤0,π6时,f ′(x )≥0,f (x )是单调增函数, 当x ∈⎣⎢⎡⎦⎥⎤π6,π2时,f ′(x )≤0,f (x )单调递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫π6. 答案 π69.(2013·盘锦模拟)若函数f (x )=x 3-3x +a 有三个不同的零点,则实数a 的取值范围是________.解析 由f (x )=x 3-3x +a =0,得f ′(x )=3x 2-3,当f ′(x )=3x 2-3=0,得x =±1,由图象可知f 极大值(-1)=2+a ,f 极小值(1)=a -2,要使函数f (x )=x 3-3x +a 有三个不同的零点,则有f 极大值(-1)=2+a >0,f 极小值(1)=a -2<0,即-2<a <2,所以实数a 的取值范围是(-2,2).答案 (-2,2)三、解答题(每小题12分,共36分)10.(2013·开封模拟)设函数f (x )=2ln(x -1)-(x -1)2.(1)求函数f (x )的单调递增区间;(2)若关于x 的方程f (x )+x 2-3x -a =0在区间[2,4]内恰有两个相异的实根,求实数a 的取值范围.解析 (1)f (x )的定义域为(1,+∞).f′(x)=2x-1-2(x-1)=2x(2-x)x-1.由f′(x)>0得1<x<2,∴f(x)的单调递增区间为(1,2).(2)∵f(x)=2ln(x-1)-(x-1)2,∴f(x)+x2-3x-a=0⇔x+a+1-2ln(x-1)=0. 即a=2ln(x-1)-x-1,令h(x)=2ln(x-1)-x-1.∵h′(x)=2x-1-1=3-xx-1,且x>1,由h′(x)>0得1<x<3,h′(x)<0得x>3.∴h(x)在区间[2,3]内单调递增,在区间[3,4]内单调递减.∵h(2)=-3,h(3)=2ln 2-4,h(4)=2ln 3-5.又h(2)<h(4),故f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异实根⇔h(4)≤a<h(3).即2ln 3-5≤a<2ln 2-4.综上所述,a的取值范围是[2ln 3-5,2ln 2-4).11.(2013·雅安模拟)已知函数f(x)=(x+1)ln x-x+1.(1)若xf′(x)≤x2+ax+1,求a的取值范围;(2)证明:(x-1)f(x)≥0.解析(1)f′(x)=x+1x+ln x-1=ln x+1x,xf′(x)=x ln x+1,题设xf′(x)≤x2+ax+1等价于ln x-x≤a.令g(x)=ln x-x,则g′(x)=1x-1.当0<x<1时,g′(x)>0;当x≥1时,g′(x)≤0,所以x=1是g(x)的最大值点,g(x)≤g(1)=-1.综上,a的取值范围是[-1,+∞).(2)证明由(1)知,g(x)≤g(1)=-1.即ln x-x+1≤0.当0<x<1时,f(x)=(x+1)ln x-x+1=x ln x+(ln x-x+1)≤0.当x ≥1时,f (x )=ln x +(x ln x -x +1)=ln x +x ⎝ ⎛⎭⎪⎫ln x +1x -1=ln x -x ⎝ ⎛⎭⎪⎫ln 1x -1x +1≥0. 所以(x -1)f (x )≥0.12.(2013·合肥模拟)已知函数f 1(x )=12x 2,f 2(x )=a ln x (其中a >0).(1)求函数f (x )=f 1(x )·f 2(x )的极值;(2)若函数g (x )=f 1(x )-f 2(x )+(a -1)x 在区间⎝ ⎛⎭⎪⎫1e ,e 内有两个零点,求正实数a 的取值范围; (3)求证:当x >0时,ln x +34x 2-1e x >0.(说明:e 是自然对数的底数,e =2.718 28...)解析 (1)f (x )=f 1(x )·f 2(x )=12ax 2·ln x ,∴f ′(x )=ax ln x +12ax =12ax (2ln x +1)(x >0,a >0),由f ′(x )>0,得x >e -12,由f ′(x )<0,得0<x <e -12,故函数f (x )在⎝⎛⎭⎪⎫0,e -12上单调递减,在(e -12,+∞)上单调递增, 所以函数f (x )的极小值为f (e -12)=-a 4e ,无极大值.(2)函数g (x )=12x 2-a ln x +(a -1)x ,则g ′(x )=x -a x +(a -1)=x 2+(a -1)x -a x =(x +a )(x -1)x, 令g ′(x )=0.∵a >0,解得x =1,或x =-a (舍去), 当0<x <1时,g ′(x )<0,g (x )在(0,1)上单调递减; 当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增.函数g (x )在区间⎝ ⎛⎭⎪⎫1e ,e 内有两个零点, 只需⎩⎪⎨⎪⎧ g ⎝ ⎛⎭⎪⎫1e >0,g (1)<0,g (e )>0,即⎩⎪⎨⎪⎧ 12e 2+a -1e +a >0,12+a -1<0,e 22+(a -1)e -a >0,- 31 - ∴⎩⎪⎨⎪⎧ a >2e -12e 2+2e ,a <12,a >2e -e 22e -2,故实数a 的取值范围是⎝ ⎛⎭⎪⎫2e -12e 2+2e ,12.(3)证明 问题等价于x 2ln x >x 2e x -34.由(1)知f (x )=x 2ln x 的最小值为-12e .设h (x )=x 2e x -34,由h ′(x )=-x (x -2)e x 得h (x )在(0,2)上单调递增,在(2,+∞)上单调递减. ∴h (x )max =h (2)=4e 2-34. ∵-12e -⎝ ⎛⎭⎪⎫4e 2-34=34-12e -4e 2=3e 2-2e -164e 2 =(3e -8)(e +2)4e 2>0,∴f (x )min >h (x )max ,∴x 2ln x >x 2e x -34, 故当x >0时,ln x +34x 2-1e x >0.。

2019高考数学复习专题-集合、常用逻辑用语、函数与导数、不等式(1)附解析

2019高考数学复习专题-集合、常用逻辑用语、函数与导数、不等式(1)附解析

特色专项考前增分集训小题对点练(一)集合、常用逻辑用语、函数与导数、不等式(1)(建议用时:40分钟)(对应学生用书第113页)一、选择题1.已知集合A={x∈N|x<3},B={x|x=a-b,a∈A,b∈A},则A∩B=( )A.{1,2} B.{-2,-1,1,2}C.{1} D.{0,1,2}D[因为A={x∈N|x<3}={0,1,2},B={x|x=a-b,a∈A,b∈A}={-2,-1,0,1,2},所以A∩B={0,1,2}.]2.(2018·全国卷Ⅰ)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2x B.y=-xC.y=2x D.y=xD[法一:因为函数f(x)=x3+(a-1)x2+ax为奇函数,所以f(-x)=-f(x),所以(-x)3+(a-1)(-x)2+a(-x)=-[x3+(a-1)x2+ax],所以2(a-1)x2=0,因为x ∈R,所以a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二:因为函数f(x)=x3+(a-1)x2+ax为奇函数,所以f(-1)+f(1)=0,所以-1+a -1-a+(1+a-1+a)=0,解得a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法三:易知f(x)=x3+(a-1)x2+ax=x[x2+(a-1)x+a],因为f(x)为奇函数,所以函数g(x)=x2+(a-1)x+a为偶函数,所以a-1=0,解得a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.] 3.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是( )A .∀x ∈R ,f (-x )≠f (x )B .∀x ∈R ,f (-x )≠-f (x )C .∃x 0∈R ,f (-x 0)≠f (x 0)D .∃x 0∈R ,f (-x 0)≠-f (x 0)C [∵定义域为R 的函数f (x )不是偶函数,∴∀x ∈R ,f (-x )=f (x )为假命题,∴∃x 0∈R ,f (-x 0)≠f (x 0)为真命题,故选C.]4.定积分x 2-x d x 的值为( )A .π4B .π2C .πD .2πA [∵y =x 2-x ,∴(x -1)2+y 2=1表示以(1,0)为圆心,以1为半径的圆, ∴定积分x 2-x d x 等于该圆的面积的四分之一,5.(2018·衡水中学模拟)已知a =17117,b =log 1617,c =log 1716,则a ,b ,c的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >aA [由题易知a =17117>1,b =log 1617=12log 1617∈⎝ ⎛⎭⎪⎫12,1,c =log 1716=12log 1716∈⎝ ⎛⎭⎪⎫0,12,∴a >b >c ,故选A.]6.(2018·衡水金卷)已知函数f (x )=x 2-(2a -1)x -1(其中a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞上单调递增,则函数g (x )=1log a x -1的定义域为( ) A .(-∞,a )B .(0,a )C .(0,a ]D .(a ,+∞)B [因为函数f (x )=x 2-(2a -1)x -1(其中a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞上单调递增,所以2a -12≤12,∵a >0,a ≠1,∴0<a <1.令log a x -1>0,∴0<x <a ,选B.]7.(2016·全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )A BC DD [∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x . 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.] 8.已知xy =1,且0<y <22,则x 2+4y 2x -2y的最小值为( )A .4 B.92 C .22D .42A [因为xy =1且0<y <22,可知x >2,所以x -2y >0.x 2+4y 2x -2y=x -2y 2+4xyx -2y=x -2y +4x -2y≥4,当且仅当x =3+1,y =3-12时等号成立.故选A.] 9.已知在平面直角坐标系中,点P 是不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +y -1≥0,3x +y -3≤0所表示的平面区域内的动点,Q 是直线3x +y =0上任意一点,O 是坐标原点,则|OP →-OQ →|的最小值为( )A.1010B.31010C.22D .3A[作出不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +y -1≥0,3x +y -3≤0所表示的平面区域如图中阴影部分所示.|OP →-OQ →|=|QP →|,数形结合可知点A (0,1)到直线3x +y =0的距离d 为|QP →|的最小值,d =|0+1|9+1=1010,所以|OP →-OQ →|的最小值为1010.] 10.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a 、b 、c 、d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是( )A .(21,25)B .(21,24)C .(20,24)D .(20,25)B [画出f (x )的图象,如图.由图象知0<a <1,1<b <3,则f (a )=|log 3a |=-log 3a ,f (b )=|log 3b |=log 3b ,∵f (a )=f (b ),∴-log 3a =log 3b ,∴ab =1.又由图象知,3<c <4,d >6,点(c ,f (c ))和点(d ,f (d ))均在二次函数y =13x 2-103x +8的图象上,故有c +d 2=5,∴d =10-c ,∴abcd =c (10-c )=-c 2+10c =-(c -5)2+25,∵3<c <4,∴21<-(c -5)2+25<24, 即21<abcd <24.故选B.]11.已知函数f (x )=e x +2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,1eB .(-∞,e)C.⎝ ⎛⎭⎪⎫-1e ,e D.⎝⎛⎭⎪⎫-e ,1eB [由题意知f (x )=g (-x )在x <0时有解,即e x -ln(-x +a )=0在(-∞,0)上有解.令h (x )=e x -ln(-x +a ),显然h (x )在(-∞,0)上为增函数.当a >0时,只需h (0)=e 0-ln a>0,解得0<a <e ;当a ≤0时,h (x )的定义域为(-∞,a ),当x →-∞时,h (x )<0,当x →a 时,h (x )>0,h (x )=0有解.综上,a 的取值范围是(-∞,e),故选B.]12.已知函数f (x )为R 上的可导函数,其导函数为f ′(x ),且满足f (x )+f ′(x )<1恒成立,f (0)=2 018,则不等式f (x )<2 017e -x +1的解集为( )A .(0,+∞)B .(-∞,0)C .(e ,+∞)D .(-∞,e)A [设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1]. ∵f (x )+f ′(x )<1恒成立,∴g ′(x )<0恒成立,则g (x )在R 上为减函数. ∵f (x )<2 017e -x +1, ∴e x f (x )-e x <2 017, 即g (x )<2 017. ∵f (0)=2 018,∴g (0)=f (0)-e 0=2 017,∴x >0,即不等式f (x )<2 017e -x +1的解集为(0,+∞).故选A.] 二、填空题13.已知函数f (x )=⎩⎪⎨⎪⎧log 21-x ,x <13x -7,x ≥1,若f (x )=-1,则x =__________.12或log 3 6 [∵f (x )=⎩⎪⎨⎪⎧log 21-x ,x <13x -7,x ≥1,∴当x <1时,f (x )=log 2(1-x )=-1,解得x =12(满足);当x ≥1时,f (x )=3x -7=-1,解得x =log 3 6(满足),综上x =12或log 3 6.]14.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.22[因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (f (15))=f (f (-1))=f ⎝ ⎛⎭⎪⎫12=cos π4=22.]15.(2015·全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.1 [∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立, ∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a =1.]16.已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是________.⎝ ⎛⎭⎪⎫-∞,2e [由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln xx 在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值范围是⎝⎛⎭⎪⎫-∞,2e .]。

集合与常用逻辑用语 函数 导数及其应用(答案详解)

集合与常用逻辑用语 函数 导数及其应用(答案详解)

阶段检测一集合与常用逻辑用语函数导数及其应用(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,7},集合M={1,3,5,7},集合N={3,5},则( ).A.U=M∪NB.U=M∪(∁U N)C.U=(∁U M)∪(∁U N)D.U=(∁U M)∪N2.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( ).3.设命题p:若a>b,则;q:若<0,则ab<0.给出以下3个命题:①p∧q;②p∨q;③(p)∧(q).其中真命题的个数为( ).A.0B.1C.2D.34.函数y=+log2(x+2)的定义域为( ).A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.(-2,-1]∪[3,+∞)5.若函数f(x)=ax+(a∈R),则下列结论正确的是( ).A.∀a∈R,函数f(x)在(0,+∞)上是增函数B.∀a∈R,函数f(x)在(0,+∞)上是减函数C.∂a∈R,函数f(x)为奇函数D.∂a∈R,函数f(x)为偶函数6.已知函数f(x)=log a(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( ).A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<17.设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,q:m≥,则p是q的( ).A.充分不必要条件B.必要不充分条件1C.充要条件D.既不充分也不必要条件8.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2012)+f(2013)的值为( ).A.-2B.-1C.2D.19.已知直线y=kx与曲线y=ln x有公共点,则k的最大值为( ).A.1B.C. D.10.已知函数f(x)=,命题p:∀x∈[0,+∞),f(x)≤1,则( ).A.p是假命题,p:∂x0∈[0,+∞),f(x0)>1B.p是假命题,p:∀x∈[0,+∞),f(x)≥1C.p是真命题,p:∂x0∈[0,+∞),f(x0)>1D.p是真命题,p:∀x∈[0,+∞),f(x)≥111.已知函数f(x)=a ln x+x2(a>0),若对任意两个不等的正实数x1,x2都有>2恒成立,则a的取值范围是( ).A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)12.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f'(n)的最小值是( ).A.-13B.-15C.10D.15二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.(2x-e x)d x=.14.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=.15.“若x=5或x=6,则(x-5)(x-6)=0”的逆否命题是.16.已知函数f(x)=则不等式x+1>的解集是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{a n}的前n项和S n=p n+q(p≠0,且p≠1),求证:数列{a n}是等比数列的充要条件为q=-1.18.(12分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.2。

2021届高考数学(文科全国通用)一轮总复习阶段滚动月考卷(一)集合与常用逻辑用语、函数与导数

2021届高考数学(文科全国通用)一轮总复习阶段滚动月考卷(一)集合与常用逻辑用语、函数与导数

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

阶段滚动月考卷(一)集合与常用规律用语、函数与导数(时间:120分钟分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合P={x|x2-x-2≥0},Q={y|y=12x2−1,x∈P},则P∩Q= ( )A.{m|-1≤m<2}B.{m|-1<m<2}C.{m|m≥2}D.{-1}2.(2022·德州模拟)已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是( )A.(-∞,-2]B.[-2,+∞)C.(-∞,2]D.[2,+∞)3.(2022·潍坊模拟)已知幂函数f(x)的图象过点(4,12),则f(8)的值为( )A.√24B.64 C.2√2 D.1644.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2022·烟台模拟)已知函数f(x)=lnx,则函数g(x)=f(x)-f ′(x)的零点所在的区间是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4)6.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的微小值点,以下结论肯定正确的是( )A.∀x∈R,f(x)≥f(x0)B.-x0是f(-x)的极大值点C.-x0是-f(x)的微小值点D.-x0是-f(-x)的极大值点7.(2022·青岛模拟)设a=20.3,b=0.32,c=log x(x2+0.3)(x>1),则a,b,c的大小关系是( )A.a<b<cB.b<a<cC.c<b<aD.b<c<a8.过函数f(x)=3x-x3图象上一点A(2,-2)的切线方程为( )A.y=-2B.y=2C.9x+y-16=0D.9x+y-16=0或y=-29.(2021·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率状况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油10.(2022·大连模拟)已知f(x)是定义域为R的偶函数,当x≤0时,f(x)=(x+1)3e x+1,那么函数f(x)的极值点的个数是( )A.5B.4C.3D.2二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2022·北京模拟)曲线y=x3+mx+c在点P(1,n)处的切线方程为y=2x+1,其中m,n,c∈R,则m+n+c= .12.(2022·烟台模拟)已知f(x)是定义在R上的函数,且满足f(x+2)=-1f(x),当2≤x≤3时,f(x)=x,则f(−112)= .13.f(x)=log2a[(a2-3a)x]在(-∞,0)上是减函数,则实数a的取值范围是.14.(2022·绍兴模拟)已知函数f(x)满足f(x+1)=-1f(x),且f(x)是偶函数,当x∈[-1,0]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-log a(x+2)有4个零点,则实数a的取值范围是.15.(2022·莱芜模拟)已知定义域为R的函数f(x),对于x∈R,满足f(f(x)-x2+x)=f(x)-x2+x,设有且仅有一个实数x0,使得f(x0)=x0,则实数x0的值为.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤) 16.(12分)(2022·泰安模拟)已知集合A={x|x2-2x-3≤0,x∈R}, B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值.(2)若ARB,求实数m的取值范围.17.(12分)设a>0,且a≠1,已知函数f(x)=log a1−bxx−1是奇函数.(1)求实数b的值.(2)求函数f(x)的单调区间.(3)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.18.(12分)某地拟建一座长为640米的大桥AB,假设桥墩等距离分布,经设计部门测算,两端桥墩A,B造价总共为100万元,当相邻两个桥墩的距离为x米时(其中64<x<100),中间每个桥墩的平均造价为803√x万元,桥面每1米长的平均造价为(2+x√x640)万元.(1)试将桥的总造价表示为x的函数f(x).(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩A,B除外)应建多少个桥墩?19.(12分)(2022·济宁模拟)已知函数f(x)=ex2-1e x-ax(a∈R).(1)当a=32时,求函数f(x)的单调区间.(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.20.(13分)已知函数f(x)=(a+1a)lnx+1x-x(a>0).(1)求f(x)的极值.(2)若曲线y=f(x)上总存在不同两点P(x1,f(x1)),Q(x2,f(x2)),使得曲线y=f(x)在P,Q两点处的切线相互平行,证明x1+x2>2.ax2+x,a∈R.21.(14分)(2022·威海模拟)已知函数f(x)=lnx-12(1)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值.(2)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥√5−1.2答案解析1.C P={x|x≥2或x≤-1},又x∈P时,y=12x2-1∈[−12,+∞),故Q={y|y≥−12},故P∩Q={m|m≥2}.2.【解题提示】先化简A,留意运用指数函数的单调性解不等式,再依据集合的包含关系,求出a,b的范围,运用不等式的性质,求出a-b的取值范围.A 集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],由于A B,B=[a,b],所以a≤2,b≥4,所以a-b≤2-4=-2,即a-b的取值范围是(-∞,-2].3.A 由于函数f(x)为幂函数,所以设f(x)=xα,由于其图象过点(4,12),所以12=4α,解得α=-12,所以f(x)=x−12,所以f(8)=8−12−12=√24.4.A 函数f(x)=|x-a|={x−a,x≥a,a−x,x<a,则f(x)的单调增区间是[a,+∞).而函数f(x)=|x-a|在[-1,+∞)上单调递增⇔a≤-1,所以“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的充分不必要条件.5.B 由题意可知g(x)=lnx-1x,由于g(1)=-1<0,g(2)=ln2-12=ln2-ln√e>0.所以函数g(x)的零点所在区间是(1,2).6.D 由于x0是f(x)的微小值点,y=-f(-x)与y=f(x)的图象关于原点对称,所以-x0是y=-f(-x)的极大值点.7.B 由于x>1,所以c=log x(x2+0.3)>log x x2=2,又由于1<a<2,0<b<1,所以b<a<c.8.D 设切点为P(x0,y0),f′(x)=3-3x2,所以切线斜率k=3-3x02,切线方程为y-(3x0-x03)=(3-3x02)(x-x0),又由于点A(2,-2)在切线上,所以-2-(3x0-x03)=(3-3x02)(2-x0),解之得x0=2或x0=-1,所以k=-9或k=0,所以切线方程为9x+y-16=0或y=-2.【加固训练】若曲线y=e-ax+1在点(0,2)处的切线与直线x+2y-1=0垂直,则a= ( )A.-2B.2C.-23D.23A 依题意知y′=-ae-ax,所以曲线在点(0,2)处的切线斜率k=-a,又其切线与直线x+2y-1=0垂直,所以(-a)×(−12)=-1,即a=-2.9.D 选项A,问的是纵坐标最大值.选项B,消耗1升油甲走最远,则反过来路程相同甲最省油.选项C,此时甲走过了80千米,消耗8升汽油.选项D,80千米/小时以下丙“燃油效率”更高,更省油.10.C 当x ≤0时,f ′(x)=3(x+1)2e x+1+(x+1)3e x+1=(x+1)2e x+1(x+4),解f ′(x)=0,得x=-4或x=-1.由于x ∈(-∞,-4)时,f ′(x)<0;x ∈(-4,-1)时,f ′(x)>0;x ∈(-1,0)时,f ′(x)>0,则f(x)在区间x ∈(-∞,-4)上单调递减,在区间x ∈(-4,0)上单调递增.又由于f(x)是定义域为R 的偶函数,由其对称性可得,f(x)在区间x ∈(0,4)上单调递减,在区间x ∈(4,+∞)上单调递增,所以函数f(x)在x=±4或x=0处取得极值. 11.【解析】y ′=3x 2+m,由题意知{1+m +c =n,3+m =2,n =2×1+1.所以{m =−1,n =3,c =3.所以m+n+c=5. 答案:512.【解析】由f(x+2)=-1f(x)可得,f(x+4)=-1f(x+2)=f(x),所以函数f(x)是以4为周期的周期函数, f (−112)=f (−112+8)=f (52)=52.答案:5213.【解析】由x ∈(-∞,0)可得a 2-3a<0,得0<a<3, 所以y=(a 2-3a)x 在(-∞,0)上是减函数, 又f(x)=log 2a [(a 2-3a)x]在(-∞,0)上是减函数, 所以2a>1,故12<a<3.答案:(12,3)14.【解析】由于f(x+1)=-1f(x),则有f(x+2)=f(x),即f(x)是周期为2的周期函数,又f(x)是偶函数,当x ∈[-1,0]时,f(x)=x 2,则有当x ∈[0,1]时,f(x)=x 2,故当x ∈[-1,1]时,f(x)=x 2,那么当x ∈[1,3]时,f(x)=(x-2)2,而函数g(x)=f(x)-log a (x+2)有4个零点,故函数y=f(x)的图象与y=log a (x+2)有4个交点,数形结合可得1≥log a (3+2), 解得a ≥5. 答案:[5,+∞)15.【解析】由于对任意x ∈R,有f(f(x)-x 2+x)=f(x)-x 2+x. 又由于有且只有一个实数x 0,使得f(x 0)=x 0 所以对任意x ∈R,有f(x)-x 2+x=x 0, 在上式中令x=x 0,有f(x 0)-x 20+x 0=x 0,又由于f(x 0)=x 0,所以x 0-x 20=0,故x 0=0或x 0=1,若x 0=0,则f(x)-x 2+x=0,即f(x)=x 2-x,但方程x 2-x=x 有两个不相同实根,与题设条件冲突.故x 0≠0,若x 0=1,则有f(x)-x 2+x=1,即f(x)=x 2-x+1,此时f(x)=x 有且仅有一个实数1, 综上,x 0=1. 答案:116.【解析】由已知得:A={x|-1≤x ≤3}, B={x|m-2≤x ≤m+2}.(1)由于A ∩B=[0,3],所以{m −2=0,m +2≥3,所以{m =2,m ≥1,所以m=2.(2)R B={x|x<m-2或x>m+2}. 由于AR B,所以m-2>3或m+2<-1,所以m>5或m<-3,所以m 的取值范围为(-∞,-3)∪(5,+∞).17.【解题提示】(1)由函数f(x)是奇函数可得f(-x)=-f(x),代入函数f(x)的解析式可解得实数b 的值.(2)首先求出函数f(x)的定义域,再求出其导函数f ′(x),最终分别令f ′(x)>0和f ′(x)<0即可求出函数f(x)的单调增区间和单调减区间.(3)由a-2>1得a>3,结合(2)可得,f(x)在(1,a-2)上单调递减,于是可得f(a-2)=1,解之即可得到实数a 的值.【解析】(1)由于f(x)是奇函数,所以f(-x)=-f(x). 从而f(-x)+f(x)=0, 即log a1+bx −x−1+log a1−bx x−1=0,于是,(b 2-1)x 2=0,由x 的任意性知b 2-1=0, 解得b=-1或b=1(舍),所以b=-1. (2)由(1)得f(x)=log a x +1x−1,(x<-1或x>1),f ′(x)=−2(x 2−1)lna.当0<a<1时,f ′(x)>0,即f(x)的增区间为(-∞,-1),(1,+∞); 当a>1时,f ′(x)<0,即f(x)的减区间为(-∞,-1),(1,+∞).(3)由a-2>1得a>3,所以f(x)在(1,a-2)上单调递减,从而f(a-2)=1,即log a a −1a−3=1,又a>3,得a=2+√3.18.【解析】(1)由桥的总长为640米,相邻两个桥墩的距离为x 米,知中间共有(640x−1)个桥墩,于是桥的总造价f(x)=640(2+x √x 640)+803√x (640x−1)+100,即f(x)=x 32+640×803x −12-803x 12+1380=x32+51 2003x−12-803x12+1380(64<x<100).(表达式写成f(x)=x √x +51 2003√x−803√x +1 380同样给分)(2)由(1)可求f ′(x)=32x 12-640×403x −32-403x −12,整理得f ′(x)=16x −32(9x2-80x-640×80),由f ′(x)=0,解得x 1=80,x 2=-6409(舍去),又当x ∈(64,80)时,f ′(x)<0;当x ∈(80,100)时,f ′(x)>0,所以当x=80时桥的总造价最低,此时桥墩数为64080-1=7.19.【解析】(1)当a=32时,f(x)=e x 2-1e x -32x, f ′(x)=12ex [(e x )2-3e x +2] =12ex (e x -1)(e x -2), 令f ′(x)=0,得e x =1或e x =2, 即x=0或x=ln2,令f ′(x)>0,则x<0或x>ln2, 令f ′(x)<0,则0<x<ln2,所以f(x)在(-∞,0],[ln2,+∞)上单调递增,在(0,ln2)上单调递减. (2)f ′(x)=e x2+1e x -a,令e x =t,由于x ∈[-1,1], 所以t ∈[1e ,e].令h(t)=t 2+1t (t ∈[1e,e]), h ′(t)=12-1t 2=t 2−22t 2, 所以当t ∈[1e,√2)时h ′(t)<0,函数h(t)为单调减函数; 当t ∈(√2,e]时h ′(t)>0,函数h(t)为单调增函数, 所以√2≤h(t)≤e+12e .由于函数f(x)在[-1,1]上为单调函数, 所以若函数f(x)在[-1,1]上单调递增, 则a ≤t 2+1t对t ∈[1e,e]恒成立,所以a ≤√2;若函数f(x)在[-1,1]上单调递减,则a ≥t 2+1t对t ∈[1e,e]恒成立,所以a ≥e+12e,综上可得a ≤√2或a ≥e+12e.20.【解析】(1)f ′(x)=(a +1a )1x -1x2-1=-x 2−(a+1a)x+1x 2=-(x−a)(x−1a)x 2(x>0).当a>1时,0<1a<a,f(x)的单调递减区间是(0,1a),(a,+∞),单调递增区间是(1a,a). f(x)微小值=f (1a ) =(a +1a)ln 1a+a-1a=-(a +1a)lna+a-1a,f(x)极大值=f(a)=(a +1a)lna-a+1a. 当a=1时,f ′(x)=-(x−1)2x 2≤0,f(x)无极值. 当0<a<1时,0<a<1a,f(x)的单调递减区间是(0,a),(1a,+∞),单调递增区间是(a ,1a).f(x)极大值=f (1a)=-(a +1a)lna+a-1a,f(x)微小值=f(a)=(a +1a)lna-a+1a.(2)依题意知,f ′(x 1)=(a +1a )1x 1-1x 12-1=f ′(x 2) =(a +1a )1x 2-1x 22-1, 故a+1a =1x 1+1x 2=x 1+x 2x 1x 2. 由x 1+x 2>2√x 1x 2得x 1x 2<(x 1+x 2)24,故x 1+x 2x 1x 2>4x 1+x 2,故存在x 1,x 2使a+1a =x 1+x 2x 1x 2>4x 1+x 2,即x 1+x 2>4a+1a. 当a>0时,a+1a≥2,当且仅当a=1时取等号.所以x 1+x 2>4(a+1a )min=2.即x 1+x 2>2.21.【解析】(1)令g(x)=f(x)-(ax-1)=lnx-12ax 2+(1-a)x+1,所以g ′(x)=1x-ax+(1-a)=−ax 2+(1−a)x+1x,当a ≤0时,由于x>0,所以g ′(x)>0,所以g(x)在(0,+∞)上是递增函数,又由于g(1)=ln1-12a ×12+(1-a)+1=-32a+2>0,所以关于x 的不等式f(x)≤ax-1不能恒成立.当a>0时, g ′(x)=−ax 2+(1−a)x+1x=-a (x−1a)(x+1)x,令g ′(x)=0,得x=1a.所以当x ∈(0,1a )时,g ′(x)>0;当x ∈(1a,+∞)时,g ′(x)<0,因此函数g(x)在x ∈(0,1a)是增函数,在x ∈(1a,+∞)是减函数.故函数g(x)的最大值为g (1a)=ln 1a -12a ×(1a)2+(1-a)×1a+1=12a-lna.令h(a)=12a-lna,由于h(1)=12>0,h(2)=14-ln2<0,又由于h(a)在a ∈(0,+∞)是减函数,所以当a ≥2时,h(a)<0,所以整数a 的最小值为2.【一题多解】本题还可以接受以下方法 由f(x)≤ax-1恒成立,得lnx-12ax 2+x ≤ax-1在(0,+∞)上恒成立,问题等价于a ≥ln x+x+112x 2+x 在(0,+∞)上恒成立.令g(x)=ln x+x+112x 2+x ,只要a ≥g(x)max , 由于g ′(x)=(x+1)(−12x−lnx)(12x 2+x)2. 令g ′(x)=0, 得-12x-lnx=0.设h(x)=-12x-lnx,由于h ′(x)=-12-1x<0,所以h(x)在(0,+∞)上单调递减, 不妨设-12x-lnx=0的根为x 0.当x ∈(0,x 0)时,g ′(x)>0; 当x ∈(x 0,+∞)时,g ′(x)<0,所以g(x)在x ∈(0,x 0)上是增函数;在x ∈(x 0,+∞)上是减函数.所以g(x)max =g(x 0)=ln x 0+x 0+112x 02+x 0=1+12x 0x 0(1+12x 0)=1x 0,由于h (12)=ln2-14>0,h(1)=-12<0,所以12<x 0<1,此时1<1x 0<2,即g(x)max ∈(1,2).所以a ≥2,即整数a 的最小值为2. (2)当a=-2时,f(x)=lnx+x 2+x,x>0, 由f(x 1)+f(x 2)+x 1x 2=0,即lnx 1+x 12+x 1+lnx 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2) =x 1·x 2-ln(x 1·x 2)令t=x 1·x 2,则由φ(t)=t-lnt 得,φ′(t)=t −1t,可知,φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增. 所以φ(t)≥φ(1)=1, 所以(x 1+x 2)2+(x 1+x 2)≥1,因此x1+x2≥√5−1成立.2关闭Word文档返回原板块。

专题1:集合、常用逻辑用语、不等式、函数与导数(文)

专题1:集合、常用逻辑用语、不等式、函数与导数(文)

专题一:集合、常用逻辑用语、不等式、函数与导数一、选择题1.已知全集U =R ,集合2{|1}M x x =<,2{|0}N x x x =-<,则集合M ,N 的关系用韦恩(Venn )图可以表示为 ( )2.已知()x f 是定义在R 上的奇函数,若()x f 的最小正周期为3,f (1)>0,f (2)=231m m -+,则m 的取值范围是 ( )(A )3(,)2-∞ (B )3(,1)(1,)2-∞ (C )3(1,)2- (D )3(,1)(,)2-∞-+∞ 3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 ( ) A.()sin f x x = B.()1f x x =-+ C.()1()2x x f x a a -=+ D.2()ln 2xf x x-=+ 4.下列结论:①命题“0,2>-∈∀x x R x ”的否定是“0,2≤-∈∃x x R x ”;②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方; ③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0.④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥.其中,正确结论的个数是 ( )A .1B . 2C . 3D . 45.已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A .1B .21 C .22 D .41 6.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 ( )A .4x y --3=0B .450x y +-=C .430x y -+=D .430x y ++= 7.已知a 是使表达式2x +1>42-x 成立的最小整数,则方程1-|2x -1|=a x -1实数根的个数为 ( ) A .0 B .1 C .2 D .38.已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-xB .42+xC .2)4(+xD . 2)4(-x9.条件:2p a ≥-;条件:q 函数()3f x ax =+在区间[-1,2]上存在零点0x ,则p ⌝是q 的 ( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件10.已知命题p :(,0),23x x x ∃∈-∞<;命题q :(0,),tan sin 2x x x π∀∈>,则下列命题为真命题的是( )A. p ∧qB. p ∨(﹁q)C. (﹁p)∧qD. p ∧(﹁q) 11.设Q P ,为两个非空实数集合,定义集合⎭⎬⎫⎩⎨⎧∈∈-=⊕Q y P x y x Q P ,,2.{}5,2,0=P {}7,4,2=Q ,Q P ⊕中元素的个数是 ( )A .3B .4C .5D .612.函数)(x f 在定义域R 内可导,若)1()1(x f x f +=-,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设)0(f a =,)21(f b =,)3(f c =,则( )A .c b a <<B .a c b <<C .a b c <<D .b a c <<二、填空题13.设函数⎩⎨⎧+∞∈-∞∈=-),1(log )1,(2)(81x x x x f x ,则满足41)(=x f 的x 值是 .14.函数y =x 2(x >0)的图像在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k +1,k N *∈其中,若a 1=16,则a 1+a 3+a 5的值是_____ __.15.在平面直角坐标系中,若不等式组 (a 为常数)所表示的平面区域的面积等于2,则a的值为___ __.16.已知偶函数()()y f x x R =∈在区间[1,0]-上单调递增,且满足(1)(1)0f x f x -++=,给出下列判断: (1)f (5)=0; (2)f (x )在[1,2]上减函数;(3)()x f 的图像关与直线1x =对称; (4)函数()x f 在0x =处取得最大值; (5)函数()y f x =没有最小值, 其中正确的序号是 . 三、解答题17.命题P :对数)572(log 2-+-t t a (a >0,a ≠1)有意义;Q :关于实数t 的不等式2(3)(2)0t a t a -+++<. (1)若命题P 为真,求实数t 的取值范围;(2)若命题P 是命题Q 的充分不必要条件,求实数a 的取值范围.18.已知函数()x f =ln x -ax(a ∈R). (1)当a ∈[-e ,-1]时,试讨论f (x )在[1,e ]上的单调性; (2)若()x f < x 在[1,+∞)上恒成立,试求a 的取值范围.19.已知函数()2x cf x ax b+=+为奇函数,()()13f f <,且不等式()302f x ≤≤的解集是[][]2,12,4--⋃.(1)求证:0)2(=f ; (2)求,,a b c 的值;(3)是否存在实数m 使不等式()232sin 2f m θ-+<-+对一切R θ∈成立?若存在,求出m 的取值范围;若不存在,请说明理由.20.已知函数()x f =3213x ax b -+在x = -2处有极值. (Ⅰ)求函数()x f 的单调区间;(Ⅱ)若函数()x f 在区间[-3,3]上有且仅有一个零点,求b 的取值范围.21.已知xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈(Ⅰ)讨论1=a 时, ()x f 的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,1()()2f xg x >+; (Ⅲ)是否存在实数a ,使()x f 的最小值是3,若存在,求出a 的值;若不存在,说明理由.参考答案1.B. 2.C 3.D 4.C 5.B 6.A 7.C 8.D 9.A 10.C 11.B 12.D13. 3 14. 2115. 3 16.(1)(2)(4)17.解析:(1)由对数式有意义得,512t <<. (2)命题P 是命题q 的充分不必要条件 ∴512t <<是不等式2(3)(2)0t a t a -+++<解集的真子集.法一:因方程2(3)(2)0t a t a -+++=两根为1,2a +故只需522a +> 解得:12a >.法二:令2()(3)(2)f t t a t a =-+++,因5(1)0,()02f f =<故只需 解得:12a >. 18.【解析】(1)f(x)的定义域为(0,+∞),2221(),0a x af x x x x x+'=+=>显然 当-e≤a≤-1时,1≤-a≤e ,令f′(x)=0得x=-a ,于是当1≤x≤-a 时,f′(x)≤0, ∴f(x)在[1,-a ]上为减函数; 当-a≤x≤e 时,f′(x)≥0, ∴f(x)在[-a,e ]上为增函数.综上可知,当-e≤a≤-1时f(x)在[1,-a ]上为减函数,在[-a,e ]上为增函数. (2)由f(x)<x 得lnx-ax<x . ∵x≥1, ∴a>xlnx-x 2. 令g(x)=xlnx-x 2,要使a>xlnx-x 2在[1,+∞)上恒成立,只需a>g(x)max , g′(x)=lnx -2x+1,令φ(x)=lnx -2x+1,则φ′(x)=1x-2,∵x≥1,∴φ′(x)<0,∴φ(x)在[1,+∞)上单调递减, ∴φ(x)≤φ(1)=-1<0,因此g′(x)<0,故g(x)在[1,+∞)上单调递减,则g(x)≤g(1)=-1, ∴a 的取值范围是(-1,+∞). 19.解答:(1)⎩⎨⎧≤-≥0)2(0)2(f f ,)(x f 是奇函数得0)2(=f . (2)4,0,2-===c b a . (3)m 不存在.20.解析:(Ⅰ)2()2f x x ax '=- 由题意知: (2)440f a '-=+=,得a=-1, ∴2()2f x x x '=+,令()0f x '>,得x<-2或x>0, 令()0f x '<,得-2<x<0, ∴f(x)的单调递增区间是(-∞,-2)和(0,+∞),单调递减区间是(-2,0). (Ⅱ)由(Ⅰ)知,f(x)=3213x x b ++,f(-2)=43b +为函数f(x)极大值,f(0)=b 为极小值. ∵函数f(x)在区间[-3,3]上有且仅有一个零点,∴(3)0(0)0f f -≤⎧⎨>⎩或(3)0(2)0f f ≥⎧⎨-<⎩或(3)0(3)0f f ->⎧⎨<⎩或(2)0(3)0f f -=⎧⎨<⎩或(3)0(0)0f f ->⎧⎨=⎩,即180403b b +≥⎧⎪⎨+<⎪⎩ , ∴4183b -≤<-,即b 的取值范围是4[18,)3--. 21.解析:(Ⅰ) x x x f ln )(-=,xx x x f 111)(-=-='∴当10<<x 时,/()0f x <,此时()f x 单调递减 当e x <<1时,/()0f x >,此时()f x 单调递增∴()f x 的极小值为1)1(=f ……4分(Ⅱ) ()f x 的极小值为1,即()f x 在],0(e 上的最小值为1, ∴ 0)(>x f ,min ()1f x =令21ln 21)()(+=+=x x x g x h ,xxx h ln 1)(-=', 当e x <<0时,0)(>'x h ,()h x 在],0(e 上单调递增∴min max |)(|12121211)()(x f e e h x h ==+<+== ∴在(1)的条件下,1()()2f xg x >+ (Ⅲ)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3,/1()f x a x =-x ax 1-=① 当0≤a 时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,ea 4=(舍去),所以, 此时)(x f 无最小值. ②当e a<<10时,)(x f 在)1,0(a 上单调递减,在],1(e a 上单调递增 3ln 1)1()(min =+==a af x f ,2e a =,满足条件.③ 当e a ≥1时,)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,e a 4=(舍去),所以,此时)(x f 无最小值.综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3.。

集合与常用逻辑用语、函数、导数答案

集合与常用逻辑用语、函数、导数答案

专题检测卷(二)集合与常用逻辑用语、函数、导数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·课标全国)已知集合A={x||x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=A.(0,2)B.[0,2]C.{0,2} D.{0,1,2}【解析】由已知A={x||x|≤2,x∈R}={x|-2≤x≤2},B={x|x≤4,x∈Z}={x|0≤x≤16,x∈Z},则A∩B={x|0≤x≤2,x∈Z}={0,1,2},故选D.【答案】 D2.(2010·海南三亚模拟)设A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,则实数t的取值范围是A.t<-3 B.t≤-3C.t>3 D.t≥3【解析】A=[-3,3],B=(-∞,t],由A∩B=∅知t<-3.【答案】 A3.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于A.∅B.MC.N D.R【解析】∵M=R,N={y|y≥-1},∴M∩N=N.【答案】 C4.(2010·广东广州模拟)若函数f(x)=log a(x+1)(a>0,a≠1)的定义域和值域都是[0,1],则a 等于A.13 B. 2C.22D.2【解析】∵f(x)=log a(x+1)的定义域是[0,1],∴0≤x≤1,则1≤x+1≤2.当a>1时,0=log a1≤log a(x+1)≤log a2=1,∴a=2;当0<a<1时,log a 2≤log a(x+1)≤log a1=0,与值域是[0,1]矛盾.综上,a=2.【答案】 D5.(2010·海南三亚质检)已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则A.f(0)<f(-1)<f(2) B.f(-1)<f(0)<f(2)C.f(-1)<f(2)<f(0) D.f(2)<f(-1)<f(0)【解析】由f(x-2)在[0,2]上单调递减,∴f(x)在[-2,0]上单调递减.∵y=f(x)是偶函数,∴f(x)在[0,2]上单调递增.又f(-1)=f(1),∴f(0)<f(-1)<f(2).【答案】 A6.A7.(2010·山东聊城摸底)函数f(x)的图象如下图所示,下列数值排序正确的是A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)【解析】 f ′(2)、f ′(3)是x 分别为2、3时对应图象上点的切线斜率,f (3)-f (2)=f (3)-f (2)3-2,∴f (3)-f (2)是图象上x 为2和3对应两点连线的斜率,故选B. 【答案】 B8.(2010·济宁质检)下列各小题中,p 是q 的充要条件的是 ①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点; ②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β; ④p :A ∩B =A ;q :∁U B ⊆∁U A . A .①② B .②③ C .③④D .①④【解析】 对于①q :y =x 2+mx +m +3有两个不同的零点⇔m 2-4(m +3)>0⇔p :m <-2或m >6;对于②y =f (x )为偶函数,但不一定满足f (-x )f (x )=1, ∴不是充要条件.对于③若α=π6,β=-π6,满足cos α=cos β,但不满足tan α=tan β,∴不是充要条件. 对于④p :A ∩B =A ⇔A ⊆B ⇔q :∁U B ⊆∁U A . 【答案】 D9.(2010·山东临沂模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫15x -log 3x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值A .恒为正B .等于零C .恒为负D .不大于零【解析】 数形结合.由于f (1)>0,f (3)<0,所以x 0∈(1,3).在(1,3)上g (x )=⎝ ⎛⎭⎪⎫15x 是减函数,φ(x )=log 3x 是增函数,所以f (x )=⎝ ⎛⎭⎪⎫15x -log 3x 在(1,3)上是减函数,所以f (x 1)>f (x 0)=0,故选A.【答案】 A10.(2010·江苏无锡摸底)若a >2,则方程13x 3-ax 2+1=0在(0,2)上恰好有 A .0个根 B .1个根 C .2个根D .3个根【解析】 设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ), 当x ∈(0,2)时,f ′(x )<0,f (x )在(0,2)上为减函数,又f (0)f (2)=1⎝ ⎛⎭⎪⎫83-4a +1=113-4a <0,f (x )=0在(0,2)上恰好有1个根,故选B.【答案】 B二、填空题(本大题共4小题,每小题4分,共计16分.把答案填在题中的横线上)11.3(,1)412.-7 13.314.(2010·江苏)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.【解析】 对函数y =x 2,y ′=2x ,∴函数y =x 2(x >0)在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ),令y =0得a k +1=12a k .又∵a 1=16,∴a 3=12a 2=14a 1=4, a 5=14a 3=1,∴a 1+a 3+a 5=16+4+1=21. 【答案】 2115.(2010·全国Ⅰ)已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是【解析】 f (x )=|lg x |的图象如图所示,由图知f (a )=f (b ),则有0<a <1<b ,∴f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b , 即-lg a =lg b ,得a =1b , ∴a +2b =2b +1b .令g (b )=2b +1b ,g ′(b )=2-1b 2, 显然b ∈(1,+∞)时,g ′(b )>0, ∴g (b )在(1,+∞)上为增函数, 得g (b )=2b +1b >3,故选C. 【答案】(3,+∞)16.(2010·宁夏银川摸底)已知函数y =f (x )是R 上的偶函数,对于x ∈R 都有f (x +6)=f (x )+f (3)成立,当x 1,x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,给出下列命题:①f (3)=0;②直线x =-6是函数y =f (x )的图象的一条对称轴; ③函数y =f (x )在[-9,-6]上为增函数; ④函数y =f (x )在[-9,9]上有四个零点.其中所有正确命题的序号为________.(把所有正确命题的序号都填上) 【解析】 令x =-3,可得f (3)=f (-3)=0,知①正确; ∵f (x +6)=f (x ),又f (x )为偶函数,∴f (x )的图象关于直线x =-6对称,∴②正确; 由题意知,x ∈[0,3]时,f (x )单调递增,又f (x )为偶函数,f (x +6)=f (x ), ∴f (x )在[-9,-6]上单调递减,③不正确;由f (3)=0可知,f (-3)=f (-9)=f (9)=0,∴④正确. 【答案】 ①②④17.(2010·滨州模拟)给出下列四个结论:①命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”; ②“若am 2<bm 2,则a <b ”的逆命题为真; ③函数f (x )=x -sin x (x ∈R )有3个零点;④对于任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时f ′(x )>g ′(x ).其中正确结论的序号是________.(填上所有正确结论的序号) 【解析】 显然①正确,而②的逆命题为若a <b , 则am 2<bm 2,当m 2=0时不成立,故②不正确;③中f ′(x )=1-cos x ≥0, ∴f (x )在R 上为单调增函数.∴在R 上有且仅有一个零点,故③不正确;对于④由已知f (x )为奇函数,又在(0,+∞)时f ′(x )>0,∴f (x )在(0,+∞)上为增函数.∴在x <0时亦为增函数, ∴f ′(x )>0,同理g (x )在(-∞,0)上为减函数, ∴x <0时,g ′(x )<0,因此f ′(x )>g ′(x ),故④正确. 【答案】 ①④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 18.(12分) (1)2,12,0a b c ==-=(2)单调增区间(,)-∞+∞,单调减区间(19.(12分)(2010·东北六校联考)已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)求f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.【解析】 (1)f (x )=3·2x .(2)要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上的最小值不小于m 即可.∵函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 在(-∞,1]上为减函数,∴当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 有最小值56.∴只需m ≤56即可.【答案】 (1)f (x )=3·2x (2)m ≤5620.(12分)(2010·安徽)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.【解析】 (1)由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递减单调递增故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为 f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ). (2)证明 设g (x )=e x -x 2+2ax -1,x ∈R . 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 上单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.【答案】 (1)f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞) 极小值为f (ln 2)=2(1-ln 2+a )(2)略21.(12分)(2010·珠海模拟)设函数f (x )=x (1+x )2,x ∈(-∞,0]. (1)求f (x )的极值点;(2)对任意的a <0,以F (a )记f (x )在[a,0]上的最小值,求k =F (a )a 的最小值. 【解析】 (1)f ′(x )=(1+x )2+2x (1+x )=(1+x )(1+3x ), 由f ′(x )=0,解得:x 1=-1,x 2=-13, 当x <-1或x >-13时,f ′(x )>0, 当-1<x <-13时,f ′(x )<0, 所以,有两个极值点:x 1=-1是极大值点,f (-1)=0; x 2=-13是极小值点,f ⎝ ⎛⎭⎪⎫-13=-427.(2)过点⎝ ⎛⎭⎪⎫-13,-427作直线y =-427,与y =f (x )的图象的另一个交点为A ,坐标为⎝ ⎛⎭⎪⎫x ,-427, -427=x (x +1)2,即27x 3+54x 2+27x +4=0, 已知有解x =-13,则(3x +1)(9x 2+15x +4)=0, 解得A ⎝ ⎛⎭⎪⎫-43,-427. 当a <-43时,F (a )=f (a ),k =f (a )a =(1+a )2>19;当-43≤a ≤-13时,F (a )=-427, k =-427a ≥-427-43=19,其中当a =-43时,k =19;当-13<a <0时,F (a )=f (a ),k =f (a )a =(1+a )2>49.所以,对任意的a <0,k 的最小值为19⎝ ⎛⎭⎪⎫其中当a =-43时,k =19【答案】 (1)有两个极值点: x 1=-1是极大值点,f (-1)=0; x 2=-13是极小值点,f ⎝ ⎛⎭⎪⎫-13=-427(2)对任意的a <0,k 的最小值为19⎝ ⎛⎭⎪⎫其中当a =-43时,k =19 22.(14分)(2010·浙江嘉兴模拟)已知x =0是函数f (x )=(x 2+ax +b )e x (x ∈R )的一个极值点,且函数f (x )的图象在x =2处的切线的斜率为2e 2.(1)求函数f (x )的解析式并求单调区间;(2)设g (x )=f ′(x )e x ,其中x ∈[-2,m ),问:对于任意的m >-2,方程g (x )=23(m -1)2在区间(-2,m )上是否存在实数根?若存在,请确定实数根的个数;若不存在,请说明理由.【解析】 (1)f ′(x )=[x 2+(a +2)x +a +b ]e x , 由f ′(0)=0,得b =-a , ∴f ′(x )=[x 2+(a +2)x ]e x , 又f ′(2)=[4+2(a +2)]e 2, ∴[4+2(a +2)]e 2=2e 2,故a =-3, 令f ′(x )=(x 2-x )e x ≥0,得x≤0或x≥1,令f′(x)=(x2-x)e x<0,得0<x<1,故:f(x)=(x2-3x+3)e x的单调增区间是(-∞,0],[1,+∞),单调减区间是(0,1).(2)由(1)知g(x)=x2-x,假设方程g(x)=23(m-1)2在区间(-2,m)上存在实数根,设x0是方程g(x)=23(m-1)2的实根,则x20-x0=23(m-1)2,令h(x)=x2-x-23(m-1)2,从而问题转化为证明方程h(x)=x2-x-23(m-1)2=0在(-2,m)上有实根,并讨论解的个数,因为h(-2)=6-23(m-1)2=-23(m+2)(m-4),h(m)=m(m-1)-23(m-1)2=13(m+2)(m-1),所以①当m>4或-2<m<1时,h(-2)·h(m)<0,所以h(x)=0在(-2,m)上有解,且只有一解②当1<m<4时,h(-2)>0且h(m)>0,但由于h(0)=-23(m-1)2<0,所以h(x)=0在(-2,m)上有解,且有两解③当m=1时,h(x)=x2-x=0⇒x=0或x=1,所以h(x)=0在(-2,1)上有且只有一解;当m=4时,h(x)=x2-x-6=0⇒x=-2或x=3,所以h(x)=0在(-2,4)上也有且只有一解,综上所述,对于任意的m>-2,方程g(x)=23(m-1)2在区间(-2,m)上均有实数根且当m≥4或-2<m≤1时,有唯一的实数解;当1<m<4时,有两个实数解.【答案】(1)f(x)=(x2-3x+3)e x,单调增区间是(-∞,0],[1,+∞),单调减区间是(0,1) (2)略- 11 -。

专题一 集合与常用逻辑用语函数与导数不等式

专题一 集合与常用逻辑用语函数与导数不等式

专题一 集合与常用逻辑用语、函数与导数、不等式第1讲 集合与常用逻辑用语[云览高考]说明:A 表示简单题,B 表示中等题,C 表示难题.频率为分析2012各省市课标卷情况.二轮复习建议:命题角度:该部分的命题通常围绕三个点展开,第一个点是围绕集合的概念、基本关系和运算展开,设计考查集合的意义、根据集合之间的关系求参数范围、集合的运算等试题,目的是考查集合的基础知识和基本方法;第二个点是围绕命题(包括特称命题和全称命题)、充要条件、逻辑联结词展开,设计判断命题之间的关系、命题之间的充分性与必要性的判断等试题,目的是考查对常用逻辑用语基础知识的掌握程度、逻辑知识在数学中的应用;第三个点是围绕集合命制新定义试题,目的是考查在新的环境中使用数学知识分析问题、解决问题的创新能力.预测2013年高考在该部分仍然会从上述命题角度出发设计试题,考查集合与常用逻辑用语的基础知识,试题会在知识网络交汇上下工夫,使试题能够考查到更多的知识点,但试题的难度为容易或者中等.复习建议:1.强化对集合意义的复习,使学生能够正确地处理各种情况下集合表达的是什么数学问题,重点加强对集合的运算的复习,注意集合之间关系的等价转化,如A ⊆B ⇔A ∩B =A ⇔A ∪B =B . 2.强化命题真假的判断、充要条件的判断的训练,重点加强对在知识交汇处命制的试题的分析,引导学生注意知识的融会贯通.考点统计 题型(频率) 考例(难度)考点1 集合的概念、关系与运算选择(8) 2012陕西1(A),2012浙江卷1(A),2012广东卷2(A)考点2 命题及其关系、逻辑联结词 选择(3) 解答(1)2012山东卷3(A),2012陕西卷18(C) 考点3 充要条件的判断 选择(5) 2012天津卷2(A),2012安徽卷6(B) 考点4全称量词存在量词与命题的否定 选择(3) 2012福建卷3(A)主干知识整合1.集合的概念、关系与运算(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n.(3)集合的运算:∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B),∁U(∁UA)=A.2.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.3.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.4.简单的逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(⌝p)∧(⌝q);命题p∧q的否定是(⌝p)∨(⌝q).5.含有量词的命题的否定“∀x∈M,p(x)”的否定为“∃x0∈M,⌝p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,⌝p(x)”.要点热点探究►探究点一集合的概念、关系和基本运算例1(1)[2012·课程标准卷] 已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y ∈A},则B中所含元素的个数为(D)A.3 B.6 C.8 D.10(2)已知集合A={z∈C|z=1-2a i,a∈R},B={z∈C||z|=2},则A∩B=(A)A.{1+3i,1-3i} B.{3-i}C.{1+23i,1-23i} D.{1-3i}[点评] 集合是一种数学语言,使用集合可以表示函数的定义域、值域、方程的解集、不等式的解集、平面区域等,在复习时要注意集合的这个特点,准确地把集合表达的数学问题翻译为普通的数学问题,看下面的变式.变式题(1)已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=(B)A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}(2)已知集合M={y|y=2x},集合N={x|y=lg(2x-x2)},则M∩N=(A)A.(0,2) B.(2,+∞)C.[0,+∞) D.(-∞,0)∪(2,+∞)►探究点二命题的认识及其真假判断例2(1)[2012·湖南卷] 命题“若α=π4,则tanα=1”的逆否命题是(C)A.若α≠π4,则tanα≠1 B.若α=π4,则tanα≠1C.若tanα≠1,则α≠π4D.若tanα≠1,则α=π4(2)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x20+2ax0+2-a=0”.若命题“(⌝p)∧q”是真命题,则实数a的取值范围是(C)A.a≤-2或a=1 B.a≤-2或1≤a≤2C.a>1 D.-2≤a≤1[点评] 原命题与其逆命题、否命题、逆否命题是根据原命题得出的形式上的命题,其中逆否命题是把原命题中的结论否定作为条件,条件否定作为结论得到的形式上的命题,这个命题与原命题等价;p ∨q 为真只要p ,q 至少有一个真即可;p ∧q 为真必需p ,q 同时为真;p ,⌝p 一真一假.对第2题注意:理解题目中命题的含义,命题p 等价于a ≤x 2在[1,2]上恒成立;命题q 等价于方程x 2+2ax +2-a =0有实根.如果是∀x ,ax 2+bx +c =0,则等价于方程ax 2+bx +c =0恒成立,则必须a =b =c =0;如果是∃x 0, x 20-a ≥0,x ∈[1,2],则等价于[x 2]max ≥a .► 探究点三 充分条件、必要条件的推理与判断例3 (1)[2012·山东卷] 设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)若条件p :-3≤x ≤1,条件q :x 2+2x -3<0,则⌝p 是⌝q 的( A )A.充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件[点评] 充分条件、必要条件的推理与判断有三种方法.一、定义法:直接推断若p 则q ,若q 则p 是否成立;二、集合法:即若命题p 成立的集合为A ,命题q 成立的集合为B ,若A 是B 的真子集,则p 是q 的充分不必要条件,若B 是A 的真子集,则p 是q 的必要不充分条件,若A =B ,则p 与q 互为充要条件;三、等价转化法:根据一个命题与其逆否命题等价,把判断p 是q 的什么条件转化为判断⌝q 是⌝p 的什么条件,如α≠π3是tan α≠3的什么条件等价于判断tan α=3是α=π3的什么条件(必要不充分条件). ► 探究点四 量词与命题的否定例4 [2012·辽宁卷] 已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是( C )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0[点评] 由于全称命题是对某个集合中的所有元素都成立的一个命题,那么只要在这个集合中找出一个元素使结论不成立,就否定了这个命题,这就是为什么全称命题的否定是特称命题.同理理解为什么特称命题的否定是全称命题.注意:一个命题的否定是否定这个命题的结论,否命题是把原命题的条件和结论都否定后得到的形式上的命题.变式题 命题:“对任意a ∈R ,方程ax 2-3x +2=0有正实根”的否定是( D )A .对任意a ∈R ,方程ax 2-3x +2=0无正实根B .对任意a ∈R ,方程ax 2-3x +2=0有负实根C .存在a ∈R ,方程ax 2-3x +2=0有负实根D .存在a ∈R ,方程ax 2-3x +2=0无正实根规律技巧提炼•规律 对否定形式给出的充要条件的判断可以根据命题与其逆否命题等价转化为肯定形式给出的充要条件的判断,如x ≠2是x 2≠4的什么条件,可以转化为判断x 2=4是x =2的什么条件.•技巧 集合{x |y =f (x )}为函数y =f (x )的定义域,集合{y |y =f (x )}为函数y =f (x )的值域,集合{x |f (x )=0}为方程f (x )=0的解集,集合{x |f (x )>0}为不等式f (x )>0的解集,集合{(x ,y )|f (x ,y )=0}为方程f (x ,y )=0的解集,也表示方程f (x ,y )=0所表示的曲线上的点集等.•易错 空集是任何集合的子集,在判断两个集合之间的关系时不要忘记其中的集合可能是空集的情况.命题立意追溯抽象概括能力——集合中三种语言的转换示例 设平面点集}0)1)((),({≥--=xy x y y x A ,B ={}(x ,y )|(x -1)2+(y -1)2≤1,则A ∩B 所表示的平面图形的面积为(C) A.34π B.35π C.47π D.π2命题阐释] 本题命制点为抽象概括数学语言的能力,数学语言的考查体现在文字语言、符号语言、图形语言三者之间的互相转化.条件1:(y -x )⎝⎛⎭⎫y -1x ≥0(符号语言)转化不等式的解集(文字语言)转化平面坐标系中平面区域表示(图形语言);条件2同条件1;结论:A ∩B (符号语言)转化表示条件1与条件2图形的公共点(文字语言)转化平面坐标系中平面区域表示(图形语言).1.集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x x -1>0,集合N =}{21x y y =,则M ∩N =( B ) A .(0,+∞) B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)2.已知集合A ={(x ,y )|x 2+y 2≤1},B ={(x ,y )|-1≤x ≤1,-1≤y ≤1},则集合N ={(x ,y )|x =x 1+x 2,y =y 1+y 2,(x 1,y 1)∈A ,(x 2,y 2)∈B }表示的区域的面积是________.12+π教师备用例题选题理由:例题1说明集合表述问题的广泛性,例2说明充要条件的判断方法以及函数是偶函数的充要条件,例3说明逻辑用语应用的广泛性,通过这几个题目向学生阐明高考中集合与常用逻辑用语考查时涉及的知识是非常全面的,使学生认识到集合与常用逻辑用语与数学其他知识的广泛联系.例1 [2011·陕西卷] 设集合M ={y |y =|cos 2x -sin 2x |,x ∈R},N =x ⎪⎪⎪⎪⎪⎪x -1i <2,i 为虚数单位,x ∈R ,则M ∩N 为( C )A .(0,1)B .(0,1]C .[0,1)D .[0,1]例2 [2012·天津卷] 设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R)为偶函数”的( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件例3 [2012·江西卷] 下列命题中,假命题为( B )A .存在四边相等的四边形不.是正方形B .z 1,z 2∈C ,z 1+z 2为实数的充分必要条件是z 1,z 2互为共轭复数C .若x ,y ∈R ,且x +y >2,则x ,y 至少有一个大于1D .对于任意n ∈N *,C 0n +C 1n +…+C n n 都是偶数第2讲 函数、基本初等函数Ⅰ的图象与性质[云览高考]说明:A 表示简单题,B 表示中等题,C 表示难题.频率为分析2012各省市课标卷情况.二轮复习建议命题角度:函数部分的命题通常围绕三个方面进行.第一个方面是围绕函数概念、函数的解析式、函数的性质(单调性、奇偶性、周期性)展开,主要考查对函数概念的理解、函数定义域的求解、函数值的求解(一般是分段函数)、函数的最值的求解、函数性质在解题中的综合运用等;第二个方面是围绕函数图象展开,主要考查根据函数的解析式判断函数图象的大致形状,根据函数图象通过数形结合的方法解决一些问题等;第三个方面是围绕指数函数、对数函数、幂函数的图象与性质的运用展开,主要考查这三个函数的图象与性质在解决问题中的应用,如比较含有指数与对数的数的大小、含有指数函数与对数函数的分段函数的最值等.预计2013年基本的考点不会发生变化,仍然会从函数概念、性质、图象的应用等方面进行考查,但函数试题有非常大的灵活性,安徽卷主要以思想方法的创新为主,陕西和广东可能会出现一些创新性试题.复习建议:函数是高中数学最重要的基础知识,在一套高考试卷中考查到函数以及与函数相关问题的试题数量是较多的,但在本节中我们主要是研究函数概念、函数表示方法、函数性质,以及指数函数、对数函数、幂函数本身的问题,在复习时要以此为重点.函数问题中的重点是函数的性质,难点是函数性质的综合运用,特别是在抽象函数中函数性质的综合运用,在复习中注意引导学生抓住这个重点,通过例、习题掌握使用函数性质分析问题、解决问题的基本方法.主干知识整合1、函数的概念及其表示函数的定义域和值域均为非空的数集,定义域和对应关系相同的两个函数是同一函数.2.函数的性质考点统计 题型(频率) 考例(难度)考点1 函数概念的理解和性质的应用选择(4) 2012安徽卷2(A),2012广东卷4(A) 考点2 函数图象的分析与判断 选择(4) 2012四川卷5(B),2012重庆卷7(B),2012陕西卷2(A) 考点3 基本初等函数的性质及应用选择(5) 2012广东卷4(A),2012课程标准卷12(C),2012山东卷8(B)(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性是函数在定义域上的整体性质.若函数满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.3.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况要点热点探究► 探究点一 函数的概念的理解和性质的应用例1 (1)[2012·山东卷] 函数f (x )=1ln (x +1)+4-x 2的定义域为( B ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2] D .(-1,2](2)[2012·福建卷] 设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( C ) A .D (x )的值域为{0,1} B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数[点评] 本例第二题是历史上有名的函数“狄利克雷”函数,这个函数的著名的性质之一就是其为周期函数,任何非零实数都是其周期,这个函数没有最小正周期.函数的奇偶性和周期性都是函数在其定义域上的整体性质,即对定义域内任意的一个自变量都满足的性质,在证明函数的奇偶性和周期性时,一定要注意这个特点,如本题中我们在证明D (x )为偶函数时,就是对定义域内任意无理数证明其满足偶函数的定义,也得证明对定义域内任意有理数也满足偶函数的定义,缺少任何一个方面的证明都是不完整的,作出的结论也就可能是错误的.本例第一题是求函数的定义域,求函数定义域的主要依据:①分式的分母不为零;②偶次方根被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1.变式题 已知函数f (x )和f (x +2)都是定义在R 上的偶函数,当x ∈[-2,2]时,f (x )=g (x ).则当x ∈[-4n -2,-4n +2],n ∈Z 时,f (x )的解析式为( C )A .g (x )B .g (x +2n )C .g (x +4n )D .g (x -4n )► 探究点二 函数的图象的分析与判断例2 (1)设a <b ,则函数y =(a -x )(x -b )2的图象可能是( B )图1-2-12)[2012·课程标准卷] 已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( B )图1-2-2[点评] 根据函数的解析式判断函数图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时可结合部分特殊函数值进行辅助推断,这是解决函数图象判断类试题的基本方法.变式题 函数y =ln ⎪⎪⎪⎪1x 与y =-x 2+1在同一平面直角坐标系内的大致图象为( C )图1-2-3► 探究点三 基本初等函数的性质及其应用例3 (1)[2012·江西卷] 若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( B ) A .lg101 B .2 C .1 D .0 (2)设a =5.0)21(,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是(C )A .a >b >cB .a <b <cC .b <a <cD .a <c <b[点评] 在计算复合函数值时要注意从内层到外层逐次计算,如果已知的函数是分段的,在求解时要不断判断求解的函数值使用哪段的解析式.在指数式、对数式比较大小时,要根据实际情况构造适当的函数,使用函数的单调性进行.如果是指数相同、底数不同则构造幂函数,如果是底数相同、指数不同则构造指数函数.比较大小的一个基本技巧是寻找中间值,如0,1等,把要比较的对象的取值画在不同的区间,这样就可以根据取值的情况对比较的对象作出判断.变式题 若x ∈()e -1,1,a =ln x ,b =x ln )21(,c =e ln x ,则( D ) A .c >b >a B .b >a >c C .a >b >c D .b >c >a规律技巧提炼•技巧 当奇函数在x =0处有定义时,一定有f (0)=0(反之不真);在函数的奇偶性问题中使用函数奇偶性的定义是对函数定义域内任意x 恒成立(当然对定义域内的特殊值也成立)得到关于x 的恒等式,从而确定函数解析式中的字母参数问题(在选择题和填空题中也可以使用特殊的函数值).•易错 忽视函数的定义域,分段函数中分段点处混用函数解析式,复合函数值计算层次混乱.命题立意追溯推理论证能力——函数问题中的代数推理示例 [2012·福建卷] 函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有f )2(21x x +≤12[f (x 1)+f (x 2)],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1,3]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3];④对任意x 1,x 2,x 3,x 4∈[1,3],有f (x 1+x 2+x 3+x 44)≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)]. 其中真命题的序号是( D ) A .①② B .①③ C .②④ D .③④[跟踪练]1.已知函数f (x )对任意x ∈R 都有f (x +6)+f (x )=2f (3),y =f (x -1)的图象关于点(1,0)对称,且f (4)=4,则f (2 012)=( B ) A .0 B .-4 C .-8 D .-162.已知定义在R 上的函数f (x )满足)23(+x f =-f (x ),且函数y =)43(-x f 为奇函数,给出三个结论:①f (x )是周期函数;②f (x )的图象关于点)0,43(-对称;③f (x )是偶函数.其中正确结论的个数为( A ) A .3 B .2 C .1 D .0教师备用例题选题理由:例1为指数函数、三角函数交汇类试题,解题中要研究函数的奇偶性以及函数值的变化规律,才能较好地作出判断,该题对学生解答图象分析类试题具有较好的示范作用;例2考查指数函数、对数函数和不等式等,其中最值的求解方法很丰富,是一题多解的好题;例3的主要思想是函数与方程,把问题转化为方程的解,是一个训练学生等价转化问题方法的较好题目.这三个题目可作为探究点二、三的补充.例1 [2012·山东卷] 函数y =cos6x 2x -2-x 的图象大致为( D )例2 [2012·湖南卷] 已知两条直线l 1:y =m 和l 2:y =82m +1(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b a 的最小值为( B )A .16 2B .8 2C .834D .434例3 对于定义域为D 的函数f (x ),若存在区间M =[a ,b ]⊆D (a <b ),使得{y |y =f (x ),x ∈M }=M ,则称区间M 为函数f (x )的“等值区间”.给出下列四个函数:①f (x )=2x ;②f (x )=x 3;③f (x )=sin x ;④f (x )=log 2x +1.则存在“等值区间”的函数的个数是( B )A .1个B .2个C .3个D .4个第3讲函数与方程、函数模型及其应用[云览高考]考点统计题型(频率)考例(难度)考点1函数的零点与方程根的分布选择(4)2012天津卷4(B),2012湖南卷9(B),2012湖北卷9(B)考点2二分法求方程的近似解0考点3函数模型及其应用解答(2)2012课程标准卷18(1)A,2012江苏卷17(C) 说明:A表示简单题,B表示中等题,C表示难题.频率为分析2012各省市课标卷情况.二轮复习建议命题角度:从五年来课程标准卷的考情看,该部分的命题通常围绕两个点展开.第一个点是围绕函数图象的交点展开,通过函数图象的交点问题命制综合性较强的试题,如2011年的试题是求“函数y=1x-1的图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的横坐标之和”,把函数的零点问题以图象的交点坐标的形式进行表述,而不直接给出函数考查函数的零点(五年没有一次提到函数零点问题);第二个点是围绕函数建模展开,一般是解答题的一个部分,特别值得指出的是课程标准卷五年来考查的两次函数建模都是与概率统计交汇进行的,这是课程标准卷的一个命题特点,而安徽,陕西和广东等自主命题省份很少把函数图象与性质与其他知识结合.预计2013年上述情况会得到延续,但出现变化的可能性也很大,即有可能直接考查函数的零点,可能在选择题或者填空题中直接考查函数建模,或者在解答题中以函数建模、导数解模为主考查函数模型及其应用.复习建议:该讲的重点是函数与方程的关系,函数零点的存在性定理,函数建模的基本方法,导数在解决函数模型中的应用,复习时要围绕这两个重点内容展开.在第一个点上要注意以数形结合思想为指导,引导学生掌握解决问题的方法;在第二个点上要注意建模的一般过程的训练,使学生掌握函数建模的基本方法.主干知识整合1.函数的零点与方程的根(1)函数的零点与方程根的关系:函数y=f(x)的零点就是方程f(x)=0的实数根,即函数y=f(x)的图象与x轴的交点的横坐标.方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(2)二分法:对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)检验数学结果是否满足实际情况;(5)实际问题作答:将数学问题的结果转译成实际问题作出解答.要点热点探究► 探究点一 函数的零点和方程根的分布例1 (1)[2012·天津卷] 函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( B )A .0B .1C .2D .3(2)设f (x )是定义在R 上的偶函数,且f (2+x )=f (2-x ),当x ∈[-2,0]时,f (x )=x )22(-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)恰有4个不同的实数根,则实数a 的取值范围是( D ) A.)1,41( B .(1,4) C .(1,8) D .(8,+∞)[点评] 函数的零点、方程的根,都可以转化为函数图象的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来.式题 (1)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点个数是( C ) A .2 B .3 C .4 D .5(2)当直线y =kx 与曲线y =e |ln x |-|x -2|有3个公共点时,实数k 的取值范围是( A )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)► 探究点二 二分法求方程的近似解例2 用二分法求方程ln x =1x 在[1,2]上的近似解,取中点c =1.5,则下一个有根区间是[1.5,2][点评] 用二分法求方程近似解时,每一次取中点后,下一个有根区间的判断原则是:若中点函数值为零,则这个中点就是方程的解,若中点函数值不等于零,则下一个有根区间是中点与和这个中点函数值不同号的端点组成的区间.在用二分法求方程的近似解时,有时需要根据精确度确定近似解.► 探究点三 函数的模型及其应用例3 受全球经济疲软的影响,某旅游公司经济效益出现了一定程度的滑坡.现需要对某一景点进行改造升级,从而扩大内需,提高旅游增加值.经过市场调查,旅游增加值y万元与投入x 万元之间满足:y =5150x -ax 2-ln x 10,x 2x -12∈[t ,+∞),其中t 为大于12的常数.当x =10万元时,y =9.2万元.(1)求y =f (x )的解析式和投入x 的取值范围;(2)求旅游增加值y 取得最大值时对应的x 值.[点评] 本题给出了函数的模型,但函数模型中含有未知参数,需要根据已知的试验数据确定未知参数,这也是高考中命制函数建模试题常见的方式之一.在使用导数求解定义域有限制的函数的极值时,一般是先把函数的单调性和极值点求出,再根据函数极值点与函数定义域的相对位置关系进行分类讨论,讨论的标准是函数的极值点在函数定义域内与不在函数的定义域内.实际问题中的函数大多是单峰函数,即在问题的实际范围内函数只有一个极值点,那么这个极值点就是最值点.变式题 某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元)可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该集团将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?(2)现在该集团准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该集团由这两项共同产生的收效最大.规律技巧提炼•规律 在区间(a ,b )上单调的函数,如果在这个区间上存在零点x 0,则只有一个零点,而且区间(a ,x 0)上函数值符号相同,在区间(x 0,b )上函数值同号且与在区间(a ,x 0)的函数值异号.二分法求方程的近似解时,如果初始区间的长度为l ,则计算n 次后得到的近似解其精确度为l2n .•技巧 在判断函数零点个数时,如果一个函数能够分解为两个函数的差,则可以构造两个函数,然后通过研究两个函数图象交点的个数得出函数零点的个数,在解决由函数零点个数求参数范围问题中这种方法更有效.易错•分段函数的零点判断中忽视对分界点的正确处理,实际应用问题中忽视函数的定义域. 命题立意追溯 应用意识——合理转化实际问题为抽象数学问题示例 某驾驶员喝了m 升酒后,血液中的酒精含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式⎪⎩⎪⎨⎧>⋅≤≤=-1,)31(5310,5)(2x x x f x x 《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不得超过0.02毫克/毫升.此驾驶员至少要过___4_____小时后才能开车(不足1小时部分算1小时,结果精确到1小时). [跟踪练] [2012·湖南卷] 某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.教师备用例题选题理由:例1是一道考查函数与方程的难度极大的题目,这个题目背景是三次方程根与系数的关系,对开阔学生思路有一定的价值;例2考查分段函数,一元二次方程以及求最值的综合,也是一道难度较大的试题;例3重在考查函数解析式的求解以及数形结合思想.这三道题目均可作为探究点一的深化补充.例1 [2012·山东卷] 设函数f (x )=1x,g (x )=ax 2+bx (a ,b ∈R ,a ≠0),若y =f (x )的图象与y=g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是(B)A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0例2 [2012·福建卷] 对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R)恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________⎝ ⎛⎭⎪⎫1-316,0.例3 [2012·天津卷] 已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. (0,1)∪(1,4)第4讲 不等式与简单的线性规划。

高中数学专题复习一:集合、常用逻辑用语、不等式、函数与导数

高中数学专题复习一:集合、常用逻辑用语、不等式、函数与导数

专题一:集合、常用逻辑用语、不等式、函数与导数 一、利用公式求导:1、常见函数求导:'1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()x xe e = '()ln (0)x x a a a a =⋅>'1(ln )x x='1(log )(01)ln a x a a x a=>≠且 2.求导法则:[]'''()()()()()()f xg x fx g x f x g x ⋅=±, []'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 二、利用导数几何意义(切线的斜率)解题——切点待定法(设出切点坐标,写出切线表达式) 曲线y=f(x)在点P(x 0 ,f (x 0))处的切线方程是: 0()()()y f x f x x x '-=-三、导函数与原函数图象关系(1()0()f x f x '>⇔、是增函数 2、导数越大,函数变化越大3、原函数看增减性,导函数看正负)1。

已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M ( )。

),1[+∞-.]2,1[-. ),2[+∞ 。

ϕ选.由题意得}1|{-≥=y y M ,}22|{≤≤-=x x N ,所以=N M ]2,1[-。

2.命题“存在04,2<-+∈a ax xR x 使为假命题”是命题“016≤≤-a ”的( ).充要条件.必要不充分条件.充分不必要条件 .既不充分也不必要条件选。

依题意,“存在04,2<-+∈a ax x R x 使为假命题”得2160aa ∆=+≤,解得016≤≤-a ,所以命题“存在04,2<-+∈a ax x R x 使为假命题”是命题“016≤≤-a "的充要条件. 3.设554a log4b log c log ===25,(3),,则() .b c a << 。

集合 常用逻辑用语 函数与导数1

集合 常用逻辑用语 函数与导数1

)
返回
[解析] 由题意知二次函数y=x2-2x在[1,+∞)上
单调递增,又1<m-1<m<m+1,所以y1=f(m-
1)<y2=f(m)<y3=f(m+1). [答案] A
返回
12.若 f(x)= x ,则不等式 f(x)>f(8x-16)的解集是 A.(0,+∞) C.[2,+∞) B.(0,2] D.[2, 16 ) 7
返回
1.已知集合A={x|x=a+(a2-1)i(a∈R,i是虚数单位)},
若A⊆R,则a= A.1 C.±1 B.-1 D.0 ( )
解析:因为A⊆R,所以A中的元素为实数. 所以a2-1=0.即a=±1. 答案:C
返回
2.集合A={-1,0,1},B={y|y=cos x,x∈A},
则A∩B= A.{1} C.{0,1} B.{0} D.{-1,0,1} ( )
[答案] (1,+∞) 返回
6.函数 f(x)=
1 +log2(2x-1)的定义域是________. 1-x
1-x>0 须满足 2x-1>0
解析:要使函数有意义,x
,解之得
1 1 <x<1.所以函数f(x)的定义域为( ,1). 2 2
1 答案:(2,1)
返回
[例 4]
(2012· 沈阳模拟)已知直线 y=mx(m∈R)与函数 f(x)=
返回
8.设偶函数f(x)=x-2(x≥0),则不等式f(x-2)>0的解集 为 A.{x|x<-2或x>4} C.{x|x<0或x>6} ( B.{x|x<0或x>4} D.{x|x<-2或x>2} )

高考数学二轮专题复习第一部分专题一集合、常用逻辑用语、函数与导数、不等式讲义

高考数学二轮专题复习第一部分专题一集合、常用逻辑用语、函数与导数、不等式讲义

专题一集合、常用逻辑用语、函数与导数、不等式第一讲集合与常用逻辑用语考点一集合的概念及运算一、基础知识要记牢1.集合中元素的特性集合元素具有确定性、互异性和无序性.解题时要特别注意集合元素互异性的应用.2.运算性质及重要结论如(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A等.二、经典例题领悟好[例1] (1)(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)(2)(2018届高三·金丽衢联考)已知全集U=R,集合A={x|x<-1或x>4},B={x|-2≤x≤3},那么阴影部分表示的集合为( )A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x≤-1}D.{x|-1≤x≤3}[解析] (1)根据集合的并集的定义,得P∪Q=(-1,2).(2)由题意得,阴影部分所表示的集合为(∁U A)∩B={x|-1≤x≤3},故选D.[答案] (1)A (2)D解答集合间的运算关系问题的思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义.(2)根据元素的不同属性采用不同的方法对集合进行化简求解.(3)确定(应用)集合间的包含关系或运算结果,常用到以下技巧:①若已知的集合是不等式的解集,用数轴求解;②若已知的集合是点集,用数形结合法求解;③若已知的集合是抽象集合,用Venn图求解.三、预测押题不能少1.(1)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.(2)设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 因为x ∈A ∩B ,所以x 可取0,1; 因为y ∈A ∪B ,所以y 可取-1,0,1,2,3. 则(x ,y )的可能取值如下表所示:故考点二 四种命题及其关系 一、基础知识要记牢与“四种命题”相关联的结论(1)若一个命题有大前提,其他三种命题需保留大前提;(2)一个命题的否命题与命题的否定不是同一个命题:前者既否定条件,又否定结论,后者只否定命题的结论;(3)互为逆否关系的命题真假相同,所以四种命题的真假个数一定为偶数. 二、经典例题领悟好[例2] (1)(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R.其中的真命题为( )A.p1,p3 B.p1,p4C.p2,p3 D.p2,p4 (2)(2017·金华一中模拟)下列命题中为真命题的是( ) A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题[解析] (1)设复数z=a+b i(a,b∈R),对于p1,∵1z=1a+b i=a-b ia2+b2∈R,∴b=0,∴z∈R,∴p1是真命题;对于p2,∵z2=(a+b i)2=a2-b2+2ab i∈R,∴ab=0,∴a=0或b=0,∴p2不是真命题;对于p3,设z1=x+y i(x,y∈R),z2=c+d i(c,d∈R),则z1z2=(x+y i)(c+d i)=cx-dy +(dx+cy)i∈R,∴dx+cy=0,取z1=1+2i,z2=-1+2i,z1≠z2,∴p3不是真命题;对于p4,∵z=a+b i∈R,∴b=0,∴z=a-b i=a∈R,∴p4是真命题.(2)对于A,其逆命题是:若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y;对于B,其否命题是:若x≤1,则x2≤1,是假命题.如x=-5,x2=25>1;对于C,其否命题是:若x≠1,则x2+x-2≠0,由于x=-2时,x2+x-2=0,所以原命题的否命题是假命题;对于D,若x2>0,则x>0或x<0,不一定有x>1,因此原命题与它的逆否命题都是假命题.故选A.[答案] (1)B (2)A1在判定四个命题之间的关系时,首先要分清命题的“大前提、条件、结论”,再进行比较.2判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.3根据“互为逆否关系的命题同真同假”这一性质,当一个命题的真假不易判定时,可转化为判断其等价命题的真假.三、预测押题不能少2.(1)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 命题的逆否命题是将条件和结论对换后分别否定,因此“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是若x +y 不是偶数,则x 与y 不都是偶数.(2)有下列四个命题:①若“xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题为( ) A .①② B .②③ C .④D .①②③解析:选D ①的逆命题:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题:“面积不相等的三角形不是全等三角形”是真命题;③的逆否命题:“若x 2-2x +m =0没有实数解,则m >1”是真命题;命题④是假命题,所以它的逆否命题也是假命题,如A ={1,2,3,4,5},B ={4,5},显然A ⊆B 是错误的.故选D.考点三 充要条件 一、基础知识要记牢对于p 和q 两个命题,若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p 和q 互为充要条件.推出符号“⇒”具有传递性,等价符号“⇔”具有双向传递性.二、经典例题领悟好[例3] (1)(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)设A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -1x +1<0,B ={x ||x -b |<a },若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,所以“d >0”是“S 4+S 6>2S 5”的充分必要条件.(2)A ={x |-1<x <1},当a =1时,B ={x |b -1<x <b +1},若“a =1”是“A ∩B ≠∅”的充分条件,则有-1≤b -1<1或-1<b +1≤1,所以b ∈(-2,2).[答案] (1)C (2)(-2,2)判定充分、必要条件时的关注点(1)要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .2要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行,那么可以尝试通过举出恰当的反例来说明.三、预测押题不能少3.(1)“10a>10b”是“lg a >lg b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由10a>10b得a >b ,由lg a >lg b 得a >b >0,所以“10a>10b”是“lg a >lg b ”的必要不充分条件.(2)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选A p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p 是q 的必要不充分条件.故选A.[知能专练(一)]一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.(2017·浙江延安中学模拟)命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是( ) A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0 B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0 C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0 D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0解析:选D “若p,则q”的逆否命题为“若綈q,则綈p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.3.(2017·宁波模拟)“x<0”是“ln(x+1)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.4.(2017·吉林模拟)已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是( )A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]解析:选A 设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以Q P,因此a≥1.5.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.6.(2018届高三·安徽“江南十校”联考)已知集合A={x|x2-x≤0},函数f(x)=2-x(x ∈A)的值域为B,则(∁R A)∩B等于( )A.{x|1<x≤2} B.{x|1≤x≤2}C.{x|0≤x≤1} D.{x|x>1}解析:选A 由题意知,集合A={x|0≤x≤1},∴B={y|1≤y≤2},∁R A={x|x<0或x>1},∴(∁R A)∩B={x|1<x≤2}.7.设集合S n={1,2,3,…,n},n∈N*,若X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.若n=4,则S n的所有奇子集的容量之和为( ) A.7 B.8C.9 D.10解析:选A 若n=4,则S n的所有奇子集为{1},{3},{1,3},故所有奇子集的容量之和为7.8.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3 B.2C.1 D.0解析:选B 因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y =x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.9.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.10.下列关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题的结论中成立的是( )A.都为真命题 B.都为假命题C.否命题为真命题 D.逆否命题为真命题解析:选D 对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.二、填空题11.已知集合U={1,2,3,4,5,6},S={1,3,5},T={2,3,6},则S∩(∁U T)=________,集合S共有________个子集.解析:由题意可得∁U T={1,4,5},则S∩(∁U T)={1,5}.集合S的子集有∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},共8个.答案:{1,5} 812.(2017·南通模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.解析:“a>b”是“3a>3b”的充要条件,①错误;“α>β”是“cos α<cos β”的既不充分也不必要条件,②错误;“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件,③正确.故正确命题的序号为③.答案:③13.已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x 2x <1,N ={y |y =x -1+1},则N ∩(∁R M )=________,M ∪(∁R N )=________.解析:M =⎩⎨⎧⎭⎬⎫x 2x <1={x |x <0或x >2},N ={y |y =x -1+1}={y |y ≥1},∁R M ={x |0≤x ≤2},∁R N ={y |y <1},∴N ∩(∁R M )={x |1≤x ≤2},M ∪(∁R N )={x |x <1或x >2}. 答案:{x |1≤x ≤2} {x |x <1或x >2}14.若“4x +p <0”是“x 2-x -2>0”的充分条件,则实数p 的取值范围是________. 解析:由x 2-x -2>0,得x >2或x <-1. 由4x +p <0得x <-p4.故-p 4≤-1时,“x <-p4”⇒“x <-1”⇒“x 2-x -2>0”.∴p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件. 答案:[4,+∞)15.(2017·诸暨质检)已知A ={x |-2≤x ≤0},B ={x |x 2-x -2≤0},则A ∪B =________,(∁R A )∩B =________.解析:∵A ={x |-2≤x ≤0},∴∁R A ={x |x <-2或x >0},又B ={x |x 2-x -2≤0}={x |-1≤x ≤2},∴A ∪B ={x |-2≤x ≤2},∴(∁R A )∩B ={x |0<x ≤2}.答案:{x |-2≤x ≤2} {x |0<x ≤2}16.(2017·四川南山模拟)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析:由题意知,13<x <12是不等式|x -m |<1成立的充分不必要条件,所以⎩⎨⎧⎭⎬⎫x 13<x <12是{x ||x -m |<1}的真子集.而{x ||x -m |<1}={x |-1+m <x <1+m },所以有⎩⎪⎨⎪⎧-1+m ≤13,1+m ≥12(两个不等式不能同时取等号),解得-12≤m ≤43,所以m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案:⎣⎢⎡⎦⎥⎤-12,43 17.设全集U =R ,集合A ={x |x 2-3x -4<0},B ={x |log 2(x -1)<2},则A ∩B =______,A ∪B =________,∁R A =________.解析:∵A ={x |-1<x <4},B ={x |1<x <5},∴A ∩B ={x |1<x <4},A ∪B ={x |-1<x <5},∁R A ={x |x ≤-1或x ≥4}.答案:{x |1<x <4} {x |-1<x <5} {x ≤-1或x ≥4} [选做题]1.已知集合A ={(x ,y )|x =n ,y =na +b ,n ∈Z},B ={(x ,y )|x =m ,y =3m 2+12,m ∈Z},若存在实数a ,b 使得A ∩B ≠∅成立,称点(a ,b )为“£”点,则“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为( )A .0B .1C .2D .无数个解析:选A A ={(x ,y )|x =n ,y =na +b ,n ∈Z}={(x ,y )|y =ax +b ,x ∈Z},B ={(x ,y )|x=m ,y =3m 2+12,m ∈Z}={(x ,y )|y =3x 2+12,x ∈Z},联立⎩⎪⎨⎪⎧y =ax +b ,y =3x 2+12,故3x 2-ax +12-b =0,①因为A ∩B ≠∅,故Δ=a 2-12(12-b )=a 2+12b -144≥0,即a 2+12b ≥144,联立⎩⎪⎨⎪⎧a 2+12b ≥144,a 2+b 2≤108,解得a =±62,b =6,代入①中可知x =±2,这与x ∈Z 矛盾,故“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为0,故选A.2.对于非空数集A ,B ,定义A +B ={x +y |x ∈A ,y ∈B },下列说法: ①A +B =B +A ;②(A +B )+C =A +(B +C ); ③若A +A =B +B ,则A =B ; ④若A +C =B +C ,则A =B . 其中正确的是( ) A .① B .①② C .②③D .①④解析:选B 对于①,A +B ={x +y |x ∈A ,y ∈B }={y +x |x ∈A ,y ∈B }=B +A ,①正确;对于②,(A +B )+C ={(x +y )+z |x ∈A ,y ∈B ,z ∈C }=A +(B +C ),②正确;对于③,当A ={奇数},B ={偶数}时,A +A ={偶数}=B +B ,显然A ≠B ,③错误,对于④,当A ={奇数},B ={偶数},C ={整数}时,A +C ={整数}=B +C ,显然A ≠B ,④错误.综上所述,正确的为①②,故选B.3.已知命题p :对数log a (-2t 2+7t -5)(a >0,a ≠1)有意义;q :关于实数t 的不等式t2-(a +3)t +(a +2)<0.若命题p 是命题q 的充分不必要条件,则实数a 的取值范围是________.解析:由题意知,-2t 2+7t -5>0,解得1<t <52.∵命题p 是命题q 的充分不必要条件,∴1<t <52是不等式t 2-(a +3)t +(a +2)<0解集的真子集.因为方程t 2-(a +3)t +(a +2)=0两根为1,a +2,故只需a +2>52,解得a >12.即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.答案:⎝ ⎛⎭⎪⎫12,+∞第二讲函数的概念与性质考点一 函数及其表示 一、基础知识要记牢(1)函数初、高中定义形式不同,本质一样,核心是对应; (2)当两个函数的三要素完全相同时表示同一个函数;(3)分段函数是一个函数而不是几个函数,离开定义域讨论分段函数是毫无意义的. 二、经典例题领悟好[例1] (1)(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1|(2)(2017·嘉兴模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.(3)(2016·江苏高考)函数y = 3-2x -x 2的定义域是________.[解析] (1)取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x=0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误;取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )= x +1,则对任意x ∈R 都有f (x 2+2x )= x 2+2x +1=|x +1|,故选项D 正确.(2)当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.当a >0时,f (a )=-a 2<0,由f (f (a ))=a 4-2a 2+2=2,解得a = 2.(3)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].[答案] (1)D (2) 2 (3)[-3,1]1.理解函数概念的要点函数概念本质是对应,以具体函数模型为基础,在新背景、综合背景下理解. 2.求函数定义域的类型和相应方法 1若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式组即可;2实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义., 3.求函数值时应注意的问题分段函数的求值解不等式问题,必须依据条件准确地找出利用哪一段求解;对具有周期性的函数求值要利用好其周期性.三、预测押题不能少1.(1)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9].(2)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析:∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-2 考点二 函数的图象 一、基础知识要记牢函数的图象包括作图、识图、用图,其中作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.正确作图是解题的基本保障,识图、用图是解题的手段和目标.二、经典例题领悟好[例2] (1)(2016·浙江高考)函数y =sin x 2的图象是( )(2)函数f (x )的图象是如图所示的折线段OAB ,其中A (1,2),B (3,0),函数g (x )=xf (x ),那么函数g (x )值域为( )A .[0,2]B.⎣⎢⎡⎦⎥⎤0,94 C.⎣⎢⎡⎦⎥⎤0,32D .[0,4][解析] (1)∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =±π2时,y =sin x 2=1,而π2<π2,且y =sin π24<1,故D 项正确. (2)由题图可知直线OA 的方程是y =2x ; 而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3x =-⎝ ⎛⎭⎪⎫x -322+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0.综上所述,g (x )的值域为⎣⎢⎡⎦⎥⎤0,94.[答案] (1)D (2)B由解析式确定函数图象的判断技巧(1)由函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置. (2)由函数的单调性,判断图象的变化趋势. (3)由函数的奇偶性,判断图象的对称性. (4)由函数的周期性,判断图象的循环往复. 三、预测押题不能少2.(1)函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的大致图象是( )解析:选A 由二次函数的图象可知b <-1,0<a <1,所以g (x )=a x+b 为减函数,其图象由指数函数y =a x的图象向下平移|b |个单位长度得到,故选A.(2)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2. 答案:(-∞,-2) 考点三 函数的性质 一、基础知识要记牢(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.二、经典例题领悟好[例3] (1)(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数(2)(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( ) A .-2B .-1C .0D .2(3)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[解析] (1)因为f (x )=3x-⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-[ 3x -⎦⎥⎤⎝ ⎛⎭⎪⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,所以f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.(2)由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.故选D. (3)∵f (x )满足f (x -4)=-f (x ), ∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). ∵f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11). [答案] (1)A (2)D (3)D函数性质综合应用问题的3种类型和解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.三、预测押题不能少3.(1)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.(2)下列函数中既是奇函数又在其定义域上是减函数的是( ) A .y =lg 1+x1-xB .y =e -x-e xC .y =sin x -|cos x |D .y =x 3-3x解析:选B 选项A 错误,因为函数f (-x )=lg 1-x 1+x =-lg 1+x1-x =-f (x ),所以是奇函数且定义域为(-1,1),因为g (x )=1+x 1-x =21-x -1是增函数,所以y =lg 1+x1-x 是增函数;选项B 正确,f (-x )=e x-e -x=-(e -x-e x )=-f (x ),所以是奇函数,因为y =e -x=⎝ ⎛⎭⎪⎫1e x 是减函数,y =-e x是减函数,所以y =e -x -e x是减函数;选项C 错误,f (-x )=-sin x -|cos x |≠-f (x ),所以f (x )=sin x -|cos x |不是奇函数;选项D 错误,函数y =x 3-3x 是奇函数但不是单调函数.故选B.(3)若f (x )是定义在f (x )是定义在R 上的周期为4的函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x 1-x ,0≤x ≤1,cos πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫293=________.解析:因为f (x )的周期为4,则f ⎝ ⎛⎭⎪⎫293=f ⎝ ⎛⎭⎪⎫8+53=f ⎝ ⎛⎭⎪⎫53=cos 5π3=cos π3=12,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫293=f ⎝ ⎛⎭⎪⎫12=12⎝ ⎛⎭⎪⎫1-12=14.答案:14[知能专练(二)]一、选择题1.已知函数f (x )为奇函数,且当x >0时, f (x ) =x 2+1x,则f (-1)=( )A .-2B .0C .1D .2解析:选A f (-1)=-f (1)=-2.2.(2017·大连测试)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.3.(2016·全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:选D f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈⎝ ⎛⎭⎪⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝ ⎛⎭⎪⎫0,14单调递减,排除C.故选D.4.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数.因为f (x )在R 上单调递增,f (0)=0,所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3),20.8<2=log 24<log 25.1<log 28=3,所以b <a <c .5.若f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)解析:选B 由题意可知函数f (x )在(-∞,1]和(1,+∞)上都为增函数,且f (x )的图象在(-∞,1]上的最高点不高于其在(1,+∞)上的最低点,即⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2,解得a ∈[4,8).6.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 22x ,则“同根函数”是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )解析:选A f 4(x )=log 22x =1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.7.(2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m解析:选B 因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i +y i )=m .二、填空题8.若函数f (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,a ,x =0,g 2x ,x <0为奇函数,则a =________,f (g (-2))=________.解析:由函数f (x )是R 上的奇函数可得f (0)=a =0.因为g (-2)=f (-1)=-f (1)=-4,所以f (g (-2))=f (-4)=-f (4)=-25.答案:0 -259.(2016·四川高考)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.解析:∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0. ∵f (x )=4x,x ∈(0,1),∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12 =-f ⎝ ⎛⎭⎪⎫12=-412=-2.∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 答案:-210.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110.由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,得-12+a =110,解得a=35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25. 答案:-2511.已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集为________.解析:当x ≥0时,f (x )=x +1x +1=1,当x <0时,f (x )=x +11-x =-1-2x -1, 作出f (x )的图象,如图所示.可得f (x )在(-∞,0)上递增,不等式f (x 2-2x )<f (3x -4)即为⎩⎪⎨⎪⎧3x -4≥0,x 2-2x <0或⎩⎪⎨⎪⎧3x -4<0,x 2-2x <0,x 2-2x <3x -4,即有⎩⎪⎨⎪⎧x ≥43,0<x <2或⎩⎪⎨⎪⎧x <43,0<x <2,1<x <4,解得43≤x <2或1<x <43,所以1<x <2,即不等式的解集为(1,2). 答案:(1,2)12.(2017·杭州模拟)设集合A ={x |x 2-|x +a |+2a <0,a ∈R},B ={x |x <2}.若A ≠∅且A ⊆B ,则实数a 的取值范围是________.解析:由题意知x 2-|x +a |+2a <0⇒x 2<|x +a |-2a ,其解集A ≠∅时,可设A ={m <x <n }. 首先,若n =2时,则|2+a |-2a =4, 解得a =-2,满足A ⊆B .由函数y =|x +a |-2a 的图象可知,当a <-2时,n >2,不满足A ⊇B ,不合题意,即可知a ≥-2;考虑函数y =|x +a |-2a 的右支与y =x 2相切时,则x +a -2a =x 2,即x 2-x +a =0,解得a =14.又当a ≥14时,A =∅,即可知a <14.综上可知:-2≤a <14.或考虑函数y =|x +a |和函数y =x 2+2a 进行数形结合.答案:⎣⎢⎡⎭⎪⎫-2,14 三、解答题13.已知二次函数f (x )=ax 2+bx +3是偶函数,且过点(2,7),g (x )=x +4. (1)求f (x )的解析式; (2)求函数F (x )=f (2x)+g (2x +1)的值域;(3)若f (x )≥mx +m +4对x ∈[2,6]恒成立,求实数m 的取值范围. 解:(1)由题意,对任意x ∈R ,f (-x )=f (x ), ∴ax 2-bx +3=ax 2+bx +3,得2bx =0, 又∵x ∈R ,∴b =0,得f (x )=ax 2+3.把点(2,7)代入得4a +3=7,解得a =1,∴f (x )=x 2+3. (2)F (x )=f (2x)+g (2x +1)=(2x )2+3+2x +1+4=(2x )2+2×2x+7.设2x=t ,则t ∈(0,+∞),F (t )=t 2+2t +7=(t +1)2+6>7,∴函数F (x )的值域为(7,+∞).(3)依题意得当x ∈[2,6]时,x 2+3≥mx +m +4恒成立,即x 2-mx -m -1≥0对x ∈[2,6]恒成立.设p (x )=x 2-mx -m -1,则⎩⎪⎨⎪⎧m 2<2,p 2≥0或⎩⎪⎨⎪⎧m 2>6,p 6≥0或Δ=m 2+4m +4≤0,即⎩⎪⎨⎪⎧m <4,m ≤1或⎩⎪⎨⎪⎧m >12,m ≤5或m =-2,得m ≤1.综上可知,实数m 的取值范围是(-∞,1]. 14.设a >0,b ∈R ,函数f (x )=ax-2bx +b (0<x ≤1). (1)求函数f (x )的最小值;(2)若f (x )+|2a -b |≥0在区间(0,m ]上恒成立,求实数m 的最大值.解:(1)当b ≥0时,f (x )在0<x ≤1上递减,此时f (x )min =f (1)=a -2b +b =a -b ;当b <0时,有ax -2bx ≥2ax×-2bx =2-2ab ,x = a -2b 时等号成立.当-a 2≤b <0,即 a-2b≥1时,f (x )在0<x ≤1上递减,此时f (x )min =f (1)=a -b .当b <-a2,即a-2b<1时,此时f (x )min=f ⎝⎛⎭⎪⎫a -2b =2-2ab +b ,综上知f (x )min=⎩⎪⎨⎪⎧a -b ,b ≥-a2,2-2ab +b ,b <-a2.(2)当b ≤2a 时,f (x )+|2a -b |=a x-2bx +2a≥a x-4ax +2a =a ⎝ ⎛⎭⎪⎫1x -4x +2, 当b >2a 时,f (x )+|2a -b |=ax+2b (1-x )-2a≥a x+4a (1-x )-2a =a ⎝ ⎛⎭⎪⎫1x -4x +2. 由1x -4x +2≥0,解得1-54≤x ≤1+54, 又因为1+54<1,所以m 的最大值为1+54.第三讲基本初等函数、函数与方程及函数的应用 考点一 基本初等函数的图象与性质一、基础知识要记牢指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况,当a>1时,两函数在定义域内都为增函数,当0<a<1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2017·杭州模拟)将函数f(x)=ax+b,g(x)=log a(1+bx)的图象画在同一个平面直角坐标系中,其中可能正确的是( )(2)设a=log36,b=log510,c=log714,则( )A.c>b>a B.b>c>aC.a>c>b D.a>b>c[解析] (1)因为g(0)=0,故排除D;选项A中,由直线可以看出b<0,由1+bx>0知,函数在y轴右侧的图象是有限的,排除A;选项C中,由直线可以看出b>0,由1+bx>0知,函数在y轴左侧的图象是有限的,排除C,故选B.(2)a=log36=log33+log32=1+log32,b=log510=log55+log52=1+log52,c=log714=log77+log72=1+log72,∵log32>log52>log72,∴a>b>c.[答案] (1)B (2)D1基本初等函数的图象是其性质的直观载体,要结合图象理解性质;图象变换要以基本函数图象为基础,结合性质等判断、应用.2比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较.三、预测押题不能少1.(1)函数y=x-x 13的图象大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A 因为a =243,b =425=245,由函数y =2x在R 上为增函数知,b <a ;又因为a =243=423,c =2513=523,由函数y =x 23在(0,+∞)上为增函数知,a <c .综上得b <a <c .故选A.考点二 二次函数 一、基础知识要记牢二次函数的相关结论若f (x )=ax 2+bx +c (a ≠0),则(1)f (x )的图象与x 轴交点的横坐标是方程ax 2+bx +c =0的实根.(2)若x 1,x 2为f (x )=0的实根,则f (x )在x 轴上截得的线段长应为|x 1-x 2|=b 2-4ac|a |.(3)当⎩⎪⎨⎪⎧a >0,Δ<0时,恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.二、经典例题领悟好[例2] (1)(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(2)若二次函数f (x )满足f (3)=f (-1)=-5,且f (x )的最大值是3,则函数f (x )的解析式为________.(3)若函数f (x )=cos 2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,则a 的取值范围是________.[解析] (1)f (x )=⎝ ⎛⎭⎪⎫x +a 22-a24+b ,①当0≤-a2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关; ③当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关. 综上所述,M -m 与a 有关,但与b 无关.(2)法一:设f (x )=ax 2+bx +c (a ≠0),依题意得⎩⎪⎨⎪⎧9a +3b +c =-5,a -b +c =-5,4ac -b 24a =3,解得⎩⎪⎨⎪⎧a =-2,b =4,c =1,所以二次函数的解析式为f (x )=-2x 2+4x +1.法二:设f (x )=a (x -m )2+n (a ≠0),因为f (3)=f (-1), 所以抛物线的对称轴为x =3+-12=1,则m =1.又f (x )的最大值是3,则a <0,n =3,即f (x )=a (x -1)2+3, 由f (3)=-5得4a +3=-5,则a =-2,所以二次函数的解析式为f (x )=-2(x -1)2+3=-2x 2+4x +1. 法三:设f (x )+5=a (x -3)(x +1)(a ≠0), 即f (x )=ax 2-2ax -3a -5=a (x -1)2-4a -5, 又f (x )的最大值是3,则a <0,且-4a -5=3,所以a =-2, 所以二次函数的解析式为f (x )=-2x 2+4x +1. (3)f (x )=cos 2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝ ⎛⎭⎪⎫π6,π2, 则t ∈⎝ ⎛⎭⎪⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1上是减函数,结合二次函数图象可知,a 4≤12,所以a ≤2.答案:(1)B (2)f (x )=-2x 2+4x +1 (3)(-∞,2]解决有关二次函数两类综合问题的思想方法(1)含有参数的二次函数与不等式的综合问题注意分类讨论思想、函数与方程思想的运用. (2)二次函数的最值问题,通常采用配方法,将二次函数化为y =a (x -m )2+n (a ≠0)的形式,得其图象顶点(m ,n )或对称轴方程x =m ,分三种情况:①顶点固定,区间固定; ②顶点含参数,区间固定; ③顶点固定,区间变动. 三、预测押题不能少2.(1)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,则a 的最小值是( )A .0B .2C .-52D .-3解析:选C 设f (x )=x 2+ax +1,其图象开口向上,对称轴为直线x =-a 2.当-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,应有f ⎝ ⎛⎭⎪⎫12≥0⇒a ≥-52,∴-52≤a ≤-1.当-a 2≤0,即a ≥0时,f (x )在⎝ ⎛⎦⎥⎤0,12上是增函数,应有f (0)=1≥0,恒成立,故a ≥0.当0<-a 2<12,即-1<a <0时,应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a <0.综上,a 的取值范围是a ≥-52,所以a 的最小值是-52,故选C.(2)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x(x >0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.解析:设P ⎝⎛⎭⎪⎫x ,1x ,则|PA |2=(x -a )2+⎝ ⎛⎭⎪⎫1x -a 2=⎝ ⎛⎭⎪⎫x +1x 2-2a ⎝ ⎛⎭⎪⎫x +1x +2a 2-2,令t =x +1x,则t ≥2(x >0,当且仅当x =1时取“=”),则|PA |2=t 2-2at +2a 2-2.①当a ≤2时,(|PA |2)min =22-2a ×2+2a 2-2=2a 2-4a +2,由题意知,2a 2-4a +2=8, 解得a =-1或a =3(舍).②当a >2时,(|PA |2)min =a 2-2a ×a +2a 2-2=a 2-2. 由题意知,a 2-2=8,解得a =10或a =-10(舍), 综上知,a =-1,10. 答案:-1,10 考点三 函数的零点一、基础知识要记牢确定函数零点的常用方法(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例3] (1)(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B.13C.12D .1(2)(2018届高三·温州六校联考)函数f (x )=3-x+x 2-4的零点个数是________. [解析] (1)法一:由f (x )=x 2-2x +a (ex -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e1-x+ex -1)=x 2-2x +a (ex -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e1-1+e-1+1)=0,解得a =12.法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)导数及其应用:要掌握好导数的几何意义、导数的运算、导数和函数的单调性与 极值的关系,由于函数的极值和最值的解决是以函数的单调性为前提的,因此要重点解 决导数在研究函数单调性中的应用,特别是含有字母参数的函数的单调性(这是高考考查 分类与整合思想的一个主要命题点),在解决好上述问题后,要注意把不等式问题、方程 问题转化为函数的单调性、极值、最值进行研究性训练,这是高考命制压轴题的一个重 要考查点.
为对立的命题;
(3)“或”命题和“且”命题的否定:命题 p∨q 的否定是綈 p
∧綈 q;命题 p∧q 的否定是綈 p∨綈 q.
第1讲 │ 主干知识整合
5.量词 (1)全称量词与存在量词; (2)全称命题和特称命题; (3)含有一个量词的命题的否定:“∀x∈M,p(x)”的否定 为“∃x0∈M,綈 p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x
专题一 │ 考情分析预测
(1)以选择题或者填空题的形式考查集合的基本关系和基本运算,考查 中涉及函数的定义域、不等式的解、方程的解等问题,要特别注意一些新 定义试题.
(2)以选择题或者填空题的方式考查逻辑用语的知识,其中重点是充要 条件的判断和含有一个量词的命题的否定.
(3)以选择题或者填空题的方式考查基本初等函数及其应用,重点是函 数定义域、值域,函数的单调性和奇偶性的应用,指数函数、对数函数、 幂函数的图象和性质的应用,函数的零点判断,简单的函数建模,导数的 几何意义的应用,定积分的计算及其简单应用.
(2)常用逻辑用语:该部分的基本内容是四种命题及其关系、充要条件、逻辑联结词 和量词,只要把其中的基础知识掌握即可.
(3)基本初等函数和函数的应用:在掌握好基本知识的前提下重点解决函数性质在解 决问题中的综合应用、函数性质在判断函数零点中的应用,指数函数、对数函数的图象 和性质的应用,数形结合思想的应用.
专题一 集合与常用逻辑用语、 函数与导数
专题一 │ 知识网络构建
知识网络构建
专题一 │ 知识网络构建
专题一 │ 考情分析预测
考情分析预测
考向预测
从近几年考查的趋势看,本专题考查的重点是集合的基本运算、充 要条件的判断、函数的基本性质及其应用、函数的零点、导数在研究函 数的单调性和极值中的应用、导数在研究方程和不等式中的应用,考查 的形式是用选择题或者填空题考查集合、常用逻辑用语、函数和导数的 基础知识和方法,用解答题考查导数在研究函数问题中的综合运用,其 中集合和常用逻辑用语的试题难度不大,但常围绕一些交叉点设计一些 新颖的试题,大部分函数和导数的基础试题难度也不大,但少数函数的 基础试题难度较大,解答题中的函数导数试题也具有一定的难度.由于 该专题的绝大多数内容(除量词和定积分)都是传统的高中数学内容,在 考查上已经基本稳定(难度稳定、考查重点稳定、考查的分值稳定),预 计 2012 年基本上还是这个考查趋势,具体为:
第1讲 │ 主干知识整合
2.四种命题及其关系 (1)四种命题; (2)四种命题之间的关系:四种命题是指对“若 p,则 q”形 式的命题而言的,把这个命题作为原命题,则其逆命题是“若 q, 则 p”,否命题是“若綈 p,则綈 q”,逆否命题是“若綈 q,则
綈 p”,其中原命题和逆否命题、逆命题和否命题是等价的,而 且命题之间的关系是相互的.
专题一 │ 考情分析预测
专题一 │ 考情分析预测
第1讲 集合与常用逻辑用语
第1讲 集合与常用逻辑用语
第1讲 │ 主干知识整合
主干知识整合
1.集合 (1)元素的特征:确定性、互异性、无序性,元素与集合 之间的关系是属于和不属于; (2)集合与集合之间的关系:集合与集合之间是包含关系 和非包含关系,其中关于包含有包含和真包含,用符号⊆, 表示.其中一个集合本身是其子集的子集,空集是任何非空集 合的真子集; (3)集合的运算: A∩B={x|x∈A,且 x∈B},A∪B={x|x∈A,或 x∈B}, ∁UA={x|x∈U,且 x∉A}.
∈M,綈 p(x)”.
第1讲 │ 要点热其运算
例 1 [2011·陕西卷] 设集合 M={y|y=|cos2x-sin2x|,x∈R},
N=xx-1i

2,i 为虚数单位,x∈R,则 M∩N 为(
)
A.(0,1) B.(0,1]
C.[0,1) D.[0,1]
C 【解析】 对于 M,由二倍角公式得 y=|cos2x-sin2x|=|cos2x|,故 0≤y≤1.
对于 N,因为 x-1i =x+i,由x-1i < 2,得 x2+1< 2,所以-1<x<1,故 M∩N= [0,1),故答案为 C.
第1讲 │ 要点热点探究
【点评】 本题需要注意两个问题,一是两个集合的含义,二 是要注意集合 N 中的不等式是一个复数模的实数不等式,不 要根据实数的绝对值求解.高考考查集合一般是以集合的形式 与表示等式的解、函数的定义域、函数的值域等,在解题时要 特别注意集合的含义.
(4)以解答题的方式考查导数在函数问题中的综合应用,重点是使用导 数的方法研究函数的单调性和极值以及能够转化为研究函数的单调性、极 值、最值问题的不等式和方程等问题,考查函数建模和利用导数解模.
专题一 │ 考情分析预测
备考策略
(1)集合:集合的基本内容是概念、基本关系和运算,高考考查的重点是集合的运算, 其中要特别注意区分集合的含义,即集合表达的究竟是什么,注意数形结合在集合问题 中的应用.
第1讲 │ 主干知识整合
3.充要条件 (1)充要条件:若 p⇒q,则 p 是 q 的充分条件,q 是 p 的 必要条件;若 p⇔q,则 p,q 互为充要条件; (2)充要条件与集合:设命题 p 对应集合 A,命题 q 对应 集合 B,则 p⇒q 等价于 A⊆B,p⇔q 等价于 A=B.
第1讲 │ 主干知识整合
4.逻辑联结词 (1)逻辑联结词“或”“且”“非”的含义; (2)带有逻辑联结词的命题真假:命题 p∨q,只要 p,q 有 一为真,即为真命题,换言之,只有 p,q 均为假命题时才为 假;命题 p∧q,只有 p,q 均为真命题时才为真,换言之,只 要 p,q 有一为假,即为假命题;綈 p 和 p 为一真一假两个互
相关文档
最新文档