2019年中考数学真题分类训练——专题十三:图形的变换
2019年浙江省中考数学分类汇编专题图形变换与视图(解析版)
![2019年浙江省中考数学分类汇编专题图形变换与视图(解析版)](https://img.taocdn.com/s3/m/6c9161c710a6f524cdbf855f.png)
2019年浙江省中考数学分类汇编专题图形变换与视图(解析版)一、单选题1. 某露天舞台如图所示,它的俯视图是(t ----■□B.C. I ID. ------------------ :【答案】B【考点】简单组合体的三视图【解析】【解答】解:由立体图知实物有一个台阶,俯视图应为两个矩形,其中一个矩形包含在另一个矩形里。
故答案为:B【分析】根据三视图知识判断,俯视图是由上向下看。
2. 如图的几何体由六个相同的小正方体搭成,它的主视图是(【答案】A【考点】简单组合体的三视图【解析】【解答】解:从正面看有三列,从左到右小正方形的个数分别为2,2,1故答案为:A【分析】主视图就是从几何体的正面所看到的平面图形,观察已知几何体,就可得到此几何体的主视图。
3. 在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3, n=2B. m=-3, n=2C. m=3, n=2 【答案】B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:••• A (m , 2)与B (3, n )关于y 轴对称, /• m=-3 , n=2. 故答案为:B.【分析】关于y 轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案 4.如图,下列关于物体的主视图画法正确的是( )【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加 两条虚竖线。
故答案为:C 。
【分析】简单几何体的三视图,就是分别从正面向后看,从左面向右看,从上面向下看得到的正投影,能 看见的轮廓线需要画成实线,看不见但又存在的轮廓线需要画为虚线,故空心圆柱的主视图应该是一个长 方形,加两条虚竖线。
5.七个大小相同的正方体搭成的几何体如图所示,其左视图是()【答案】B【考点】简单组合体的三视图B.m=-2, n=3【解析】【解答】解:从左面看,有两列,最左边一列有 2个小正方形,右边一列有 1个小正方形,故答案为:B【分析】左视图就是从几何体的左边所看到的平面图形,观察已知几何体,可得到此几何体的左视图。
2019年全国中考数学真题分类 翻折变换(印刷版)
![2019年全国中考数学真题分类 翻折变换(印刷版)](https://img.taocdn.com/s3/m/dc8f063666ec102de2bd960590c69ec3d5bbdb87.png)
2. 翻折变换一、选择题1. (2019·海南)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()第1题A. 12B. 15C. 18D. 212. (2019·贵港)将一条宽度为2 cm的彩带按如图所示的方法折叠,折痕为AB,重叠部分为△ABC(图中涂色部分).若∠ACB=45°,则重叠部分的面积为()第2题A. 2 2 cm2B. 2 3 cm2C. 4 cm2D. 4 2 cm23. (2019·大连)如图,将矩形纸片ABCD折叠,使点C的对应点C′与点A重合,折痕为EF.若AB=4,BC=8,则D′F的长为()第3题A. 2 5B. 4C. 3D. 24. (2019·兰州)如图,边长为2的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DG折叠,点C落在对角线BD上的点E处,折痕DG交AC于点M,交EC于点F,则OM的长为()第4题A. 12 B.22C. 3-1D. 2-15. (2019·桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕.若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则ADAB的值为()第5题A. 65 B. 2 C.32 D. 36. (2019·鄂尔多斯)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN过点G.若AB=6,EF =2,∠H=120°,则DN的长为()第6题A. 6- 3B. 6+3 2C.32 D. 23- 67. (2019·黄石)如图,在矩形ABCD中,AC与BD相交于点E,AD∶AB=3∶1,将△ABD沿BD折叠,点A的对应点为F,连接AF,CF,DF,AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BHCF的值为()第7题A.32 B.233 C.62 D.328. (2019·赤峰)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2 019次操作时,余下纸片的面积为()第8题A. 22 019B.122 018 C.122 019 D.122 020二、填空题9. (2018·巴彦淖尔)如图,将▱ABCD沿对角线BD折叠,使点A落在点A′处.若∠1=∠2=48°,则∠A′的度数为________.第9题10. (2019·遵义)如图,▱ABCD的边AB,BC的长分别是10 cm和7.5 cm,将其四个角向内对折后,点B与点C重合于点C′,点A与点D重合于点A′.四条折痕围成一个“信封四边形”EHFG,其顶点分别在▱ABCD的四条边上,则EF=________cm.第10题11. (2019·长春)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF 沿EF翻折,AF与BC相交于点G,则△GCF的周长为________.第11题12. (2019·上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,连接DF,则∠EDF的正切值是________.第12题13. (2019·济南)如图,在矩形ABCD中,AB=4,BC=5,E为CD边上一点,将△BCE沿BE折叠,使得点C落到矩形内点F的位置,连接AF.若tan ∠BAF=12,则CE=________.第13题14. (2019·葫芦岛)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是________.第14题15. (2019·内江)如图,在菱形ABCD中,sin B=45,点E,F分别在边AD,BC上,将四边形AEFB沿EF翻折,使AB的对应线段MN经过顶点C.当MN⊥BC时,AEAD的值是________.第15题16. (2019·锦州)如图,在矩形ABCD中,AB=3,BC=2,M是AD边的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△A′MN,连接A′C,则A′C的最小值是________.第16题三、解答题17. (2019·北部湾经济区)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).(1) 将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2) 请画出与△ABC关于y轴对称的△A2B2C2;(3) 请写出点A1,A2的坐标.第17题18. (2019·常州)如图,把▱ABCD沿BD折叠,点C落在点C′处,BC′与AD 相交于点E.(1) 连接AC′,则AC′与BD的位置关系是________.(2) BE与DE相等吗?证明你的结论.第18题19. (2019·徐州)如图,将▱ABCD沿一条直线折叠,使点A与点C重合,点D 落在点G处,折痕为EF.求证:(1) ∠ECB=∠FCG;(2) △EBC≌△FGC.第19题20. (2019·临沂)如图,在正方形ABCD中,E是DC边上一点(与点D,C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于点G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF 的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角的平分线),并说明理由.第20题21. (2019·滨州)如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE 折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1) 求证:四边形CEFG是菱形;(2) 若AB=6,AD=10,求四边形CEFG的面积.第21题22. (2018·凉山州)如图,在▱ABCD中,E,F分别是AD,BC上的点,将▱ABCD 沿EF所在的直线翻折,使点B的对应点B′与点D重合,且点A落在点A′处.(1) 求证:△A′ED≌△CFD;(2) 连接BE,若∠EBF=60°,EF=3,求四边形BFDE的面积.第22题23. (2019·重庆)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得到△AEF,连接DF.过点D作DG⊥DE交BE于点G.求四边形DFEG的周长.第23题2. 翻折变换一、 1.C 2.A 3.C 4.D 5.B 6.A7.B8. C二、9.108°10.1011.4+2212.213.5-5214.7或26315.2916.10-1三、17.(1) 如图,△A1B1C1即为所求(2) 如图,△A2B2C2即为所求(3)A1(2,3),A2(-2,-1)第17题18.(1) AC′∥BD(2) BE与DE相等.由折叠的性质,得∠CBD=∠C′BD.∵AD∥BC,∴∠ADB=∠CBD.∴∠EDB=∠EBD.∴ BE=DE19.(1) ∵四边形ABCD是平行四边形,∴∠A=∠BCD.由折叠的性质,得∠A=∠ECG,∴∠BCD=∠ECG.∴∠BCD-∠ECF=∠ECG-∠ECF.∴∠ECB=∠FCG(2) ∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC.由折叠的性质,得∠D=∠G,AD=CG,∴∠B=∠G,BC=GC.又∵∠ECB=∠FCG,∴△EBC≌△FGC20.AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCM的平分线,GH是∠EGM的平分线理由:如图,过点H作HN⊥BM于点N,则∠HNC =90°.∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°.∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE.∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠FAE.∴AB=AF.又∵ AG=AG,∴ Rt△ABG≌Rt△AFG.∴∠BAG=∠FAG,∠AGB=∠AGF.∴ AG是∠BAF的平分线,GA是∠BGF的平分线.∵∠DAE=∠FAE,∠BAG=∠FAG,∠BAD=90°,∴∠GAF+∠EAF=12×90°=45°,即∠GAH=45°.∵ GH⊥AG,∴∠GHA=90°-∠GAH=45°.∴△AGH为等腰直角三角形.∴AG =GH.∵ ∠AGB +∠BAG =90°,∠AGB +∠HGN =90°,∴ ∠BAG =∠NGH.又∵ ∠B =∠HNG =90°,AG =GH ,∴ △ABG ≌△GNH.∴ BG =NH ,AB =GN.∴ BC =GN.∴ BC -CG =GN -CG ,即BG =CN.∴ CN =HN.∴ ∠NCH =∠NHC =45°.∴ ∠DCH =∠DCM -∠NCH =45°.∴ ∠DCH =∠NCH.∵ ∠DCM =90°,∴ CH 是∠DCM 的平分线.∵ ∠AGB +∠HGN =90°,∠AGF +∠EGH =90°,∠AGB =∠AGF ,∴ ∠HGN =∠EGH.∴ GH 是∠EGM 的平分线.综上所述,AG 是∠BAF 的平分线,GA 是∠BGF 的平分线,CH 是∠DCM 的平分线,GH 是∠EGM 的平分线.第20题21. (1) 由题意,可得△BCE ≌△BFE ,∴ ∠BEC =∠BEF ,CE =FE.∵ FG ∥CE ,∴ ∠FGE =∠CEB.∴ ∠FGE =∠FEG.∴ FG =FE.∴ FG =EC.∵ FG ∥CE ,∴ 四边形CEFG 是平行四边形.又∵ CE =FE ,∴ 四边形CEFG 是菱形 (2) ∵ 在矩形ABCD 中,AB =6,AD =10,BC =BF ,∴ ∠BAF =90°,AD =BC =BF =10.∴ AF =BF 2-AB 2=8.∴ DF =AD -AF =2.设EF =x ,则CE =x ,DE =6-x.在Rt △FDE 中,∵ FDE =90°,∴ DF 2+DE 2=EF 2,即22+(6-x)2=x 2,解得x =103.∴ CE =103.∴ 四边形CEFG 的面积是CE·DF =103×2=20322. (1) 由翻折的性质,得AE =A′E ,AB =A′D ,∠ABC =∠A′DF ,∠EFB =∠EFD.∵ 四边形ABCD 是平行四边形,∴ AD =BC ,AB =CD ,∠ABC =∠ADC.∴ A′D =CD ,∠ADC =∠A′DF.∴ ∠ADC -∠EDF =∠A′DF -∠EDF ,即∠FDC =∠A′DE.∵ AD ∥BC ,∴ ∠DEF =∠EFB.∵ ∠EFB =∠EFD ,∴ ∠DEF =∠EFD.∴ ED =DF.在△A′ED 和△CFD 中,⎩⎨⎧A′D =CD ,∠A′DE =∠CDF ,ED =FD ,∴△A′ED ≌△CFD (2) ∵ △A′ED ≌△CFD ,∴ A′E =CF.∵ AE =A′E ,∴ AE =CF.∵ AD =BC ,∴ AD -AE =BC -CF ,即DE =BF.∵ AD ∥BC ,∴ 四边形EBFD 为平行四边形.∵ DE =DF ,∴ 四边形EBFD 为菱形.∵ ∠EBF =60°,∴ △BEF 为等边三角形.∵ EF =3,∴ BE =BF =EF =3.过点E 作EH ⊥BC 于点H ,则EH=BE·sin 60°=323,∴ 四边形BFDE 的面积为BF·EH =3×323=93223. ∵ ∠ABC =45°,AD ⊥BC 于点D ,∴ ∠BAD =90°-∠ABC =45°.∴ △ABD 是等腰直角三角形.∴ AD =BD.∵ BE ⊥AC ,∴ ∠BEC =90°.∴ ∠GBD +∠C =90°.∵ ∠EAD +∠C =90°,∴ ∠GBD =∠EAD.∵ ∠ADB =∠EDG =90°,∴ ∠ADB -∠ADG =∠EDG -∠ADG ,即∠BDG =∠ADE.在△BDG 和△ADE中,⎩⎨⎧∠BDG =∠ADE ,BD =AD ,∠DBG =∠DAE ,∴ △BDG ≌△ADE.∴ BG =AE =1,DG =DE.∵ ∠EDG=90°,∴ △EDG 为等腰直角三角形.∴ ∠DEG =45°.∴ ∠AED =∠AEB +∠DEG =90°+45°=135°.∵ △AED 沿直线AE 翻折得到△AEF ,∴ △AEF ≌△AED.∴ ∠AEF =∠AED =135°,EF =ED.∴ ∠DEF =360°-∠AED -∠AEF =90°.∴ △DEF 为等腰直角三角形.∴ EF =DE =DG.在Rt △AEB 中,BE =AB 2-AE 2=32-12=22,∴ GE =BE -BG =22-1.在Rt △DGE 中,易得DG =22GE =2-22,∴ EF =DE =2-22.在Rt △DEF 中,易得DF =2DE =22-1,∴ 四边形DFEG 的周长为GD +EF +GE +DF =2-22+2-22+22-1+22-1=32+2。
湖南省2019-2020年中考数学试题图形的变换分类汇编(52页)
![湖南省2019-2020年中考数学试题图形的变换分类汇编(52页)](https://img.taocdn.com/s3/m/9896b9ed3b3567ec112d8a88.png)
湖南省2019-2020年中考数学试题图形的变换分类汇编一.选择题(共24小题)1.(2020•益阳)如图,在矩形ABCD 中,E 是DC 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=︒B .45BAC ∠=︒ C .12EF FB =D .AD AB =2.(2020•永州)如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是() A .4 B .2 CD . 3.(2020•永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是( )A . 注意安全B .水深危险C .必须戴安全帽D .注意通风 4.(2020•永州)如图,在ABC ∆中,//EF BC ,23AE EB =,四边形BCFE 的面积为21,则ABC ∆的面积是( )A .913B .25C .35D .635.(2020•娄底)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=,阻力臂2cos L l β=,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是( )A .越来越小B .不变C .越来越大D .无法确定6.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是( )A .B .C .D .7.(2020•益阳)如图所示的几何体的俯视图是( )A.B.C.D.8.(2020•娄底)我国汽车工业迅速发展,国产汽车技术成熟,下列汽车图标是中心对称图形的是()A.B.C.D.9.(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.10.(2020•郴州)下列图形是中心对称图形的是()A.B.C.D.11.(2020•张家界)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.12.(2020•湘潭)下列图形中,不是中心对称图形的是()A.B.C.D.13.(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.14.(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是() A.B.C.D.15.(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30 时,船离灯塔的水平距离是()米B.米C.21米D.42米A.16.(2019•永州)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.17.(2019•湘潭)下列立体图形中,俯视图是三角形的是() A.B.C.D.18.(2019•永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A.B.C.D.19.(2019•邵阳)如图,在Rt ABC∠=︒,AD是斜边BC上的中B∠=︒,36∆中,90BAC线,将ACD∠等∆沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则BED 于()A.120︒B.108︒C.72︒D.36︒20.(2019•常德)如图,在等腰三角形ABC=,图中所有三角形均相似,∆中,AB AC其中最小的三角形面积为1,ABC∆的面积为42,则四边形DBCE的面积是()A.20B.22C.24D.2621.(2019•张家界)下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C .D .22.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)23.(2019•邵阳)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球24.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .B .(1,0)C .(D .(0,1)- 二.填空题(共11小题)25.(2020•永州)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=︒,在AOB ∠内有一点(4,3)P ,M ,N 分别是OA ,OB 边上的动点,连接PM ,PN ,MN ,则PMN ∆周长的最小值是 .26.(2020•娄底)若1()2b d a c a c ==≠,则b d a c-=- . 27.(2020•郴州)如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为 .28.(2020•郴州)在平面直角坐标系中,将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,已知(2,3)A ,则点1A 的坐标是 .29.(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的是 .(写出所有正确结论的序号)①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PFB ∆∆∽;⑤CF CP 为定值.30.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ MN ⊥,NE 平分MNP ∠,交PM 于点E ,交PQ 于点F .(1)PF PE PQ PM += .(2)若2PN PM MN =,则MQ NQ= .31.(2020•怀化)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是 (结果保留)π.32.(2020•湘潭)若37y x =,则x y x-= .33.(2020•衡阳)如图,在平面直角坐标系中,点1P 的坐标为,将线段1OP 绕点O 按顺时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45︒,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP ,5OP ,⋯,(n OP n 为正整数),则点2020P 的坐标是 .34.(2020•常德)如图1,已知四边形ABCD 是正方形,将DAE ∆,DCF ∆分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若4GF =,6EG =,则DG 的长为 .35.(2020•湘潭)计算:sin45︒= .三.解答题(共12小题)36.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程--邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB ,BC 表示需铺设的干渠引水管道,经测量,A ,B ,C 所处位置的海拔1AA ,1BB ,1CC 分别为62m ,100m ,200m .若管道AB 与水平线2AA 的夹角为30︒,管道BC 与水平线2BB 夹角为45︒,求管道AB 和BC 的总长度(结果保留根号).37.(2020•益阳)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高12DH =米,斜坡CD 的坡度1:1i =.此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒.(1)求斜坡CD 的坡角α;(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin260.44︒≈︒≈,tan260.49︒≈,tan71 2.90)︒≈,sin710.9538.(2020•娄底)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E点距地面5m,从E点处测得D点俯角为30︒,斜面ED长为4m,水平面DC长为2m,斜面BC的坡度为1:4,求处于同一水平面上引桥底部AB 的长.(结果精确到≈.0.1m 1.41 1.73)39.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边ABC ∆的重心为点O ,求OBC ∆与ABC ∆的面积.(2)性质探究:如图(二),已知ABC ∆的重心为点O ,请判断OD OA、OBC ABCS S ∆∆是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度; ②若1CME S ∆=,求正方形ABCD 的面积.40.(2020•张家界)“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9/m s 的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A 处测得“南天一柱”底部C 的俯角为37︒,继续飞行6s 到达B 处,这时测得“南天一柱”底部C 的俯角为45︒,已知“南天一柱”的高为150m ,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈41.(2020•郴州)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运载火箭从地面O 处发射,当火箭到达点A 时,地面D 处的雷达站测得4000AD =米,仰角为30︒.3秒后,火箭直线上升到达点B 处,此时地面C 处的雷达站测得B 处的仰角为45︒.已知C ,D 两处相距460米,求火箭从A 到B 处的平均速度(结果精确到1米/ 1.732 1.414).42.(2020•湘潭)为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD 为矩形,10DE =m ,其坡度为1i =DE 改造为斜坡AF ,其坡度为21:4i =,求斜坡AF 的长度.(结果精确到0.01m , 1.732≈,4.123)43.(2020•株洲)某高速公路管理部门工作人员在对某段高速公路进行安全巡检过程中,发现该高速公路旁的一斜坡存在落石隐患.该斜坡横断面示意图如图所示,水平线12//l l ,点A 、B 分别在1l 、2l 上,斜坡AB 的长为18米,过点B 作1BC l ⊥于点C ,且线段AC 的长为(1)求该斜坡的坡高BC ;(结果用最简根式表示)(2)为降低落石风险,该管理部门计划对该斜坡进行改造,改造后的斜坡坡角α为60︒,过点M 作1MN l ⊥于点N ,求改造后的斜坡长度比改造前的斜坡长度增加了多少米?44.(2020•岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A ,B 两地向C 地新建AC ,BC 两条笔直的污水收集管道,现测得C 地在A 地北偏东45︒方向上,在B 地北偏西68︒向上,AB 的距离为7km ,求新建管道的总长度.(结果精确到0.1km ,sin220.37︒≈,cos220.93︒≈,tan220.40︒≈,1.41)45.(2020•衡阳)小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120︒时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24OA OB cm ==,BC AC ⊥,30OAC ∠=︒.(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120︒,求点B'到AC的距离.(结果保留根号)46.(2020•常德)如图,已知AB是O的直径,C是O上的一点,D是AB上的一点,DE AB⊥于D,DE交BC于F,且EF EC=.(1)求证:EC是O的切线;(2)若4BD=,8BC=,圆的半径5OB=,求切线EC的长.47.(2020•常德)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5︒,卸货时,车厢与水平线AD成60︒,此时AB与支撑顶杆BC的夹角为45︒,若2AC=米,求BC的长度.(结果保留一位小数)(参考数据:sin650.91︒≈,tan70 2.75︒≈,cos700.34︒≈,︒≈,cos650.42︒≈,sin700.94︒≈,tan65 2.141.41)湖南省2019-2020年中考数学试题图形的变换分类汇编答案详解一.选择题(共24小题)1.(2020•益阳)如图,在矩形ABCD 中,E 是DC 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是()A .30DAE ∠=︒B .45BAC ∠=︒C .12EF FB=D.AD AB =【解答】解:四边形ABCD 是矩形,ABE ∆是等边三角形,AB AE BE ∴==,60EAB EBA ∠=∠=︒,AD BC =,90DAB CBA ∠=∠=︒,//AB CD ,AB CD =,30DAE CBE ∴∠=∠=︒,故选项A 不合题意,cos AD ADDAE AE AB∴∠===,故选项D 不合题意, 在ADE ∆和BCE ∆中,AD BCDAE CBE AE BE =⎧⎪∠=∠⎨⎪=⎩, ()ADE BCE SAS ∴∆≅∆,1122DE CE CD AB ∴===,//AB CD , ABF CEF ∴∆∆∽, ∴12CE EF AB BF ==,故选项C 不合题意, 故选:B .2.(2020•永州)如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()D.A.4B.2C【解答】解:如图,过点B作BD AC∆的边AB在右⊥于点D,此正三棱柱底面ABC侧面的投影为BD,AC=,2==,AB AD1AD∴=,2∴BD左视图矩形的长为2,∴左视图的面积为故选:D.3.(2020•永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A.注意安全B.水深危险C .必须戴安全帽D .注意通风【解答】解:根据轴对称图形的定义可知: 选项A 、B 、C 中的图形是轴对称图形, 选项D 不是轴对称图形. 故选:D .4.(2020•永州)如图,在ABC ∆中,//EF BC ,23AE EB=,四边形BCFE 的面积为21,则ABC ∆的面积是( )A .913B .25C .35D .63【解答】解://EF BC ,AEF ABC ∴∆∆∽, ∴224()()25AEF ABC S AE AE S AB AE EB ∆∆===+, 425AEF ABC S S ∆∆∴=. 21ABC AEF BCFE S S S ∆∆=-=四边形,即212125ABC S ∆=, 25ABC S ∆∴=.故选:B .5.(2020•娄底)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=,阻力臂2cos L l β=,如果动力F的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是()A.越来越小B.不变C.越来越大D.无法确定【解答】解:动力⨯动力臂=阻力⨯阻力臂,∴当阻力及阻力臂不变时,动力⨯动力臂为定值,且定值0>,∴动力随着动力臂的增大而减小,杠杆向下运动时α的度数越来越小,此时cosα的值越来越大,又动力臂1cosL Lα=,∴此时动力臂也越来越大,∴此时的动力越来越小,故选:A.6.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是() A.B.C.D.【解答】解:A、球的三视图都是圆,故本选项符合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意;故选:A.7.(2020•益阳)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看该几何体,选项D的图形符合题意,故选:D.8.(2020•娄底)我国汽车工业迅速发展,国产汽车技术成熟,下列汽车图标是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形.故错误;B、是中心对称图形.故正确;C、不是中心对称图形.故错误;D、不是中心对称图形.故错误.故选:B.9.(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.【解答】解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.10.(2020•郴州)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意.故选:D.11.(2020•张家界)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.【解答】解:从正面看有三列,从左到右依次有2、1、1个正方形,图形如下:故选:A.12.(2020•湘潭)下列图形中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.13.(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.【解答】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,故选:A.14.(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是() A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.15.(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30︒时,船离灯塔的水平距离是()米B.米C.21米D.42米A.【解答】解:根据题意可得:船离海岸线的距离为÷︒=(米)42tan30故选:A.16.(2019•永州)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【解答】解:观察图形可知,这块西瓜的三视图是.故选:B.17.(2019•湘潭)下列立体图形中,俯视图是三角形的是() A.B.C.D.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.18.(2019•永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.19.(2019•邵阳)如图,在Rt ABCB∠=︒,AD是斜边BC上的中∠=︒,36∆中,90BAC线,将ACD∠等∆沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则BED 于()A.120︒B.108︒C.72︒D.36︒【解答】解:在Rt ABCB∠=︒,∠=︒,36BAC∆中,90∴∠=︒-∠=︒.9054C BAD是斜边BC上的中线,∴==,AD BD CDDAC C∴∠=∠=︒,54∠=∠=︒,BAD B36∴∠=︒-∠-∠=︒.ADC DAC C18072将ACD∆沿AD对折,使点C落在点F处,∴∠=∠=︒,ADF ADC72BED BAD ADF∴∠=∠+∠=︒+︒=︒.3672108故选:B.20.(2019•常德)如图,在等腰三角形ABC=,图中所有三角形均相似,∆中,AB AC其中最小的三角形面积为1,ABC∆的面积为42,则四边形DBCE的面积是()A.20B.22C.24D.26【解答】解:如图,根据题意得AFH ADE ∆∆∽,∴2239()()416AFH ADE S FH S DE ∆∆=== 设9AFHS x ∆=,则16ADE S x ∆=,1697x x ∴-=,解得1x =,16ADE S ∆∴=,∴四边形DBCE 的面积421626=-=.故选:D .21.(2019•张家界)下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,也是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故错误;C 、是轴对称图形,不是中心对称图形.故正确;D 、是轴对称图形,也是中心对称图形.故错误.故选:C .22.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( ) A .(0,5)B .(5,1)C .(2,4)D .(4,2)【解答】解:将点(2,1)向右平移3个单位长度,则所得的点的坐标是(5,1). 故选:B .23.(2019•邵阳)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球【解答】解:A .俯视图与主视图都是正方形,故选项A 不合题意;B .俯视图与主视图都是长方形,故选项B 不合题意;C .俯视图是圆,主视图是三角形,故选项C 符合题意;D .俯视图与主视图都是圆,故选项D 不合题意;故选:C .24.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .B .(1,0)C .(D .(0,1)- 【解答】解:四边形OABC 是正方形,且1OA =,(0,1)A ∴,将正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,1A ∴,2(1,0)A ,3A ,,⋯, 发现是8次一循环,所以20198252÷=⋯余3,∴点2019A 的坐标为 故选:A .二.填空题(共11小题)25.(2020•永州)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=︒,在AOB ∠内有一点(4,3)P ,M ,N 分别是OA ,OB 边上的动点,连接PM ,PN ,MN ,则PMN ∆周长的最小值是【解答】解:分别作P 关于射线OA 、射线OB 的对称点P '与点P '',连接P P ''',与OA 、OB 分别交于M 、N 两点,此时PMN ∆周长最小,最小值为P P '''的长, 连接OP ',OP '',OP ,OA 、OB 分别为PP ',PP ''的垂直平分线,(4,3)P ,5OP OP OP ∴'==''=,且POA P OA ∠=∠',POB P OB ∠=∠'', 60AOB AOP BOP ∠=∠+∠=︒,120P OP ∴∠'''=︒,过O 作OQ P P ⊥''',可得P Q P Q '='',30OP Q OP Q ∠'=∠''=︒,52OQ ∴=,P Q P Q '=''=,22P P P Q ∴'''='== 则PMN ∆周长的最小值是故答案为:26.(2020•娄底)若1()2b d ac ac==≠,则b d a c-=-12.【解答】解:1()2b d ac a c ==≠, ∴12b d ac -=-. 故答案为:12.27.(2020•郴州)如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为 48 .【解答】解:根据圆锥侧面积公式:S rl π=, 圆锥的母线长为10, 侧面展开图的面积为60π,故6010r ππ=⨯⨯, 解得:6r =.由勾股定理可得圆锥的高8==,圆锥的主视图是一个底边为12,高为8的等腰三角形,∴它的面积1128482=⨯⨯=, 故答案为:48.28.(2020•郴州)在平面直角坐标系中,将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,已知(2,3)A ,则点1A 的坐标是4(3,2) .【解答】解:将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,(2,3)A ,∴点1A 的坐标是:2(23⨯,23)3⨯,即14(3A ,2).故答案为:4(3,2).29.(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM上一动点(不与点A ,M 重合),直线PC 交BD于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的是 ②⑤ .(写出所有正确结论的序号)①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PFB ∆∆∽;⑤CF CP 为定值.【解答】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,M ,C 是半圆上的三等分点,30BAH ∴∠=︒,BD 与半圆O 相切于点B .90ABD ∴∠=︒, 60H ∴∠=︒,ACP ABP ∠=∠,ACP DCH ∠=∠, 60PDB H DCH ABP ∴∠=∠+∠=∠+︒, 90PBD ABP ∠=︒-∠,若PDB PBD ∠=∠,则6090ABP ABP ∠+︒=︒-∠,15ABP ∴∠=︒,P ∴点为AM 的中点,这与P 为AM 上的一动点不完全吻合,PDB ∴∠不一定等于ABD ∠, PB ∴不一定等于PD ,故①错误; ②M ,C 是半圆上的三等分点,1180603BOC ∴∠=⨯︒=︒,直径8AB =,4OB OC ∴==, ∴BC 的长度60441803ππ⨯==, 故②正确;③60BOC ∠=︒,OB OC =, 60ABC ∴∠=︒,OB OC BC ==, BE OC ⊥, 30OBE CBE ∴∠=∠=︒, 90ABD ∠=︒, 60DBE ∴∠=︒,故③错误; ④M 、C 是AB 的三等分点,30BPC ∴∠=︒, 30CBF ∠=︒,但BFP FCB ∠>∠,PBF BFC ∠<∠, BCF PFB ∴∆∆∽不成立,故④错误; ⑤30CBF CPB ∠=∠=︒,BCF PCB ∠=∠,BCF PCB ∴∆∆∽, ∴CB CFCP CB=, 2CF CP CB ∴=,142CB OB OC AB ====, 16CF CP ∴=,故⑤正确.故答案为:②⑤.30.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ MN ⊥,NE 平分MNP ∠,交PM 于点E ,交PQ 于点F .(1)PF PEPQ PM+= 1 .(2)若2PN PMMN=,则MQ NQ= .【解答】解:(1)MN 为O 的直径,90MPN ∴∠=︒,PQ MN⊥,90PQN MPN ∴∠=∠=︒,NE 平分PNM∠,MNE PNE ∴∠=∠,PEN QFN ∴∆∆∽,∴PE PNQF QN=,即PE QF PNQN=①,90PNQ NPQ PNQ PMQ ∠+∠=∠+∠=︒, NPQ PMQ ∴∠=∠, 90PQN PQM ∠=∠=︒, NPQ PMQ ∴∆∆∽,∴PN NQMP PQ=②,∴①⨯②得PE QFPM PQ=,QF PQ PF =-,∴1PE QF PFPM PQ PQ ==-, ∴1PF PEPQ PM+=, 故答案为:1; (2)PNQ MNP ∠=∠,NQP NPM ∠=∠,NPQ NMP ∴∆∆∽,∴PN QNMN PN=,2PN QN MN ∴=,2PN PM MN =,PM QN ∴=,∴MQ MQNQ PM=,cos MQ PMM PM MN∠==,∴MQ PMNQ MN=,∴MQ NQNQ MQ NQ=+, 22NQ MQ MQ NQ ∴=+,即221MQ MQNQ NQ=+, 设MQ x NQ=,则210x x +-=,解得,x =0x =<(舍去),∴MQ NQ =31.(2020•怀化)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是24π (结果保留)π.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是422÷=,高是6, 圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:224ππ⨯=,∴这个圆柱的侧面积是4624ππ⨯=.故答案为:24π.32.(2020•湘潭)若37y x=,则x y x-=47.【解答】解:由37y x=可设3y k =,7x k =,k 是非零整数,则7344777x y k k k xkk--===.故答案为:47.33.(2020•衡阳)如图,在平面直角坐标系中,点1P 的坐标为,将线段1OP 绕点O 按顺时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45︒,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP ,5OP ,⋯,(n OP n 为正整数),则点2020P 的坐标是2019(0,2)-.【解答】解:点1P 的坐标为,将线段1OP 绕点O 按逆时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;11OP ∴=,22OP =,34OP ∴=,如此下去,得到线段342OP =,452OP =⋯,12n n OP -∴=,由题意可得出线段每旋转8次旋转一周,202082524÷=⋯,∴点2020P 的坐标与点4P 的坐标在同一直线上,正好在y 轴的负半轴上, ∴点2020P 的坐标是2019(0,2)-.故答案为:2019(0,2)-.34.(2020•常德)如图1,已知四边形ABCD 是正方形,将DAE ∆,DCF ∆分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若4GF =,6EG =,则DG 的长为 12 .【解答】解:设正方形ABCD 的边长为x ,由翻折可得:DG DA DC x ===, 4GF =,6EG =, 6AE EG ∴==,4CF GF ==,6BE x ∴=-,4BF x =-,6410EF =+=,如图1所示:在Rt BEF ∆中,由勾股定理得:222BE BF EF +=,222(6)(4)10x x ∴-+-=,221236816100x x x x ∴-++-+=, 210240x x ∴--=, (2)(12)0x x ∴+-=,12x ∴=-(舍),212x =. 12DG ∴=.故答案为:12.35.(2020•湘潭)计算:sin45︒=.【解答】解:根据特殊角的三角函数值得:sin 45︒=三.解答题(共12小题)36.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程--邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB ,BC 表示需铺设的干渠引水管道,经测量,A ,B ,C 所处位置的海拔1AA ,1BB ,1CC 分别为62m ,100m ,200m .若管道AB 与水平线2AA 的夹角为30︒,管道BC 与水平线2BB 夹角为45︒,求管道AB 和BC 的总长度(结果保留根号).【解答】解:根据题意知,四边形11AA B O 和四边形112BB C B 均为矩形,1162OB AA m ∴==,211100B C BB m ==,111006238BO BB OB m ∴=-=-=,2121200100100CB CC B C m =-=-=,在Rt AOB ∆中,90AOB ∠=︒,30BAO ∠=︒,38BO m =,223876AB BO m ∴==⨯=;在2Rt CBB ∆中,290CB B ∠=︒,245CBB ∠=︒,2100CB m =,∴2BC ==,∴(76AB BC m +=+,即管道AB 和BC 的总长度为:(76m +.37.(2020•益阳)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高12DH =米,斜坡CD 的坡度1:1i =.此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒.(1)求斜坡CD 的坡角α;(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin260.44︒≈,tan260.49︒≈,sin710.95︒≈,tan71 2.90)︒≈【解答】解:(1)斜坡CD 的坡度1:1i =,tan :1:11DH CH α∴===, 45α∴=︒.答:斜坡CD 的坡角α为45︒; (2)由(1)可知:12CH DH ==,45α=︒.264571PCH PCD α∴∠=∠+=︒+︒=︒,在Rt PCH ∆中,12tan 2.9012PH PD PCH CH +∠==≈, 22.8PD ∴≈(米). 22.818>,答:此次改造符合电力部门的安全要求.38.(2020•娄底)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E 点距地面5m ,从E 点处测得D 点俯角为30︒,斜面ED 长为4m ,水平面DC 长为2m ,斜面BC 的坡度为1:4,求处于同一水平面上引桥底部AB 的长.(结果精确到0.1m 1.41 1.73)≈.【解答】解:作DF AE ⊥于F ,DG AB ⊥于G ,CH AB ⊥于H ,如图所示: 则DF GA =,2DC GH ==,AF DG CH ==, 由题意得:30EDF ∠=︒,114222EF DE ∴==⨯=,DF == 5AE =,523CH AF AE EF ∴==-=-=,斜面BC 的坡度为1:4CH BH=,412BH CH ∴==,2121417.5()AB AG GH BH m ∴=++=+=≈,答:处于同一水平面上引桥底部AB 的长约为17.5m .39.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边ABC ∆的重心为点O ,求OBC ∆与ABC ∆的面积.(2)性质探究:如图(二),已知ABC ∆的重心为点O ,请判断OD OA 、OBC ABCS S ∆∆是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度;②若1CME S ∆=,求正方形ABCD 的面积.【解答】解:(1)连接DE ,如图一,点O 是ABC ∆的重心,AD ∴,BE 是BC ,AC 边上的中线,D ∴,E 为BC ,AC 边上的中点,DE ∴为ABC ∆的中位线,//DE AB ∴,12DE AB =, ODE OAB ∴∆∆∽, ∴12OD DE OA AB ==, 2AB =,1BD =,90ADB ∠=︒,AD ∴OD =,∴2322OBC BC OD S ∆==22ABC BC AD S ∆⨯=== (2)由(1)同理可得,12OD OA =,是定值; 点O 到BC 的距离和点A 到BC 的距离之比为1:3,则OBC ∆和ABC ∆的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比, 故13OBCABC S S ∆∆=,是定值; (3)①连接BD 交AC 于点O ,点O 为BD 的中点,点E 为CD 的中点,∴点M 是BCD ∆的重心, ∴13EM BE =, E 为CD 的中点,∴122CE CD ==, ∴BE = 即EM②1CME S ∆=,且12ME BM =, 2BMC S ∆∴=,12ME BM =, ∴21()4CME AMB S ME S BM ∆∆==, 4AMB S ∆∴=,246ABC BMC ABM S S S ∆∆∆∴=+=+=,又ADC ABC S S ∆∆=,6ADC S ∆∴=,∴正方形ABCD 的面积为:6612+=.40.(2020•张家界)“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9/m s 的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A 处测得“南天一柱”底部C 的俯角为37︒,继续飞行6s 到达B 处,这时测得“南天一柱”底部C 的俯角为45︒,已知“南天一柱”的高为150m ,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈【解答】解:设无人机距地面xm ,直线AB 与南天一柱所在直线相交于点D ,由题意得37CAD ∠=︒,45CBD ∠=︒.在Rt ACD ∆中,tan 0.75CD x CAD AD AD∠===,。
湖南省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)
![湖南省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)](https://img.taocdn.com/s3/m/699f9fee804d2b160a4ec06d.png)
湖南省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共24小题)1.(2020•益阳)如图,在矩形ABCD中,E是DC上的一点,ABE∆是等边三角形,AC交BE于点F,则下列结论不成立的是()A.30DAE∠=︒B.45BAC∠=︒C.12EFFB=D.32ADAB=2.(2020•永州)如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()A.4B.2C.3D.233.(2020•永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A.注意安全B.水深危险C.必须戴安全帽D.注意通风4.(2020•永州)如图,在ABC∆中,//EF BC,23AEEB=,四边形BCFE的面积为21,则ABC∆的面积是()A.913B.25C.35D.635.(2020•娄底)如图,撬钉子的工具是一个杠杆,动力臂1cosL Lα=,阻力臂2cosL lβ=,如果动力F的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是()A.越来越小B.不变C.越来越大D.无法确定6.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是()A.B.C.D.7.(2020•益阳)如图所示的几何体的俯视图是()A.B.C.D.8.(2020•娄底)我国汽车工业迅速发展,国产汽车技术成熟,下列汽车图标是中心对称图形的是() A.B.C.D.9.(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.10.(2020•郴州)下列图形是中心对称图形的是()A.B.C.D.11.(2020•张家界)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.12.(2020•湘潭)下列图形中,不是中心对称图形的是()A.B.C.D.13.(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.14.(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.15.(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30 时,船离灯塔的水平距离是( )A.423米B.143米C.21米D.42米16.(2019•永州)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.17.(2019•湘潭)下列立体图形中,俯视图是三角形的是()A.B.C.D.18.(2019•永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A .B .C .D .19.(2019•邵阳)如图,在Rt ABC ∆中,90BAC ∠=︒,36B ∠=︒,AD 是斜边BC 上的中线,将ACD ∆沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则BED ∠等于( )A .120︒B .108︒C .72︒D .36︒20.(2019•常德)如图,在等腰三角形ABC ∆中,AB AC =,图中所有三角形均相似,其中最小的三角形面积为1,ABC ∆的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .2621.(2019•张家界)下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( ) A . B .C .D .22.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)23.(2019•邵阳)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球24.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是()A .2(2,2)2-B .(1,0)C .2(2-,2)2-D .(0,1)- 二.填空题(共11小题)25.(2020•永州)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=︒,在AOB ∠内有一点(4,3)P ,M ,N 分别是OA ,OB 边上的动点,连接PM ,PN ,MN ,则PMN ∆周长的最小值是 .26.(2020•娄底)若1()2b d ac a c ==≠,则bd a c -=- . 27.(2020•郴州)如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为 .28.(2020•郴州)在平面直角坐标系中,将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,已知(2,3)A ,则点1A 的坐标是 . 29.(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的是 .(写出所有正确结论的序号)①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PFB ∆∆∽;⑤CF CP 为定值. 30.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ MN ⊥,NE 平分MNP ∠,交PM 于点E ,交PQ 于点F .(1)PF PE PQ PM += . (2)若2PN PM MN =,则MQ NQ = .31.(2020•怀化)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是 (结果保留)π.32.(2020•湘潭)若37y x =,则x y x -= . 33.(2020•衡阳)如图,在平面直角坐标系中,点1P 的坐标为2(2,2)2,将线段1OP 绕点O 按顺时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45︒,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP ,5OP ,⋯,(n OP n 为正整数),则点2020P 的坐标是 .34.(2020•常德)如图1,已知四边形ABCD 是正方形,将DAE ∆,DCF ∆分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若4GF =,6EG =,则DG 的长为 .35.(2020•湘潭)计算:sin45︒= .三.解答题(共12小题)36.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程--邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB ,BC 表示需铺设的干渠引水管道,经测量,A ,B ,C 所处位置的海拔1AA ,1BB ,1CC 分别为62m ,100m ,200m .若管道AB 与水平线2AA 的夹角为30︒,管道BC 与水平线2BB 夹角为45︒,求管道AB 和BC 的总长度(结果保留根号).37.(2020•益阳)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高12DH =米,斜坡CD 的坡度1:1i =.此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒.(1)求斜坡CD 的坡角α;(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin260.44︒≈,tan260.49︒≈,sin710.95︒≈,tan71 2.90)︒≈38.(2020•娄底)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E 点距地面5m ,从E 点处测得D 点俯角为30︒,斜面ED 长为4m ,水平面DC 长为2m ,斜面BC 的坡度为1:4,求处于同一水平面上引桥底部AB 的长.(结果精确到0.1m 2 1.413 1.73)≈.39.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边ABC∆的重心为点O,求OBC∆与ABC∆的面积.(2)性质探究:如图(二),已知ABC∆的重心为点O,请判断ODOA、OBCABCSS∆∆是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若1CMES∆=,求正方形ABCD的面积.40.(2020•张家界)“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9/m s的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A处测得“南天一柱”底部C的俯角为37︒,继续飞行6s到达B处,这时测得“南天一柱”底部C的俯角为45︒,已知“南天一柱”的高为150m,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈41.(2020•郴州)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得4000AD=米,仰角为30︒.3秒后,火箭直线上升到达点B 处,此时地面C 处的雷达站测得B 处的仰角为45︒.已知C ,D 两处相距460米,求火箭从A 到B 处的平均速度(结果精确到1米/秒,参考数据:3 1.732≈,2 1.414)≈.42.(2020•湘潭)为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD 为矩形,10DE =m ,其坡度为11:3i =,将步梯DE 改造为斜坡AF ,其坡度为21:4i =,求斜坡AF 的长度.(结果精确到0.01 m ,参考数据:3 1.732≈,17 4.123)≈43.(2020•株洲)某高速公路管理部门工作人员在对某段高速公路进行安全巡检过程中,发现该高速公路旁的一斜坡存在落石隐患.该斜坡横断面示意图如图所示,水平线12//l l ,点A 、B 分别在1l 、2l 上,斜坡AB 的长为18米,过点B 作1BC l ⊥于点C ,且线段AC 的长为26米.(1)求该斜坡的坡高BC ;(结果用最简根式表示)(2)为降低落石风险,该管理部门计划对该斜坡进行改造,改造后的斜坡坡角α为60︒,过点M 作1MN l ⊥于点N ,求改造后的斜坡长度比改造前的斜坡长度增加了多少米?44.(2020•岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A ,B 两地向C 地新建AC ,BC 两条笔直的污水收集管道,现测得C 地在A 地北偏东45︒方向上,在B 地北偏西68︒向上,AB 的距离为7km ,求新建管道的总长度.(结果精确到0.1km ,sin220.37︒≈,cos220.93︒≈,tan220.40︒≈,2 1.41)≈45.(2020•衡阳)小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120︒时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,24OAC∠=︒.==,BC ACOA OB cm⊥,30(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120︒,求点B'到AC的距离.(结果保留根号)46.(2020•常德)如图,已知AB是O的直径,C是O上的一点,D是AB上的一点,DE AB⊥于D,DE交BC于F,且EF EC=.(1)求证:EC是O的切线;(2)若4BD=,8BC=,圆的半径5OB=,求切线EC的长.47.(2020•常德)如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5︒,卸货时,车厢与水平线AD成60︒,此时AB与支撑顶杆BC的夹角为45︒,若2AC=米,求BC的长度.(结果保留一位小数)(参考数据:sin650.91︒≈,tan70 2.75︒≈,︒≈,cos700.34︒≈,sin700.94︒≈,tan65 2.14︒≈,cos650.422 1.41)湖南省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共24小题)1.(2020•益阳)如图,在矩形ABCD中,E是DC上的一点,ABE∆是等边三角形,AC交BE于点F,则下列结论不成立的是()A.30DAE∠=︒B.45BAC∠=︒C.12EFFB=D.3ADAB=【解答】解:四边形ABCD是矩形,ABE∆是等边三角形,AB AE BE∴==,60EAB EBA∠=∠=︒,AD BC=,90DAB CBA∠=∠=︒,//AB CD,AB CD=,30DAE CBE∴∠=∠=︒,故选项A不合题意,3cosAD ADDAEAE AB∴∠===,故选项D不合题意,在ADE∆和BCE∆中,AD BCDAE CBEAE BE=⎧⎪∠=∠⎨⎪=⎩,()ADE BCE SAS∴∆≅∆,1122DE CE CD AB∴===,//AB CD,ABF CEF∴∆∆∽,∴12CE EFAB BF==,故选项C不合题意,故选:B.2.(2020•永州)如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是()A.4B.2C3D.3【解答】解:如图,过点B作BD AC⊥于点D,此正三棱柱底面ABC∆的边AB在右侧面的投影为BD,2AC=,1AD∴=,2AB AD==,3BD∴=,左视图矩形的长为2,∴左视图的面积为23.故选:D.3.(2020•永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A.注意安全B.水深危险C.必须戴安全帽D.注意通风【解答】解:根据轴对称图形的定义可知:选项A、B、C中的图形是轴对称图形,选项D不是轴对称图形.故选:D.4.(2020•永州)如图,在ABC∆中,//EF BC,23AEEB=,四边形BCFE的面积为21,则ABC∆的面积是( )A.913B.25C.35D.63【解答】解://EF BC,AEF ABC∴∆∆∽,∴224()()25AEFABCS AE AES AB AE EB∆∆===+,425AEF ABCS S∆∆∴=.21ABC AEFBCFES S S∆∆=-=四边形,即212125ABCS∆=,25ABC S ∆∴=. 故选:B . 5.(2020•娄底)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=,阻力臂2cos L l β=,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是( )A .越来越小B .不变C .越来越大D .无法确定 【解答】解:动力⨯动力臂=阻力⨯阻力臂,∴当阻力及阻力臂不变时,动力⨯动力臂为定值,且定值0>, ∴动力随着动力臂的增大而减小,杠杆向下运动时α的度数越来越小,此时cos α的值越来越大, 又动力臂1cos L L α=, ∴此时动力臂也越来越大, ∴此时的动力越来越小, 故选:A . 6.(2020•邵阳)下列四个立体图形中,它们各自的三视图都相同的是( )A .B .C .D . 【解答】解:A 、球的三视图都是圆,故本选项符合题意;B 、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不符合题意;C 、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不符合题意;D 、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项不符合题意; 故选:A . 7.(2020•益阳)如图所示的几何体的俯视图是( )A .B .C .D . 【解答】解:从上面看该几何体,选项D 的图形符合题意, 故选:D . 8.(2020•娄底)我国汽车工业迅速发展,国产汽车技术成熟,下列汽车图标是中心对称图形的是( )A.B.C.D.【解答】解:A、不是中心对称图形.故错误;B、是中心对称图形.故正确;C、不是中心对称图形.故错误;D、不是中心对称图形.故错误.故选:B.9.(2020•湘西州)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.【解答】解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.10.(2020•郴州)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意.故选:D.11.(2020•张家界)如图是由5个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.【解答】解:从正面看有三列,从左到右依次有2、1、1个正方形,图形如下:故选:A.12.(2020•湘潭)下列图形中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.13.(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A.B.C.D.【解答】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,故选:A.14.(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.15.(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30 时,船离灯塔的水平距离是( )A.423米B.143米C.21米D.42米【解答】解:根据题意可得:船离海岸线的距离为42tan30423÷︒=(米)故选:A.16.(2019•永州)某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【解答】解:观察图形可知,这块西瓜的三视图是.故选:B.17.(2019•湘潭)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.18.(2019•永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A .B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.19.(2019•邵阳)如图,在Rt ABC∆中,90BAC∠=︒,36B∠=︒,AD是斜边BC上的中线,将ACD∆沿AD 对折,使点C落在点F处,线段DF与AB相交于点E,则BED∠等于()A.120︒B.108︒C.72︒D.36︒【解答】解:在Rt ABC∆中,90BAC∠=︒,36B∠=︒,9054C B∴∠=︒-∠=︒.AD是斜边BC上的中线,AD BD CD∴==,36BAD B∴∠=∠=︒,54DAC C∠=∠=︒,18072ADC DAC C∴∠=︒-∠-∠=︒.将ACD∆沿AD对折,使点C落在点F处,72ADF ADC∴∠=∠=︒,3672108BED BAD ADF∴∠=∠+∠=︒+︒=︒.故选:B.20.(2019•常德)如图,在等腰三角形ABC∆中,AB AC=,图中所有三角形均相似,其中最小的三角形面积为1,ABC∆的面积为42,则四边形DBCE的面积是()A.20B.22C.24D.26【解答】解:如图,根据题意得AFH ADE∆∆∽,∴2239()()416AFHADES FHS DE∆∆===设9AFHS x∆=,则16ADES x∆=,1697x x∴-=,解得1x=,16ADES∆∴=,∴四边形DBCE的面积421626=-=.故选:D.21.(2019•张家界)下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A .B .C .D . 【解答】解:A 、是轴对称图形,也是中心对称图形.故错误; B 、是轴对称图形,也是中心对称图形.故错误; C 、是轴对称图形,不是中心对称图形.故正确; D 、是轴对称图形,也是中心对称图形.故错误. 故选:C . 22.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是( ) A .(0,5) B .(5,1) C .(2,4) D .(4,2) 【解答】解:将点(2,1)向右平移3个单位长度,则所得的点的坐标是(5,1). 故选:B . 23.(2019•邵阳)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球 【解答】解:A .俯视图与主视图都是正方形,故选项A 不合题意; B .俯视图与主视图都是长方形,故选项B 不合题意; C .俯视图是圆,主视图是三角形,故选项C 符合题意; D .俯视图与主视图都是圆,故选项D 不合题意; 故选:C . 24.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .2(2B .(1,0)C .2(2D .(0,1)-【解答】解:四边形OABC 是正方形,且1OA =, (0,1)A ∴,将正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,12(2A ∴,2)2,2(1,0)A ,32(2A ,2)2-,⋯, 发现是8次一循环,所以20198252÷=⋯余3,∴点2019A 的坐标为2(2,2)2-故选:A .二.填空题(共11小题) 25.(2020•永州)AOB ∠在平面直角坐标系中的位置如图所示,且60AOB ∠=︒,在AOB ∠内有一点(4,3)P ,M ,N 分别是OA ,OB 边上的动点,连接PM ,PN ,MN ,则PMN ∆周长的最小值是 53 .【解答】解:分别作P 关于射线OA 、射线OB 的对称点P '与点P '',连接P P ''',与OA 、OB 分别交于M 、N 两点,此时PMN ∆周长最小,最小值为P P '''的长, 连接OP ',OP '',OP ,OA 、OB 分别为PP ',PP ''的垂直平分线,(4,3)P ,22435OP OP OP ∴'==''=+,且POA P OA ∠=∠',POB P OB ∠=∠'', 60AOB AOP BOP ∠=∠+∠=︒, 120P OP ∴∠'''=︒,过O 作OQ P P ⊥''',可得P Q P Q '='',30OP Q OP Q ∠'=∠''=︒, 52OQ ∴=,53P Q P Q '=''532253P P P Q ∴'''='==则PMN ∆周长的最小值是53故答案为:5326.(2020•娄底)若1()2b d a c a c ==≠,则b d ac -=- 12. 【解答】解:1()2b d ac a c ==≠, ∴12b d ac -=-. 故答案为:12.27.(2020•郴州)如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为 48 .【解答】解:根据圆锥侧面积公式:S rl π=, 圆锥的母线长为10,侧面展开图的面积为60π, 故6010r ππ=⨯⨯, 解得:6r =.由勾股定理可得圆锥的高221068=-=,圆锥的主视图是一个底边为12,高为8的等腰三角形,∴它的面积1128482=⨯⨯=,故答案为:48.28.(2020•郴州)在平面直角坐标系中,将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,已知(2,3)A ,则点1A 的坐标是 4(3,2) .【解答】解:将AOB ∆以点O 为位似中心,23为位似比作位似变换,得到△11A OB ,(2,3)A , ∴点1A 的坐标是:2(23⨯,23)3⨯,即14(3A ,2).故答案为:4(3,2).29.(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,8AB =,BD 与半圆O 相切于点B .点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE OC ⊥于点E ,延长BE 交PC 于点F ,则下列结论正确的是 ②⑤ .(写出所有正确结论的序号)①PB PD =;②BC 的长为43π;③45DBE ∠=︒;④BCF PFB ∆∆∽;⑤CF CP 为定值.【解答】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1, M ,C 是半圆上的三等分点, 30BAH ∴∠=︒,BD 与半圆O 相切于点B . 90ABD ∴∠=︒, 60H ∴∠=︒,ACP ABP ∠=∠,ACP DCH ∠=∠, 60PDB H DCH ABP ∴∠=∠+∠=∠+︒, 90PBD ABP ∠=︒-∠,若PDB PBD ∠=∠,则6090ABP ABP ∠+︒=︒-∠, 15ABP ∴∠=︒,P ∴点为AM 的中点,这与P 为AM 上的一动点不完全吻合, PDB ∴∠不一定等于ABD ∠, PB ∴不一定等于PD , 故①错误;②M ,C 是半圆上的三等分点,1180603BOC ∴∠=⨯︒=︒,直径8AB =, 4OB OC ∴==,∴BC 的长度60441803ππ⨯==,故②正确;③60BOC ∠=︒,OB OC =, 60ABC ∴∠=︒,OB OC BC ==, BE OC ⊥,30OBE CBE ∴∠=∠=︒, 90ABD ∠=︒,60DBE ∴∠=︒, 故③错误;④M 、C 是AB 的三等分点, 30BPC ∴∠=︒, 30CBF ∠=︒, 但BFP FCB ∠>∠, PBF BFC ∠<∠,BCF PFB ∴∆∆∽不成立, 故④错误;⑤30CBF CPB ∠=∠=︒,BCF PCB ∠=∠, BCF PCB ∴∆∆∽, ∴CB CF CP CB=, 2CF CP CB ∴=,142CB OB OC AB ====,16CF CP ∴=, 故⑤正确.故答案为:②⑤. 30.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ MN ⊥,NE 平分MNP ∠,交PM 于点E ,交PQ 于点F .(1)PF PE PQ PM+= 1 .(2)若2PN PM MN =,则MQNQ= .【解答】解:(1)MN 为O 的直径,90MPN ∴∠=︒, PQ MN ⊥,90PQN MPN ∴∠=∠=︒, NE 平分PNM ∠, MNE PNE ∴∠=∠, PEN QFN ∴∆∆∽, ∴PE PN QF QN =,即PE QF PN QN=①, 90PNQ NPQ PNQ PMQ ∠+∠=∠+∠=︒, NPQ PMQ ∴∠=∠,90PQN PQM ∠=∠=︒, NPQ PMQ ∴∆∆∽, ∴PN NQ MP PQ=②, ∴①⨯②得PE QFPM PQ=, QF PQ PF =-,∴1PE QF PFPM PQ PQ ==-, ∴1PF PE PQ PM +=, 故答案为:1;(2)PNQ MNP ∠=∠,NQP NPM ∠=∠, NPQ NMP ∴∆∆∽, ∴PN QN MN PN=, 2PN QN MN ∴=, 2PN PM MN =, PM QN ∴=, ∴MQ MQ NQ PM=, cos MQ PMM PM MN∠==, ∴MQ PM NQ MN =, ∴MQ NQ NQ MQ NQ=+, 22NQ MQ MQ NQ ∴=+,即221MQ MQNQ NQ=+, 设MQ x NQ=,则210x x +-=, 解得,51x -=,或510x +=-<(舍去), ∴51MQ NQ -=, 故答案为:51-. 31.(2020•怀化)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是 24π (结果保留)π.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是422÷=,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高, 且底面周长为:224ππ⨯=,∴这个圆柱的侧面积是4624ππ⨯=. 故答案为:24π.32.(2020•湘潭)若37y x =,则x y x -=47.【解答】解:由37y x =可设3y k =,7x k =,k 是非零整数, 则7344777x y k k k x k k --===.故答案为:47.33.(2020•衡阳)如图,在平面直角坐标系中,点1P 的坐标为2(2,2)2,将线段1OP 绕点O 按顺时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45︒,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP ,5OP ,⋯,(n OP n 为正整数),则点2020P 的坐标是 2019(0,2)- .【解答】解:点1P 的坐标为2(2,2)2,将线段1OP 绕点O 按逆时针方向旋转45︒,再将其长度伸长为1OP 的2倍,得到线段2OP ; 11OP ∴=,22OP =,34OP ∴=,如此下去,得到线段342OP =,452OP =⋯,12n n OP -∴=,由题意可得出线段每旋转8次旋转一周, 202082524÷=⋯,∴点2020P 的坐标与点4P 的坐标在同一直线上,正好在y 轴的负半轴上, ∴点2020P 的坐标是2019(0,2)-.故答案为:2019(0,2)-. 34.(2020•常德)如图1,已知四边形ABCD 是正方形,将DAE ∆,DCF ∆分别沿DE ,DF 向内折叠得到图2,此时DA 与DC 重合(A 、C 都落在G 点),若4GF =,6EG =,则DG 的长为 12 .【解答】解:设正方形ABCD 的边长为x ,由翻折可得: DG DA DC x ===, 4GF =,6EG =,6AE EG ∴==,4CF GF ==,6BE x ∴=-,4BF x =-,6410EF =+=,如图1所示:在Rt BEF ∆中,由勾股定理得: 222BE BF EF +=,222(6)(4)10x x ∴-+-=,221236816100x x x x ∴-++-+=, 210240x x ∴--=, (2)(12)0x x ∴+-=,12x ∴=-(舍),212x =. 12DG ∴=. 故答案为:12.35.(2020•湘潭)计算:sin45︒=2. 【解答】解:根据特殊角的三角函数值得:2sin 45︒=. 三.解答题(共12小题) 36.(2020•邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划重大水利工程--邵阳资水犬木塘水库,将于2020年开工建设施工测绘中,饮水干渠需经过一座险峻的石山,如图所示,AB ,BC 表示需铺设的干渠引水管道,经测量,A ,B ,C 所处位置的海拔1AA ,1BB ,1CC 分别为62m ,100m ,200m .若管道AB 与水平线2AA 的夹角为30︒,管道BC 与水平线2BB 夹角为45︒,求管道AB 和BC 的总长度(结果保留根号).【解答】解:根据题意知,四边形11AA B O 和四边形112BB C B 均为矩形, 1162OB AA m ∴==,211100B C BB m ==,111006238BO BB OB m ∴=-=-=,2121200100100CB CC B C m =-=-=, 在Rt AOB ∆中,90AOB ∠=︒,30BAO ∠=︒,38BO m =, 223876AB BO m ∴==⨯=;在2Rt CBB ∆中,290CB B ∠=︒,245CBB ∠=︒,2100CB m =, ∴221002BC CB m ==, ∴(761002)AB BC m +=+,即管道AB 和BC 的总长度为:(761002)m +.37.(2020•益阳)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高12DH =米,斜坡CD 的坡度1:1i =.此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒. (1)求斜坡CD 的坡角α;(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin260.44︒≈,tan260.49︒≈,sin710.95︒≈,tan71 2.90)︒≈【解答】解:(1)斜坡CD 的坡度1:1i =, tan :1:11DH CH α∴===, 45α∴=︒.答:斜坡CD 的坡角α为45︒; (2)由(1)可知:12CH DH ==,45α=︒.264571PCH PCD α∴∠=∠+=︒+︒=︒,在Rt PCH ∆中,12tan 2.9012PH PD PCH CH +∠==≈,22.8PD ∴≈(米). 22.818>,答:此次改造符合电力部门的安全要求. 38.(2020•娄底)如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E 点距地面5m ,从E 点处测得D 点俯角为30︒,斜面ED 长为4m ,水平面DC 长为2m ,斜面BC 的坡度为1:4,求处于同一水平面上引桥底部AB 的长.(结果精确到0.1m 2 1.413 1.73)≈.【解答】解:作DFAE⊥于F,DG AB⊥于G,CH AB⊥于H,如图所示:则DF GA=,2DC GH==,AF DG CH==,由题意得:30EDF∠=︒,114222EF DE∴==⨯=,323DF EF==,5AE=,523CH AF AE EF∴==-=-=,斜面BC的坡度为1:4CHBH=,412BH CH∴==,23212231417.5()AB AG GH BH m∴=++=++=+≈,答:处于同一水平面上引桥底部AB的长约为17.5m.39.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边ABC∆的重心为点O,求OBC∆与ABC∆的面积.(2)性质探究:如图(二),已知ABC∆的重心为点O,请判断ODOA、OBCABCSS∆∆是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M . ①若正方形ABCD 的边长为4,求EM 的长度; ②若1CME S ∆=,求正方形ABCD 的面积. 【解答】解:(1)连接DE ,如图一, 点O 是ABC ∆的重心,AD ∴,BE 是BC ,AC 边上的中线, D ∴,E 为BC ,AC 边上的中点, DE ∴为ABC ∆的中位线,//DE AB ∴,12DE AB =,ODE OAB ∴∆∆∽, ∴12OD DE OA AB ==, 2AB =,1BD =,90ADB=︒,AD ∴OD =,∴2322OBC BC ODS ∆==22ABC BC AD S ∆⨯== (2)由(1)同理可得,12OD OA =,是定值;点O 到BC 的距离和点A 到BC 的距离之比为1:3,则OBC ∆和ABC ∆的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比, 故13OBC ABC S S ∆∆=,是定值; (3)①连接BD 交AC 于点O ,点O 为BD 的中点,点E 为CD 的中点, ∴点M 是BCD ∆的重心, ∴13EM BE =,E 为CD 的中点,∴12CE CD ==,∴BE =即EM =②1CME S ∆=,且12ME BM =,2BMC S ∆∴=,12ME BM =, ∴21()4CME AMB S ME S BM ∆∆==, 4AMB S ∆∴=,246ABC BMC ABM S S S ∆∆∆∴=+=+=,又ADC ABC S S ∆∆=,6ADC S ∆∴=,∴正方形ABCD 的面积为:6612+=.40.(2020•张家界)“南天一柱”是张家界“三千奇峰”中的一座,位于世界自然遗产武陵源风景名胜区袁家界景区南端.2010年1月25日,“南天一柱”正式命名为《阿凡达》的“哈利路亚山”.如图,航拍无人机以9/m s 的速度在空中向正东方向飞行,拍摄云海中的“南天一柱”美景.在A 处测得“南天一柱”底部C 的俯角为37︒,继续飞行6s 到达B 处,这时测得“南天一柱”底部C 的俯角为45︒,已知“南天一柱”的高为150m ,问这架航拍无人机继续向正东飞行是否安全?(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈【解答】解:设无人机距地面xm ,直线AB 与南天一柱所在直线相交于点D ,由题意得37CAD ∠=︒,45CBD ∠=︒. 在Rt ACD ∆中,tan 0.75CD xCAD AD AD ∠===,43AD x ∴=.在Rt BCD ∆中,tan 1CD xCBD BD BD∠===,BD x ∴=.AD BD AB -=, ∴4963x x -=⨯, 162x ∴=, 162150>,∴这架航拍无人机继续向正东飞行安全.。
辽宁省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)
![辽宁省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)](https://img.taocdn.com/s3/m/4d0430081a37f111f0855b1c.png)
辽宁省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共19小题)1.(2020•阜新)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球2.(2020•盘锦)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是( )A.B.C.D.3.(2020•锦州)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .4.(2020•大连)平面直角坐标系中,点(3,1)P 关于x 轴对称的点的坐标是( )A .(3,1)B .(3,1)-C .(3,1)-D .(3,1)--5.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD .2003m 6.(2020•大连)如图,ABC ∆中,90ACB ∠=︒,40ABC ∠=︒.将ABC ∆绕点B 逆时针旋转得到△A BC '',使点C 的对应点C '恰好落在边AB 上,则CAA ∠'的度数是( )A .50︒B .70︒C .110︒D .120︒7.(2020•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是( )A.B.C.D.8.(2020•营口)如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是( )A.B.C.D.9.(2020•营口)如图,在ABC∆中,//DE AB,且32CDBD=,则CECA的值为()A.35B.23C.45D.3210.(2020•辽阳)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C .D .11.(2019•鞍山)如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,EGC∠的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH BE⊥;②EHM FHG∆∆∽;③21BCCG=-;④22HOMHOGSS∆∆=-,其中正确的结论是()A.①②③B.①②④C.①③④D.②③④12.(2019•营口)如图,在ABC∆中,//DE BC,23ADAB=,则ADEDBCESS∆四边形的值是() A.45B.1C.23D.49 13.(2019•铁岭)下面四个图形中,属于轴对称图形的是()A.B.C.D.14.(2019•铁岭)如图所示几何体的主视图是()A .B .C .D .15.(2019•盘锦)如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是( )A .B .C .D .16.(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .17.(2019•盘锦)如图,点(8,6)P 在ABC ∆的边AC 上,以原点O 为位似中心,在第一象限内将ABC ∆缩小到原来的12,得到△A B C ''',点P 在A C ''上的对应点P '的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)18.(2019•沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .19.(2019•沈阳)已知ABC ∆∽△A B C ''',AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC ∆与△A B C '''的周长比是( )A .3:5B .9:25C .5:3D .25:9二.填空题(共11小题)20.(2020•阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5AB m =,则这两棵树的水平距离约为 m (结果精确到0.1m ,参考数据:sin200.342︒≈,cos200.940︒≈,tan 200.364)︒≈.21.(2020•阜新)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==.将ABC ∆绕点B 逆时针旋转60︒,得到△11A BC ,则AC 边的中点D 与其对应点1D 的距离是 .22.(2020•锦州)如图,在ABC ∆中,D 是AB 中点,//DE BC ,若ADE ∆的周长为6,则ABC ∆的周长为 .23.(2020•盘锦)如图,在矩形ABCD 中,1AB =,2BC =,点E 和点F 分别为AD ,CD 上的点,将DEF ∆沿EF 翻折,使点D 落在BC 上的点M 处,过点E 作//EH AB 交BC 于点H ,过点F 作//FG BC 交AB 于点G .若四边形ABHE 与四边形BCFG 的面积相等,则CF 的长为 .24.(2020•盘锦)如图,AOB ∆三个顶点的坐标分别为(5,0)A ,(0,0)O ,(3,6)B ,以点O 为位似中心,相似比为23,将AOB ∆缩小,则点B 的对应点B '的坐标是 .25.(2020•大连)如图,矩形ABCD 中,6AB =,8AD =,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x 时,y 关于x 的函数解析式为 .26.(2020•鞍山)如图,在菱形ABCD 中,60ADC ∠=︒,点E ,F 分别在AD ,CD 上,且AE DF =,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①ACF CDE ∆≅∆;②2CG GH BG =;③若2DF CF =,则7CE GF =;④234ABCG S BG =四边形.其中正确的结论有 .(只填序号即可)27.(2020•葫芦岛)一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为 cm .28.(2020•鞍山)如图,在平面直角坐标系中,已知(3,6)A ,(2,2)B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为 .29.(2020•沈阳)如图,在矩形ABCD 中,6AB =,8BC =,对角线AC ,BD 相交于点O ,点P 为边AD 上一动点,连接OP ,以OP 为折痕,将AOP ∆折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F .若PDF ∆为直角三角形,则DP 的长为 .30.(2020•营口)如图,ABC ∆为等边三角形,边长为6,AD BC ⊥,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE EF +的最小值为 .三.解答题(共16小题)31.(2020•阜新)如图,ABC ∆在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与ABC ∆关于y 轴对称的△111A B C ;(2)将ABC ∆绕点1O 顺时针旋转90︒得到△222A B C ,2AA 弧是点A 所经过的路径,则旋转中心1O 的坐标为 ;(3)求图中阴影部分的面积(结果保留)π.32.(2020•锦州)如图,ABCD 的对角线AC ,BD 交于点E ,以AB 为直径的O 经过点E ,与AD 交于点F ,G 是AD 延长线上一点,连接BG ,交AC 于点H ,且12DBG BAD ∠=∠. (1)求证:BG 是O 的切线;(2)若3CH =,1tan 2DBG ∠=,求O 的直径.33.(2020•锦州)已知AOB ∆和MON ∆都是等腰直角三角形2()OA OM ON <=,90AOB MON ∠=∠=︒.(1)如图1:连AM ,BN ,求证:AOM BON ∆≅∆;(2)若将MON ∆绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:2222BN AN ON +=;②当点A ,M ,N 在同一条直线上时,若4OB =,3ON =,请直接写出线段BN 的长.34.(2020•朝阳)如图,以AB 为直径的O 经过ABC ∆的顶点C ,过点O 作//OD BC 交O 于点D ,交AC 于点F ,连接BD 交AC 于点G ,连接CD ,在OD 的延长线上取一点E ,连接CE ,使DEC BDC ∠=∠.(1)求证:EC 是O 的切线;(2)若O 的半径是3,9DG DB =,求CE 的长.35.(2020•朝阳)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A 和人工智能科技馆C 参观学习如图,学校在点B 处,A 位于学校的东北方向,C 位于学校南偏东30︒方向,C 在A 的南偏西15︒方向(30303)km +处.学生分成两组,第一组前往A 地,第二组前往C 地,两组同学同时从学校出发,第一组乘客车,速度是40/km h ,第二组乘公交车,速度是30/km h ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).36.(2020•朝阳)如图所示的平面直角坐标系中,ABC ∆的三个顶点坐标分别为(3,2)A -,(1,3)B -,(1,1)C -,请按如下要求画图:(1)以坐标原点O 为旋转中心,将ABC ∆顺时针旋转90︒,得到△111A B C ,请画出△111A B C ;(2)以坐标原点O 为位似中心,在x 轴下方,画出ABC ∆的位似图形△222A B C ,使它与ABC ∆的位似比为2:1.37.(2020•锦州)如图,某海岸边有B ,C 两码头,C 码头位于B 码头的正东方向,距B 码头40海里.甲、乙两船同时从A 岛出发,甲船向位于A 岛正北方向的B 码头航行,乙船向位于A 岛北偏东30︒方向的C 码头航行,当甲船到达距B 码头30海里的E 处时,乙船位于甲船北偏东60︒方向的D 处,求此时乙船与C 码头之间的距离.(结果保留根号)38.(2020•盘锦)如图,某数学活动小组要测量建筑物AB 的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表. 测量项目测量数据 测角仪到地面的距离1.6CD m = 点D 到建筑物的距离4BD m = 从C 处观测建筑物顶部A 的仰角67ACE ∠=︒ 从C 处观测建筑物底部B 的俯角 22BCE ∠=︒请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB 的高度.(结果精确到0.1米,参考数据:sin670.92︒≈,cos670.39︒≈,tan67 2.36︒≈.sin220.37︒≈,cos220.93︒≈,tan 220.40)︒≈(选择一种方法解答即可)39.(2020•鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40AC cm =,求支架BC 的长.(结果精确到1cm ,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈40.(2020•葫芦岛)在等腰ADC ∆和等腰BEC ∆中,90ADC BEC ∠=∠=︒,BC CD <,将BEC ∆绕点C 逆时针旋转,连接AB ,点O 为线段AB 的中点,连接DO ,EO .(1)如图1,当点B 旋转到CD 边上时,请直接写出线段DO 与EO 的位置关系和数量关系;(2)如图2,当点B 旋转到AC 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若4BC =,26CD =,在BEC ∆绕点C 逆时针旋转的过程中,当60ACB ∠=︒时,请直接写出线段OD 的长.41.(2020•葫芦岛)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB ,在观测点C 处测得大桥主架顶端A 的仰角为30︒,测得大桥主架与水面交汇点B 的俯角为14︒,观测点与大桥主架的水平距离CM 为60米,且AB 垂直于桥面.(点A ,B ,C ,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24︒≈,cos140.97︒≈,tan140.25︒≈,3 1.73)≈42.(2020•沈阳)在ABC ∆中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC .(1)如图1,当60α=︒时,①求证:PA DC =;②求DCP ∠的度数;(2)如图2,当120α=︒时,请直接写出PA 和DC 的数量关系.(3)当120α=︒时,若6AB =,31BP =,请直接写出点D 到CP 的距离为 .43.(2020•丹东)如图,小岛C 和D 都在码头O 的正北方向上,它们之间距离为6.4km ,一艘渔船自西向东匀速航行,行驶到位于码头O 的正西方向A 处时,测得26.5CAO ∠=︒,渔船速度为28/km h ,经过0.2h ,渔船行驶到了B 处,测得49DBO ∠=︒,求渔船在B 处时距离码头O 有多远?(结果精确到0.1)km(参考数据:sin26.50.45︒≈,cos26.50.89︒≈,tan26.50.50︒≈,sin490.75︒≈,cos490.66︒≈,tan 49 1.15)︒≈44.(2020•丹东)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A ,B ,C 的坐标分别为(1,2)A ,(3,1)B ,(2,3)C ,先以原点O 为位似中心在第三象限内画一个△111A B C .使它与ABC ∆位似,且相似比为2:1,然后再把ABC ∆绕原点O 逆时针旋转90︒得到△222A B C .(1)画出△111A B C ,并直接写出点1A 的坐标;(2)画出△222A B C ,直接写出在旋转过程中,点A 到点2A 所经过的路径长.45.(2020•营口)如图,在矩形ABCD 中,(0)AD kAB k =>,点E 是线段CB 延长线上的一个动点,连接AE ,过点A 作AF AE ⊥交射线DC 于点F .(1)如图1,若1k =,则AF 与AE 之间的数量关系是 ;(2)如图2,若1k ≠,试判断AF 与AE 之间的数量关系,写出结论并证明;(用含k 的式子表示)(3)若24AD AB ==,连接BD 交AF 于点G ,连接EG ,当1CF =时,求EG 的长.46.(2020•营口)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60︒方向上,航行12海里到达C点,这时测得小岛A 在北偏西30︒方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:3 1.73)≈辽宁省2019年、2020年数学中考试题分类(12)——图形的变换参考答案与试题解析一.选择题(共19小题)1.(2020•阜新)下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【解答】解:A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选:B.2.(2020•盘锦)如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是( )A.B.C.D.【解答】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.3.(2020•锦州)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【解答】解:观察图形可知,这个几何体的俯视图是.故选:A . 4.(2020•大连)平面直角坐标系中,点(3,1)P 关于x 轴对称的点的坐标是( )A .(3,1)B .(3,1)-C .(3,1)-D .(3,1)--【解答】解:点(3,1)P 关于x 轴对称的点的坐标是(3,1)-故选:B .5.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD 2003 【解答】解:由题意得,906030AOB ∠=︒-︒=︒,1100()2AB OA m ∴==, 故选:A .6.(2020•大连)如图,ABC ∆中,90ACB ∠=︒,40ABC ∠=︒.将ABC ∆绕点B 逆时针旋转得到△A BC '',使点C 的对应点C '恰好落在边AB 上,则CAA ∠'的度数是( )A .50︒B .70︒C .110︒D .120︒【解答】解:90ACB ∠=︒,40ABC ∠=︒,90904050CAB ABC ∴∠=︒-∠=︒-︒=︒,将ABC ∆绕点B 逆时针旋转得到△A BC '',使点C 的对应点C '恰好落在边AB 上,40A BA ABC ∴∠'=∠=︒,A B AB '=, 1(18040)702BAA BA A ∴∠'=∠'=︒-︒=︒, 5070120CAA CAB BAA '∴∠=∠+∠'=︒+︒=︒.故选:D .7.(2020•沈阳)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是( )A .B .C .D .【解答】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形. 故选:D .8.(2020•营口)如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是( )A.B.C.D.【解答】解:从上面看易得俯视图:.故选:C.9.(2020•营口)如图,在ABC∆中,//DE AB,且32CDBD=,则CECA的值为()A.35B.23C.45D.32【解答】解://DE AB,∴32 CE CDAE BD==,∴CECA的值为35,故选:A.10.(2020•辽阳)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A .B .C .D .【解答】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C 的图形符合题意,故选:C .11.(2019•鞍山)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH BE ⊥;②EHM FHG ∆∆∽;③21BC CG=-;④22HOM HOG S S ∆∆=-,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④【解答】解:如图,四边形ABCD 和四边形CGFE 是正方形,BC CD ∴=,CE CG =,BCE DCG ∠=∠,在BCE ∆和DCG ∆中,BC CD BCE DCG CE CG =⎧⎪∠=∠⎨⎪=⎩()BCE DCG SAS ∴∆≅∆,BEC BGH ∴∠=∠,90BGH CDG ∠+∠=︒,CDG HDE ∠=∠,90BEC HDE ∴∠+∠=︒,GH BE ∴⊥.故①正确;EHG ∆是直角三角形,O 为EG 的中点,OH OG OE ∴==,∴点H 在正方形CGFE 的外接圆上,EF FG =,45FHG EHF EGF ∴∠=∠=∠=︒,HEG HFG ∠=∠,EHM FHG ∴∆∆∽,故②正确;BGH EGH ∆≅∆,BH EH ∴=,又O 是EG 的中点,//HO BG ∴,DHN DGC ∴∆∆∽, ∴DN HN DC CG=, 设EC 和OH 相交于点N .设HN a =,则2BC a =,设正方形ECGF 的边长是2b ,则NC b =,2CD a =, ∴222b a a a b-=,即2220a ab b +-=,解得:(1a b =-,或(1a b =--(舍去),则212a b =,∴1BC CG=-, 故③正确;BGH EGH ∆≅∆,EG BG ∴=, HO 是EBG ∆的中位线,12HO BG ∴=,12HO EG∴=,设正方形ECGF的边长是2b,22EG b∴=,2HO b∴=,//OH BG,//CG EF,//OH EF∴,MHO MFE∴∆∆∽,∴2222OM OH bEM EF b===,2EM OM∴=,∴121(12)12OM OMOE OM===-++,∴21HOMHOESS∆∆=-,EO GO=,HOE HOGS S∆∆∴=,∴21HOMHOGSS∆∆=-,故④错误,故选:A.12.(2019•营口)如图,在ABC∆中,//DE BC,23ADAB=,则ADEDBCESS∆四边形的值是() A.45B.1C.23D.49【解答】解://DE BC ,ADE ABC ∴∆∆∽, ∴24()9ADE ABC S AD S AB ∆∆==, ∴45ADEDBCE S S ∆=四边形, 故选:A .13.(2019•铁岭)下面四个图形中,属于轴对称图形的是( )A .B .C .D .【解答】解:A 、不属于轴对称图形,故此选项错误;B 、不属于轴对称图形,故此选项错误;C 、属于轴对称图形,故此选项正确;D 、不属于轴对称图形,故此选项错误;故选:C .14.(2019•铁岭)如图所示几何体的主视图是( )A .B .C .D .【解答】解:从正面可看到的图形是:故选:B .15.(2019•盘锦)如图,是由4个大小相同的正方体组成的几何体,该几何体的俯视图是( )A .B .C .D .【解答】解:从上面看得到的图形是:故选:B .16.(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C .17.(2019•盘锦)如图,点(8,6)P 在ABC 的边AC 上,以原点O 为位似中心,在第一象限内将ABC ∆缩小到原来的12,得到△A B C ''',点P 在A C ''上的对应点P '的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)【解答】解:点(8,6)P 在ABC ∆的边AC 上,以原点O 为位似中心,在第一象限内将ABC ∆缩小到原来的12,得到△A B C ''', ∴点P 在A C ''上的对应点P '的坐标为:(4,3).故选:A .18.(2019•沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【解答】解:从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选:A .19.(2019•沈阳)已知ABC ∆∽△A B C ''',AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC ∆与△A B C '''的周长比是( )A .3:5B .9:25C .5:3D .25:9【解答】解:ABC ∆∽△A B C ''',AD 和A D ''是它们的对应中线,10AD =,6A D ''=, ABC ∴∆与△A B C '''的周长比:10:65:3AD A D =''==.故选:C .二.填空题(共11小题)20.(2020•阜新)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5AB m =,则这两棵树的水平距离约为 4.7 m (结果精确到0.1m ,参考数据:sin200.342︒≈,cos200.940︒≈,tan 200.364)︒≈.【解答】解:过点A 作水平面的平行线AH ,作BH AH ⊥于H ,由题意得,20BAH α∠==︒,在Rt BAH ∆中,cos AH BAH AB∠=, cos 50.940 4.7()AH AB BAH m ∴=∠≈⨯≈,故答案为:4.7.21.(2020•阜新)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==.将ABC ∆绕点B 逆时针旋转60︒,得到△11A BC ,则AC 边的中点D 与其对应点1D 的距离是 2 .【解答】解:连接BD 、1BD ,如图,90ABC ∠=︒,2AB BC ==,222222AC ∴+=D 点为AC 的中点,122BD AC ∴== ABC ∆绕点B 逆时针旋转60︒,得到△11A BC ,1BD BD ∴=,160DBD ∠=︒,1BDD ∴∆为等边三角形,12DD BD ∴==. 故答案为2.22.(2020•锦州)如图,在ABC ∆中,D 是AB 中点,//DE BC ,若ADE ∆的周长为6,则ABC ∆的周长为 12 .【解答】解://DE BC ,ADE ABC ∴∆∆∽,D 是AB 的中点,∴12AD AB =, ∴12ADE ABC ∆=∆的周长的周长 ADE ∆的周长为6,ABC ∴∆的周长为12,故答案为:12.23.(2020•盘锦)如图,在矩形ABCD 中,1AB =,2BC =,点E 和点F 分别为AD ,CD 上的点,将DEF ∆沿EF 翻折,使点D 落在BC 上的点M 处,过点E 作//EH AB 交BC 于点H ,过点F 作//FG BC 交AB 于点G .若四边形ABHE 与四边形BCFG 的面积相等,则CF 的长为 38.【解答】解:设CF x =,CH y =,则2BH y =-,四边形ABHE 与四边形BCFG 的面积相等,22y x ∴-=,22y x ∴=-,由折叠知,1MF DF x ==-,22EM ED CH y x ====-,90EMF D ∠=∠=︒, 90EMH CMF ∴∠+∠=︒,90C ∠=︒,90CMF CFM ∴∠+∠=︒,EMH MFC ∴∠=∠,90EHM C ∠=∠=︒,EMH MFC ∴∆∆∽, ∴EM EH MF MC =,即22221(1)x x x x-=---, 解得,38x =. 经检验,38x =是原方程的解, 故答案为:38. 24.(2020•盘锦)如图,AOB ∆三个顶点的坐标分别为(5,0)A ,(0,0)O ,(3,6)B ,以点O 为位似中心,相似比为23,将AOB ∆缩小,则点B 的对应点B '的坐标是 (2,4)或(2,4)-- .【解答】解:如图,OAB ∆∽△OA B '',相似比为3:2,(3.6)B , (2,4)B ∴',根据对称性可知,△OA B ''''在第三象限时,(2,4)B ''--, ∴满足条件的点B '的坐标为(2,4)或(2,4)--. 故答案为(2,4)或(2,4)--.25.(2020•大连)如图,矩形ABCD 中,6AB =,8AD =,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x 时,y 关于x 的函数解析式为 808y x =+ .【解答】解:在矩形 中,//AD BC ,DEF BCF ∴∆∆∽,∴DE DF BC BF=, 10BD BC =,BF y =,DE x =, 10DF y ∴=-,∴108x y y -=,化简得:808y x =+, y ∴关于x 的函数解析式为:808y x =+, 故答案为:808y x =+. 26.(2020•鞍山)如图,在菱形ABCD 中,60ADC ∠=︒,点E ,F 分别在AD ,CD 上,且AE DF =,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①ACF CDE ∆≅∆;②2CG GH BG =;③若2DF CF =,则7CE GF =;④23ABCG S BG =四边形.其中正确的结论有 ①③④ .(只填序号即可)【解答】解:ABCD 为菱形,AD CD ∴=, AE DF =,DE CF ∴=,60ADC ∠=︒,ACD ∴∆为等边三角形,60D ACD ∴∠=∠=︒,AC CD =,()ACF CDE SAS ∴∆≅∆,故①正确;过点F 作//FP AD ,交CE 于P 点.2DF CF =,::1:3FP DE CF CD ∴==,DE CF =,AD CD =,2AE DE ∴=,:1:6:FP AE FG AG ∴==,6AG FG ∴=,7CE AF GF ∴==,故③正确;过点B 作BM AG ⊥于M ,BN GC ⊥于N ,60AGE ACG CAF ACG GCF ABC ∠=∠+∠=∠+∠=︒=∠,即180AGC ABC ∠+∠=︒,∴点A 、B 、C 、G 四点共圆,60AGB ACB ∴∠=∠=︒,60CGB CAB ∠=∠=︒,60AGB CGB ∴∠=∠=︒,BM BN ∴=,又AB BC =,()ABM CBN HL ∴∆≅∆,ABCG BMGN S S ∴=四边形四边形,60BGM ∠=︒, 12GM BG ∴=,3BM BG =, 233112222BMG BMGN S S BG BG BG ∆∴==⨯⨯⨯=四边形,故④正确; 60CGB ACB ∠=∠=︒,CBG HBC ∠=∠,BCH BGC ∴∆∆∽,∴BC BH CH BG BC CG==, 则2BG BH BC =,则2()BG BG GH BC -=,则22BG BG GH BC -=,则22GH BG BG BC =-,当90BCG ∠=︒时,222BG BC CG -=,此时2GH BG CG =,而题中BCG ∠未必等于90︒,故②不成立,故正确的结论有①③④,故答案为:①③④.27.(2020•葫芦岛)一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为 (333)或(333) cm .【解答】解:①根据题意画出如图1:菱形纸片ABCD 的边长为6cm ,6AB BC CD AD ∴====,高AE 等于边长的一半,3AE ∴=, 1sin 2AE B AB ∠==, 30B ∴∠=︒, 将菱形纸片沿直线MN 折叠,使点A 与点B 重合,3BH AH ∴==,23cos30BH BG ∴==︒, 623CG BC BG ∴=-=-,//AB CD ,30GCF B ∴∠=∠=︒,3cos30(623)333CF CG ∴=︒=-⨯=-, 6333(333)DF DC CF cm ∴=+=+-=+;②如图2,3BE AE ==,同理可得333DF =-.综上所述:则DF 的长为(333)或(333)cm -.故答案为:(333)+或(333)-.28.(2020•鞍山)如图,在平面直角坐标系中,已知(3,6)A ,(2,2)B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为 (1,0)- .【解答】解:把(3,6)A 向左平移1得(2,6)A ',作点B 关于x 轴的对称点B ',连接B A ''交x 轴于C ,在x 轴上取点D (点C 在点D 左侧),使1CD =,连接AD ,则AD BC +的值最小,(2,2)B -,(2,2)B ∴'--,设直线B A ''的解析式为y kx b =+,∴2226k b k b -+=-⎧⎨+=⎩, 解得:22k b =⎧⎨=⎩, ∴直线B A ''的解析式为22y x =+,当0y =时,1x =-,(1,0)C ∴-,故答案为:(1,0)-.29.(2020•沈阳)如图,在矩形ABCD中,6AB=,8BC=,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将AOP∆折叠,点A的对应点为点E,线段PE与OD相交于点F.若PDF∆为直角三角形,则DP的长为52或1.【解答】解:如图1,当90DPF∠=︒时,过点O作OH AD⊥于H,四边形ABCD是矩形,BO OD∴=,90BAD OHD∠=︒=∠,8AD BC==,//OH AB∴,∴12 OH HD ODAB AD BD===,132OH AB∴==,142HD AD==,将AOP∆折叠,点A的对应点为点E,线段PE与OD相交于点F,45APO EPO∴∠=∠=︒,又OH AD⊥,45OPH HOP∴∠=∠=︒,3OH HP ∴==,1PD HD HP ∴=-=;当90PFD ∠=︒时,6AB =,8BC =,22366410BD AB AD ∴=++=,四边形ABCD 是矩形,5OA OC OB OD ∴====,DAO ODA ∴∠=∠,将AOP ∆折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F , 5AO EO ∴==,PEO DAO ADO ∠=∠=∠,又90OFE BAD ∠=∠=︒,OFE BAD ∴∆∆∽, ∴OF OE AB BD =, ∴5610OF =, 3OF ∴=,2DF ∴=,PFD BAD ∠=∠,PDF ADB ∠=∠,PFD BAD ∴∆∆∽, ∴PD DF BD AD =, ∴2108PD =, 52PD ∴=,综上所述:52PD =或1, 故答案为52或1. 30.(2020•营口)如图,ABC ∆为等边三角形,边长为6,AD BC ⊥,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE EF +的最小值为 33 .【解答】解:过C 作CF AB ⊥交AD 于E ,则此时,CE EF +的值最小,且CE EF +的最小值CF =,ABC ∆为等边三角形,边长为6,116322BF AB ∴==⨯=, 22226333CF BC BF ∴=-=-=,CE EF ∴+的最小值为33,故答案为:33.三.解答题(共16小题)31.(2020•阜新)如图,ABC ∆在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).(1)画出与ABC ∆关于y 轴对称的△111A B C ;(2)将ABC ∆绕点1O 顺时针旋转90︒得到△222A B C ,2AA 弧是点A 所经过的路径,则旋转中心1O 的坐标为 (2,0) ;(3)求图中阴影部分的面积(结果保留)π.【解答】解:(1)如图,△111A B C 为所作;(2)旋转中心1O 的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r ,则2222420r =+=,∴阴影部分的图形面积为:2111111242211542222S r ππ=⋅-⨯⨯-⨯⨯+⨯⨯=-阴影.32.(2020•锦州)如图,ABCD 的对角线AC ,BD 交于点E ,以AB 为直径的O 经过点E ,与AD 交于点F ,G 是AD 延长线上一点,连接BG ,交AC 于点H ,且12DBG BAD ∠=∠.(1)求证:BG 是O 的切线;(2)若3CH =,1tan 2DBG ∠=,求O 的直径.【解答】(1)证明:AB 为O 的直径,90AEB ∴∠=︒,90BAE ABE ∴∠+∠=︒, 四边形ABCD 为平行四边形,∴四边形ABCD 为菱形,12BAE BAD ∴∠=∠, 12DBG BAD ∠=∠. BAE DBG ∴∠=∠,90DBG ABE ∴∠+∠=︒, 90ABG ∴∠=︒,BG ∴是O 的切线; (2)90ABG AEB ∠=∠=︒,HAB BAE ∠=∠,ABH AEB ∴∆∆∽,2AB AE AH ∴=,1tan 2DBG ∠=, ∴设HE x =,则2BE x =,3CH =,3AE CE x ∴==+,32AH AE HE x ∴=+=+,2(3)(32)AB x x ∴=++,22222(2)(3)AB BE AE x x =+=++,22(3)(32)(2)(3)x x x x ∴++=++,解得1x =或0(舍去),2(31)(32)20AB ∴=++=, 25AB ∴=,即O 的直径为25.33.(2020•锦州)已知AOB ∆和MON ∆都是等腰直角三角形2()OA OM ON <=,90AOB MON ∠=∠=︒.(1)如图1:连AM ,BN ,求证:AOM BON ∆≅∆;(2)若将MON ∆绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:2222BN AN ON +=; ②当点A ,M ,N 在同一条直线上时,若4OB =,3ON =,请直接写出线段BN 的长.【解答】(1)证明:如图1中,90AOB MON ∠=∠=︒,AOM BON ∴∠=∠,AO BO =,OM ON =,()AOM BON SAS ∴∆≅∆.(2)①证明:如图2中,连接AM.同法可证AOM BON∆≅∆,AM BN∴=,45OAM B∠=∠=︒,45OAB B∠=∠=︒,90MAN OAM OAB∴∠=∠+∠=︒,222MN AN AM∴=+,MON∆是等腰直角三角形,222MN ON∴=,2222NB AN ON∴+=.②如图31-中,设OA交BN于J,过点O作OH MN⊥于H.AOM BON∆≅∆,AM BN∴=,OAM OBN∠=∠,AJN BJO∠=∠,90ANJ JOB∴∠=∠=︒,3OM ON==,90MON∠=︒,OH MN⊥,32 MN∴=322 MH HN OH====,222232464()2AH OA OH ∴=-=-=, 4632BN AM MH AH +∴==+=.如图32-中,同法可证4632AM BN -==.34.(2020•朝阳)如图,以AB 为直径的O 经过ABC ∆的顶点C ,过点O 作//OD BC 交O 于点D ,交AC 于点F ,连接BD 交AC 于点G ,连接CD ,在OD 的延长线上取一点E ,连接CE ,使DEC BDC ∠=∠. (1)求证:EC 是O 的切线;(2)若O 的半径是3,9DG DB =,求CE 的长.【解答】解:(1)证明:如图,连接OC ,AB 是直径,90ACB ∴∠=︒, //OD BC ,90CFE ACB ∴∠=∠=︒, 90DEC FCE ∴∠+∠=︒,DEC BDC ∠=∠,BDC A ∠=∠, DEC A ∴∠=∠, OA OC =, OCA A ∴∠=∠, OCA DEC ∴∠=∠, 90DEC FCE ∠+∠=︒,90OCA FCE ∴∠+∠=︒,即90OCE ∠=︒, OC CE ∴⊥,又OC 是O 的半径, CE ∴是O 切线.(2)由(1)得90CFE ∠=︒, OF AC ∴⊥, OA OC =, COF AOF ∴∠=∠, ∴CD AD =,ACD DBC ∴∠=∠,又BDC BDC ∠=∠, DCG DBC ∴∆∆∽, ∴DC DGDB DC=, 29DC DG DB ∴==,3DC ∴=, 3OC OD ==, OCD ∴∆是等边三角形, 60DOC ∴∠=︒,在Rt OCE ∆中tan 60CEOC︒=,∴3CE,CE=.∴3335.(2020•朝阳)为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30︒方向,C在A的南偏西15︒方向(30303)km+处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40/km h,第二组乘公交车,速度是30/km h,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).【解答】解:作BD AC⊥于D.依题意得,∠=︒,15∠=︒,ABCCAE45BAE∠=︒,105∴∠=︒,BAC30∴∠=︒.45ACB在Rt BCD ∆中,90BDC ∠=︒,45ACB ∠=︒, 45CBD ∴∠=︒, CBD DCB ∴∠=∠, BD CD ∴=,设BD x =,则CD x =, 在Rt ABD ∆中,30BAC ∠=︒, 22AB BD x ∴==,tan30BDAD︒=,∴xAD=,AD ∴,在Rt BDC ∆中,90BDC ∠=︒,45DCB ∠=︒,sin BD DCB BC ∴∠=BC ∴,30CD AD +=+,30x ∴=+ 30x ∴=,260AB x ∴==,BC ==,第一组用时:6040 1.5()h ÷=;第二组用时:30)h ,1.5<,∴第二组先到达目的地,答:第一组用时1.5小时,第二组先到达目的地.36.(2020•朝阳)如图所示的平面直角坐标系中,ABC ∆的三个顶点坐标分别为(3,2)A -,(1,3)B -,(1,1)C -,请按如下要求画图:(1)以坐标原点O 为旋转中心,将ABC ∆顺时针旋转90︒,得到△111A B C ,请画出△111A B C ; (2)以坐标原点O 为位似中心,在x 轴下方,画出ABC ∆的位似图形△222A B C ,使它与ABC ∆的位似比为2:1.【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.22237.(2020•锦州)如图,某海岸边有B,C两码头,C码头位于B码头的正东方向,距B码头40海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30︒方向的C码头航行,当甲船到达距B码头30海里的E处时,乙船位于甲船北偏东60︒方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)【解答】解:过D 作DF BE ⊥于F , 603030ADE DEB A ∠=∠-∠=︒-︒=︒,A ADE ∴∠=∠, AE DE ∴=,90B ∠=︒,30A ∠=︒,40BC =(海里), 280AC BC ∴==(海里),3403AB BC =, 30BE =(海里), (40330)AE ∴=-(海里), (40330)DE ∴=(海里),在Rt DEF ∆中,60DEF ∠=︒,90DFE ∠=︒, 30EDF ∴∠=︒,1122EF DE x ∴==,3(60153)DF =-(海里), 30A ∠=︒,2120303AD DF ∴==-(海里),80120303(30340)CD AC AD ∴=-=-+=海里,答:乙船与C 码头之间的距离为(30340)海里.38.(2020•盘锦)如图,某数学活动小组要测量建筑物AB 的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目 测量数据 测角仪到地面的距离 1.6CD m = 点D 到建筑物的距离 4BD m = 从C 处观测建筑物顶部A 的仰角 67ACE ∠=︒ 从C 处观测建筑物底部B 的俯角22BCE ∠=︒请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB 的高度.(结果精确到0.1米,参考数据:sin670.92︒≈,cos670.39︒≈,tan67 2.36︒≈.sin220.37︒≈,cos220.93︒≈,tan 220.40)︒≈(选择一种方法解答即可)【解答】解:选择 1.6CD m =,4BD m =,67ACE ∠=︒, 过C 作CE AB ⊥于E ,则四边形BDCE 是矩形, 1.6BE CD m ∴==,4CE BD m ==,在Rt ACE ∆中,67ACE ∠=︒,tan AEACE CE∴∠=, ∴2.364AE≈, 9.4AE m ∴≈,9.4 1.611.0()AB AE BE m ∴=+=+=,答:建筑物AB 的高度为11.0m .39.(2020•鞍山)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40AC cm =,求支架BC 的长.(结果精确到1cm ,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解答】解:如图2,过C 作CD MN ⊥于D , 则90CDB ∠=︒,60CAD ∠=︒,40()AC cm =,3sin 40sin 6040203()CD AC CAD cm ∴=∠=⨯︒==, 15ACB ∠=︒,45CBD CAD ACB ∴∠=∠-∠=︒, 220649()BC CD cm ∴==≈,答:支架BC 的长约为49cm .40.(2020•葫芦岛)在等腰ADC ∆和等腰BEC ∆中,90ADC BEC ∠=∠=︒,BC CD <,将BEC ∆绕点C 逆时针旋转,连接AB ,点O 为线段AB 的中点,连接DO ,EO .(1)如图1,当点B 旋转到CD 边上时,请直接写出线段DO 与EO 的位置关系和数量关系; (2)如图2,当点B 旋转到AC 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若4BC =,26CD =,在BEC ∆绕点C 逆时针旋转的过程中,当60ACB ∠=︒时,请直接写出线段OD 的长.【解答】解:(1)DO EO ⊥,DO EO =;理由:当点B 旋转到CD 边上时,点E 必在边AC 上, 90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,点O 是AB 的中点,12OE OA AB ∴==, 2BOE BAE ∴∠=∠,在Rt ABD ∆中,点O 是AB 的中点,12OD OA AB ∴==, 2DOE BAD ∴∠=∠, OD OE ∴=,。
山东省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)
![山东省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)](https://img.taocdn.com/s3/m/de468b6369dc5022abea008a.png)
山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.3.(2020•东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;①PM+PN=AC;①PE2+PF2=PO2;①△POF∽△BNF;①点O在M、N两点的连线上.其中正确的是()A.①①①①B.①①①①C.①①①①①D.①①①4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A .12B .34C .1D .32 5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .6.(2020•淄博)下列图形中,不是轴对称图形的是( ) A . B .C .D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是( )A .B .C .D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D . 11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .4212.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C .D .17.(2020•青岛)如图所示的几何体,其俯视图是( )A .B .C .D .18.(2020•临沂)根据图中三视图可知该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱19.(2020•青岛)如图,将△ABC 先向上平移1个单位,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√522.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .623.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√324.(2020•枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A .3√55B .√175 C .35 D .45 29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .430.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43) A .225m B .275m C .300m D .315m32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A .B .C .D .33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是( )A .B .C .D .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A .①①①①B .①①①C .①①①D .①①36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图37.(2019•东营)下列图形中,是轴对称图形的是( )A .B .C .D .二.填空题(共7小题)38.(2020•烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为 .39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.41.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.42.(2020•德州)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.43.(2020•济宁)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是.44.如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:√3,则斜坡AB的长是米.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)48.(2020•枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D 旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC 交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=√2,求DN的长.49.(2020•德州)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A 的俯角为60°,求楼房的高度.50.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.【答案】D【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A .B .C .D .【答案】D 【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm 2),平行四边形面积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意.故选:D .3.(2020•东营)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论: ①△APE ≌△AME ;①PM +PN =AC ;①PE 2+PF 2=PO 2;①△POF ∽△BNF ;①点O 在M 、N 两点的连线上.其中正确的是( )A .①①①①B .①①①①C .①①①①①D .①①①【答案】B【解答】解:∵四边形ABCD 是正方形∴∠BAC =∠DAC =45°.∵在△APE 和△AME 中, {∠DDD =∠DDD DD =DD DDDD =DDDD,∴△APE ≌△AME (SAS ),故①正确;∴PE =EM =12PM ,同理,FP =FN =12NP . ∵正方形ABCD 中AC ⊥BD ,又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE∴四边形PEOF 是矩形.∴PF =OE ,∴PE +PF =OA ,又∵PE =EM =12PM ,FP =FN =12NP ,OA =12AC ,∴PM +PN =AC ,故①正确;∵四边形PEOF 是矩形,∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故①正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故①错误;连接OM ,ON ,∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM =OP ,ON =OP ,∴OM =OP =ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN =90°,∴MN 是直径,∴M ,O ,N 共线,故①正确.故选:B .4.(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .32 【答案】B【解答】解:如图,延长CO 交①O 于点E ,连接ED ,交AO 于点P ,此时PC +PD 的值最小.∵CD ⊥OB ,∴∠DCB =90°,又∠AOB =90°,∴∠DCB =∠AOB ,∴CD ∥AO∴DD DD =DD DD∵OC =2,OB =4,∴BC =2,∴24=DD 3,解得,CD =32;∵CD ∥AO ,∴DD DD =DD DD ,即24=DD32,解得,PO =34 故选:B .5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .【答案】C【解答】解:A .不是轴对称图形,是中心对称图形,故此选项不符合题意;B .是轴对称图形,不是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项符合题意;D .是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .6.(2020•淄博)下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】D【解答】解:A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意.故选:D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是()A .B .C .D .【答案】D【解答】解:∵已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下)的按键顺序是:2ndF ,sin ,0,∴按下的第一个键是2ndF .故选:D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 【答案】D【解答】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF =√DD 2−DD 2=√25−9=4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43,∴DE =EF =3﹣x =53, ∴tan ∠DAE =DD DD =535=13, 故选:D .9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D .【答案】D【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D .11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .42 【答案】C【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DD DD =DD DD =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .12.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】A【解答】解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意;B 、不是中心对称图形,是轴对称图形,故此选项不符合题意;C 、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D 、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .【答案】A 【解答】解:从正面看所得到的图形为.故选:A .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α【答案】D【解答】解:∵∠ABC =∠ADE ,∠ABC +∠ABE =180°,∴∠ABE +∠ADE =180°,∴∠BAD +∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.故选:D .15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .【答案】D【解答】解:A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、是中心对称图形,符合题意.故选:D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C.D.【答案】B【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.17.(2020•青岛)如图所示的几何体,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.18.(2020•临沂)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.19.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)【答案】D【解答】解:如图,△A ′B ′C ′即为所求,则点A 的对应点A ′的坐标是(﹣1,4).故选:D .20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)【答案】A【解答】解:∵将点P (﹣3,2)向右平移3个单位得到点P ',∴点P '的坐标是(0,2),∴点P '关于x 轴的对称点的坐标是(0,﹣2).故选:A .21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE =5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√5【答案】C【解答】解:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,由折叠得,∠EFC =∠AFE ,∴∠AFE =∠AEF ,∴AE =AF =5,由折叠得,FC =AF ,OA =OC ,∴BC =3+5=8,在Rt △ABF 中,AB =√52−32=4,在Rt △ABC 中,AC =√42+82=4√5,∴OA =OC =2√5,故选:C .22.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .6【答案】D【解答】解:∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,∴AF =AB ,∠AFE =∠B =90°,∴EF ⊥AC ,∵∠EAC =∠ECA ,∴AE =CE ,∴AF =CF ,∴AC =2AB =6,故选:D .23.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( ) A .12√3 B .13√3 C .14√3 D .15√3【答案】B【解答】解:∵EN =1,∴由中位线定理得AM =2, 由折叠的性质可得A ′M =2,∵AD ∥EF ,∴∠AMB =∠A ′NM ,∵∠AMB =∠A ′MB ,∴∠A ′NM =∠A ′MB ,∴A ′N =2,∴A ′E =3,A ′F =2过M 点作MG ⊥EF 于G ,∴NG =EN =1,∴A ′G =1,由勾股定理得MG =√22−12=√3,∴BE =DF =MG =√3,∴OF :BE =2:3,解得OF=2√3 3,∴OD=√3−2√33=√33.故选:B.24.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)【答案】A【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C .D .【答案】B【解答】解:由题意,选项A ,C ,D 可以通过平移,旋转得到,选项B 可以通过翻折,平移,旋转得到. 故选:B .26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是( )A .主视图B .主视图和左视图C .主视图和俯视图D .左视图和俯视图【答案】D【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D .27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D .【答案】B【解答】解:A 、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B 、是中心对称图形但不是轴对称图形.故此选项符合题意;C 、既是轴对称图形,又是中心对称图形.故此选项不合题意;D 、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B .28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .3√55B .√175 C .35 D .45 【答案】D【解答】解:如图,过点A 作AH ⊥BC 于H .在Rt △ACH 中,∵AH =4,CH =3,∴AC =√DD 2+DD 2=√42+32=5,∴sin ∠ACH =DD DD =45, 故选:D .29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .4【答案】B【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B .30.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里【答案】C【解答】解:如图.根据题意得:∠CBD =84°,∠CAB =42°,∴∠C =∠CBD ﹣∠CAB =42°=∠CAB ,∴BC =AB ,∵AB =15×2=30(海里),∴BC =30(海里),即海岛B 到灯塔C 的距离是30海里.故选:C .31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43)A.225m B.275m C.300m D.315m 【答案】C【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=DDDD,即43=DD,在Rt△AEC中,tan37°=DDDD,即34=D105+D,解得x=180,y=135,∴AC=√DD2+DD2=√1802+2402=300(m),故选:C.32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.【答案】D【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是()A.B.C .D .【答案】B【解答】解:A 、不是中心对称图形,也不是轴对称图形,故本选项错误;B 、既是中心对称图形又是轴对称图形,故本选项正确;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误.故选:B .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米【答案】D【解答】解:过点A 作AE ⊥BD ,交BD 于点E ,在Rt △ABE 中,AE =30米,∠BAE =30°,∴BE =30×tan30°=10√3(米),∴AC =ED =BD ﹣BE =(36﹣10√3)(米).∴甲楼高为(36﹣10√3)米.故选:D .35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A.①①①①B.①①①C.①①①D.①①【答案】B【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;①∵△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°=∠FCG,∵∠OGE=∠FGC,∴△OGE∽△FGC,故①正确;①∵△COE≌△DOF,∴S△COE=S△DOF,∴D四边形DDDD =D△DDD=14D正方形DDDD,故①正确;①∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=45°=∠OCE,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=12AC,OE=√22EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故①错误,故选:B.36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.37.(2019•东营)下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.二.填空题(共7小题)38.(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB 绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).【答案】见试题解答内容【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=4.【答案】见试题解答内容【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),1 2a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=1.【答案】见试题解答内容【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC , ∴△BEF ∽△BAC , ∴DD DD =DD DD ,即DD 6=DD 3DD , 解得:EF =2, ∴DH =12EF =12×2=1,故答案为:1.41.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为 23 . 【答案】见试题解答内容【解答】解:过点D 作DE ⊥BC ,垂足为E ,∵∠ACB =90°,DE ⊥BC ,∴DE ∥AC ,又∵点D 为AB 边的中点,∴E 是BC 的中点,∴BE =EC =12BC =2,在Rt △DCE 中,cos ∠DCB =DD DD =23, 故答案为:23. 42.(2020•德州)在平面直角坐标系中,点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′.若点A '恰在某一反比例函数图象上,则该反比例函数解析式为 y =−8D . 【答案】见试题解答内容【解答】解:∵点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′,∴A ′坐标为:(﹣4,2)或(4,﹣2),∵A '恰在某一反比例函数图象上,∴该反比例函数解析式为:y =−8D .故答案为:y =−8D . 43.(2020•济宁)如图,在四边形ABCD 中,以AB 为直径的半圆O 经过点C ,D .AC 与BD 相交于点E ,CD 2=CE •CA ,分别延长AB ,DC 相交于点P ,PB =BO ,CD =2√2.则BO 的长是 4 .【答案】见试题解答内容【解答】解:连结OC ,如图, ∵CD 2=CE •CA ,∴DD DD =DD DD ,而∠ACD =∠DCE ,∴△CAD ∽△CDE ,∴∠CAD =∠CDE ,∵∠CAD =∠CBD ,∴∠CDB =∠CBD ,∴BC =DC ;设①O 的半径为r ,∵CD =CB ,∴DD̂=DD ̂, ∴∠BOC =∠BAD ,∴OC ∥AD ,∴DD DD =DD DD =2D D =2,∴PC =2CD =4√2,∵∠PCB =∠P AD ,∠CPB =∠APD ,∴△PCB ∽△P AD ,∴DD DD =DD DD ,即4√23D =62,∴r =4(负根已经舍弃),∴OB =4,故答案为4.44.如图,小明在距离地面30米的P 处测得A 处的俯角为15°,B 处的俯角为60°.若斜面坡度为1:√3,则斜坡AB 的长是 20√3 米.【答案】见试题解答内容【解答】解:如图所示:过点A 作AF ⊥BC 于点F , ∵斜面坡度为1:√3,∴tan ∠ABF =DD DD =3=√33, ∴∠ABF =30°,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=DDDD=30DD=√32,解得:PB=20√3,故AB=20√3(m),故答案为:20√3.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【答案】见试题解答内容【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=12BD,PN=12CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=12BD,PN=12CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积=12DD⋅√32DD=√34DD2,∴△MNP的面积的最大值为√3.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【答案】见试题解答内容【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD=DDDDD60°=3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)。
图形的变换中考数学题分类解析
![图形的变换中考数学题分类解析](https://img.taocdn.com/s3/m/47a91ef00b1c59eef9c7b41d.png)
2019年图形的变换中考数学题分类解析以下是查字典数学网为您推荐的2019年图形的变换中考数学题分类解析,希望本篇文章对您学习有所帮助。
2019年图形的变换中考数学题分类解析一、选择题1. (2019江苏常州2分)如图所示,由三个相同的小正方体组成的立体图形的主视图是【】【答案】B。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得上层右边有1个正方形,下层有2个正方形。
故选B。
2. (2019江苏淮安3分)如图所示几何体的俯视图是【】【答案】B。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得有1个长方形,长方形内左侧有1个圆形。
故选B。
3. (2019江苏连云港3分)用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径为【】A.1cmB.2cmC.cmD.2cm【答案】A。
【考点】圆锥的计算。
【分析】根据半圆的弧长=圆锥的底面周长,则圆锥的底面周长=2,底面半径=22=1cm。
故选A。
4. (2019江苏南京2分)如图,菱形纸片ABCD中,A=600,将纸片折叠,点A、D分别落在A、D处,且AD经过B,EF为折痕,当DF CD时,的值为【】A. B. C. D.【答案】A。
【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】延长DC与AD,交于点M,∵在菱形纸片ABCD中,A=60,DCB=A=60,AB∥CD。
D=180A=120。
根据折叠的性质,可得ADF=D=120,FDM=180ADF=60。
∵DFCD,DFM=90,M=90FDM=30。
∵BCM=180BCD=120,CBM=180BCM-M=30。
CBM=M。
BC=CM。
设CF=x,DF=DF=y,则BC=CM=CD=CF+DF=x+y。
FM=CM+CF=2x+y,在Rt△DFM中,tanM=tan30= ,。
(晨鸟)2019年江苏省中考数学真题分类汇编专题13图形的变化之选择题(原卷版)
![(晨鸟)2019年江苏省中考数学真题分类汇编专题13图形的变化之选择题(原卷版)](https://img.taocdn.com/s3/m/8e1e447d227916888586d729.png)
专题 13 图形的变化之选择题一.选择题(共17 小题)1.( 2019?徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A .B.C. D .2.( 2019?泰州)如图图形中的轴对称图形是()A .B .C. D .3.( 2019?无锡)下列图案中,是中心对称图形但不是轴对称图形的是()A .B.C. D .4.( 2019?扬州)下列图案中,是中心对称图形的是()A .B.C. D .5.( 2019?南京)如图,△A'B'C'是由△ABC 经过平移得到的,△A'B'C 还可以看作是△ABC 经过怎样的图形变化得到?下列结论:① 1 次旋转;② 1 次旋转和 1 次轴对称;③ 2 次旋转;④ 2 次轴对称.其中所有正确结论的序号是()A .①④B.②③C.②④6.( 2019?盐城)下列图形中,既是轴对称图形又是中心对称图形的是(D .③④)A .B .C. D .7.( 2019?常州)若△ABC~△ A′ B'C′,相似比为1: 2,则△ ABC 与△ A'B′C'的周长的比为()A . 2: 1 B. 1: 2 C. 4:1 D . 1:48.( 2019?苏州)如图,在△ABC 中,点 D 为BC 边上的一点,且AD= AB= 2, AD⊥ AB.过点 D 作DE⊥AD, DE 交AC 于点E.若DE = 1,则△ ABC 的面积为()A . 4 B. 4 C. 2 D . 89.( 2019?连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似()A .①处B.②处C.③处 D .④处10.( 2019?苏州)如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为 18 m 的地面上,若测角仪的高度是 1.5m.测得教学楼的顶部 A 处的仰角为30°.则教学楼的高度是()A . 55.5m B. 54m C. 19.5m D . 18m11.(2019?镇江)一个物体如图所示,它的俯视图是()A .B .C. D .12.( 2019?常州)如图是某几何体的三视图,该几何体是()A .圆柱B.正方体C.圆锥 D .球13.( 2019?淮安)如图是由 4 个相同的小正方体搭成的几何体,则该几何体的主视图是()A .B .C. D .14.( 2019?宿迁)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A . 20πB. 15π15.( 2019?扬州)如图所示物体的左视图是(C. 12π)D . 9πA .B .C. D .16.( 2019?盐城)如图是由 6 个小正方体搭成的物体,该所示物体的主视图是()A .B.C. D .17.( 2019?无锡)一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A .长方体B.四棱锥C.三棱锥 D .圆锥。
2019年浙江省中考数学真题分类汇编 专题13 图形的变化之解答题(原卷版)
![2019年浙江省中考数学真题分类汇编 专题13 图形的变化之解答题(原卷版)](https://img.taocdn.com/s3/m/959e3b30af1ffc4fff47ac04.png)
专题13 图形的变化之解答题一.解答题(共9小题)1.(2019•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)2.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.3.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.4.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.5.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB 绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN 上,并说明理由.6.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?7.(2019•台州)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).8.(2019•绍兴)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据: 1.41, 1.73)9.(2019•舟山)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD =140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)。
图形的变换中考数学题分类解析
![图形的变换中考数学题分类解析](https://img.taocdn.com/s3/m/0ab35ab95ef7ba0d4a733b73.png)
2019年图形的变换中考数学题分类解析以下是查字典数学网为您推荐的 2019年图形的变换中考数学题分类解析,希望本篇文章对您学习有所帮助。
2019年图形的变换中考数学题分类解析一、选择题1. (2019江苏常州2分)如图所示,由三个相同的小正方体组成的立体图形的主视图是【】【答案】B。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得上层右边有1个正方形,下层有2个正方形。
故选B。
2. (2019江苏淮安3分)如图所示几何体的俯视图是【】【答案】B。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得有1个长方形,长方形内左侧有1个圆形。
故选B。
3. (2019江苏连云港3分)用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径为【】A.1cmB.2cmC.cmD.2cm【答案】A。
【考点】圆锥的计算。
【分析】根据半圆的弧长=圆锥的底面周长,则圆锥的底面周长=2,底面半径=22=1cm。
故选A。
4. (2019江苏南京2分)如图,菱形纸片ABCD中,A=600,将纸片折叠,点A、D分别落在A、D处,且AD经过B,EF为折痕,当DF CD时,的值为【】A. B. C. D.【答案】A。
【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】延长DC与AD,交于点M,∵在菱形纸片ABCD中,A=60,DCB=A=60,AB∥CD。
D=180A=120。
根据折叠的性质,可得ADF=D=120,FDM=180ADF=60。
∵DFCD,DFM=90,M=90FDM=30。
∵BCM=180BCD=120,CBM=180BCM-M=30。
CBM=M。
BC=CM。
设CF=x,DF=DF=y,则BC=CM=CD=CF+DF=x+y。
FM=CM+CF=2x+y,在Rt△DFM中,tanM=tan30= ,。
2019年中考数学图形变换有关的计算与证明专题卷(含答案)
![2019年中考数学图形变换有关的计算与证明专题卷(含答案)](https://img.taocdn.com/s3/m/207d3e304431b90d6c85c78c.png)
2019年中考数学图形变换有关的计算与证明专题卷(含答案)一、单选题(共2题;共4分)1.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A. B. C. D.2.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A. (,0)B. (2,0)C. (,0)D. (3,0)二、填空题(共9题;共10分)3.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.4.一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点,此时线段的长是________.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长共为________.(结果保留根号)5.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.6.如图,在正方形ABCD中,AD=2 ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为________.7.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=________cm.8.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是________.9.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于________ . 10.如图,在矩形ABCD中,AB=,AD=10.连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE 绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为________ .11.如图,在Rt△ABC中,∠ABC=90°,AB=BC= ,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是________三、综合题(共4题;共45分)12.如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0,).(1)求∠BAO的度数;(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.13.如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.14.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段DH的长.15.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN= AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3 时,求旋转角的大小并指明旋转方向.四、解答题(共2题;共10分)16.问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)17.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系,QE与QF的数量关系.(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.答案部分一、单选题1.A2.C二、填空题3.4.12(-1)cm;(12 -18)cm5.6.6 ﹣107.28.π9.10.11.+1三、综合题12.(1)解:∵A(﹣1,0),B(0,),∴OA=1,OB= ,在Rt△AOB中,tan∠BAO= = ,∴∠BAO=60°(2)解:∵∠BAO=60°,∠AOB=90°,∴∠ABO=30°,∴CA'=AC= AB,∴OA'=AA'=AO,根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2(3)解:S1=S2不发生变化;理由:如图,过点'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,∵△A'B'O是由△ABO绕点O旋转得到,∴BO=OB',AO=OA',∵∠AON+∠BON=90°,∠A'OM+∠BON=180°﹣90°=90°,∴∠AON=∠A'OM,在△AON和△A'OM中,,∴△AON≌△A'OM(AAS),∴AN=A'M,∴△BOA'的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2.13.(1)证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,,∴△DCE≌△DCF,∴DE=DF;(2)解:①∵∠DCF=∠DCE=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD= AB,∴AB2=4CE•CF;②如图,过D作DG⊥BC于G,则∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CE•CF得CD=2 ,∴在Rt△DCG中,CG=DG=CD•sin∠DCG=2 ×sin45°=2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴=2,∴GN= CG= ,∴DN= = = .14.(1)解:BD=CF.理由如下:由题意得,∠CAF=∠BAD=θ,在△CAF和△BAD中,,∴△CAF≌△BAD,∴BD=CF;(2)解:①由(1)得△CAF≌△BAD,∴∠CFA=∠BDA,∵∠FNH=∠DNA,∠DNA+∠NAD=90°,∴∠CFA+∠FNH=90°,∴∠FHN=90°,即BD⊥CF;②连接DF,延长AB交DF于M,∵四边形ADEF是正方形,AD=3 ,AB=2,∴AM=DM=3,BM=AM﹣AB=1,DB= = ,∵∠MAD=∠MDA=45°,∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,∴,即= ,解得,DH= .15.(1)解:证明:如图1 ,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴= ,同理,= ,∴MN= AC;(2)解:解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF= ,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积= DG2=3 ,解得,DG=2 ,则cos∠EDG= = ,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3 ,同理可得,当逆时针旋转60°时,△DGP的面积也等于3 ,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3 .四、解答题16.解:初步探究:△BCD的面积为.理由:如图②,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.∵S△BCD= BC•DE∴S△BCD= ;简单应用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF= BC= a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE= a.∵S△BCD= BC•DE,∴S△BCD= • a•a= a2.∴△BCD的面积为.17.解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,故答案为:AE∥BF,QE=QF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.。
2019年浙江省中考数学真题分类汇编-专题13-图形的变化之解答题(解析版)
![2019年浙江省中考数学真题分类汇编-专题13-图形的变化之解答题(解析版)](https://img.taocdn.com/s3/m/f10b8ff6eff9aef8951e0629.png)
专题13 图形的变化之解答题参考答案与试题解析一.解答题(共9小题)1.(2019•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.【点睛】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.2.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【答案】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD130,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.3.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.【答案】(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG BF.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.∵AD=6BD,∴BD AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴,∴,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF(12﹣x),OG BF(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴,∴,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC 于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF(12﹣x),OG BF (12﹣x),CK=EK x,GK=7(12﹣x)x,由△OGD∽△KEG,可得,∴,解得x=2,,综上所述,满足条件的EC的值为6±2或18﹣2或2.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.4.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.【答案】解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN a,a≤EF a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴3,∴2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE m,∴HC=PH+PC=13m,∴tan∠HCE,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴2,∴,综上所述,a:b的值为或.【点睛】本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.【答案】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a 1∴AP=FD1,∴AF=AD﹣DF=3∴(2)在CD上截取DH=AF∵AF=DH,∠P AF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP 1∵点E是AB中点,∴BE=AE=1=EM∴PE=P A+AE∵EC2=BE2+BC2=1+4=5,∴EC∴EC=PE,CM 1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP 1由旋转的性质可得AQ=AQ'1,AB=AB'=2,Q'B'=QB1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y x﹣2设点B'(x,x﹣2)∴AB' 2∴x∴点B'(,)∵点Q'(1,0)∴B'Q' 1∴点B旋转后的对应点B'不落在线段BN上.【点睛】本题是相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,一次函数的性质,灵活运用这些性质进行推理证明是本题的关键.6.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC 于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?【答案】解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC∠BAC=30°,在Rt△ADC中,DC=AC•tan30°=62.(2)由题意易知:BC=6,BD=4,∵DE∥AC,∴∠FDM=∠GAM,∵AM=DM,∠DMF=∠AMG,∴△DFM≌△AGM(ASA),∴DF=AG,∵DE∥AC,∴,∴.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图3﹣1中,作QH⊥AC于H,交DE于P.连接QC,QG.菁优网设⊙Q的半径为r.则QH r,r r=2,∴r,∴CG4,AG=2,由△DFM∽△AGM,可得,∴DM AD.②当⊙Q经过点E时,如图3﹣2中,延长CQ交AB于K,设CQ=r.∵QC=QG,∠CQG=120°,∴∠KCA=30°,∵∠CAB=60°,∴∠AKC=90°,在Rt△EQK中,QK=3r,EQ=r,EK=1,∴12+(3r)2=r2,解得r,∴CG,由△DFM∽△AGM,可得DM.③当⊙Q经过点D时,如图3﹣3中,此时点M,点G与点A重合,可得DM=AD=4.观察图象可知:当DM或DM≤4时,满足条件的点P只有一个.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.7.(2019•台州)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【答案】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.(2019•绍兴)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l 的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据: 1.41,1.73)【答案】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=205≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10105)(cm),∴下降高度:DE﹣DF=205﹣10105=1010 3.2(cm).【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.(2019•舟山)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C 在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)【答案】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CP×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×cos50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【点睛】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.。
山东省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)
![山东省2019年、2020年数学中考试题分类(12)——图形的变换(含解析)](https://img.taocdn.com/s3/m/a6cd7d44964bcf84b9d57bd8.png)
山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.3.(2020•东营)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;①PM+PN=AC;①PE2+PF2=PO2;①△POF∽△BNF;①点O在M、N两点的连线上.其中正确的是()A.①①①①B.①①①①C.①①①①①D.①①①4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A .12B .34C .1D .32 5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .6.(2020•淄博)下列图形中,不是轴对称图形的是( ) A . B .C .D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是( )A .B .C .D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D . 11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .4212.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C .D .17.(2020•青岛)如图所示的几何体,其俯视图是( )A .B .C .D .18.(2020•临沂)根据图中三视图可知该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱19.(2020•青岛)如图,将△ABC 先向上平移1个单位,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE=5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√522.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .623.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√324.(2020•枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A .3√55B .√175 C .35 D .45 29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .430.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43) A .225m B .275m C .300m D .315m32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A .B .C .D .33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是( )A .B .C .D .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A .①①①①B .①①①C .①①①D .①①36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图37.(2019•东营)下列图形中,是轴对称图形的是( )A .B .C .D .二.填空题(共7小题)38.(2020•烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为 .39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.41.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.42.(2020•德州)在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.43.(2020•济宁)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2√2.则BO的长是.44.如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:√3,则斜坡AB的长是米.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)48.(2020•枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D 旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC 交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=√2,求DN的长.49.(2020•德州)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A 的俯角为60°,求楼房的高度.50.(2020•聊城)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).山东省2019年、2020年数学中考试题分类(12)——图形的变换一.选择题(共37小题)1.(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.【答案】D【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.2.(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A .B .C .D .【答案】D 【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm 2),平行四边形面积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意.故选:D .3.(2020•东营)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论: ①△APE ≌△AME ;①PM +PN =AC ;①PE 2+PF 2=PO 2;①△POF ∽△BNF ;①点O 在M 、N 两点的连线上.其中正确的是( )A .①①①①B .①①①①C .①①①①①D .①①①【答案】B【解答】解:∵四边形ABCD 是正方形∴∠BAC =∠DAC =45°.∵在△APE 和△AME 中, {∠DDD =∠DDD DD =DD DDDD =DDDD,∴△APE ≌△AME (SAS ),故①正确;∴PE =EM =12PM ,同理,FP =FN =12NP . ∵正方形ABCD 中AC ⊥BD ,又∵PE ⊥AC ,PF ⊥BD ,∴∠PEO =∠EOF =∠PFO =90°,且△APE 中AE =PE∴四边形PEOF 是矩形.∴PF =OE ,∴PE +PF =OA ,又∵PE =EM =12PM ,FP =FN =12NP ,OA =12AC ,∴PM +PN =AC ,故①正确;∵四边形PEOF 是矩形,∴PE =OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故①正确.∵△BNF 是等腰直角三角形,而△POF 不一定是等腰直角三角形,故①错误;连接OM ,ON ,∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM =OP ,ON =OP ,∴OM =OP =ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN =90°,∴MN 是直径,∴M ,O ,N 共线,故①正确.故选:B .4.(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .32 【答案】B【解答】解:如图,延长CO 交①O 于点E ,连接ED ,交AO 于点P ,此时PC +PD 的值最小.∵CD ⊥OB ,∴∠DCB =90°,又∠AOB =90°,∴∠DCB =∠AOB ,∴CD ∥AO∴DD DD =DD DD∵OC =2,OB =4,∴BC =2,∴24=DD 3,解得,CD =32;∵CD ∥AO ,∴DD DD =DD DD ,即24=DD32,解得,PO =34 故选:B .5.(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是( )A .B .C .D .【答案】C【解答】解:A .不是轴对称图形,是中心对称图形,故此选项不符合题意;B .是轴对称图形,不是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项符合题意;D .是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .6.(2020•淄博)下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】D【解答】解:A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意.故选:D .7.(2020•淄博)已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下),按下的第一个键是()A .B .C .D .【答案】D【解答】解:∵已知sin A =0.9816,运用科学计算器求锐角A 时(在开机状态下)的按键顺序是:2ndF ,sin ,0,∴按下的第一个键是2ndF .故选:D .8.(2020•烟台)如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13 【答案】D【解答】解:∵四边形ABCD 为矩形,∴AD =BC =5,AB =CD =3,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF =AD =5,EF =DE ,在Rt △ABF 中,BF =√DD 2−DD 2=√25−9=4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x在Rt △ECF 中,∵CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43,∴DE =EF =3﹣x =53, ∴tan ∠DAE =DD DD =535=13, 故选:D .9.(2020•烟台)如图,是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B【解答】解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.故选:B .10.(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D .【答案】D【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D .11.(2020•潍坊)如图,点E 是①ABCD 的边AD 上的一点,且DD DD =12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则①ABCD 的周长为( )A .21B .28C .34D .42 【答案】C【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴DD DD =DD DD =12, ∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .12.(2020•烟台)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】A【解答】解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意;B 、不是中心对称图形,是轴对称图形,故此选项不符合题意;C 、既不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D 、既是轴对称图形,也是中心对称图形,故此选项不符合题意.故选:A .13.(2020•菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A .B .C .D .【答案】A 【解答】解:从正面看所得到的图形为.故选:A .14.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .D 2B .23αC .αD .180°﹣α【答案】D【解答】解:∵∠ABC =∠ADE ,∠ABC +∠ABE =180°,∴∠ABE +∠ADE =180°,∴∠BAD +∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.故选:D .15.(2020•青岛)下列四个图形中,中心对称图形是( )A .B .C .D .【答案】D【解答】解:A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、是中心对称图形,符合题意.故选:D .16.(2020•临沂)下列交通标志中,是中心对称图形的是( )A .B .C.D.【答案】B【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.17.(2020•青岛)如图所示的几何体,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.18.(2020•临沂)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.19.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A .(0,4)B .(2,﹣2)C .(3,﹣2)D .(﹣1,4)【答案】D【解答】解:如图,△A ′B ′C ′即为所求,则点A 的对应点A ′的坐标是(﹣1,4).故选:D .20.(2020•菏泽)在平面直角坐标系中,将点P (﹣3,2)向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A .(0,﹣2)B .(0,2)C .(﹣6,2)D .(﹣6,﹣2)【答案】A【解答】解:∵将点P (﹣3,2)向右平移3个单位得到点P ',∴点P '的坐标是(0,2),∴点P '关于x 轴的对称点的坐标是(0,﹣2).故选:A .21.(2020•青岛)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O .若AE=5,BF =3,则AO 的长为( ) A .√5 B .32√5 C .2√5 D .4√5【答案】C【解答】解:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,AB =CD ,∴∠EFC =∠AEF ,由折叠得,∠EFC =∠AFE ,∴∠AFE =∠AEF ,∴AE =AF =5,由折叠得,FC =AF ,OA =OC ,∴BC =3+5=8,在Rt △ABF 中,AB =√52−32=4,在Rt △ABC 中,AC =√42+82=4√5,∴OA =OC =2√5,故选:C .22.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .6【答案】D【解答】解:∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,∴AF =AB ,∠AFE =∠B =90°,∴EF ⊥AC ,∵∠EAC =∠ECA , ∴AE =CE ,∴AF =CF ,∴AC =2AB =6,故选:D .23.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( ) A .12√3 B .13√3 C .14√3 D .15√3【答案】B【解答】解:∵EN =1,∴由中位线定理得AM =2, 由折叠的性质可得A ′M =2,∵AD ∥EF ,∴∠AMB =∠A ′NM ,∵∠AMB =∠A ′MB ,∴∠A ′NM =∠A ′MB ,∴A ′N =2,∴A ′E =3,A ′F =2过M 点作MG ⊥EF 于G ,∴NG =EN =1,∴A ′G =1,由勾股定理得MG =√22−12=√3,∴BE =DF =MG =√3,∴OF :BE =2:3,解得OF=2√3 3,∴OD=√3−2√33=√33.故选:B.24.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)【答案】A【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.25.(2020•枣庄)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C .D .【答案】B【解答】解:由题意,选项A ,C ,D 可以通过平移,旋转得到,选项B 可以通过翻折,平移,旋转得到. 故选:B .26.(2020•德州)如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是( )A .主视图B .主视图和左视图C .主视图和俯视图D .左视图和俯视图【答案】D【解答】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D .27.(2020•德州)下列图形中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D .【答案】B【解答】解:A 、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B 、是中心对称图形但不是轴对称图形.故此选项符合题意;C 、既是轴对称图形,又是中心对称图形.故此选项不合题意;D 、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B .28.(2020•聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .3√55B .√175 C .35 D .45 【答案】D【解答】解:如图,过点A 作AH ⊥BC 于H .在Rt △ACH 中,∵AH =4,CH =3,∴AC =√DD 2+DD 2=√42+32=5,∴sin ∠ACH =DD DD =45, 故选:D .29.(2020•滨州)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( )A .1B .2C .3D .4【答案】B【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B .30.(2020•济宁)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是( )A .15海里B .20海里C .30海里D .60海里【答案】C【解答】解:如图.根据题意得:∠CBD =84°,∠CAB =42°,∴∠C =∠CBD ﹣∠CAB =42°=∠CAB ,∴BC =AB ,∵AB =15×2=30(海里),∴BC =30(海里),即海岛B 到灯塔C 的距离是30海里.故选:C .31.(2019•济南)某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北偏东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:tan37°≈34,tan53°≈43)A.225m B.275m C.300m D.315m 【答案】C【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=DDDD,即43=DD,在Rt△AEC中,tan37°=DDDD,即34=D105+D,解得x=180,y=135,∴AC=√DD2+DD2=√1802+2402=300(m),故选:C.32.(2019•济南)以下给出的几何体中,主视图是矩形,俯视图是圆的是()A.B.C.D.【答案】D【解答】解:A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选:D.33.(2019•莱芜区)下列图形中,既是中心对称,又是轴对称的是()A.B.C .D .【答案】B【解答】解:A 、不是中心对称图形,也不是轴对称图形,故本选项错误;B 、既是中心对称图形又是轴对称图形,故本选项正确;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误.故选:B .34.(2019•日照)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣15√3)米C .15√3米D .(36﹣10√3)米【答案】D【解答】解:过点A 作AE ⊥BD ,交BD 于点E ,在Rt △ABE 中,AE =30米,∠BAE =30°,∴BE =30×tan30°=10√3(米),∴AC =ED =BD ﹣BE =(36﹣10√3)(米).∴甲楼高为(36﹣10√3)米.故选:D .35.(2019•东营)如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;①△OGE ∽△FGC ;①四边形CEOF 的面积为正方形ABCD 面积的14;①DF 2+BE 2=OG •OC .其中正确的是( )A.①①①①B.①①①C.①①①D.①①【答案】B【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;①∵△COE≌△DOF,∴OE=OF,∵∠MON=90°,∴∠OEG=45°=∠FCG,∵∠OGE=∠FGC,∴△OGE∽△FGC,故①正确;①∵△COE≌△DOF,∴S△COE=S△DOF,∴D四边形DDDD =D△DDD=14D正方形DDDD,故①正确;①∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=45°=∠OCE,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=12AC,OE=√22EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故①错误,故选:B.36.(2019•烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.37.(2019•东营)下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.二.填空题(共7小题)38.(2020•烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB 绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).【答案】见试题解答内容【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).39.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA 上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE 为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=4.【答案】见试题解答内容【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),1 2a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.40.(2020•临沂)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=1.【答案】见试题解答内容【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC , ∴△BEF ∽△BAC , ∴DD DD =DD DD ,即DD 6=DD 3DD , 解得:EF =2, ∴DH =12EF =12×2=1,故答案为:1.41.(2020•菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为 23 . 【答案】见试题解答内容【解答】解:过点D 作DE ⊥BC ,垂足为E ,∵∠ACB =90°,DE ⊥BC ,∴DE ∥AC ,又∵点D 为AB 边的中点,∴E 是BC 的中点,∴BE =EC =12BC =2,在Rt △DCE 中,cos ∠DCB =DD DD =23, 故答案为:23. 42.(2020•德州)在平面直角坐标系中,点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′.若点A '恰在某一反比例函数图象上,则该反比例函数解析式为 y =−8D . 【答案】见试题解答内容【解答】解:∵点A 的坐标是(﹣2,1),以原点O 为位似中心,把线段OA 放大为原来的2倍,点A 的对应点为A ′,∴A ′坐标为:(﹣4,2)或(4,﹣2),∵A '恰在某一反比例函数图象上,∴该反比例函数解析式为:y =−8D .故答案为:y =−8D . 43.(2020•济宁)如图,在四边形ABCD 中,以AB 为直径的半圆O 经过点C ,D .AC 与BD 相交于点E ,CD 2=CE •CA ,分别延长AB ,DC 相交于点P ,PB =BO ,CD =2√2.则BO 的长是 4 .【答案】见试题解答内容【解答】解:连结OC ,如图, ∵CD 2=CE •CA ,∴DD DD =DD DD ,而∠ACD =∠DCE ,∴△CAD ∽△CDE ,∴∠CAD =∠CDE ,∵∠CAD =∠CBD ,∴∠CDB =∠CBD ,∴BC =DC ;设①O 的半径为r ,∵CD =CB ,∴DD̂=DD ̂, ∴∠BOC =∠BAD ,∴OC ∥AD ,∴DD DD =DD DD =2D D =2,∴PC =2CD =4√2,∵∠PCB =∠P AD ,∠CPB =∠APD ,∴△PCB ∽△P AD ,∴DD DD =DD DD ,即4√23D =62,∴r =4(负根已经舍弃),∴OB =4,故答案为4.44.如图,小明在距离地面30米的P 处测得A 处的俯角为15°,B 处的俯角为60°.若斜面坡度为1:√3,则斜坡AB 的长是 20√3 米.【答案】见试题解答内容【解答】解:如图所示:过点A 作AF ⊥BC 于点F , ∵斜面坡度为1:√3,∴tan ∠ABF =DD DD =3=√33, ∴∠ABF =30°,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=DDDD=30DD=√32,解得:PB=20√3,故AB=20√3(m),故答案为:20√3.三.解答题(共6小题)45.(2020•东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【答案】见试题解答内容【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=12BD,PN=12CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=12BD,PN=12CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积=12DD⋅√32DD=√34DD2,∴△MNP的面积的最大值为√3.46.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【答案】见试题解答内容【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120(米),在Rt△ACD中,AD=DDDDD60°=3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.47.(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)。
2019年中考数学图形变换试题归类整理(带)
![2019年中考数学图形变换试题归类整理(带)](https://img.taocdn.com/s3/m/2f8401e4fd0a79563c1e72a2.png)
2019年中考数学图形变换试题归类整理(带) 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢以下是中国()为您推荐的2013年中考数学图形的变换试题归类整理,希望本篇对您学习有所帮助。
2013年中考数学图形的变换试题归类整理一、选择题1.下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形c、梯形D、矩形【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;c、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。
故选D。
2.下列汽车标志中,可以看作是中心对称图形的是【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.下图是一支架,支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A。
4.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A、面cDHEB、面BcEFc、面ABFGD、面ADHG【答案】A。
【考点】展开图折叠成几何体。
【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面cDHE。
故选A。
5.将一个矩形纸片依次按图、图的方式对折,然后沿图中的虚线裁剪,最后将图的纸再展开铺平,所得到的图案是【答案】A。
湖北图形的变换中考数学试题分类解析
![湖北图形的变换中考数学试题分类解析](https://img.taocdn.com/s3/m/b4de1133a417866fb94a8e3c.png)
2019年湖北图形的变换中考数学试题分类解析以下是查字典数学网为您推荐的2019年湖北图形的变换中考数学试题分类解析,希望本篇文章对您学习有所帮助。
2019年湖北图形的变换中考数学试题分类解析一、选择题1. (2019湖北武汉3分)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是【】A.7B.8C.9D.10【答案】C。
【考点】折叠的性质,矩形的性质,勾股定理。
【分析】根据折叠的性质,EF=AE=5;根据矩形的性质,B=900。
在Rt△BEF中,B=900,EF=5,BF=3,根据勾股定理,得。
CD=AB=AE+BE=5+4=9。
故选C。
2.(2019湖北武汉3分)如图,是由4个相同小正方体组合而成的几何体,它的左视图是【】【答案】D。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可:从左面看易得只有一排,两层都是1个正方形,。
故选D。
3. (2019湖北黄石3分)如图所示,该几何体的主视图应为【】【考点】简单组合体的三视图。
【分析】几何体的主视图就是从正面看所得到的图形,从正面看可得到一个大矩形左上边去掉一个小矩形的图形。
故选C。
4. (2019湖北黄石3分)如图所示,矩形纸片ABCD中,AB=6cm,BC=8 cm,现将其沿EF对折,使得点C与点A重合,则AF长为【】A. B. C. D.【答案】B。
【考点】翻折变换(折叠问题),折叠对称的性质,矩形的性质,勾股定理。
【分析】设AF=xcm,则DF=(8-x)cm,∵矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,DF=DF,在Rt△ADF中,∵AF2=AD2+DF2,即x2=62+(8-x)2,解得:x= 。
故选B。
5. (2019湖北荆门3分) 已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2019个图形中直角三角形的个数有【】A. 8048个B. 4024个C. 2019个D. 1066个【考点】分类归纳(图形的变化类)。
2019年浙江省中考数学真题分类汇编 专题13 图形的变化之解答题(解析版)
![2019年浙江省中考数学真题分类汇编 专题13 图形的变化之解答题(解析版)](https://img.taocdn.com/s3/m/18cc6dcc9b89680203d82585.png)
专题13 图形的变化之解答题参考答案与试题解析一.解答题(共9小题)1.(2019•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.【点睛】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.2.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【答案】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD130,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.3.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.【答案】(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG BF.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC =x.∵AD=6BD,∴BD AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴,∴,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF(12﹣x),OG BF(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴,∴,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF(12﹣x),OG BF(12﹣x),CK=EK x,GK=7(12﹣x)x,由△OGD∽△KEG,可得,∴,解得x=2,,综上所述,满足条件的EC的值为6±2或18﹣2或2.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.4.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.【答案】解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN a,a≤EF a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴3,∴2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE m,∴HC=PH+PC=13m,∴tan∠HCE,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴2,∴,综上所述,a:b的值为或.【点睛】本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN 上,并说明理由.【答案】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a 1∴AP=FD1,∴AF=AD﹣DF=3∴(2)在CD上截取DH=AF∵AF=DH,∠P AF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP 1∵点E是AB中点,∴BE=AE=1=EM∴PE=P A+AE∵EC2=BE2+BC2=1+4=5,∴EC∴EC=PE,CM 1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP 1由旋转的性质可得AQ=AQ'1,AB=AB'=2,Q'B'=QB1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y x﹣2设点B'(x,x﹣2)∴AB' 2∴x∴点B'(,)∵点Q'(1,0)∴B'Q' 1∴点B旋转后的对应点B'不落在线段BN上.【点睛】本题是相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,一次函数的性质,灵活运用这些性质进行推理证明是本题的关键.6.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?【答案】解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC∠BAC=30°,在Rt△ADC中,DC=AC•tan30°=62.(2)由题意易知:BC=6,BD=4,∵DE∥AC,∴∠FDM=∠GAM,∵AM=DM,∠DMF=∠AMG,∴△DFM≌△AGM(ASA),∴DF=AG,∵DE∥AC,∴,∴.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图3﹣1中,作QH⊥AC于H,交DE于P.连接QC,QG.菁优网设⊙Q的半径为r.则QH r,r r=2,∴r,∴CG4,AG=2,由△DFM∽△AGM,可得,∴DM AD.②当⊙Q经过点E时,如图3﹣2中,延长CQ交AB于K,设CQ=r.∵QC=QG,∠CQG=120°,∴∠KCA=30°,∵∠CAB=60°,∴∠AKC=90°,在Rt△EQK中,QK=3r,EQ=r,EK=1,∴12+(3r)2=r2,解得r,∴CG,由△DFM∽△AGM,可得DM.③当⊙Q经过点D时,如图3﹣3中,此时点M,点G与点A重合,可得DM=AD=4.观察图象可知:当DM或DM≤4时,满足条件的点P只有一个.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.7.(2019•台州)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【答案】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.(2019•绍兴)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据: 1.41, 1.73)【答案】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=205≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10105)(cm),∴下降高度:DE﹣DF=205﹣10105=1010 3.2(cm).【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.(2019•舟山)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)【答案】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CP×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×cos50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【点睛】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学真题分类训练——专题十三:图形的变换一、选择题1.(2019江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有A.3种B.4种C.5种D.6种【答案】D2.(2019金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则FMGF的值是A.522-B.2-1 C.12D.22【答案】A3.(2019北京)下列倡导节约的图案中,是轴对称图形的是A.B. C.D.【答案】C4.(2019舟山)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是A.(2,–1)B.(1,–2)C.(–2,1)D.(–2,–1)【答案】A5.(2019海南)如图,在Y ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.21【答案】C6.(2019绍兴)在平面直角坐标系中,抛物线y=(x+5)(x–3)经变换后得到抛物线y=(x+3)(x–5),则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【答案】B7.(2019河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为A.10 B.6 C.3 D.2【答案】C8.(2019贵阳)如图,在3×3的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是A.19B.16C.29D.13【答案】D9.(2019福建)下列图形中,一定既是轴对称图形又是中心对称图形的是A.等边三角形B.直角三角形C.平行四边形D.正方形【答案】D10.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】C11.(2019黑龙江)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A.B. C.D.【答案】C12.(2019吉林)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°【答案】C13.(2019黄冈)已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是A.(6,1)B.(–2,1)C.(2,5)D.(2,–3)【答案】D14.(2019海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)【答案】C15.(2019湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)【答案】B16.(2019云南)下列图形既是轴对称图形,又是中心对称图形的是A.B.C.D.【答案】B17.(2019乐山)下列四个图形中,可以由下图通过平移得到的是A.B.C.D.【答案】D二、填空题18.(2019新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.【答案】3–219.(2019海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC 绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=__________.【答案】1320.(2019山西)如图,在△ABC 中,∠BAC =90°,AB =AC =10cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为__________cm .【答案】10–2621.(2019杭州)如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A 点,D 点的对称点为D ¢点,若90FPG ??,A EP ¢△的面积为4,D PH ¢△的面积为1,则矩形ABCD 的面积等于__________.【答案】65+1022.(2019温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC =OD =10分米,展开角∠COD =60°,晾衣臂OA =OB =10分米,晾衣臂支架HG =FE =6分米,且HO =FO =4分米.当∠AOC =90°时,点A 离地面的距离AM 为__________分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,则B 'E '–BE 为__________分米.【答案】5+53,4.三、解答题23.(2019宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.24.(2019安徽)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段C D.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【答案】(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.25.(2019黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).解:(1)如下图所示,点A1的坐标是(–4,1);(2)如下图所示,点A2的坐标是(1,–4);(3)∵点A(4,1),∴OA=221417+=,∴线段OA在旋转过程中扫过的面积是:290(17)⨯π⨯=174π.26.(2019绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD 2C =135°,CD 2=60,求BD 2的长.解:(1)①AM =AD +DM =40,或AM =AD –DM =20. ②显然∠MAD 不能为直角.当∠AMD 为直角时,AM 2=AD 2–DM 2=302–102=800, ∴AM =202或(–202舍弃).当∠ADM 为直角时,AM 2=AD 2+DM 2=302+102=1000, ∴AM =1010或(–1010舍弃).综上所述,满足条件的AM 的值为202或1010. (2)如图2中,连接CD 1.由题意得∠D 1AD 2=90°,AD 1=AD 2=30, ∴∠AD 2D 1=45°,D 1D 22, 又∵∠AD 2C =135°,∴∠CD 2D 1=90°, ∴CD 122212CD D D =+=6, ∵∠BAC =∠D 2AD 1=90°,∴∠BAC –∠CAD 2=∠D 2AD 1–∠CAD 2,∵AB =AC ,AD 2=AD 1,∴△ABD 2≌△ACD 1,∴BD 2=CD 1=306.27.(2019金华)如图,在等腰Rt △ABC 中,∠ACB =90°,AB =142,点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90°得到EF .(1)如图1,若AD =BD ,点E 与点C 重合,AF 与DC 相交于点O .求证:BD =2DO .(2)已知点G 为AF 的中点.①如图2,若AD =BD ,CE =2,求DG 的长.②若AD =6BD ,是否存在点E ,使得△DEG 是直角三角形?若存在,求CE 的长;若不存在,试说明理由.解:(1)证明:由旋转性质得:CD =CF ,∠DCF =90°.∵△ABC 是等腰直角三角形,AD =BD .∴∠ADO =90°,CD =BD =AD ,∴∠DCF =∠ADC .在△ADO 和△FCO 中,AOD FOC ADO FCO AD FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DO=CO.∴BD=CD=2DO.(2)①如图1,分别过点D,F作DN⊥BC于点N,FM⊥BC于点M,连结BF. ∴∠DNE=∠EMF=90°.又∵∠NDE=∠MEF,DE=EF,∴△DNE≌△EMF,∴DN=EM.又∵BD=72,∠ABC=45°,∴DN=EM=7,∴BM=BC–ME–EC=5,∴MF=NE=NC–EC=5.∴BF=52.∵点D,G分别是AB,AF的中点,∴DG=12BF=522.②过点D作DH⊥BC于点H.∵AD=6BD,AB2,∴BD2.i)当∠DEG=90°时,有如图2,3两种情况,设CE=t. ∵∠DEF=90°,∠DEG=90°,点E在线段AF上.∴BH=DH=2,BE=14–t,HE=BE–BH=12–t.∴DH HEEC CA=,即21214tt-=,解得t=6±22.∴CE=6+22或CE=6–22.ii)当DG∥BC时,如图4.过点F作FK⊥BC于点K,延长DG交AC于点N,延长AC并截取MN=N A.连结FM.则NC=DH=2,MC=10.设GN=t,则FM=2t,BK=14–2t.∵△DHE∽△EKF,∴KE=DH=2,∴KF=HE=14–2t,∵MC=FK,∴14–2t=10,解得t=2.∵GN=EC=2,GN∥EC,∴四边形GECN是平行四边形,而∠ACB=90°,∴四边形GECN是矩形,∴∠EGN=90°.∴当EC=2时,有∠DGE=90°.iii)当∠EDG=90°时,如图5.过点G,F分别作AC的垂线,交射线AC于点N,M,过点E作EK⊥FM于点K,过点D作GN的垂线,交NG 的延长线于点P,则PN=HC=BC–HB=12,设GN=t,则FM=2t,∴PG=PN–GN=12–t.由△DHE∽△EKF可得:FK=2,∴CE=KM=2t–2,∴HE=HC–CE=12–(2t–2)=14–2t,∴EK=HE=14–2t,AM=AC+CM=AC+EK=14+14–2t=28–2t,∴MN=12AM=14–t,NC=MN–CM=t,∴PD=t–2,由△GPD∽△DHE可得PG PD HD HE=,即122 2142t tt--=-,解得t1=10–14,4=10+14(舍去)。