分子生物学表达调控

合集下载

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
基因表达调控对于生物体的正常生长、发育、代谢和应激反应等 过程至关重要,是生物体适应环境变化和维持内环境稳态的重要 机制。
原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。

分子生物学如何研究基因的表达和调控

分子生物学如何研究基因的表达和调控

分子生物学如何研究基因的表达和调控随着科技的不断进步和发展,分子生物学在遗传学领域中的研究日渐深入,基因的表达和调控是其研究的核心问题之一。

本文主要旨在探讨分子生物学如何研究基因的表达和调控,以及分子生物学在这一领域中的应用。

一、基因的表达基因的表达是指基因在细胞中发挥作用的过程,它是一个复杂的过程,包括基因转录和翻译两个过程。

转录是指DNA序列转换成RNA序列的过程,其中的RNA主要有mRNA、tRNA和rRNA 等。

翻译是指mRNA序列被翻译成蛋白质的过程,蛋白质是构成生命体细胞生物体化学活性的关键分子。

对于基因表达过程,分子生物学采用了一系列的技术手段进行研究,如常规的RNA/DNA杂交分析、Northern/Southern/Western blot分析、定量PCR分析、蛋白质质谱分析等。

这些技术手段不仅可以研究基因的表达水平和模式,也可以检测基因的突变、拷贝数变化等。

二、基因的调控基因的表达是一个受到多种因素调控的复杂过程,包括转录因子的特异性结合、组蛋白修饰、DNA甲基化等。

在这些调控过程中,转录因子起着重要作用。

转录因子是指与DNA序列有特异性结合并调控基因转录的蛋白质,它们主要通过结合DNA序列上的调控元件来对基因的表达进行调控。

一个基因可以被多个转录因子调控,同样一个转录因子也可以调控多个基因。

调控元件是指DNA序列上识别和结合转录因子的区域,包括启动子、增强子、沉默子、基础子等。

启动子是指位于基因转录开始位点上游的区域,是转录复合体的结合点。

增强子是指与启动子相邻的DNA区域,它通过转录因子的结合增强启动子的活性。

沉默子是指细胞中的某些DNA序列,当转录因子结合沉默子时,可以抑制特定的基因表达。

基础子是指在一些转录因子缺乏的情况下可以保证基因的低水平转录。

分子生物学通过对转录因子、调控元件的研究,探讨基因的调控机制。

近年来,高通量测序技术的发展也使得科学家们能够对基因的调控网络进行系统性的分析和研究,解析了大量基因调控网络。

分子生物学-基因表达调控

分子生物学-基因表达调控
• 酪氨酸蛋白激酶(Tyrosine protein kinase,TPK)
a) 经典的src激酶家族 b) JAK激酶家族
➢ 蛋白磷酸酶(Protein phosphatase, PPase) • 丝氨酸/苏氨酸蛋白磷酸酶
(主要成员: PPl, PP2A, PP2B, PP2C等。)
• 酪氨酸蛋白磷酸酶(PTP)及双重特异性蛋白磷酸 酶(DSP)
蛋白的翻译后加工
20
蛋白质的磷酸化与脱磷酸化在细胞内的信 号传导过程中具有重要意义
• 活性受到信号分子的间接调节(共价修饰), 因此应答的特异性高;
• 存在放大效应; • 反应迅速; • 几乎涉及所有的生理过程
06
➢ DNA甲基化转移酶:
➢ DNA甲基化的功能:
一. 转录激活因子的结构 二. 转录激活因子的作用机制
转录水平/转录起始水平
一. 转录激活因子的结构
08
转录起始
顺式作用元件
反式作用因子
启动子
(Promoter)
基础/通用转录因子
(basal /general transcription factors)
例:小鼠免疫球蛋白 μ重链基因的选择性拼接
分泌型
膜结合型
反式拼接(Trans-Splicing)
顺式拼接: 涉及的外显子在同一个基因中; 反式拼接: 涉及的外显子不在同一个基因中,甚至不在同一个染色体中。
二. RNA的编辑
14
RNA编辑(RNA editing): 指的是转录后的RNA上发生的碱基插入,缺失,替换等现象。
பைடு நூலகம்
翻译后水平
蛋白的翻译后加工
蛋白的翻译后加工
18
翻译过程中, 一旦多肽链从核糖体中伸出, 就开始多肽链折叠和翻译后修饰。

分子生物学 ch7原核生物基因表达调控

分子生物学    ch7原核生物基因表达调控

调节蛋白
由调节基因lacI编码,单顺反子,有自身弱启 动子,能独立地组成型表达 阻遏蛋白一个结合位点是诱导物结合位点, 可被小分子诱导物结合,改变其构型,从而 影响与操纵基因结合的活性 阻遏蛋白一个结合位点是操纵基因结合位点, 分 调节蛋白以四聚体形式与操纵基因Olac结合, 子 阻遏结构基因的表达 生

物 学

CAP(降解物活化蛋白)或CRP(环腺苷酸受体 蛋白)是分子量为22.5kd的二聚体,CRP单体具有 DNA结合区和转录激活区,二聚体被单个cAMP活化, cAMP-CAP复合物与启动子结合,促进基因表达

葡萄糖分解代谢降低cAMP水平,使得其他分解代
谢受阻
CAP
RNA聚合酶结合
-35 cAMP

——阻遏蛋白(repressor)的结合操纵序列 当操纵序列结合有阻遏蛋白时,会阻碍
RNA聚合酶与启动序列的结合,或是RNA聚合酶
不能沿DNA向前移动 ,阻碍转录。
pol 启动序列 操纵序列 编码序列 阻遏蛋白
激活蛋白(activator)可结合启动序列邻近的
DNA序列,促进RNA聚合酶与启动序列的结合,增
无效应物(辅阻遏物)——基因表达
操纵子分类

四类: 可诱导的正调控型:(ara O): 可阻遏的正调控型 可诱导的负调控型(lac O)、 可阻遏的负调控型(trp O)
有 效 应 物 * 基 因 表 达 无 效 应 物 * 基 因 表 达
调节蛋白结合-阻遏基因表达 (阻遏蛋白)
负调控
调节蛋白结合-基因表达 (激活蛋白)
酶和转乙酰酶,结构基因由位于上游的一个lac启动子(lacP)起始
转录;lac操纵基因(lacO)位于lacP启和lacZ之间,并且和lacP有 部分重叠,其上可结合位于上游具有独立转录单位的lac调节基因

分子生物学:真核基因表达调控

分子生物学:真核基因表达调控
第二类是发育调控或称不可逆调控,是真核基因调控的精髓 部分,它决定了真核细胞生长、分化、发育的全部进程。
真核基因表达的多级调控
在真核生物中基因表达的调节其特是
(1)多层次; (2)无操纵子和弱化子; (3)个体发育复杂; (4)受环境影响较小;
研究基因调控3个问题:
① 什么是诱发基因转录的信号?
基因扩增是指某些基因的拷贝数专一性大量增加的现象,它 使细胞在短期内产生大量的基因产物以满足生长发育的需要,是 基因活性调控的一种方式。
实例: 非洲爪蟾的卵母细胞中原有rRNA基因(rDNA)约500个拷
贝,在减数分裂I的粗线期,这个基因开始迅速复制,到双线 期它的拷贝数约为200万个,扩增近4000倍,可用于合成1012个 核糖体,以满足卵裂期和胚胎期合成大量蛋白质的需要。
二、基因扩增、基因重排和基因丢失
三、DNA甲基化与基因活性的调控
一、 染色质结构对转录的影响
按功能状态的不同可将染色质分为: (1)活性染色质(有转录活性) (2)非活性染色质(没有转录活性)
染色质的核小体发生构象改变,松散的染色质结构,便 于转录调控因子和顺式用元件结合和RNA聚合酶在转录模板上 滑动。
真核基因调控中虽然也发现有负性调控元件,但其存在并不 普遍;
顺式作用元件: 由若干可以区分的DNA序列组成,并与特定的功能
基因相连,组成基因转录的调控区,通过与相应的反 式作用因子结合,实现对基因转录的调控。
反式作用因子: 能直接地或间接地识别或结合在各类顺式作用元
件核心序列上,参与调控靶基因转录效率的蛋白因子, 也被称为转录因子(TF)。
哺乳类基因组中约存在4万个CpG 岛,它们大多位于结构基 因启动子的核心序列和转录起始点,其中有60%~ 90% 的 CpG 被甲基化, CpG 岛在基因表达调控中起重要作用。

分子生物学原理:第十二章 基因表达调控1

分子生物学原理:第十二章 基因表达调控1
诱导和阻遏是原核生物转录调控的
基本方式。
二、乳糖操纵子调节机制
结构基因:lacZ(β-半乳糖苷酶) lacY(通透酶) lacA (乙酰基转移酶)
操纵序列:O1、 O2、O3 启动子:P
CAP结合位点
调节基因:I
Lac操纵子结构及其负性调节
Lac操纵子的调节
1、阻遏蛋白的负调节
阻遏基因
DNA
I
真核基因组结构庞大
真核基因组含有大量重复序列
多拷贝序列
高度重复序列(106 次) 中度重复序列(103 ~ 104次)
单拷贝序列
真核生物以染色质的形式储存遗传信息
真核生物转录与翻译分割进行
真核基因转录产物为单顺反子
真核基因具有不连续性
真核生物线粒体DNA也储存遗传信息
二、染色质的活化
反式作用因子(trans-acting factor) ——由某一基因表达产生的蛋白质因子,与被
调节的DNA调节序列相互作用而发挥作用,这些蛋 白质分子称为反式作用因子。
反式作用因子直接作用: •直接结合DNA序列
反式作用因子间接作用: •通过蛋白质-蛋白质相 互作用发挥功能
基因表达调控的生理意义
基因表达的时间特异性和空间特异性
基因表达的持续性
管家基因
基因表达的可诱导性
诱导与阻遏
二、基因表达调控
1
多层次
DNA 基因激活 、拷贝数重排 、DNA 甲基化 RNA 转录起始、转录后加工、mRNA降解
蛋白质 蛋白质翻译、翻译后加工修饰、蛋白质降解
2
在一定机制控制下,功能上相关的一组基因,无论其为
II. 增强子(enhancer)
增强子是一种能够提高转录效率的顺式调控元件。

植物分子生物学中的基因表达调控

植物分子生物学中的基因表达调控

植物分子生物学中的基因表达调控在植物分子生物学领域,研究者们致力于了解植物中的基因表达调控机制。

通过研究这些机制,我们可以更好地理解植物的生长、发育以及对环境的响应。

本文将探讨植物基因表达调控的基本原理以及相关的研究方法和应用。

一、基因表达调控的基本原理基因表达调控是指植物细胞中基因信息的转录和翻译过程受到内外环境因素的调控,从而实现基因的表达或沉默。

植物基因表达调控的主要机制包括转录调控、转录后调控以及表观遗传调控。

1. 转录调控:转录调控是指在基因转录过程中,一系列转录因子和其他调控蛋白结合到基因启动子上,调节基因的转录水平。

这些转录因子可以促进或抑制基因的转录,从而控制基因的表达。

2. 转录后调控:转录后调控是指已经被转录成mRNA的RNA分子在转录后发生的调控过程。

这些转录后调控包括RNA剪接、RNA修饰、RNA转运和RNA降解等,可以改变mRNA的稳定性和转录后处理,从而调节基因的表达。

3. 表观遗传调控:表观遗传调控是指在基因表达过程中,DNA和蛋白质之间相互作用形成的表观遗传标记对基因的表达进行调控。

这些表观遗传标记包括DNA甲基化、组蛋白修饰和染色质结构等,可以影响染色体的结构和可及性,从而控制基因的表达。

二、研究方法和技术为了深入研究植物基因表达调控的机制,研究者们利用了多种方法和技术。

以下是一些常用的研究方法:1. 基因组学研究:通过对植物基因组进行测序和分析,可以鉴定出植物基因的序列和组织特异性表达等信息。

基因组学的发展使我们可以全面了解植物基因的组成和结构。

2. 转录组学研究:转录组学研究通过对植物转录过程的全面分析,可以揭示基因的表达模式以及转录因子的调控网络。

最常用的转录组学方法包括RNA测序技术(RNA-seq)和芯片技术。

3. 蛋白质组学研究:蛋白质组学研究可以揭示植物蛋白质的组成、结构和功能。

蛋白质组学的方法包括质谱分析、蛋白质互作研究和蛋白质修饰分析等。

4. 遗传学研究:遗传学研究通过研究植物的突变体或基因敲除植物,可以揭示基因在植物生长和发育中的功能和调控机制。

分子生物学课件--真核生物表达调控

分子生物学课件--真核生物表达调控

(4)DNA拓扑结构变化 天然双链DNA的构象大多 是负性超螺旋。当基因活跃转录时,RNA聚合酶转 录方向前方DNA的构象是正性超螺旋,其后面的 DNA为负性超螺旋。正性超螺旋会拆散核小体,有 利于RNA聚合酶向前移动转录;而负性超螺旋则有 利于核小体的再形成。
(5)DNA碱基修饰变化:真核DNA中的胞嘧啶约有 5%被甲基化为5甲基胞嘧啶(5methylcytidine,m5C), 而活跃转录的DNA段落中胞嘧啶甲基化程度常较低。 这种甲基化最常发生在某些基因5′侧区的CpG序列中, 实验表明这段序列甲基化可使其后的基因不能转录。 甲基化可能阻碍转录因子与DNA特定部位的结合从而 影响转录。
分子生物学课件--真核生物表达 调控
1
一、转录前调控
1、DNA水平的调控:是真核生物发育调控的一种形式,它包括:基因
丢失、甲基化、扩增、重排、等方式。 (1) 基因丢失:目前认为这种调节方式主要是在较低等的真核生物中。如
马蛔虫,只有在生殖细胞核中保持个体发育的全部基因,而体细胞核 中却失去了一部分基因。在原生动物和昆虫中也有类似现象,体细胞 不具有全能性。高等生物没有发现类似的现象,可进行体细胞核移植。
③碱性-亮氨酸拉链(basic leucine zipper,bZIP)
这结构的特点是蛋白质分子的肽链上 每隔6个氨基酸就有一个亮氨酸残 基,结果就导致这些亮氨酸残基都 在α螺旋的同一个方向出现。两个 相同的结构的两排亮氨酸残基就能 以疏水键结合成二聚体,这二聚体 的另一端的肽段富含碱性氨基酸残 基,借其正电荷与DNA双螺旋链上 带负电荷的磷酸基团结合。若不形 成二聚体则对DNA的亲和结合力明 显降低。
(1) 启动子
真核启动子间不像原核那样有明显共同一致的序列,而且单靠RNA聚合 酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作 用。

分子生物学研究中的基因表达调控

分子生物学研究中的基因表达调控

分子生物学研究中的基因表达调控基因是生命的基本单位,通过基因表达,细胞可以合成蛋白质,进而参与各种生物过程。

基因表达的调控是细胞发育、分化和适应环境的关键。

在分子生物学研究中,科学家们致力于探索基因表达调控的机制及其在生命过程中的重要作用。

基因表达调控可以分为转录调控和转录后调控两个层面。

首先,转录调控是指在DNA转录为RNA的过程中,通过调控转录的速率和特异性来控制基因表达。

转录调控的关键是转录因子,它们可以识别特定DNA序列,并调节基因的转录。

转录因子与DNA结合的方式多种多样,如通过结合DNA的特定序列(启动子区域)或结合其他转录因子形成复合物来实现调控。

通过转录因子的作用,细胞可以对内外环境变化作出适应性反应。

在转录后调控层面,主要通过RNA的剪接、修饰和降解来调控基因表达。

RNA剪接是指在RNA分子合成之后,通过剪接酶的作用将剪接区域的RNA片段切除和连接,从而形成成熟的RNA分子。

剪接的方式多种多样,同一基因可以产生多个不同的RNA剪接体,从而实现基因表达的多样性。

此外,RNA还可以通过修饰(如甲基化)来调控基因表达。

这些修饰使RNA分子更加稳定,或者通过与其他蛋白质相互作用,影响RNA的功能和定位。

另外,通过降解RNA分子,细胞可以快速调节基因表达的水平,以实现对环境变化的反应。

除了细胞内调控机制外,外源性信号和内源性信号也可以影响基因的表达调控。

外源性信号,如激素、药物等,可以与细胞表面的受体结合,传递信号并影响基因的表达。

内源性信号则是指细胞内部的信号通路,包括细胞周期、细胞分化等过程。

这些信号可以通过磷酸化、乙酰化等化学修饰来调控基因的表达。

最近,通过高通量测序技术的发展,我们可以更深入地研究基因表达调控。

基因组学、转录组学和表观基因组学等技术的应用,使我们能够全面了解细胞状态下基因表达的整体图谱。

通过研究这些图谱,我们可以揭示转录调控和转录后调控在不同细胞类型和发育阶段的差异,以及基因表达异常与许多疾病的关联。

分子生物学第一篇基因表达调控和蛋白质修饰

分子生物学第一篇基因表达调控和蛋白质修饰

分子生物学第一篇: 基因表达调控和蛋白质修饰基因组(Genome): 生物个体所携带遗传性物质的总量。

即细胞中的DNA总量,或病毒的DNA或RNA量“C值悖论”(C-value paradox): C值:一种生物细胞中特异不变的DNA总量(单倍体基因组)。

物种的C值和它进化的复杂性之间没有严格的对应关系,这种现象称为C值悖论。

基因表达(Gene expression): 在一定调控机制下基因经过激活、转录、翻译、等过程产生具有生物学功能分子从而赋予细胞一定功能或表型,即基因的转录和翻译的过程。

基因表达调控(Regulation of gen expression): 细胞或生物体接受环境信号刺激或适应环境营养状况变化在基因表达水平上作出应答的分子机制。

这包括对表达基因种类和数量上的调调控。

基础基因表达(basic gene expression):又称持续性/组成型基因表达(constitutive gene expression): 不易受环境变化而改变的基因表达。

这其中包括一类“管家基因(housekeeping genes)”, 这类基因产物是细胞生存活动所必需的,在个体各生长阶段都表达。

可调节基因表达(regulated gene expression):易受环境变化而改变的基因表达。

对环境应答时被增强表达的过程称为诱导(induction), 被激活的基因称为可诱导基因(inducible genes);对环境应答时被抑制表达的过程称为阻遏repression),被抑制的基因称为可阻遏基因(repressible genes)基因表达规律:组织特异性(tissue specificity) 时间特异性(temporal specificity)基因表达调节的生物学意义:(一) 适应环境,维持生长和增殖(二) 维持个体发育与分化.真核细胞的结构特性:1、庞大基因组,结构复杂,大量重复序列,基因组大部分是非蛋白质编码的序列,基因内部常被内含子(intron)隔开2、结构基因转录产物是一条单顺反子(monocistron) mRNA,基本上没有操纵元件的结构,而且真核细胞的许多活性蛋白是由相同和不同的多肽链形成的亚基构成的,涉及到多个基因的协调表达。

分子生物学知识:蛋白质表达的调节机制

分子生物学知识:蛋白质表达的调节机制

分子生物学知识:蛋白质表达的调节机制蛋白质表达的调节机制是生物体内蛋白质合成过程中的一系列调控机制。

蛋癸蛋白质表达是细胞生物学中最基本的生物学过程之一,对细胞的功能和生存至关重要。

蛋白质的表达调控机制包括转录调控和翻译调控两个层面。

这些调控机制能够有效地调节细胞内蛋白质的数量和种类,从而使细胞能够适应外部环境的变化和内部代谢的需要。

1.转录调控转录调控是指在转录过程中,通过控制RNA聚合酶的结合和活性来调节基因的转录水平。

细胞利用一系列的转录因子和共激活子来控制基因的转录。

这些转录因子可以识别并结合到特定的DNA序列上,从而启动或抑制基因的转录。

一种经典的转录调控机制是切割体的形成和功能。

在真核生物中,大部分mRNA在转录过程中都需要进行剪接修饰。

切割体由多种蛋白质组成,包括小核RNA和蛋白质因子。

切割体的形成和功能使得mRNA的剪接过程能够受到调控,从而产生不同种类的成熟mRNA,进而影响蛋白质的表达水平。

另一种转录调控机制是组蛋白修饰。

组蛋白是染色质的主要组成部分,它能够通过翻译后修饰来调节基因的转录。

例如,乙酰化和去乙酰化等修饰可以改变组蛋白对DNA的结合能力,进而影响染色质的开放性和基因的转录水平。

2.翻译调控翻译调控是指在mRNA翻译成蛋白质的过程中,通过控制转运RNA 和核糖体的结合来调节蛋白质的合成水平。

在这一过程中,细胞利用一系列的调控因子和信号通路来调节翻译的速率和效率。

一个典型的翻译调控机制是mRNA的稳定性调控。

mRNA在翻译前需要通过一系列的后修饰来影响其在细胞内的寿命和稳定性,并从而影响蛋白质的表达水平。

这些后修饰包括mRNA的poly(A)尾修饰和mRNA 的降解。

另外,一些RNA结合蛋白也能够通过结合到mRNA上来影响其稳定性和翻译效率。

转运RNA的选择性翻译也是一个重要的翻译调控机制。

这种机制能够通过选择性地识别和结合特定的转运RNA来调节特定蛋白质的合成水平。

例如,一些调控蛋白能够识别特定的转运RNA结构或序列,从而影响其在翻译过程中的优先级和效率。

分子生物学中的蛋白质表达调控

分子生物学中的蛋白质表达调控

分子生物学中的蛋白质表达调控蛋白质是生命体内最为重要的基础分子之一,其表达调控对维持生命的正常运转至关重要。

分子生物学中的研究表明,蛋白质表达调控涉及复杂的信号传导、转录调控、翻译后调控等多个层次。

本文将从这些方面详细探讨蛋白质表达调控的机制和意义。

一、信号传导的作用对于细胞而言,表达适量的特定蛋白质可以满足细胞自身代谢的需要,但是在细胞生长、发育及应激应答等过程中蛋白质表达级别的快速改变是必要的。

这种调控依赖于信号传导网络的发挥作用,并可以通过调控转录因子的活性和稳定性来实现。

例如,细胞在受到刺激时,信号被传递至转录因子,从而激活特定基因的转录,产生符合需要的蛋白质。

二、转录调控的重要性转录调控是表达调控中最为核心的环节,也是最为广泛研究的方向。

转录调控可以通过多种方式实现,例如组蛋白修饰、转录因子结合和RNA聚合酶II的结构特性等等。

组蛋白修饰是一种转录激活的方式,通过组蛋白修饰酶作用将DNA包裹在染色质上,改变染色质的结构,从而影响基因的可访问性和稳定性。

与此同时,转录因子也可以通过与启动子相互作用,诱导RNA聚合酶II 的结合,并介导基因的转录。

此外,转录因子还可以作为适应环境变化的传感器,识别特定的信号,进而介导基因的表达调控过程。

三、翻译后调控的作用翻译后调控是指在蛋白翻译过程中, mRNA或蛋白质本身的调控作用。

这一调控方式可以通过微小RNA、RNA稳定性、蛋白翻译后修饰等多种方式实现。

例如,微小RNA可以结合到特定的mRNA上,针对其3'端进行递减降解。

此外,蛋白翻译后修饰也可以通过磷酸化或甲基化等方式来影响蛋白质的功能和稳定性。

这些翻译后调控因素可以对蛋白质表达产生重要的调控作用,从而完成细胞代谢、生长、分裂、凋亡和应激等生命过程。

四、表达调控的意义蛋白质表达调控在研究生命现象、发现疾病机理及挖掘药物靶点等领域都具有重要的意义。

例如,通过对差异表达基因的筛选和研究,可以发现相应的生物过程及其调控机制。

现代分子生物学第五章基因表达调控

现代分子生物学第五章基因表达调控

江汉大学文理学院
16
AraC蛋白同时显正、负调节因子的功能。阿拉伯 糖操纵子的操纵基因受AraC蛋白调节。AraC蛋白具有 两种不同的功能构象,即正、负调节因子的双重功能 构象。一般认为Pr是起阻遏作用的构象形式,可与操 纵区位点相结合,Pi是起诱导作用的构象形式,通过 与PBAD启动子结合进行调节。Pr和Pi两种构象处于动态 平衡之中。当缺乏诱导物阿拉伯糖时,AraC处于Pr状 态,不结合araI而是结合操纵基因位点,阻碍araBAD 的表达。当阿拉伯糖存在时,由araC编码的激活蛋白 AraC与其结合,改变了AraC的构象显出Pi,该复合物 结合于araL区后可激活PBAD转录。
江汉大学文理学院
8
2.乳糖操纵子的调控机制 当培养基中没有乳糖时,调节基因编码的阻遏蛋白结合到操纵基因上,阻 止了结构基目的表达。将大肠杆菌转到乳糖培养基中时,由于诱导物分子结 合在阻遏蛋白的特异部位,引起阻遏蛋白构象改变,而不能结合到操纵基因 上,操纵子被诱导表达。在这个系统中的诱导物分子不是乳糖本身,而是乳 糖的同分异构体——异乳糖。乳糖进入大肠杆菌细胞后被转化成了异乳搪。
江汉大学文理学院
3
(一)细菌细胞对营养的适应
为了生存,细菌必须能够适应广泛变化的环境条件。这些环境条件包括 营养、水分、溶液浓度、温度、pH等。而这些条件又必须通过细胞内的各种 生化反应途径,为细胞的生长繁殖提供能量和构建细胞组分所需的小分子化 合物。一般细菌如火肠杆菌所需的碳源首先是葡萄糖,利用葡萄糖发酵获得 能量,维持生存。在缺乏葡萄糖时细菌也可以利用其他糖类(如乳糖)作为 碳源维持生存。 (二)结构基因和调节基因 结构基因(structural gene)是编码蛋白质或功能RNA的基因。细菌的结构 基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都 表达或者都不表达。结构基因编码大量功能各异的蛋白质,其中有组成细胞 和组织器官基本成分的结构蛋白、有催化活性的酶和各种调节蛋白等。调节 基因(regu1ator,gene)是编码合成那些参与基因表达调控的RNA和蛋白质的 特异DNA序列。调节基因编码的调节物通过与DNA上的特定位点结合控制转录 是调控的关键。调节物与DNA特定位点的相互作用能以正调控的方式(启动或 增强基因表达活性)调节靶基因,也能以负调控的方式(关闭或降低基因表达 活性)调节靶基因。它们通常位于受调节基因的上游,但有时也有例外。

分子生物学原核生物基因表达调控ppt课件

分子生物学原核生物基因表达调控ppt课件
14
一、原核基因表达调控环节
1、转录水平上的调控
(transcriptional regulation)
2、转录后水平上的调控
(post-transcriptional regulation)
① mRNA加工成熟水平上的调控 ② 翻译水平上的调控
15
二、操纵子学说
1、操纵子模型的提出 1961年,Monod和Jacob提出 获1965年诺贝尔生理学和医学奖
54
55
③ 操纵基因是DNA上的一小段序列(仅为26bp), 是阻遏物的结合位点。
56
RNA聚合酶结合部位
阻遏物结合部位
57
操纵位点的回文序列
58
④当阻遏物与操纵基因结合时,lac mRNA的转 录起始受到抑制。
59
未诱导:结构基因被阻遏
阻遏物 四聚体
LacI P O
lacZ
lacY
lacA
32
酶合成的诱导操纵子模型
调节基因
操纵基因
结构基因
阻遏蛋白
调节基因
操纵基因
结构基因
诱导物
如果某种物质能够促使
阻遏蛋白
mRNA
细菌产生酶来分解它,
这种物质就是诱导物。
诱导物
酶蛋白
33
• 可阻遏调节:基因平时是开启的,处在产生蛋白质 或酶的工作过程中,由于一些特殊代谢物或化合物 的积累而将其关闭,阻遏了基因的表达。 例:色氨酸操纵子 合成代谢蛋白的基因
1、根据操纵子对调节蛋白(阻遏蛋白或激活蛋白) 的应答,可分为: 正转录调控 负转录调控
29
调节基因
操纵基因
结构基因
激活蛋白 阻遏蛋白
正转录调控 负转录调控

分子生物学:原核基因表达调控模式

分子生物学:原核基因表达调控模式

添加葡萄糖后,细菌所需要的能量便可从葡萄糖得到 满足,葡萄糖是最方便的能源,细菌无需开动一些不 常用的基因去利用这些稀有的糖类。
葡萄糖的存在会抑制细菌的腺苷酸环化酶活性,减少
环腺苷酸(cAMP)的合成,与它相结合的蛋白质,
即 环 腺 苷 酸 受 体 蛋 白 CRP 又 称 分 解 代 谢 物 激 活 蛋 白 CAP,因找不到配体而不能形成复合物。
负控诱导 阻遏蛋白不与效应物(诱导物)结合时,结 构基因不转录;与之结合则转录。
负控阻遏 阻遏蛋白与效应物结合时,结构基因不转录。 阻遏蛋白作用的部位是操纵区。
在正转录调控系统中,调节基因的产物是激活蛋 白(activator)。
正控诱导系统 效应物分子(诱导物)的存在使激活蛋白 处于活性状态;
葡萄糖 cAMP Lac操纵子被抑制
DNA
+ + + + 转录
CAP P O Z Y A
CAP CAP CAP CAP 无葡萄糖,cAMP浓度高时
CAP
有葡萄糖,cAMP浓度低时
协调调节
负性调节与正性调节协调合作
阻遏蛋白封闭转录时,CAP不发挥作用 如没有CAP加强转录,即使阻遏蛋白从P上解聚仍无转录活性
23
• 乳糖操纵子的控制模型,其主要内容如下:
① Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码。 ② 这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P), 不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。 ③ 操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。 ④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。 ⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结 合,从而激发lac mRNA的合成。当有诱导物存在时,操纵基因区没有被阻 遏物占据,所以启动子能够顺利起始mRNA的合成。

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
31
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;

分子生物学第八章 基因表达调控

分子生物学第八章 基因表达调控
* IPTG,异丙基-β-D硫代半乳糖苷 * TMG ,巯甲基半乳糖苷 * ONPG,O-硝基半乳糖苷
4、阻遏蛋白与操作子的相互作用
阻遏蛋白与操作子是否发生相互作用? 硝酸纤维素膜可以和蛋白质结合而不与DNA结合 阻遏蛋白四聚体结合与膜上,可以与野生型DNA片段形 成复合物。并可被IPTG抑制。 而用lacOc 突变体的DNA片段,则不能与阻遏蛋白结合
Luxury gene
顺、反因子间互作方式的基因表达调控
♫ 顺式作用元件(cis-acting element):能够影响 同一条或相连DNA序列活性的特定DNA片段。例如,启 动子 ♫ 反式作用因子(trans-acting factor):一种基 因的蛋白质产物,能够影响位于基因组另一条染色体上的 (或基因组别处的)另一个基因的表达活性。例如,RNA polymerase
经典锌指的三维结构:一个β发卡和一个α-螺旋
锌指上的α-螺旋 负责与DNA作用
b、Cys-Cys(C2/C2)锌指
Zn++与4个Cys残基 形成配位键
酵母的转录激活 因子GAL4、哺 乳类的固醇类激 素受体为典型代 表。
糖皮质激素受体
• ZYJ272 •
The DNA-binding domain of Cys2-Cys2 zinc finger proteins (Figure 1. Glucocorticoid receptor) is composed of two irregular antiparallel beta-sheets and an alpha-helix, followed by an extended loop.
♫ 操纵元中各结构基因按一定比例协调翻译 ♫ 聚有极性突变效应:
操纵元中一个近基因的无义突变能够影响远基因表, 且根据距离远近呈极性梯度效应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、乳糖操纵子调控模型
1、主要内容: ① Z、Y、A基因的产物由同一条多顺反子的mRNA 分子所编码 ② 这个mRNA分子的启动子区位于I与O之间,不能单 独起始合成β-半乳糖苷酶和透过酶的高效表达。 ③ 操纵基因是DNA上的一小段序列(仅为26bp), 是阻遏物的结合位点。 ④当阻遏物与操纵基因结合时,lac mRNA的转 录起始受到抑制。
2、适应性表达(adaptive expression) 指环境的变化容易使其表达水平变动的一类基因表达。 随环境条件变化基因表达水平增高的现象称为诱
导(induction),这类基因被称为可诱导的基因
(inducible gene)。 随环境条件变化而基因表达水平降低的现象称 为阻遏(repression),相应的基因被称为可阻遏 的基因(repressible gene)。
RNA 复制 复制
DNA
转录 逆转录
RNA
翻译
蛋白质
rRNA、tRNA编码基因转录合成RNA的过程也 属于基因表达。
二、基因表达的方式
1、组成性表达(constitutive expression)
指不大受环境变动而变化的一类基因表达。
某些基因在一个个体的几乎所有细胞中持续表达, 通常被称为管家基因(housekeeping gene)。
二、操纵子学说 1、操纵子模型的提出 1961年,Monod和Jacob提出,获1965年诺贝 尔生理学和医学奖。
2、操纵子(operon)
由几个功能相关的基因成簇排列而组成的一个
基因表达的协同单位。
操纵子: 结构基因:编码功能蛋白 启动子(启动基因):启动转录 操纵基因(操纵子):控制转录 调节基因:编码调节蛋白(激活蛋白和阻遏蛋白) 调控操纵基因
三、基因表达的规律----- 时间性和空间性
1、时间特异性(temporal specificity) 按功能需要,某一特定基因的表达严格按 特定的时间顺序发生,称之为基因表达的时间
特异性。
多细胞生物基因表达的时间特异性又称阶段
特异性(stage specificity)。
2、空间特异性(spatial specificity) 在个体生长全过程,某种基因产物在个体 按不同组织空间顺序出现,称之为基因表达的 空间特异性。
第六章 基因的表达与调控(上) ——原核基因表达调控模式
基因表达调控的基本概念 原核基因调控机制 乳糖操纵子 色氨酸操纵子 其他操纵子 转录后水平上的调控
第一节 基因表达调控的基本概念
一、基因表达调控(gene regulation ) 对基因表达过程的调节就称为基因 表达调控或基因调控。
空间特异性又称细胞或组织特异性(cell or tissue specificity)。
四、基因表达调控的生物学意义
适应环境、维持生长和增殖(原核、真核) 维持个体发育与分化(真核)
第二节 原核基因调控机制
一、基因表达调控环节 1、转录水平上的调控(transcriptional regulation) 2、转录后水平上的调控(post-transcriptional regulation) ① mRNA加工成熟水平上的调控 ② 翻译水平上的调控
②真正的诱导物是异构乳糖而非乳糖,前者 是在β-半乳糖甘酶的催化下由乳糖形成的, 因此,需要有β-半乳糖甘酶的预先存在。
解释: 本底水平的组成型合成:非诱导状态下有 少量的lac mRNA合成。
2、大肠杆菌对乳糖的反应
培养基:甘油 按照lac操纵子本底水平的表达; 培养基:加入乳糖 少量乳糖 诱导物 诱导lac mRNA的生物合成 大量乳糖进入细胞 多数被降解为葡萄糖和半乳糖(碳源和能源) 异构乳糖 透过酶 进入细胞 β-半乳糖苷酶 异构乳糖
答,可分为可诱导调节和可阻遏调节两大类: 1、可诱导调节 指一些基因在特殊的代谢物或化合物(诱导物) 的作用下,由原来关闭的状态转变为工作状态,即 在某些物质的诱导下使基因活化。 例:大肠杆菌的乳糖操纵子,分解代谢蛋白的基因 诱导物:如果某种物质能够促使细菌产生酶来分 解它,这种物质就是诱导物。
2、可阻遏调节: 基因平时是开启的,处在产生蛋白质或酶的 工作过程中,由于一些特殊代谢物或化合物(辅 阻遏物)的积累而将其关闭,阻遏了基因的表达。 辅阻遏物:如果某种物质能够阻止细菌产生合成 这种物质的酶,这种物质就是辅阻遏物。 例:色氨酸操纵子 合成代谢蛋白的基因
⑤诱导物通过与阻遏物结合,改变它的三维构象,
使之不能与操纵基因结合,从而激发lac mRNA的
合成。当有诱导物存在时,操纵基因区没有被阻遏
物占据,所以启动子能够顺利起始mRNA的合成。
三、乳糖操纵子的影响因子
1、lac操纵子的本底水平表达
有两个矛盾是操纵子理论所不能解释的: ①诱导物需要穿过细胞膜才能与阻遏物结合,而 转运诱导物需要透过酶,后者的合成有需要诱导。 解释:一些诱导物可以在透过酶不存在时进 入细胞? 一些透过酶可以在没有诱导物的情况下 合成?(√)
二、原核基因调控机制的类型与特点 (一)根据操纵子对调节蛋白(阻遏蛋白或激活蛋白) 的应答,可分为:正转录调控和负转录调控 1、正转录调控 没有调节蛋白质存在时基因是关闭的,加入这 种调节蛋白质后基因活性就被开启,这样的调控为 正转录调控。 正转录调控系统中,调节基因的产物是激活蛋白 (activator)。根据激活蛋白的作用性质分为正控诱导 和正控阻遏。
2、负转录调控: 在没有调节蛋白质存在时基因是表达的,加入
这种调节蛋白质后基因表达活性便被关闭,这样的
调控为负转录调控。
负转录调控系统中,调节基因的产物是阻遏蛋白 (repressor),起着阻止结构基因转录的作用。
根据其作用特征又可分为负控诱导和负控阻遏。
(二)根据操纵子对某些能调节它们的小分子的应
四、转录水平上调控的其他形式
1、σ因子的更换 在E.coli中,当细胞从基本的转录机制转入各 种特定基因表达时,需要不同的因子指导 RNA聚合酶与各种启动子结合。 2、降解物对基因活性的调节 3、弱化子对基因活性的影响
第三节 乳糖操纵子(lactose operon) 一、乳糖操纵子的结构 阻遏基因(lacI) 启动子(P) 操纵基因(O) 结构基因: lacZ、lacY、lacA
相关文档
最新文档