冷冻电镜简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 冷冻电镜发展背景

人类基因组计划的完成,标志着科学已进入后基因组时代。虽然大量的基因序列得到阐明,但是生物大分子如何从这些基因转录、翻译、加工、折叠、组装,形成有功能的结构单元,尚需进一步的研究。后基因组时代人类面临的一个挑战是解析基因产物—蛋白质的空间结构,建立结构基因组学,并在原子水平上解释核酸—蛋白,蛋白—蛋白之间的相互作用,从而阐明由这些生物大分子和复合物所行使的生物学功能。在此过程中,结构生物学在其中扮演着重要角色。对生物大分子结构的解析,不仅具有深远的基础意义,而且具有广阔的应用前景。通过对核酸、蛋白质及其复合物的结构解析,人们对它们的功能的理解更加透彻,就可以根据他们发挥功能的结构基础有针对性地进行药物设计,基因改造,疫苗研制开发,甚至人工构建蛋白质等工作,从而对制药、医疗、疾病防治、生物化工等诸多方面产生巨大的推动作用。

日前用于解析生物大分子空间结构的主要手段是X射线晶体学技术和核滋共振波谱学。X射线晶体学可给出分子的高分辨结钩,核磁共振波谱学则可测定分子在溶液中的精确构像,并可研究构像的动态变化。虽然X射线晶体学和核磁共振波谱学是解析生物大分子结构的强有力工具,但各有局限性。X射线晶体学解析的结构常常是分子的基态结钩,而对解析分子的激发态和过渡态却往往无能为力:生物大分子在体内常常发生相互作用并形成复合物而发挥功能,这些复合物的结晶化非常困难。核磁共振波谱学虽可获得分子在溶液中的结构并可研究结构的动态变化,但目前只能用于分子量较小的生物大分子(<10000道尔顿),而对分子量大的生物大分子尤其是超分子复合物却无能为力。

人类对生物体系的研究经历了由个体到器官,由器官到组织,由组织到细胞,由细胞到生物大分子这样一个层次由高到低的过程。随着科学的发展,人们对生物体系的研究又转向由低层次到高层次,由简单体系到复杂体系。在此过程中,细胞作为生命的基本单位起着承上启下的重要作用。多少年来,科学家的一个梦想是能观察到生物大分子在细胞内的行为,几十年来,人们对大量的生物大分子及其复合物应用电子显微镜进行研究,发展出了强有力的电子显微学来研究生物大分子结构的方法学。近年来,由于快速冷冻和低温冷却技术的引进,导致了冷冻电子显微学技术的诞生。冷冻电镜在研究生物大分子结构尤其是超分子体系的结构方面取得了突飞猛进的发展,在生物学领域的应用越来越受到重视,逐渐成为一种被普遍接受的公认的研究生物大分子尤其是超分子体系结构的有效研究手段,成为连接生物大分子和细胞的纽带和桥梁。

2 冷冻电镜发展过程及分类

2.1 冷冻电镜发展过程

冷冻电子显微镜技术(cryo-electron microscopy)是在20世纪70年代提出的,早在20世纪70年代科学家们就利用冷冻电镜研究病毒分子的结构,首次提出了冷冻电镜技术的原理、方法以及流程的概念。到了20世纪90年代,随着冷冻传输装置、场发射电子枪以及CDD成像装置的出现,冷冻电镜单颗粒技术出现。21世纪初,冷冻电镜技术进一步发展,利用三维重构技术获得了二十面体病毒的三维结构,但此时冷冻电镜的分辨率水平依然没有得到突破,这限制了冷冻电镜在生物大分子领域的应用,虽然冷冻电镜和X射线晶体学、核磁共振被称作结构生物学研究的三大利器,但不得不承认冷冻电镜是三者当中最弱的一种技术手段,在现在已解析的一千多种膜蛋白结构当中,90%以上都采用的是X射线晶体学方法,核磁共振在小分子量的蛋白结构解析中也发挥了重要的作用,而冷冻电镜在蛋白结构解析当中所起的作用微乎其微。

然而2013年12月5日,美国加州大学旧金山分校副教授程亦凡与同事David Julius两个实验室合作,采用单电子计数探测器,以近原子分辨率(3.4埃),确定了在疼痛和热知觉中起中心作用的一种膜蛋白TRPV1的结构,这一振奋人心的成果让研究人员们开始重新审视冷冻电镜在结构生物学研究中的所能发挥的作用。毕竟和X射线晶体学方法相比,它所需的样品量很少,也无需生成晶体,这对于一些难结晶的蛋白质的研究带来了新的希望。蛋白质TRPV1结构的确定标志着冷冻电镜正式跨入“原子分辨率”时代。

2.2 冷冻电镜分类

目前我们讨论的冷冻电镜基本上指的都是冷冻透射电子显微镜,但是如果我们以使用冷冻技术的角度定义冷冻电镜的话,冷冻电镜主要可以分为冷冻透射电子显微镜、冷冻扫描电子显微镜、冷冻蚀刻电子显微镜。

2.2.1 冷冻透射电子显微镜

冷冻透射电镜(Cryo-TEM)通常是在普通透射电镜上加装样品冷冻设备,将样品冷却到液氮温度(77K),用于观测蛋白、生物切片等对温度敏感的样品。通过对样品的冷冻,可以降低电子束对样品的损伤,减小样品的形变,从而得到更加真实的样品形貌。

一台冷冻透射电镜的价格在600万美元左右,价格极其昂贵,它的优点主要体现在以下几个方面:第一是加速电压高,电子能穿透厚样品;第二是透镜多,光学性能好;第三是样品台稳定;第四是全自动,自动换液氮,自动换样品,自动维持清洁。

图2.1 冷冻透射电镜及冷冻电镜下高分辨病毒的三维重构图

2.2.2 冷冻扫描电子显微镜

扫描电镜工作者都面临着一个不能回避的事实,就是所有生命科学以及许多材料科学的样品都含有液体成分。很多动植物组织的含水量达到98%,这是扫描电镜工作者最难对付的样品问题。

冷冻扫描电镜(Cryo-SEM)技术是克服样品含水问题的一个快速、可靠和有效的方法。这种技术还被广泛地用于观察一些“困难”样品,如那些对电子束敏感的具有不稳定性的样品。各种高压模式如VP、LV和ESEM的出现,已允许扫描电镜观察未经冷冻和干燥的样品。但是,冷冻扫描电镜仍然是防止样品丢失水分的最有效方法,它能应用于任何真空状态,包括装于SEM的Peltier台以及向样品室内冲以水汽的装置。冷冻扫描电镜还有一些其他优点,如具有冷冻断裂的能力以及可以通过控制样品升华刻蚀来选择性地去除表面水分(冰)等。冷冻电镜基本的观测流程如下图2.2所示:

图2.2 低温扫描电镜样品制备及观测流程

2.2.3 冷冻蚀刻电子显微镜

冷冻蚀刻(Freeze-etching)电镜技术是从50年代开始发展起来的一种将断裂和复型相结合的制备透射电镜样品技术,亦称冷冻断裂(Freeze-fracture)或冷冻复型(Freeze-replica),用于细胞生物学等领域的显微结构研究。

冷冻蚀刻电镜的优点:①样品通过冷冻,可使其微细结构接近于活体状态;②样品经冷冻断裂蚀刻后,能够观察到不同劈裂面的微细结构,进而可研究细胞内的膜性结构及内含物结构;③冷冻蚀刻的样品,经铂、碳喷镀而制备的复型膜,具有很强的立体感且能耐受电子束轰击和长期保存。

缺点:冷冻也可造成样品的人为损伤;断裂面多产生在样品结构最脆弱的部位,无法有目的地选择。

目前,冷冻蚀刻装置的型号很多,但主要分为两种类型:一种是专用冷冻蚀刻装置,如EIKO公司生产的FD-2A型、FD-3型,BALZERS公司生产的BAF300型;另一种是真空喷镀仪的冷冻蚀刻附件,如日立公司生产的HFZ-1型,它与FE-1型加温蚀刻装置一起安装在HUS-5型真空喷镀仪中使用。以上两种类型各有优缺点,专用装置优点在于操作方便,能连续制样,效率高。缺点是价格贵;附件装置价格虽便宜,但不能连续操作,效率低。利用冷冻蚀刻电镜技术观察到的红细胞如图2.3所示。

图2.3 红细胞冷冻电镜蚀刻图

3 冷冻电镜原理

冷冻电子显微学解析生物大分子及细胞结构的核心是透射电子显微镜成像,其基本过程包括样品制备、透射电子显微镜成像、图像处理及结构解析等几个基本步骤(图3.1)。在透射电子显微镜成像中,电子枪产生的电子在高压电场中被加速至亚光速并在高真空的显微镜

相关文档
最新文档