天津雍阳中学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(包含答案解析)
八年级上册数学 整式的乘法与因式分解单元测试卷 (word版,含解析)
八年级上册数学整式的乘法与因式分解单元测试卷(word版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.下列四个多项式,可能是2x2+mx-3 (m是整数)的因式的是A.x-2 B.2x+3 C.x+4 D.2x2-1【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m是整数,∴将2x2+mx-3分解因式:2x2+mx-3=(x-1)(2x+3)或2x2+mx-3=(x+1)(2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.3.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( ) A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n【答案】B【解析】已知a与b互为相反数且都不为零,可得a、b的同奇次幂互为相反数,同偶次幂相等,由此可得选项A、C相等,选项B互为相反数,选项D可能相等,也可能互为相反数,故选B.4.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形是( ) A.等腰三角形 B.等边三角形C.直角三角形 D.不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a=b=c,即可解决问题.【详解】∵a2+2b2+c2﹣2b(a+c)=0,∴(a﹣b)2+(b﹣c)2=0;∵(a﹣b)2≥0,(b﹣c)2≥0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC为等边三角形.故选B.【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.5.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6B.4C.6 或4D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.6.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7.已知a﹣b=2,则a2﹣b2﹣4b的值为()A.2 B.4 C.6 D.8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a﹣b=2,∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.故选:B.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.8.若33×9m=311,则m的值为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案.【详解】∵33×9m=311,∴33×(32)m=311,∴33+2m=311,∴3+2m=11,∴2m=8,解得m=4,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3xC.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、x2-9=(x+3)(x-3),属于因式分解.故选D.【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值可能分别是()A.3-,4-B.3-,4 C.3,4-D.3,4【答案】A【解析】【分析】根据题意可得规律为712a bab+=-⎧⎨=⎩,再逐一判断即可.【详解】根据题意得,a,b的值只要满足712a bab+=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.12.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.13.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.14.计算:=_____. 【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.15.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.16.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.17.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.18.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.19.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。
(人教版)天津市八年级数学上册第四单元《整式的乘法与因式分解》测试(包含答案解析)
一、选择题1.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 2.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)23.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 4.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == 5.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++ D .22193x x -+ 6.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 2 7.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= 8.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab +=9.若y 2+4y +4+1x y +-=0,则xy 的值为( ) A .﹣6 B .﹣2 C .2 D .610.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .6 11.下列运算正确的是( ). A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=12.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.14.若2,3x y a a ==,则22x y a +=_______________________.15.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 16.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.17.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x xx x x -+++=-; …… (1)()432(1)1x x x x x -++++=___;(2)根据规律可得:()1(1)1n x x x --+++=_____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++; 18.若2211392781n n ++⨯÷=,则n =____.19.如图是一块长方形ABCD 的场地,长AB a 米,宽AD b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处的路宽是2米,其余部分种植草坪,则草坪面积为________2m .20.若210a a +-=,则43222016a a a a +--+的值为______.三、解答题21.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________. 22.利用我们学过的知识,可以导出下面这个形式优美的等式:2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦,该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁、美观.(1)请你检验说明这个等式的正确性;(2)若ABC 的三边长分别为a ,b ,c ,当222a b c ab bc ca ++=++时,试判断ABC 的形状;(3)若327a b -=,227a c -=,且22241abc ++=,求22ab bc ac ++的值. 23.观察下列各式: 2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-; 请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++. 24.好学的晓璐同学,在学习多项式乘以多项式时发现:(12x +4)(2x +5)(3x ﹣6)的结果是一个多项式,并且最高次项为:12x •2x •3x =3x 3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢? 根据尝试和总结她发现:一次项就是:12x ×5×(﹣6)+2x ×4×(﹣6)+3x ×4×5=﹣3x . 请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为 ,一次项为 ; (2)若计算(x +1)(﹣3x +m )(2x ﹣1)(m 为常数)所得的多项式不含一次项,求m 的值;(3)若(x +1)2021=a 0x 2021+a 1x 2020+a 2x 2019+…+a 2020x +a 2021,则a 2020= .25.已知5x y -=,6xy =,求下列各式的值.(1)22x y +;(2)x y +26.把下列多项式因式分解:(1)2()4a b ab -+;(2)22()()a x y b y x -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可.【详解】解:A、a2∙a4=a6,故选项A不合题意;B、(a2)3=a6,故选项不B符合题意;C、(ab2)3=a3b6,故选项C不符合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.2.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A、等号左右两边不相等,故错误;B、a3-a=a(a+1)(a-1),故正确;C、右边不是整式的积,故错误;D、等号左右两边不相等,故错误.故选:B.【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.3.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.D【分析】根据题意逐一计算即可判断.【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意;故选:D .【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.5.C解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 6.D解析:D【分析】根据S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG 代入数值求出图形面积,再根据计算各整式判断即可.【详解】S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG=AD •AB +DC •DE +CF •FH .∵AB =DC =AD =x ,DE =CF =3,FH =2,∴S 楼房的面积=x 2+3x +6.∵(x+3)(x+2)﹣2x= x 2+3x +6,x (x +3)+6= x 2+3x +6,x (x +2)+x 2=2 x 2+2x ,.【点睛】此题考查列整式求图形面积,整式的混合运算,掌握整式的运算法则是解题的关键. 7.D解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.8.A解析:A【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确.故选A.【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.9.A解析:A【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解.【详解】解:∵2440y y ++=∴(y +2)20∴y +2=0且x +y ﹣1=0解得:y =﹣2,x =3∴xy =﹣6.故选:A .【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0. 10.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 11.D解析:D【分析】根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键.12.B解析:B【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.870【分析】将n =3代入数值运算程序计算判断结果与30大小小于或等于30再代入计算大于30输出即可得到输出结果【详解】解:当n =3时根据数值运算程序得:32−3=9−3=6<30当n =6时根据数值解析:870【分析】将n =3代入数值运算程序计算,判断结果与30大小,小于或等于30再代入计算,大于30输出,即可得到输出结果.【详解】解:当n =3时,根据数值运算程序得:32−3=9−3=6<30,当n =6时,根据数值运算程序得:62−6=36−6=30,当n =30时,根据数值运算程序得:302−30=900−30=870>30,则输出结果为870.故答案为:870【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可.【详解】解:∵2,3x y a a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36,故答案为36.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键. 15.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】 此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.16.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x 的一次项所以让一次项的系数等于0得a 的等式再求解【详解】解:(2x-a )(x+1)=2x2+(2-a )x-a ∵积中不含x 的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解. 【详解】解:(2x-a )(x+1)=2x 2+(2-a )x-a , ∵积中不含x 的一次项, ∴2-a=0, ∴a=2, 故答案为:2. 【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.17.(1);(2);(3)【分析】(1)第二个括号里最高次数4根据观察可知结论中次数为4+1=5;(2)第二个括号里最高次数n-1根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x 次数根据解析:(1)51x -;(2)1n x -;(3)5131-. 【分析】(1)第二个括号里最高次数4,根据观察可知结论中次数为4+1=5; (2) 第二个括号里最高次数n-1,根据观察可知结论中次数为n-1+1=n ; (3)用3代替等式中的x ,次数根据观察规律确定即可. 【详解】(1)根据观察,发现结论是个二项式,且常数项为-1,另一项底数是x ,指数比第二个括号里多项式的最高次数多1,∵()4321x x x x ++++的最高次数是4, ∴()432(1)1x x x x x -++++=51x -, 故应该填51x -;(2)∵()11n xx -+++的最高次数是n-1,∴()1(1)1n x xx --+++=1n x -,故应该填1n x -; (3)由(2)知:()1(1)11n n x x x x --+++=-,令3x =,51n =,得:()504948251(31)33333131-++++++=-,故应该填5131-. 【点睛】本题考查了整式变化中的规律探索,解答时,抓住变化中变化项,不变项,变化的位置,变化的规律是解题的关键.18.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3 【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可. 【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=, 2423343333n n ++⨯÷=, 242(33)433n n ++-+=, 1433n +=,14n +=, 3n =.故答案为:3 【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键.19.【分析】可以将草坪拼成一块完整的长方形分别表示出它的长和宽即可求出面积【详解】解:可以将草坪拼成一块完整的长方形这个长方形的长是:米宽是:米∴草坪的面积是:(平方米)故答案是:【点睛】本题考查多项式 解析:22ab a b --+【分析】可以将草坪拼成一块完整的长方形,分别表示出它的长和宽即可求出面积. 【详解】解:可以将草坪拼成一块完整的长方形,这个长方形的长是:112a a --=-米,宽是:1b -米, ∴草坪的面积是:()()2122a b ab a b --=--+(平方米). 故答案是:22ab a b --+. 【点睛】本题考查多项式的乘法和图形的平移,解题的关键是通过平移的方法将不规则的图形拼成规则图形进行求解.20.【分析】原式变形为由已知得到整体代入即可求解【详解】已知得:故答案为:【点睛】本题考查了代数式求值熟练掌握整体代入法是解题的关键 解析:2015【分析】 原式变形为()22222016a aa a a +--+,由已知得到21a a +=,整体代入即可求解.【详解】已知得:21a a +=,43222016a a a a +--+()22222016a a a a a =+--+ 2222016a a a =--+()22016a a =-++12016=-+ 2015=.故答案为:2015. 【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.三、解答题21.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案; (2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案; (2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可. 【详解】 解:【初步探究】 (1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 6199********=÷÷÷÷÷÷÷=⑧,∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确; 故选:C . 【深入思考】 (1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥;71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则 将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭;故答案为:21n a -⎛⎫⎪⎝⎭;(3)=224m n m n a a a --+-•=;故答案为:4m n a +-. 【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题. 22.(1)见详解;(2)ABC 为等边三角形;(3)4249【分析】(1)利用完全平方公式将等式的右边展开,合并同类项后即可得出等式的左边,从而得出该等式成立;(2)由a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0,利用偶次方的非负性即可得出a =b =c ,从而得出该三角形为等边三角形; (3)先求出17b c -=-,结合第(1)题的结论,即可求解. 【详解】 (1)等式右边=()22222221222x xy y y z x yz xz z -++++-+- =()222122x y z y xy xz z ⨯++--- =222x y z xy yz xz ++---=等式左边. ∴等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立.(2)∵a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0, ∴a−b =0,b−c =0,c−a =0, ∴a =b =c ,∵a 、b 、c 分别是三角形的三条边, ∴ABC 为等边三角形;(3)∵327a b -=,227a c -=, ∴17b c -=-, 又∵2222221(2)22(2)(2)()2a b c ab ac bc a b a c b c ⎡⎤++---=-+-+-⎣⎦, ∴2222221321(2)22()()()2777a b c ab ac bc ⎡⎤++---=⨯++-⎢⎥⎣⎦=749, ∵22241a b c ++=, ∴22ab bc ac ++=1-749=4249. 【点睛】本题考查了整式的运算、偶次方的非负性以及等边三角形的判定,利用完全平方的展开式证出等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立是解题的关键.23.(1)11n x +-;(2)1621-. 【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可. 【详解】(1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.24.(1)15x 3,﹣11x ;(2)m =-3;(3)2021【分析】(1)求多项式的最高次项,把每个因式的多项式最高次项相乘即可;求一次项,含有一次项的有x ,3x ,5x ,这三个中依次选出其中一个再与另外两项中的常数相乘最终积相加,或者展开所有的式子得出一次项即可.(2)先根据(1)所求方法求出一次项系数,最后用m 表示,列出等式,求出m ; (3)根据前两问的规律可以计算出第(3)问的值. 【详解】 (1)由题意得:(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为x ×3x ×5x =15x 3, 一次项为:1×1×(﹣3)x +2×3×(﹣3)x +2×1×5x =﹣11x , 故答案为:15x 3,﹣11x ;(2)依题意有:1×m ×(﹣1)+1×(﹣3)×(﹣1)+1×m ×2=0, 解得m =﹣3;(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数,∵2021(1)x +展开之后x 的一次项共有2021个,且每一项的系数都为2021(111)1⨯⨯⨯=,∴20202021202120212021(111)+(111)(111)2021a =⨯⨯⨯⨯⨯⨯++⨯⨯⨯=故答案为:2021. 【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键. 25.(1) 37 ;(2)7±. 【分析】(1) 根据x 2+y 2=(x-y )2+2xy ,把已知的式子代入即可求解.(2)根据()22+()4x y x y xy =-+ ,求出()2+x y ,再开方求x+y 即可. 【详解】解:5x y -=,6xy =,(1) 2222()252637.x y x y xy +=-+=+⨯= (2) ()222+()454649x y x y xy =-+=+⨯=,∴=7x y +±. 【点睛】本题主要考查完全平方公式,熟记公式的几个变形公式是解题关键. 26.(1)2()a b +;(2)()()()a b a b x y +-- 【分析】(1)根据完全平方公式展开,合并,再根据完全平方公式即可分解; (2)先提取公因式(x y -),再根据平方差公式继续分解即可. 【详解】解:(1)原式2224a ab b ab =-++222a ab b =++2()a b =+;(2)原式22()()a x y b x y =---()22()a b x y =--()()()a b a b x y =+--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
(人教版)天津市八年级数学上册第四单元《整式的乘法与因式分解》测试题(答案解析)
一、选择题1.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 2.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 3.下列运算正确的是( ) A .()23636a = B .()()22356a a a a --=-+C .842x x x ÷=D .326326x x x ⋅= 4.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-55.下列因式分解正确的是( )A .24414(1)1m m m m -+=-+B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )6.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 7.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+ 8.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <100820159.下列各多项式中,能用平方差公式分解因式的是( ) A .21x -+ B .21x +C .21x --D .221x x -+ 10.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= 11.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或412.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2-二、填空题13.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 14.已知2m a =,5n a =,则2m n a -=___________.15.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.16.因式分解:24ay a -=_______.17.因式分解()2228ac bc abc -+=______.18.若a - b = 1, ab = 2 ,则a + b =______.19.若210x x --=,则3225x x -+的值为________.20.已知4222112x x +-⋅=,则x =________ 三、解答题21.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式244x xy x y -+-和2222a b c bc --+.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:()()()()()()22(1)444444x xy x yx xy x y x x y x y x y x -+-=-+-=-+-=-+()()()()22222222(2)22a b c bca b c bc a b c a b c a b c --+=-+-=--=+--+这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)32236m m m --+(2)2229x xy y --+22.计算:4a 2·(-b )-8ab ·(b -12a ). 23.下面是小华同学分解因式229()4()a x yb y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-① 22()(94)x y a b =-+②2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.24.第一步:阅读材料,掌握知识.要把多项式am +an +bm +bn 分解因式,可以先把它的前两项分成一组,并提出公因式a ,再把它的后两项分成一组,提出公因式b ,从而得: am +an +bm +bn =a (m +n )+b (m +n ).这时,由于a (m +n )+b (m +n )中又有公因式(m +n ),于是可提出(m +n ),从而得到(m +n )(a +b ),因此有: am +an +bn +bn =(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b ).这种方法称为分组法.第二步:理解知识,尝试填空.(1)ab -ac +bc -b 2=(ab -ac )+(bc -b 2)=a (b -c )-b (b -c )= .第三步:应用知识,解决问题.(2)因式分解:x 2y -4y -2x 2+8.第四步:提炼思想,拓展应用.(3)已知三角形的三边长分别是a 、b 、c ,且满足a 2+2b 2+c 2=2b (a +c ),试判断这个三角形的形状,并说明理由.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S .26.a b c 是ABC 的三边,且有2241029a b a b +=+-(1)求a 、b 的值(2)若c 为整数,求c 的值(3)若ABC 是等腰三角形,求这个三角形的周长【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.2.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.3.B解析:B【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.4.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.5.D解析:D【分析】把各式分解得到结果,即可作出判断.【详解】解: A 、()224412-1-+=m m m ,原选项错误,不符合题意;B 、a 2+b 2不能分解,不符合题意;C 、x 2-16y 2=(x +4y )(x -4y ),原选项错误,不符合题意;D 、-16x 2+1=(1+4x )(1-4x ) ,原选项正确,符合题意;故选:D .【点睛】此题考查了运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键. 6.C解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,故选:C【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键. 7.B解析:B【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.8.D解析:D【分析】根据平方差公式因式分解然后约分,便可归纳出来即可.【详解】解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6,此选项不符合题意;B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意;C 、∵A 2=2131=24-, 且345674681012<<<<<, ∴n ≥2时,恒有A n ≤34, 此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯, 当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意;故选择:D .【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.9.A解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键. 10.D解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a--⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.11.D解析:D【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值.【详解】∵|m ﹣3n ﹣2019|=1,∴m ﹣3n ﹣2019=±1,即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2,∴(2020﹣m +3n )2的值为0或4,故选:D .【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.12.B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】 此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.14.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 15.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键.16.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.17.【分析】先利用完全平方公式把原式写成再根据完全平方公式得出结果【详解】解:原式故答案是:【点睛】本题考查因式分解解题的关键是掌握利用乘法公式进行因式分解的方法解析:()22ac bc +【分析】先利用完全平方公式把原式写成2222244a c abc b c ++,再根据完全平方公式得出结果.【详解】解:原式222222448a c abc b c abc =-++ 2222244a c abc b c =++()22ac bc =+.故答案是:()22ac bc +.【点睛】本题考查因式分解,解题的关键是掌握利用乘法公式进行因式分解的方法. 18.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键.19.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键.20.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.三、解答题21.(1)2(2)(3)m m --;(2)()()33x y x y -+--【分析】(1)将1、2项,3、4项分别结合分别分解因式,再进行组间的公因式提取便可达目的;(2)原式分成222x xy y -+和-9两组,前一组利用完全平方公式分解,然后再利用平方差公式继续分解即可.【详解】解:(1)32236m m m --+2(2)3(2)m m m =---2(2)(3)m m =--;(2)2229x xy y --+2229x xy y =-+-()223x y =-- ()()33x y x y =-+--.【点睛】本题考查了分组分解法,关键要明确分组的目的,是分组分解后仍能继续分解,还是分组后利用各组本身的特点进行解题.22.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.23.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下: 229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.24.(1)(b-c)(a-b);(2)(y-2)(x+2)(x-2);(3)这个三角形为等边三角形,理由见解析.【分析】(1)提取b-c即可;(2)先分组,用提取公因式法分解,再用平方差公式分解即可;(3)移项后分解因式,可得出a=b=c,则可得出答案.【详解】解:(1)a(b-c)-b(b-c)=(b-c)(a-b).故答案为:(b-c)(a-b);(2)x2y-4y-2x2+8=(x2y-4y)-(2x2-8)=y(x2-4)-2(x2-4)=(y-2)(x2-4)=(y-2)(x+2)(x-2);(3)这个三角形为等边三角形.理由如下:∵a2+2b2+c2=2b(a+c),∴a2+2b2+c2-2ba-2bc=0,∴a2-2ab+b2+b2-2bc+c2=0,∴(a-b)2+(b-c)2=0,∵(a-b)2≥0,(b-c)2≥0,∴a-b=0,b-c=0,∴a=b=c,∴这个三角形是等边三角形.【点睛】本题考查分组因式分解,等边三角形的定义.能理解题意,掌握分组分解法是解题关键.25.(1)S1=a2-b2,S2=2b2-ab;(2)31;(3)29 2【分析】(1)根据正方形的面积之间的关系,即可用含a、b的代数式分别表示S1、S2;(2)根据S1+S2=a2-b2+2b2-ab=a2+b2-ab,将a+b=10,ab=23代入进行计算即可;(3)根据S3=12(a2+b2﹣ab),S1+S2=a2+b2-ab=29,即可得到阴影部分的面积S3.【详解】解:(1)由图可得,S1=a2-b2,S2=2b2-ab;(2)S1+S2=a2-b2+2b2-ab=a2+b2-ab,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ; (2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+-()()224410250a a b b -++-+=()()22250a b -+-=2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12【点睛】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.。
八年级上册数学 整式的乘法与因式分解单元测试卷(解析版)
八年级上册数学 整式的乘法与因式分解单元测试卷(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.2.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定【答案】C【解析】【分析】 利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.5.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.6.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.7.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.8.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.9.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.10.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.【答案】0【解析】【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z ++-+-+=所以222(21)(44)(69)0x x y y z z -+++++-+=所以222(1)(2)(3)0x y z -+++-= 所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-= 故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.12.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.13.4x(m -n)+8y(n -m)2中各项的公因式是________.【答案】4(m -n)【解析】根据题意,先变形为4x(m -n)+8y(m -n)2,把m-n 看做一个整体,即可找到公因式4(m-n ).故答案为:4(m-n ).点睛:此题主要考查了提公因式法因式分解,根据公因式的特点,利用整体法确定公因式即可,关键是要把n-m 与m-n 变形为统一的式子.14.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.15.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.16.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.17.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.18.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.19.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.20.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab (a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.。
数学八年级上册 整式的乘法与因式分解检测题(Word版 含答案)
数学八年级上册 整式的乘法与因式分解检测题(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ;②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )A .-1B .b ﹣aC .-aD .﹣b【答案】D【解析】【分析】 利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差.【详解】∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+--2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+--∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a -----32b b b =-+=-故选D.【点睛】本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.3.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.4.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.5.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 2【答案】B【解析】图(4)中,∵S 正方形=a 2-2b (a-b )-b 2=a 2-2ab+b 2=(a-b )2,∴(a-b )2=a 2-2ab+b 2.故选B7.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .8.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8.9.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确;D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案.【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知3x y +=,3336x y +=,则xy =______.【答案】-1【解析】【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.12.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49.故答案为:49. 点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和完全平方公式的计算.13.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】 本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.14.若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】225,5a a ==±15.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.16.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【解析】【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.17.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.19.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.20.已知:7a b +=,13ab =,那么 22a ab b -+= ________________.【答案】10【解析】∵(a+b)2 =7 2 =49,∴a 2 -ab+b 2 =(a+b)2 -3ab=49-39=10,故答案为10.。
天津雍阳中学数学整式的乘法与因式分解单元测试与练习(word解析版)
天津雍阳中学数学整式的乘法与因式分解单元测试与练习(word 解析版) 一、八年级数学整式的乘法与因式分解选择题压轴题(难) 1.对二次三项式4x 2﹣6xy ﹣3y 2分解因式正确的是( )A .3213214()()44x y x y +-++B .2132134()()44x y x y +--- C .(321)(321)x y y x y y ---+D .321213(2)(2)22x y x y -- 【答案】D【解析】【分析】 【详解】解:4x 2﹣6xy ﹣3y 2=4[x 2﹣32xy +(34y )2]﹣3y 2﹣94y 2 =4(x ﹣34y )2﹣214y 2 =(2x ﹣32y ﹣212y )(2x ﹣32y +212y ) =(2x ﹣3212+y )(2x ﹣3212) 故选D .【点睛】本题主要是用配方法来分解因式,但本题的计算,分数,根式多,所以学生还是很容易出错的,注意计算时要细心.2.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+,20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.3.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.4.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】()()1+-=x2+(m-1)x-m,而计算结果不含x项,则m-1=0,得m=1.x m x【点睛】本题考查多项式相乘展开系数问题.2x的结果是()5.化简()2A.x4B.2x2C.4x2D.4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6B.4C.6 或4D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.7.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+- =1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.8.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确; 62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误; 故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.将4个数a ,b ,c ,d 排列成2行、2列,两边各加一条竖直线记成a b c d ,定义a bad bc c d =-,上述记号就叫做2阶行列式.若11611x x x x --=-+,则x=_________.【答案】4【解析】【分析】根据题目中所给的新定义运算方法可得方程 (x-1)(x+1)- (x-1)2=6,解方程求得x 即可.【详解】由题意可得,(x-1)(x+1)- (x-1)2=6,解得x=4.故答案为:4.【点睛】本题考查了新定义运算,根据新定义运算的运算方法列出方程是解本题的关键.12.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n .13.在实数范围内因式分解:231x x +-=____________【答案】x x ⎛++ ⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴1x =2x =∴231x x +-=x x ⎛+ ⎝⎭⎝⎭故答案为:3322x x ⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.14.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.15.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.16.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.17.计算(-3x 2y)•(13xy 2)=_____________. 【答案】33x y -【解析】【分析】根据单项式乘以单项式的法则计算即可.【详解】 原式=(-3)×13x 2+1y 1+2= -x 3y 3 故答案为-x 3y 3【点睛】 本题主要考查单项式乘以单项式的法则.要准确把握法则是解答此题的关键.18.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.19.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.20.分解因式:32363a a a -+=_____.【答案】()231a a -【解析】【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可.【详解】 ()()232236332131a a a a a a a a -+=-+=-. 故答案为:()231a a -【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
(常考题)人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(包含答案解析)
一、选择题1.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .122.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0B .2-C .0或2-D .以上答案都不对 3.已知: 13m m +=, 则: 331m m +的值为( ) A .15 B .18C .21D .9 4.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .2105.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+C .()2484x x x +-D .()241x x - 6.下列运算正确..的是( ) A .246x x x ⋅= B .246()x x = C .3362x x x += D .33(2)6x x -=- 7.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12 8.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b -=-;④()**a b c a b a c +=+*.其中所有正确推断的序号是( )A .①②③④B .①③④C .①②D .①③ 9.下列计算正确的是( ) A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- 10.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-711.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .D .612.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=二、填空题13.已知2a -b +2=0,则1-4a +2b 的值为______.14.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.15.若3x y -=,2xy =,则22x y +=__________.16.因式分解:316m m -=________.17.对于2(34)x y --的计算,追风学习小组进行了激烈的讨论,①小杰说只能用公式()2222a b a ab b -=-+;②小聪说可以看成普通的多项式乘以多项式即(34)(34)x y x y ----;③小懿说可以用公式222()2a b a ab b +=++但要看准谁是a 谁是b ;④小王说口算就是22916x y +;⑤小亮说可以转化计算2(34)x y +,你认为谁的说法正确请写出序号____.18.分解因式323a a -=____.19.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 20.若a - b = 1, ab = 2 ,则a + b =______. 三、解答题21.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.22.先化简,再求值:()()()2222(2)x y y x x y x y x --++---,其中1,22x y =-=. 23.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.24.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:-投入)25.观察下列关于自然数的等式:(1)217295⨯+⨯= ①(2)2282106⨯+⨯= ②(3)2392117⨯+⨯= ③……根据上述规律解决下列问题:(1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.26.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫ ⎪⎝⎭,都是“海山有理数对”. (1)数对()()2,1,1,1--中是“海山有理数对”的是_____________;(2)若()3n ,是“海山有理数对”,则n =_____________;(3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为:()22223x a x a x x b +--=-+,∴可得:232a b a -=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.2.A解析:A【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-,∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-. 3.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键4.B解析:B【分析】所求式子变形后,将已知等式变形代入计算即可求出值.【详解】25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯-=25+15=40【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.5.D解析:D【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答.【详解】解:32484x x x -+=2421)x x x -+(=()241x x -,故选:D .【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键. 6.A解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键. 7.C解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.8.D解析:D【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可.【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-,∴a*b=b*a 成立;②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+, ∵()()()422a b a b a b -≠-+ ∴(a*b )2=a 2*b 2不成立; ③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦,∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立;故选:D .【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键. 9.D解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确. 故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.10.C解析:C直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a +2b +10=10-2(2a-b ),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.11.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 12.D解析:D【分析】根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键.二、填空题13.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值.【详解】解:∵220a b -+=,∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=.故答案是:5.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.14.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.15.【分析】根据完全平方公式变形计算即可得解【详解】∵∴=9+4=13故答案为:13【点睛】此题考查完全平方公式变形计算熟记完全平方公式并正确理解所求与公式的关系是解题的关键解析:13【分析】根据完全平方公式变形计算即可得解.【详解】∵3x y -=,2xy =,∴22x y +=2()2x y xy -+=9+4=13,故答案为:13.【点睛】此题考查完全平方公式变形计算,熟记完全平方公式并正确理解所求与公式的关系是解题的关键.16.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.17.①②③⑤【分析】根据多项式乘以多项式和完全平方公式计算即可【详解】①正确;②正确;③正确;④错误;⑤正确;故答案为:①②③⑤【点睛】此题考查了多项式乘以多项式和完全平方公式计算熟练掌握运算法则是解答解析:①②③⑤【分析】根据多项式乘以多项式和完全平方公式计算即可.【详解】①22222(34)(3)2(3)4(4)92416x y x x y y x xy y --=--⋅-⋅+=++,正确;②22222(34)(34)(34)(3)3443(4)92416x y x y x y x x y y x y x xy y --=----=-+⋅+⋅+=++,正确;③22222(34)(3)2(3)(4)(4)92416x y x x y y x xy y --=-+⋅-⋅-+-=++,正确; ④错误;⑤222222(34)(34)(3)234(4)92416x y x y x x y y x xy y --=+=+⋅⋅+=++,正确; 故答案为:①②③⑤【点睛】此题考查了多项式乘以多项式和完全平方公式计算,熟练掌握运算法则是解答此题的关键. 18.【分析】提取公因式a2即可【详解】解:=故答案为:【点睛】本题考查了分解因式方法之一提取公因式正确提取公因式是解决本题的关键解析:2)(3a a -【分析】提取公因式a 2即可.【详解】解:323a a -,=2)(3a a -,故答案为:2)(3a a -.【点睛】本题考查了分解因式方法之一提取公因式,正确提取公因式是解决本题的关键. 19.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 20.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 三、解答题21.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.22.232+x xy ,54-. 【分析】利用平方差公式,和的完全平方公式,单项式乘以多项式法则化简,合并同类项后,代入求值即可.【详解】原式2222244 42x y x xy y xy x =-+++-+ 232x xy =+, 当1,22x y =-=时, 原式2115322224⎛⎫⎛⎫=⨯-+⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了运用乘法公式进行化简,熟练运用公式,正确合并同类项是解题的关键.23.(1)②⑤⑥;(2)ABC ∆是等边三角形;(3)见详解【分析】(1)根据完全平方公式的结构特征和完全平方式的定义,逐一判断即可;(2)把等式右边的代数式移到左边,再利用完全平方公式写成平方和的形式,从而即可得到a ,b ,c 的关系,进而即可得到结论;(3)利用完全平方公式进行因式分解,把原式写成一个整式的平方的形式,即可得到结论.【详解】(1)②24x =2(2)x ;⑤21236x x ++=2(6)x +;⑥2124949a a -+=21(7)7a -是完全平方式,①2244a a b ++;③22x xy y -+; ④21025y y --不是完全平方式,各式中完全平方式的编号有②⑤⑥,故答案为:②⑤⑥;(2)∵22222()a b c c a b ++=+,∴()()2222220a ac cb bc c -++-+=, ∴()()220a c b c -+-=,∴a-c=0且b-c=0,∴a=b=c ,∴ABC ∆是等边三角形;(3)∵原式=2(8)(4)64x x x +++=22(8)(816)64x x x x ++++=222(8)16(8)64x x x x ++++=22(8)8x x ⎡⎤++⎣⎦ =()2288x x ++,∴多项式2(4)(8)64x x x +++是一个完全平方式.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.24.(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小.【详解】解:(1)(x +y )(x -y )+(x +3y )2,=x 2-y 2+x 2+6xy +9y 2,=2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==,整理得,12350270x y x y -=⎧⎨+=⎩, 解得:x =30,y =10,答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米,A 园区的净收益(22-12)×12xy =36000元,B 园区的净收益为(26-16)(x +3y )2=36000元,∴B 园区的净收益等于A 园区的净收益.【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.25.(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.26.(1)(-1,1);(2)3;(3)-1【分析】(1)根据公式列式计算即可判断;(2)根据公式列方程解答即可;(3)根据公式列方程求出221m m -=,再代入代数式计算即可.【详解】(1)∵221(2)13-⨯+≠--,211(1)13-⨯+≠--,∴数对()()2,1,1,1--中是“海山有理数对”的是(-1,1);故答案为:(-1,1);(2)由题意得:2333n n =+-,解得n=3,故答案为:3;(3)由题意得:2223m m =+-,∴221m m -=,∴原式=22(342)m m m --+=22342m m m -+-=23(2)2m m --+=312-⨯+=-1.【点睛】此题考查新定义,有理数的混合运算,整式的混合运算,求代数式的值正确理解题意中的计算公式正确列式是解题的关键.。
最新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(有答案解析)(1)
一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a cb d ,定义ac b d=ad -bc .上述记号就叫做2阶行列式,若11x x +-11x x -+=12,则x=( ).A .2B .3C .4D .62.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -3.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10± B .20±C .10D .204.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -5.形如ab cd的式子叫做二阶行列式,它的算法是:ab ad bc cd=-,则221a a a a -++的运算结果是( ) A .4a B .4a - C .4 D .4- 6.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4B .4C .﹣6D .67.将11n n x x +--因式分解,结果正确的是( ) A .()121n x x--B .()11nx x --C .()1nxx x --D .()()111n xx x -+-8.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6- B .0 C .12 D .18 9.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数10.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3211.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+112.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .27D .6二、填空题13.如果23a b -的值为1-,则645b a -+的值为_____. 14.若2330x x --=,则()()()123x x x x ---的值为______.15.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____.16.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简) 17.计算:32(2)a b -=________. 18.已知4222112x x +-⋅=,则x =________ 19.因式分解:24a b b -=______.20.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.三、解答题21.先化简,再求值:2(21)(21)(23)+---a a a ,其中112a =-. 22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 23.a b c 是ABC 的三边,且有2241029a b a b +=+- (1)求a 、b 的值 (2)若c 为整数,求c 的值(3)若ABC是等腰三角形,求这个三角形的周长24.因式分解:(1)4x2y﹣4xy+y;(2)9a2﹣4(a+b)2.25.计算:(1)2a(4a2-2a+1)(2)(2x -1)(2x+2)-(-2x)2(3)(-x-2y)(x-2y)-(2y-x)2(4)119910022⨯(用简便方法计算)26.阅读:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴343nm n+=-⎧⎨=⎩,解得217mn=-⎧⎨=-⎩∴另一个因式为x﹣7,m的值为﹣21问题:仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣5,求另一个因式及k的值.(2)已知2x2﹣13x+p有一个因式x﹣3,则P=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【详解】解:根据题意化简1111x xx x+--+=12,得(x+1)2-(x-1)2=12,整理得:x2+2x+1-(1-2x+x2)-12=0,即4x=12,解得:x=3,故选:B.【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.2.C【分析】分别计算每个选项然后进行判断即可.【详解】A、()326=,选项错误;x xB、1028÷,选项错误;x x x=C、235x x x,选项正确;D、6x x-不能得到5x,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.3.B解析:B【分析】由4a2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m的值.【详解】解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选:B.【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4.D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有4种,分别是:添加6x,得9x2+1+6x=(3x+1)2;添加﹣6x,得9x2+1﹣6x=(3x﹣1)2;添加﹣9x2,得9x2+1﹣9x2=12;添加﹣1,得9x2+1﹣1=(3x)2,故选:D.【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.5.A【分析】根据定义把二阶行列式表示成整式,然后再化简计算即可. 【详解】 解:由题意可得:()()()212221a a a a a a a a -=+--+++=()224a a a +-- =224a a a +-+ =a+4, 故答案为A . 【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键.6.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解. 【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.7.D解析:D 【分析】先提公因式x n-1,再用平方差公式进行分解即可. 【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1), 故选:D 【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.8.A解析:A 【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可. 【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=, 则()62106256126a b a b --=-+=-=-. 故选:A . 【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.9.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C . 【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.10.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D . 【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.11.C解析:C【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可. 【详解】 解:A:()()4444443381n n n a b a b a b --=--=- ,故答案正确;B:()41444n nn na b a b +++=+ ,故答案正确; C:()()232262623427108n nn a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n nn nx x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确.故选:C . 【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.12.D解析:D 【分析】利用平方差公式计算即可. 【详解】当x +1,y 1时,xy +11))2﹣12 =7﹣1 =6, 故选:D. 【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键.二、填空题13.7【分析】把所求代数式整理成已知条件的形式然后整体代入进行计算即可得解【详解】解:∵2a-3b=-1∴3b-2a=1∴=2+5=7故答案是:7【点睛】本题考查了代数式求值整体思想的利用是解题的关键解析:7 【分析】把所求代数式整理成已知条件的形式,然后整体代入进行计算即可得解. 【详解】 解:∵2a-3b=-1,∴3b -2a=1,∴()64523b 2a 5b a -+=-+=2+5=7, 故答案是:7. 【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.14.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x +3则原式=(x2−x )(x2−5x +6)=(2x +3)(−2x +解析:15 【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值. 【详解】 ∵x 2−3x−3=0, ∴x 2=3x +3,则原式=(x 2−x )(x 2−5x +6) =(2x +3)(−2x +9) =−4x 2+12x +27 =−4(3x +3)+12x +27 =−12x−12+12x +27 =15. 故答案为:15 【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.15.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1 【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可. 【详解】∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0, ∴x=-2,y=2,∴2021()xy=-1,故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.16.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m与n的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后m放入其中,得到数n,计算出m与n的关系,再计算数对得到的数,再由数对(,0)n m,即可得到结果.(,)【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1;故答案为:-1;(1)将数对3-1-2)=-2;故答案为:-2;m放入其中得到数n,可得:(m−1)×(0−2)=n,则-2m+2=n,(2)根据数对(,0)∴将数对(n,m)放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m2+5m-2.故答案为:-2m2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.17.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32-=62a b(2)4a b,4a b.故答案为:62【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.18.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3 【分析】利用同底数幂乘法的逆运算求解即可. 【详解】 ∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==, ∴14x +=, ∴3x =, 故答案为:3. 【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.19.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及 解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可. 【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1). 故答案为:b (2a-1)(2a+1). 【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键.20.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出解析:1 【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可. 【详解】原方程可整理为22(1)(1)80m x m x --++=. 根据题意可知210m -=且10m +≠, 所以1m =. 所以2008200811111mm --=--=.故答案为:1. 【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.三、解答题21.12a -10,-11【分析】先按乘法公式进行化简,再代入求值即可.【详解】解:原式=2241(4129)---+a a a=22414129--+-a a a=12a -10 当112a =-时, 原式=112()1012⨯-- =110--=11-.【点睛】本题考查了运用乘法公式进行化简整式并求值,解题关键是熟练运用乘法公式进行化简,注意符号的变化.22.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ; (2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+-()()224410250a a b b -++-+=()()22250a b -+-=2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12【点睛】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.24.(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x 2y ﹣4xy +y=y (4x 2﹣4x +1)=y (2x ﹣1)2;(2)9a 2﹣4(a +b )2=[3a +2(a +b )][3a ﹣2(a +b )]=(5a +2b )(a ﹣2b ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 25.(1)8a 3-4a 2+2a ;(2)2x-2;(3)-2x 2+4xy ;(4)399994. 【分析】(1)利用单项式乘多项式法则计算即可;(2)根据多项式乘多项式和积的乘方展开,再合并同类项即可;(3)根据平方差公式和完全平方公式展开,再合并同类项即可;(4)原式先变形,再利用平方差公式计算即可.【详解】(1)2a(4a 2-2a+1)= 2a ⋅4a 2-2a ⋅2a +2a ⋅1=8a 3-4a 2+2a ;(2)(2x -1)(2x+2)-(-2x)2=4x 2+4x-2x-2-4x 2=2x-2;(3)(-x-2y)(x-2y)-(2y-x)2= (-2y-x)( -2y+x) -(2y-x)2=4y 2-x 2-4y 2-x 2+4xy=-2x 2+4xy ; (4)119910022⨯=2211113(100)(100)100()10000999922244-⨯+=-=-=. 【点睛】此题考查了整式的混合运算,熟练掌握相应的运算法则是解答此题的关键. 26.(1)另一个因式为:4x +,20k =;(2)21.【分析】根据题意给出的方法即可求出答案.【详解】解:(1)设另外一个因式为:x n +,∴()()22325x x k x x n +-=-+, ∴2535n n k -=⎧⎨-=-⎩, ∴4n =,20k =;(2)设另一个因式为:2x n +,∴2x 2﹣13x +p =(2x +n )(x ﹣3)∴6133n n p -=-⎧⎨-=⎩∴解得:217p n =⎧⎨=-⎩ 故答案为:21.【点睛】本题考查因式分解的意义,解题的关键熟练运用因式分解法,本题属于基础题型.。
最新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(包含答案解析)(2)
一、选择题1.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .72.已知A 为多项式,且2221241A x y x y =--+++,则A 有( )A .最大值23B .最小值23C .最大值23-D .最小值23- 3.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+C .()2484x x x +-D .()241x x - 4.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab 5.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数 6.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ 7.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 2 8.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 9.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷=10.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= 11.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20 12.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6 二、填空题13.如果210x x m -+是一个完全平方式,那么m 的值是__________.14.已知2a -b +2=0,则1-4a +2b 的值为______.15.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________. 16.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.17.已知2320x y -+=,则()2235x y -+的值为______.18.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.19.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________.20.已知23x y -=,则432x y --=________. 三、解答题21.如图,某长方形广场的四个角都有一块半径为r 米的四分之一圆形的草地,中间有一个半径为r 米的圆形水池,长方形的长为a 米,宽为b 米.(1)整个长方形广场面积为 ;草地和水池的面积之和为 ;(2)若a =70,b =50,r =10,求广场空地的面积(π取3.142,计算结果精确到个位).22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(2)运用(1)中的结论,完成下列各题:①已知:3a b -=,2224a b -=,求+a b 的值;②计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⋅⋅⋅⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 23.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).24.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是________;(2)根据(1)中的结论,若95,4x y x y ⋅+==,则x y -=________; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)m -(2020)m -的值.25.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-; 请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.26.已知5x y -=,6xy =,求下列各式的值.(1)22x y +;(2)x y +【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.2.A解析:A【分析】利用分组分解法,变为完全平方式解答即可.【详解】2221241A x y x y =--+++=2221218441184x x y y -+--+-+++=()()222694423x x y y --+--++=()()2223223x y ----+∵()2230x --≤,()220y --≤, ∴()()2223223x y ----+≤23, ∴多项式的最大值是23,故选A .【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.3.D解析:D【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答.【详解】解:32484x x x -+=2421)x x x -+(=()241x x -,故选:D .【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键. 4.A解析:A【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可.【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A .【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.5.C解析:C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键. 6.C解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算.【详解】解:A. 2222a a a +=,故选项A 计算错误;B. 235a a a ⋅=,故选项B 计算错误;C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误;故选:C【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题. 7.D解析:D【分析】根据S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG 代入数值求出图形面积,再根据计算各整式判断即可.【详解】S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG=AD •AB +DC •DE +CF •FH .∵AB =DC =AD =x ,DE =CF =3,FH =2,∴S 楼房的面积=x 2+3x +6.∵(x+3)(x+2)﹣2x= x 2+3x +6,x (x +3)+6= x 2+3x +6,x (x +2)+x 2=2 x 2+2x , 故选:D ..【点睛】此题考查列整式求图形面积,整式的混合运算,掌握整式的运算法则是解题的关键. 8.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.9.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412xx -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.10.D解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.11.A解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.12.D解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.二、填空题13.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25【分析】利用完全平方公式的结构特征,即可求出m 的值.【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值.【详解】解:∵220a b -+=,∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=.故答案是:5.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.15.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想 解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.16.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x 的一次项所以让一次项的系数等于0得a 的等式再求解【详解】解:(2x-a )(x+1)=2x2+(2-a )x-a ∵积中不含x 的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【详解】解:(2x-a )(x+1)=2x 2+(2-a )x-a ,∵积中不含x 的一次项,∴2-a=0,∴a=2,故答案为:2.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.17.1【分析】根据求出代入计算即可【详解】∵∴∴=故答案为:1【点睛】此题考查已知式子的值求代数式的值掌握有理数混合运算法则是解题的关键 解析:1【分析】根据2320x y -+=求出232x y -=-,代入计算即可.【详解】∵2320x y -+=,∴232x y -=-,∴()2235x y -+=2(2)51⨯-+=,故答案为:1.【点睛】此题考查已知式子的值求代数式的值,掌握有理数混合运算法则是解题的关键. 18.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案.【详解】∵222(2)444x x x x bx ±±=+=++,∴b=4±,故答案为:4±.【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.19.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键. 20.3【分析】把看成一个整体原式可化为2()-3整体代入即可【详解】解:原式=2()-3=2×3-3=3故答案为:3【点睛】本题考查了求代数式的值把看成一个整体是解题的关键解析:3【分析】把2x y -看成一个整体,原式可化为2(2x y -)-3,整体代入即可.【详解】解:原式=2(2x y -)-3=2×3-3=3,故答案为:3.【点睛】本题考查了求代数式的值,把2x y -看成一个整体是解题的关键.三、解答题21.(1)ab 平方米;22r π平方米,(2)2872平方米【分析】(1)根据长方形面积公式即可表示出广场面积;根据圆的面积公式即可表示草地和水池的面积;(2)长方形面积减去草地和水池的面积的和即可得到广场空地的面积,再代入求值即可.【详解】(1)整个长方形广场面积为ab 平方米;草地和水池的面积之和为214r 4π⨯⨯+2r π=22r π平方米,故答案是:ab 平方米;22r π平方米;(2)依题意得:空地的面积为 22ab r π-当a =70,b =50,r =10时,∴ 22270502 3.14210ab r π-=⨯-⨯⨯2871.62872=≈答:广场空地的面积约为2872平方米.【点睛】本题考查列代数式、求代数式的值,列出正确的代数式是正确解答的关键.22.(1)a 2-b 2=(a+b )(a-b );(2)①8;②20214040【分析】(1)分别表示拼接前后的阴影部分的面积,可得等式a 2-b 2=(a+b )(a-b ),得出答案; (2)①利用平方差公式将a 2-b 2化为(a+b )(a-b ),再整体代入即可;②先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)图1中阴影部分的面积为a 2-b 2,图2中阴影部分的面积为(a+b )(a-b ), 因此有a 2-b 2=(a+b )(a-b ),∴能验证的等式是a 2-b 2=(a+b )(a-b )(2)①∵a 2-b 2=(a+b )(a-b )=24,a-b=3,∴a+b=8;②原式=11111111(1)(1)(1)(1)(1)(1)...(1)(1)22334420202020-+-+-+-+ 1324352019,223344202020202021=⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040= 【点睛】本题考查平方差公式的意义和应用,理解和掌握平方差公式的结构特征是正确应用的前提.23.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.24.(1)(a +b )2-(a -b )2=4ab ;(2)±4;(3)-3【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,将x +y =5,x •y 94=代入计算即可得出答案;(3)将等式(2019-m )+(m -2020)=-1两边平方,再根据已知条件及完全平方公式变形可得答案.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,∵图1的面积和图2中白色部分的面积相等,∴(a +b )2-(a -b )2=4ab ,故答案为:(a +b )2-(a -b )2=4ab ;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,∵x +y =5,x •y =94, ∴52-(x -y )2=4×94, ∴(x -y )2=16∴x -y =±4,故答案为:±4;(3)∵(2019-m )+(m -2020)=-1,∴[(2019-m )+(m -2020)]2=1,∴(2019-m )2+2(2019-m )(m -2020)+(m -2020)2=1,∵(2019-m )2+(m -2020)2=7,∴2(2019-m )(m -2020)=1-7=-6;∴(2019-m )(m -2020)=-3.【点睛】本题考查了完全平方公式的几何背景,熟练运用完全平方公式并数形结合是解题的关键. 25.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.26.(1) 37 ;(2)7±.【分析】(1) 根据x 2+y 2=(x-y )2+2xy ,把已知的式子代入即可求解.(2)根据()22+()4x y x y xy =-+ ,求出()2+x y ,再开方求x+y 即可.【详解】解:5x y -=,6xy =,(1) 2222()252637.x y x y xy +=-+=+⨯=(2) ()222+()454649x y x y xy =-+=+⨯=,∴=7x y +±.【点睛】本题主要考查完全平方公式,熟记公式的几个变形公式是解题关键.。
(人教版)天津市八年级数学上册第四单元《整式的乘法与因式分解》测试卷(有答案解析)
一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2 B .3 C .4 D .62.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 3.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .12 4.形如abcd 的式子叫做二阶行列式,它的算法是:ab ad bc cd =-,则221a a a a -++的运算结果是( )A .4aB .4a -C .4D .4- 5.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 6.把多项式32484x x x -+分解因式,结果正确的是( ) A .()()413x x x +- B .()2421x x x -+ C .()2484x x x +- D .()241x x - 7.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 8.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+ 9.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=10.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7 B .9 C .-63 D .1211.若y 2+4y 0,则xy 的值为( )A .﹣6B .﹣2C .2D .612.已知()()22113(21)a b ab ++=-,则1b a a ⎛⎫-⎪⎝⎭的值是( ) A .0 B .1 C .-2 D .-1二、填空题13.如果23a b -的值为1-,则645b a -+的值为_____.14.已知2a -b +2=0,则1-4a +2b 的值为______.15.计算:248(21)(21)(21)(21)1+++++=___________.16.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)17.因式分解:316m m -=________.18.因式分解:24ay a -=_______.19.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a +b )0=1(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.三、解答题21.(1)23235ab a b ab(2)23233x x x x22.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.23.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:C D 投入(元/平方米)12 16 收益(元/平方米) 22 26-投入)24.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++-25.计算:(1)2a(4a2-2a+1)(2)(2x -1)(2x+2)-(-2x)2(3)(-x-2y)(x-2y)-(2y-x)2(4)119910022⨯(用简便方法计算)26.已知29a=,b是最大的负整数,c是绝对值最小的数,d是倒数等于本身的数,求a b c d+--的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【详解】解:根据题意化简1111x xx x+--+=12,得(x+1)2-(x-1)2=12,整理得:x2+2x+1-(1-2x+x2)-12=0,即4x=12,解得:x=3,故选:B.【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.2.D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.3.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 4.A解析:A【分析】根据定义把二阶行列式表示成整式,然后再化简计算即可.【详解】解:由题意可得:()()()212221aa a a a a a a -=+--+++ =()224a a a +--=224a a a +-+=a+4,故答案为A .【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键. 5.D解析:D【分析】将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.6.D解析:D【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答.【详解】解:32484x x x -+=2421)x x x -+(=()241x x -,故选:D .【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键. 7.C解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,故选:C【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键. 8.B解析:B【分析】根据平方差公式()()22a b a b a b -+=-一项一项代入判断即可. 【详解】A 选项:两项都是互为相反数,故不能用平方差公式;B 选项:两项有一项完全相同,另一项为相反数,故可用平方差公式;C 选项:两项完全相同,故不能用平方差公式;D 选项:有一项2-与1不同,故不能用平方差公式.故选:B .【点睛】此题考查平方差的基本特征:()()22a b a b a b -+=-中a 与b 两项符号不同,难度一般.9.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.10.C解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.11.A解析:A【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解.【详解】解:∵2440y y ++=∴(y +2)20∴y +2=0且x +y ﹣1=0解得:y =﹣2,x =3∴xy =﹣6.故选:A .【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0. 12.D解析:D【分析】先对()()22113(21)a b ab ++=-进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫- ⎪⎝⎭进行因式分解即可.【详解】∵()()22113(21)a b ab ++=-,∴2222163a b a b ab +++=-, 22222440a b ab a b ab +-+-+=,()()2220a b ab -+-=,∴a b =,2ab =,∴1121b b a ab a a⎛⎫-=-=-=- ⎪⎝⎭ 故选:D .【点睛】本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.二、填空题13.7【分析】把所求代数式整理成已知条件的形式然后整体代入进行计算即可得解【详解】解:∵2a-3b=-1∴3b-2a=1∴=2+5=7故答案是:7【点睛】本题考查了代数式求值整体思想的利用是解题的关键解析:7【分析】把所求代数式整理成已知条件的形式,然后整体代入进行计算即可得解.【详解】解:∵2a-3b=-1,∴3b -2a=1,∴()64523b 2a 5b a -+=-+=2+5=7,故答案是:7.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.14.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值.【详解】解:∵220a b -+=,∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=.故答案是:5.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.15.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.16.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.17.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.18.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.19.②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1,∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.20.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15【分析】多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x x x x2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.22.(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可; ②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=, ()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=即()2201925,x -= 20195x ∴-=±.【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.23.(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小.【详解】解:(1)(x +y )(x -y )+(x +3y )2,=x 2-y 2+x 2+6xy +9y 2,=2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==,整理得,12350270x y x y -=⎧⎨+=⎩, 解得:x =30,y =10,答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米,A 园区的净收益(22-12)×12xy =36000元,B 园区的净收益为(26-16)(x +3y )2=36000元,∴B 园区的净收益等于A 园区的净收益.【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.24.(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+-22212x x x x =++--+(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 25.(1)8a 3-4a 2+2a ;(2)2x-2;(3)-2x 2+4xy ;(4)399994. 【分析】(1)利用单项式乘多项式法则计算即可;(2)根据多项式乘多项式和积的乘方展开,再合并同类项即可;(3)根据平方差公式和完全平方公式展开,再合并同类项即可;(4)原式先变形,再利用平方差公式计算即可.【详解】(1)2a(4a 2-2a+1)= 2a ⋅4a 2-2a ⋅2a +2a ⋅1=8a 3-4a 2+2a ;(2)(2x -1)(2x+2)-(-2x)2=4x 2+4x-2x-2-4x 2=2x-2;(3)(-x-2y)(x-2y)-(2y-x)2= (-2y-x)( -2y+x) -(2y-x)2=4y 2-x 2-4y 2-x 2+4xy=-2x 2+4xy ; (4)119910022⨯=2211113(100)(100)100()10000999922244-⨯+=-=-=. 【点睛】此题考查了整式的混合运算,熟练掌握相应的运算法则是解答此题的关键. 26.a+b-c-|d|的值为1或-5.【分析】先确定a ,b ,c ,d 的值,分类代入代数式计算即可.【详解】∵a 2=9 ∴a =±3,∵b 是最大的负整数 ,∴b=-1,∵c 是绝对值最小的数,∴c=0,∵d 的倒数是他本身,∴d=±1,|d|=1,①当a =3,b=-1,c=0,|d|=1,原式=3+(-1)-0-1=1,②当a =-3,b=-1,c=0,|d|=1,原式=-3+(-1)-0-1=-5,综上a +b-c-|d|的值为1或-5.【点睛】 本题考查代数式求值问题,掌握代数式求值的方法,关键是根据条件确定a ,b ,c ,d 的值是解题关键.。
(人教版)天津市八年级数学上册第四单元《整式的乘法与因式分解》测试(答案解析)
一、选择题1.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .92.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 3.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .14.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n ==5.已知A 为多项式,且2221241A x y x y =--+++,则A 有( ) A .最大值23B .最小值23C .最大值23-D .最小值23-6.已知25y x -=,那么()2236x y x y --+的值为( ) A .10B .40C .80D .2107.将11n n x x +--因式分解,结果正确的是( ) A .()121n x x--B .()11nx x --C .()1nxx x --D .()()111n xx x -+-8.化简()2003200455-+所得的值为( )A .5-B .0C .20025D .200345⨯9.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 210.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5 11.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( ) A .1B .0C .1或2D .0或412.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-二、填空题13.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.14.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____. 15.已知2m n +=,2mn =-,则(1)(1)m n --=________.16.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 17.计算:32(2)a b -=________. 18.因式分解:24ay a -=_______.19.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.20.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________三、解答题21.(1)23235ab a b ab (2)23233x xxx22.因式分解:(1)382a a - (2)()()24129x y x y +-+-23.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是________; (2)根据(1)中的结论,若95,4x y x y ⋅+==,则x y -=________; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)m -(2020)m -的值.24.在通常的日历牌上,可以看到一些数所满足的规律,表①是2020年12月份的日历牌.星期一 星期二 星期三 星期四 星期五 星期六 星期日1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728 293031(1)在表①中,我们选择用如表②那样22⨯的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.如:用正方形框圈出3,4,10,11四个数,然后将它们交叉相乘,再相减,即3114107⨯-⨯=-或4103117⨯-⨯=.请你用表②的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可). (2)在用表②的正方形框任意圈出的22⨯个数中,将它们先交叉相乘,再相减.若设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字,列出算式并算出结果(选择其中一个算式即可).(3)若选择用表③那样33⨯的正方形方框任意圈出33⨯个数,将正方形方框四角....位置上的4个数先交叉相乘,再相减,你发现了什么.选择一种情况说明理由. 25.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式. 例如由图①可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.请解答下列问题:(1)写出由图②可以得到的数学等式 ;(2)利用(1)中得到的结论,解决下面问题:若a +b +c =6,a 2+b 2+c 2=14,求ab +bc +ac 的值;(3)可爱同学用图③中x 个边长为a 的正方形,y 个宽为a ,长为b 的长方形,z 个边长为b 的正方形,拼出一个面积为(2a +b )(a +4b )的长方形,则x +y +z = . 26.把下列多项式因式分解:(1)2()4a b ab -+; (2)22()()a x y b y x -+-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.2.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.3.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩,解得:=2=1x y ⎧⎨-⎩, ∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.4.D解析:D 【分析】根据题意逐一计算即可判断. 【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意; 故选:D . 【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常5.A解析:A 【分析】利用分组分解法,变为完全平方式解答即可. 【详解】2221241A x y x y =--+++=2221218441184x x y y -+--+-+++ =()()222694423x x y y --+--++ =()()2223223x y ----+ ∵()2230x --≤,()220y --≤,∴()()2223223x y ----+≤23,∴多项式的最大值是23, 故选A . 【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.6.B解析:B 【分析】所求式子变形后,将已知等式变形代入计算即可求出值. 【详解】 25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯- =25+15 =40 故选:B 【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.7.D解析:D 【分析】先提公因式x n-1,再用平方差公式进行分解即可.x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1), 故选:D 【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.8.D解析:D 【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案. 【详解】 解:()2003200455-+=(-5)2003+(-5)2004 =(-5)2003(1-5) =4×52003, 故选:D . 【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.9.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意; B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.10.A解析:A 【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解 【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么: 第1次输出的结果是5第2次输出的结果是16 第3次输出的结果是8 第4次输出的结果是4 第5次输出的结果是2 第6次输出的结果是1 第7次输出的结果是4 ……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等 故选:A 【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律11.D解析:D 【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值. 【详解】∵|m ﹣3n ﹣2019|=1, ∴m ﹣3n ﹣2019=±1, 即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2, ∴(2020﹣m +3n )2的值为0或4, 故选:D . 【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.12.B解析:B 【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得xy 即可求解. 【详解】解:由题意,得:521303100x y x y +-=⎧⎨--=⎩,解得:31x y =⎧⎨=-⎩,∴x y=(﹣1)3=﹣1,∴x y的立方根为﹣1,故选:B.【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.﹣25【分析】将3x+3y﹣4xy变形为3(x+y)﹣4xy再整体代入求值即可【详解】解:∵x+y=﹣3xy=4∴3x+3y﹣4xy=3(x+y)﹣4xy=3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x+3y﹣4xy变形为3(x+y)﹣4xy,再整体代入求值即可.【详解】解:∵x+y=﹣3,xy=4,∴3x+3y﹣4xy=3(x+y)﹣4xy=3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键.14.3x-4【分析】利用面积公式计算即可得到答案【详解】设这条边上的高为a由题意得:∴ay=3xy-4y∴a=3x-4故答案为:3x-4【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单解析:3x-4【分析】利用面积公式计算即可得到答案.【详解】设这条边上的高为a,由题意得:12342y a xy y ⋅⋅=-,∴ay=3xy-4y,∴a=3x-4,故答案为:3x-4.【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单项式,再把结果相加.15.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n与mn的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m)(1-n)=1-(m+n)+mn=1-2-2=-3故答案为:-3【解析:-3 【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n 与mn 的值代入计算即可求出值. 【详解】解:∵m+n=2,mn=-2,∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3. 故答案为:-3. 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6 【分析】结合题意,根据整式乘法的性质计算,即可得到答案. 【详解】∵()()22524x x x mx -+--的展开式中不含2x 项 ∴()224520x x mx x ⨯-+⨯+⨯=∴4100m -++= ∴6m =- 故答案为:-6. 【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解.17.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘 解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可. 【详解】32(2)a b -=624a b ,故答案为:624a b . 【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.18.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.19.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积. 20.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab项的符号上,通过加上或者减去4ab 可相互变形得到.三、解答题21.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.22.(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.23.(1)(a +b )2-(a -b )2=4ab ;(2)±4;(3)-3【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,将x +y =5,x •y 94=代入计算即可得出答案;(3)将等式(2019-m )+(m -2020)=-1两边平方,再根据已知条件及完全平方公式变形可得答案.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,∵图1的面积和图2中白色部分的面积相等,∴(a +b )2-(a -b )2=4ab ,故答案为:(a +b )2-(a -b )2=4ab ;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,∵x +y =5,x •y =94, ∴52-(x -y )2=4×94, ∴(x -y )2=16∴x -y =±4,故答案为:±4;(3)∵(2019-m )+(m -2020)=-1,∴[(2019-m )+(m -2020)]2=1,∴(2019-m )2+2(2019-m )(m -2020)+(m -2020)2=1,∵(2019-m )2+(m -2020)2=7,∴2(2019-m )(m -2020)=1-7=-6;∴(2019-m )(m -2020)=-3.【点睛】本题考查了完全平方公式的几何背景,熟练运用完全平方公式并数形结合是解题的关键. 24.(1)91710167⨯-⨯=-或10169177⨯-⨯=,(2)+1n ,n+7,n+8,()()()+178n n n n +-+,7,或()()()8+17n n n n +-+,-7;(3)1×17-3×15=-28或3×15-1×17=28,发现:它们最后得结果是28或-28,n ,+2n ,n+14,n+16,()()()+21416n n n n +-+,28,()()()16+214n n n n +-+,-28,它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【分析】(1)先画出选出的各数,再计算即可;(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+1n+7n+8n ,,,列出算式()()()+178n n n n +-+或()()()8+17n n n n +-+,求出即可;(3)先圈出各个数,列出算式,设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,列出算式,求出即可.【详解】(1)圈出的数如图,9,10;16,17,91710161531607⨯-⨯=-=-或10169171601537⨯-⨯=-=,(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为,+1n+7n+8n ,,,()()()+178n n n n +-+,=22878n n n n ++--,=7,或()()()8+17n n n n +-+,=22887n n n n +---,=-7;(3)圈出的数为1,2,3;8,9,10;15,16,17四角数位1,3,15,171×17-3×15=17-45=-28或3×15-1×17=35-17=28,发现:它们最后得结果是28或-28,理由是:设设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,()()()+21416n n n n +-+,=22162816n n n n ++--,=28,()()()16+214n n n n +-+,=22161628n n n n +---,=-28.结论:它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【点睛】本题考查整式的混合运算的应用,掌握整式的混合运算法则,能理解题意,会按要求列式是解题关键,培养阅读能力和计算能力.25.(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)11;(3)15【分析】(1)观察图形可得:大正方形的边长为:a+b+c ,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,由此可得出等式;(2)将a+b+c =6,a 2+b 2+c 2=14代入(1)中所得的等式,计算即可;(3)由题意得:(2a+b )(a+4b )=xa 2+yab+zb 2,将等式左边展开,再比较系数即可得出x ,y ,z 的值,然后求和即可.【详解】解:(1)观察图形可得:大正方形的边长为:a +b +c ,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,∴(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc .故答案为:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc .(2)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,a +b +c =6,a 2+b 2+c 2=14,∴62=14+2(ab +ac +bc ),∴ab +ac +bc =(36﹣14)÷2=11.(3)由题意得:(2a +b )(a +4b )=xa 2+yab +zb 2,∴2a 2+8ab +ab +4b 2=xa 2+yab +zb 2,∴2a 2+9ab +4b 2=xa 2+yab +zb 2,∴x =2,y =9,z =4,∴x +y +z =2+9+4=15.故答案为:15.【点睛】本题考查了因式分解的应用、完全平方公式的几何背景及多项式乘法等知识点,数形结合并熟练掌握相关运算法则是解题的关键.26.(1)2()a b +;(2)()()()a b a b x y +--【分析】(1)根据完全平方公式展开,合并,再根据完全平方公式即可分解;(2)先提取公因式(x y -),再根据平方差公式继续分解即可.【详解】解:(1)原式2224a ab b ab =-++222a ab b =++2()a b =+;(2)原式22()()a x y b x y =---()22()a b x y =--()()()a b a b x y =+--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
最新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(含答案解析)(1)
一、选择题1.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 2.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 3.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 4.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .12 5.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2- D .以上答案都不对 6.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == 7.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ 8.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6- B .5- C .4D .4- 9.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a +=C .()2424m m --=-+D .33a b ab += 10.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( )A .34B .54-C .12-D .5411.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-712.下列运算正确的是( ) A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.14.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy 的值为____.15.若2,3x y a a ==,则22x y a +=_______________________.16.若2211392781n n ++⨯÷=,则n =____.17.已知102m =,103n =,则32210m n ++=_______.18.因式分解:316m m -=________.19.一个长方形的两邻边分别是8x -,2x -,若()()228213x x -+-=,则这个长方形的面积是_________20.分解因式:2a 2﹣8=______. 三、解答题21.计算下列各题:(1)2(2)-+3125-+9;(2)(3+7)(3﹣7)+2(2﹣2).22.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.23.先化简,再求值:()()()2222(2)x y y x x y x y x --++---,其中1,22x y =-=. 24.因式分解: (1)2ax 2-4axy +2ay 2(2)x 2-2x -825.观察下列关于自然数的等式:(1)217295⨯+⨯= ①(2)2282106⨯+⨯= ②(3)2392117⨯+⨯= ③……根据上述规律解决下列问题:(1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.26.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式. 例如由图①可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.请解答下列问题:(1)写出由图②可以得到的数学等式 ;(2)利用(1)中得到的结论,解决下面问题:若a +b +c =6,a 2+b 2+c 2=14,求ab +bc +ac 的值;(3)可爱同学用图③中x 个边长为a 的正方形,y 个宽为a ,长为b 的长方形,z 个边长为b 的正方形,拼出一个面积为(2a +b )(a +4b )的长方形,则x +y +z = .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可.【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意;B 、(a 2)3=a 6,故选项不B 符合题意;C 、(ab 2)3=a 3b 6,故选项C 不符合题意;D 、a 6÷a 2=a 4,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.2.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.3.D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.4.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 5.A解析:A【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-. 6.D解析:D【分析】根据题意逐一计算即可判断.【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意;故选:D .【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.7.C解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算.【详解】解:A. 2222a a a +=,故选项A 计算错误;B. 235a a a ⋅=,故选项B 计算错误;C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误;故选:C【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题. 8.D解析:D【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:-8a-2b=-5,再将x=-2代入这个代数式中,最后整体代入即可.【详解】解:当x=2时,代数式ax 3+bx+1的值为6,则8a+2b+1=6,即8a+2b=5,∴-8a-2b=-5,则当x=-2时,ax 3+bx+1=(-2)3a-2b+1=-8a-2b+1=-5+1=-4,故选:D .【点睛】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.9.A解析:A根据同类项的定义与单项式的乘法法则,分别判断分析即可.【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确.故选A.【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.10.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键. 11.C解析:C【分析】直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a +2b +10=10-2(2a-b ),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C .此题主要考查了代数式求值,正确将原式变形是解题关键.12.B解析:B【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.870【分析】将n =3代入数值运算程序计算判断结果与30大小小于或等于30再代入计算大于30输出即可得到输出结果【详解】解:当n =3时根据数值运算程序得:32−3=9−3=6<30当n =6时根据数值解析:870【分析】将n =3代入数值运算程序计算,判断结果与30大小,小于或等于30再代入计算,大于30输出,即可得到输出结果.【详解】解:当n =3时,根据数值运算程序得:32−3=9−3=6<30,当n =6时,根据数值运算程序得:62−6=36−6=30,当n =30时,根据数值运算程序得:302−30=900−30=870>30,则输出结果为870.故答案为:870【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()x y=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.15.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可.【详解】解:∵2,3x y a a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36,故答案为36.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键. 16.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 17.7200【分析】根据幂的乘方法则分别求出和的值然后根据同底数幂的乘法运算法则计算即可【详解】解:∵∴∴故答案为:7200【点睛】本题考查同底数幂的乘法和幂的乘方解题的关键是掌握运算法则解析:7200【分析】根据幂的乘方法则分别求出3m 10和210n 的值,然后根据同底数幂的乘法运算法则计算即可.【详解】解:∵102m =,103n =,∴()33m 10108m ==,()22n 10109n ==, ∴3m+2n+232210101010891007200m n =⋅⋅=⨯⨯=,故答案为:7200.【点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是掌握运算法则.18.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.19.【分析】根据矩形的周长和面积公式以及完全平方公式即可得到结论【详解】解:设8-x=ax-2=b ∵长方形的两邻边分别是8-xx-2∴a+b=8-x+x-2=6∵(8-x)2+(x-2)2=a2+b2= 解析:232【分析】根据矩形的周长和面积公式以及完全平方公式即可得到结论.【详解】解:设8-x=a,x-2=b,∵长方形的两邻边分别是8-x,x-2,∴a+b=8-x+x-2=6,∵(8-x)2+(x-2)2=a2+b2=(a+b)2-2ab=62-2ab=13,∴ab=232,∴这个长方形的面积=(8-x)(x-2)=ab=232.故答案为:232.【点睛】本题考查了完全平方公式的变形求值,熟练掌握完全平方公式是解题的关键.20.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a2-8,=2(a2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)(3+7)(3﹣7)+2(2﹣2)=32﹣(7)2+22﹣2=9﹣7+22﹣2=22.【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.22.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE , =22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--,=64﹣12﹣644, =64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.23.232+x xy ,54-. 【分析】利用平方差公式,和的完全平方公式,单项式乘以多项式法则化简,合并同类项后,代入【详解】原式2222244 42x y x xy y xy x =-+++-+ 232x xy =+, 当1,22x y =-=时, 原式2115322224⎛⎫⎛⎫=⨯-+⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了运用乘法公式进行化简,熟练运用公式,正确合并同类项是解题的关键. 24.(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.25.(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.26.(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)11;(3)15(1)观察图形可得:大正方形的边长为:a+b+c,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,由此可得出等式;(2)将a+b+c=6,a2+b2+c2=14代入(1)中所得的等式,计算即可;(3)由题意得:(2a+b)(a+4b)=xa2+yab+zb2,将等式左边展开,再比较系数即可得出x,y,z的值,然后求和即可.【详解】解:(1)观察图形可得:大正方形的边长为:a+b+c,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=6,a2+b2+c2=14,∴62=14+2(ab+ac+bc),∴ab+ac+bc=(36﹣14)÷2=11.(3)由题意得:(2a+b)(a+4b)=xa2+yab+zb2,∴2a2+8ab+ab+4b2=xa2+yab+zb2,∴2a2+9ab+4b2=xa2+yab+zb2,∴x=2,y=9,z=4,∴x+y+z=2+9+4=15.故答案为:15.【点睛】本题考查了因式分解的应用、完全平方公式的几何背景及多项式乘法等知识点,数形结合并熟练掌握相关运算法则是解题的关键.。
天津市武清区雍阳中学八年级数学上册第十四章《整式的乘法与因式分解》经典复习题(培优专题)
一、选择题1.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 2.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 3.计算下列各式,结果为5x 的是( )A .()32xB .102x x ÷C .23x x ⋅D .6x x - 4.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 5.若3a b +=-,10ab =-,则-a b 的值是( ) A .0或7 B .0或13-C .7-或7D .13-或13 6.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .2107.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 8.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+ 9.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=10.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6- B .0 C .12 D .1811.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+12.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.7513.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5 14.下列计算正确的是( ) A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -b )=a 2-2b 2D .5a -2a =3 15.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 二、填空题16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.17.2007200820092()(1.5)(1)3⨯÷-=_____.18.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.19.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 20.若2a x =,3b x =,则32a b x -=___________.21.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.22.若2249x mxy y -+是一个完全平方式,则m =______23.若ABC 的三边长是a 、b 、c ,且222a b c ab bc ac +=+++,则这个三角形形状是_________角形.24.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.25.若2x y a +=,2x y b -=,则22x y -的值为____________.26.若210x x --=,则3225x x -+的值为________. 三、解答题27.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.28.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦29.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________;(2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________. 30.计算:(1)化简:()()()222a a b a b a b +-+-(2)因式分解:244x y xy y ++。
天津市武清区雍阳中学八年级数学上册第四单元《整式的乘法与因式分解》检测(包含答案解析)
一、选择题1.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .72.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .93.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12C .9D .7 4.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=5.下列有四个结论,其中正确的是( )①若1(1)1x x +-=,则x 只能是2;②若()2(1)1x x ax -++的运算结果中不含2x 项,则1a =③若10,16a b ab +==,则6a b -=④若4,8x y a b ==,则232x y -可表示为a b A .①②③④B .②③④C .①③④D .②④ 6.下列运算正确是( ) A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab 7.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( )A .6-B .0C .12D .18 8.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 29.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=-10.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24 B .48 C .96 D .19211.若y 2+4y +4+1x y +-=0,则xy 的值为( )A .﹣6B .﹣2C .2D .6 12.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-7 二、填空题13.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为_________.14.若()()253x x x bx c +-=++,则b+c=______. 15.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.16.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 17.已知102m =,103n =,则32210m n ++=_______.18.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.19.分解因式3225a ab -=____.20.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.三、解答题21.阅读材料:把形2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即()2222a ab b a b ±+=±.请根据阅读材料解决下列问题:(1)填空:244a a -+=__________.(2)先化简,再求值:()()()33242a b a b a b ab ab +-+-÷,其中a b 、满足2226100a a b b ++-+=.(3)若a b c 、、分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.22.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.23.若一个三位或三位以上的整数A 分成左、中、右三个数后满足:①中间数=左边数2-右边数2,则称中间数是A 的“吉祥数”.如231的“吉祥数”是3,4122的“吉样数”是12;②中间数=(左边数-右边数)2,则称中间数是A 的“如意数”.如143的“如意数”是4,5161和1165的“如意数”是16.(1)若一个三位数的“吉祥数”是5,则这个数是_________,若一个四位数的“如意数”是81,则这个数是____,(2)一个“吉祥数”与一个“如意数”的左边数均为m ,右边数均为n ,且这个“吉祥数”比这个“如意数”大12,求满足条件的“吉样数”.24.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于______;(2)请用两种不同的方法求图2中阴影部分的面积.①________________;②__________________.(3)观察图2你能写出2()m n +,2()m n -,mn 三个代数式之间的等量_____________.(4)运用你所得到的公式,计算若知8,7a b ab +==,求-a b 和22a b -的值.(5)用完全平方公式和非负数的性质求代数式222431832x x y y ++-+的最小值.25.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少?26.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.2.A解析:A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.3.D解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.4.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.5.D解析:D【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案.【详解】解:①若(x-1)x+1=1,则x=-1或x=2,故本选项错误;②(x-1)(x 2+ax+1)的运算结果中x 2项的系数为a-1,∵不含x 2项,则a=1,故本选项正确;③∵(a-b )2=(a+b )2-4ab=102-4×16=36,∴6a b -=±,故本选项错误;④∵4x =a ,∴22x =a ,∵8y =b ,∴23y =b ,∴22x-3y =22x ÷23y a b=;故本选项正确; 故选:D .【点睛】本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键. 6.A解析:A【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可.【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A .【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.7.A解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.8.D解析:D【分析】根据S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG 代入数值求出图形面积,再根据计算各整式判断即可.【详解】S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG=AD •AB +DC •DE +CF •FH .∵AB =DC =AD =x ,DE =CF =3,FH =2,∴S 楼房的面积=x 2+3x +6.∵(x+3)(x+2)﹣2x= x 2+3x +6,x (x +3)+6= x 2+3x +6,x (x +2)+x 2=2 x 2+2x , 故选:D ..【点睛】此题考查列整式求图形面积,整式的混合运算,掌握整式的运算法则是解题的关键. 9.D解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确. 故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键. 10.C解析:C【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可.【详解】∵长方形的周长为16,∴8a b +=,∵面积为12,∴12ab =,∴()2212896a b ab ab a b +=+=⨯=, 故选:C .【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.11.A解析:A【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解.【详解】解:∵2440y y ++=∴(y +2)20∴y +2=0且x +y ﹣1=0解得:y =﹣2,x =3∴xy =﹣6.故选:A .【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0. 12.C解析:C【分析】直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a +2b +10=10-2(2a-b ),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.二、填空题13.9或10或11或12【分析】由运算流程图先求出第一次输出的数分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可【详解】解:根据题意∵第二次输出设第一次输出的数是奇数m 时则解得:;设第一次输出的数 解析:9或10或11或12.【分析】由运算流程图,先求出第一次输出的数,分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可.【详解】解:根据题意,∵第二次输出3y =,设第一次输出的数是奇数m 时,则132m +=,解得:5m =; 设第一次输出的数是偶数n 时,则32n =,解得:6n =. 当第一次输出为5时,又可以分为两种情况:当x 为奇数时,则152x +=,解得:9x =; 当x 为偶数时,则52=x ,解得:10x =; 当第一次输出为6时,又可以分为两种情况: 当x 为奇数时,则162x +=,解得:11x =; 当x 为偶数时,则62x =,解得:12x =; 故答案为:9或10或11或12.【点睛】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.14.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可.【详解】解:∵()()253x x x bx c +-=++ ∴22+215x x x bx c -=++∴b=2,c=-15∴b+c=2-15=-13故答案为:-13.【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.15.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x 的一次项所以让一次项的系数等于0得a 的等式再求解【详解】解:(2x-a )(x+1)=2x2+(2-a )x-a ∵积中不含x 的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【详解】解:(2x-a )(x+1)=2x 2+(2-a )x-a ,∵积中不含x 的一次项,∴2-a=0,∴a=2,故答案为:2.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.16.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =,∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.17.7200【分析】根据幂的乘方法则分别求出和的值然后根据同底数幂的乘法运算法则计算即可【详解】解:∵∴∴故答案为:7200【点睛】本题考查同底数幂的乘法和幂的乘方解题的关键是掌握运算法则解析:7200【分析】根据幂的乘方法则分别求出3m 10和210n 的值,然后根据同底数幂的乘法运算法则计算即可.【详解】解:∵102m =,103n =,∴()33m 10108m ==,()22n 10109n ==, ∴3m+2n+232210101010891007200m n =⋅⋅=⨯⨯=,故答案为:7200.【点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是掌握运算法则.18.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 19.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 20.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.三、解答题21.(1)()22a -;(2)25-;(3)△ABC 为等边三角形,理由见解析.【分析】(1)根据完全平方公式即可因式分解;(2)先将原式化成最简式,然后将2226100a a b b ++-+=,分成两个完全平方公式的形式,根据非负数的性质求出a 、b 的值,代入最简式中计算即可;(3)将已知等式化成几个平方和的形式,再利用非负数的性质求解即可.【详解】解:(1)∵()22442a a a -+=-,故答案为:()22a -;(2)()()()33242a b a b a b ab ab +-+-÷=()2222222a b ab a b ab -+-÷=222222223a b a b a b -+-=-∵2226100a a b b ++-+=,∴()()22130a b ++-=, ∴13a b =-=,,把13a b =-=,代入上式得:()222223213322725a b -=⨯--⨯=-=-; (3)△ABC 为等边三角形,理由如下:∵222426240a b c ab b c ++---+=,∴()()()2221310a b c b -+-+-=, ∴01010a b c b -=-=-=,,,∴1a b c ===,∴△ABC 为等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负数的应用.22.(1)②⑤⑥;(2)ABC ∆是等边三角形;(3)见详解【分析】(1)根据完全平方公式的结构特征和完全平方式的定义,逐一判断即可;(2)把等式右边的代数式移到左边,再利用完全平方公式写成平方和的形式,从而即可得到a ,b ,c 的关系,进而即可得到结论;(3)利用完全平方公式进行因式分解,把原式写成一个整式的平方的形式,即可得到结论.【详解】(1)②24x =2(2)x ;⑤21236x x ++=2(6)x +;⑥2124949a a -+=21(7)7a -是完全平方式,①2244a a b ++;③22x xy y -+; ④21025y y --不是完全平方式,各式中完全平方式的编号有②⑤⑥,故答案为:②⑤⑥;(2)∵22222()a b c c a b ++=+,∴()()2222220a ac cb bc c -++-+=, ∴()()220a c b c -+-=,∴a-c=0且b-c=0,∴a=b=c ,∴ABC ∆是等边三角形;(3)∵原式=2(8)(4)64x x x +++=22(8)(816)64x x x x ++++=222(8)16(8)64x x x x ++++=22(8)8x x ⎡⎤++⎣⎦ =()2288x x ++,∴多项式2(4)(8)64x x x +++是一个完全平方式.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.23.(1)这个数是352,这个数是9810;(2)满足条件的“吉样数”是7481,5212,5163,7136.【分析】(1)设左边数为m ,右边数为n ,由题意225m n -=,分解为51m n m n +=⎧⎨-=⎩解方程组=32m n ⎧⎨=⎩即可求出,设左边数为m ,右边数为n ,由题意()281m n -=,直接开平方得9m n -=,直接确定m=9,n=0,即可写出这个数;(2)由题意得()22212m n m n -=-+化简得26mn n -=,因式分解()6n m n -=分别讨论n 与m-n 都是6的因式组成方程组,解之即可.【详解】(1)一个三位数的“吉祥数”是5,,设左边数为m ,右边数为n ,m 、n 均为正整数, 225m n -=,51m n m n +=⎧⎨-=⎩, =32m n ⎧⎨=⎩, 则这个数是352,一个四位数的“如意数”是81,设左边数为m ,右边数为n ,()281m n -=,9m n -=,m=9,n=0,则这个数是9810,故答案为:352;9810;(2)由题意得()22212m n m n -=-+, 26mn n -=,()6n m n -=,1=6n m n =⎧⎨-⎩,2=3n m n =⎧⎨-⎩,3=2n m n =⎧⎨-⎩,6=1n m n =⎧⎨-⎩, 17n m =⎧⎨=⎩,2=5n m =⎧⎨⎩,3=5n m =⎧⎨⎩,6=7n m =⎧⎨⎩, 求满足条件的“吉样数”是7481,5212,5163,7136.【点睛】本题考查是三位或三位以上的整数A 的新定义问题,认真学习题中的定义,掌握如意数与吉祥数的约定,会根据题中的要求列出等式,会解不定方程或方程组是解题关键. 24.(1)m-n ;(2)①(m-n )2;②(m+n )2-4mn ;(3)(m-n )2=(m+n )2-4mn ;(4)6a b -=±,22a b -=±48;(5)3【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答;(2)从整体与局部两个思路考虑解答;(3)根据大正方形的面积减去阴影部分小正方形的面积等于四个长方形的面积解答; (4)根据()()224a b a b ab -=+-,可得a-b 的值,再根据22a b -=()()a b a b +-求出22a b -的值;(5)利用完全平方公式将原式变形为()()2221333x y ++-+,再根据非负数的性质可求出最小值为3.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m-n ;(2)根据正方形的面积公式,阴影部分的面积为(m-n )2,还可以表示为(m+n )2-4mn ;(3)根据阴影部分的面积相等,(m-n )2=(m+n )2-4mn ;(4)∵8,7a b ab +==,∴()()224a b a b ab -=+-=2847-⨯=36, ∴6a b -=±,若6a b -=,则22a b -=()()a b a b +-=86⨯=48,若6a b -=-,则22a b -=()()a b a b +-=()86⨯-=-48;(5)222431832x x y y ++-+=22242318273x x y y +++-++=()()2221333x y ++-+∵()2210x +≥,()2330y -≥, ∴()()2221333x y ++-+≥3,即最小值为3. 【点睛】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.25.-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 26.(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x 2y ﹣4xy +y=y (4x 2﹣4x +1)=y (2x ﹣1)2;(2)9a 2﹣4(a +b )2=[3a +2(a +b )][3a ﹣2(a +b )]=(5a +2b )(a ﹣2b ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
天津市武清区雍阳中学数学整式的乘法与因式分解单元测试卷附答案
天津市武清区雍阳中学数学整式的乘法与因式分解单元测试卷附答案一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8 【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n 次幂的计算总结规律,从而可得到结果.2.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.3.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9【答案】C【解析】设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6a 2,得出a 2+4ab+4b 2=(a+2b )2,再根据正方形的面积公式将a 、b 代入,即可得出答案.【详解】解:设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6b 2,∵a 2+4ab+4b 2=(a+2b )2,(b >a )∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.4.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.5.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b )2﹣(a ﹣b )2=4ab ,即4ab=(a+b )2﹣(a ﹣b )2.故选C .7.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+- =1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.8.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.9.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若a-b=1,则222a b b --的值为____________.【答案】1【解析】【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:222a b b --=(a+b )(a-b )-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.12.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+=∵22()()x y x y x y -=+-,∴x -y=4,解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.13.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.14.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.【答案】0【解析】【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z ++-+-+=所以222(21)(44)(69)0x x y y z z -+++++-+=所以222(1)(2)(3)0x y z -+++-= 所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-= 故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.15.在实数范围内因式分解:231x x +-=____________【答案】x x ⎛++ ⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴132x +=-,232x -=- ∴231x x +-=3322x x ⎛⎫⎛⎫-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭故答案为:3322x x ⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.16.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.17.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.20.已知16x x +=,则221x x+=______【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.。
天津雍阳中学八年级数学上册第十四章《整式的乘法与因式分解》经典测试(含答案解析)
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 2.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .12 3.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 4.下列因式分解正确的是( )A .24414(1)1m m m m -+=-+B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x ) 5.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 6.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x --D .()()111n x x x -+- 7.2a =1,b 是2的相反数,则a+b 的值是( ) A .1 B .-3C .-1或-3D .1或-3 8.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=9.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .1810.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .11.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .3212.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4 13.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ). A .6或20 B .20 或-20 C .6或-6 D .-6或20 14.若y 2+4y +4+1x y +-=0,则xy 的值为( )A .﹣6B .﹣2C .2D .6 15.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .54二、填空题16.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为_________.17.若()()253x x x bx c +-=++,则b+c=______. 18.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 19.若26x x m ++为完全平方式,则m =____.20.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.21.若294x kx ++是一个完全平方式,则k 的值为_____. 22.若3x y -=,2xy =,则22x y +=__________.23.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.24.计算:32(2)a b -=________.25.一个长方形的两邻边分别是8x -,2x -,若()()228213x x -+-=,则这个长方形的面积是_________26.若9m =4,27n =2,则32m ﹣3n =__. 三、解答题27.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.28.化简:2(3)3(2)m n m m n +-+.29.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.30.把下列多项式因式分解(要写出必要的过程):(1)﹣x 2y +6xy ﹣9y ;(2)9(x +2y )2﹣4(x ﹣y )2;(3)1﹣x 2﹣y 2+2xy .。
新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(有答案解析)(3)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解2.()()()2483212121+++···()32211++的个位数是( ) A .4B .5C .6D .83.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭4.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .75.化简()2003200455-+所得的值为( )A .5-B .0C .20025D .200345⨯6.在下列的计算中正确的是( ) A .23a ab a b ⋅=; B .()()2224a a a +-=+; C .235x y xy +=;D .()22369x x x -=++7.下列分解因式正确的是( ) A .xy ﹣2y 2=x (y ﹣2x ) B .m 3n ﹣mn =mn (m 2﹣1) C .4x 2﹣24x +36=(2x ﹣6)2 D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y ) 8.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n - 9.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+10.若y 2+4y 0,则xy 的值为( ) A .﹣6B .﹣2C .2D .611.下列各式计算正确的是( )A .5210a a a =B .()428=aaC .()236a ba b = D .358a a a +=12.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-二、填空题13.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.14.若26x x m ++为完全平方式,则m =____.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个) A .2222()a ab b a b -+=- B .22()()a b a b a b -=+- C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.16.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x 011.52 mx +n-3 -1 01若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.17.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________.18.因式分解:24ay a -=_______.19.分解因式:2221218ax axy ay -+=_________. 20.因式分解:24a b b -=______.三、解答题21.计算 (1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )22.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:281156415497-⨯=-== 2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证; (2)请你利用代数式的运算对以上规律加以证明.23.利用我们学过的知识,可以导出下面这个形式优美的等式:2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦,该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁、美观. (1)请你检验说明这个等式的正确性;(2)若ABC 的三边长分别为a ,b ,c ,当222a b c ab bc ca ++=++时,试判断ABC 的形状;(3)若327a b -=,227a c -=,且22241abc ++=,求22ab bc ac ++的值. 24.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ; (2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 25.好学的晓璐同学,在学习多项式乘以多项式时发现:(12x +4)(2x +5)(3x ﹣6)的结果是一个多项式,并且最高次项为:12x •2x •3x =3x 3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢? 根据尝试和总结她发现:一次项就是:12x ×5×(﹣6)+2x ×4×(﹣6)+3x ×4×5=﹣3x . 请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为 ,一次项为 ; (2)若计算(x +1)(﹣3x +m )(2x ﹣1)(m 为常数)所得的多项式不含一次项,求m 的值;(3)若(x +1)2021=a 0x 2021+a 1x 2020+a 2x 2019+…+a 2020x +a 2021,则a 2020= . 26.因式分解 (1)x 3﹣x ; (2)m 3n ﹣2m 2n +mn【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算. 【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解. 故选:D . 【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.C解析:C 【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果. 【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264, ∵21=2,22=4,23=8,24=16,25=32,…, ∴个位上数字以2,4,8,6为循环节循环, ∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6. 故选:C . 【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.D解析:D 【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可. 【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等, 则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1), 整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2, ∴m +n =5+2=7, 故选:D . 【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键.5.D解析:D 【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案. 【详解】 解:()2003200455-+=(-5)2003+(-5)2004 =(-5)2003(1-5) =4×52003, 故选:D . 【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.6.A解析:A 【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解. 【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误. 故选:A . 【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.7.D解析:D 【分析】根据因式分解的方法:提公因式法、平方差公式、完全平方公式计算判断. 【详解】A 、xy ﹣2y 2=y (x ﹣2y ),故该项错误;B 、m 3n ﹣mn =mn (m 2﹣1)=mn (m+1)(m-1),故该项错误;C 、4x 2﹣24x +36=4(x ﹣3)2,故该项错误;D 、4x 2﹣9y 2=(2x ﹣3y )(2x +3y ),故该项正确; 故选:D . 【点睛】此题考查因式分解的解法,熟练掌握因式分解的方法是解题的关键.8.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.9.A解析:A 【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答. 【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式; 故选:A . 【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.10.A解析:A 【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解. 【详解】解:∵2440y y ++=∴(y +2)20 ∴y +2=0且x +y ﹣1=0 解得:y =﹣2,x =3 ∴xy =﹣6. 故选:A . 【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0.11.B解析:B 【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断. 【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意; B 、(a 2)4=a 8,此选项计算正确,符合题意; C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意; D 、a 3与a 5不能合并,此选项计算错误,故不符合题意. 故选:B . 【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.B解析:B 【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得xy 即可求解. 【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩,解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y的立方根为﹣1,故选:B.【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a小正方形的边长为b故阴影部分的面积是:AE•BC+AE•BD=AE(BC+BD)=(AB﹣解析:30【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a,小正方形的边长为b,故阴影部分的面积是:12AE•BC+12AE•BD=12AE(BC+BD)=12(AB﹣BE)(BC+BD)=12(a﹣b)(a+b)=12(a2﹣b2)=12×60=30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.14.9【分析】完全平方式可以写为首末两个数的平方则中间项为x和积的2倍即可解得m的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9【分析】完全平方式可以写为首末两个数的平方(2x,则中间项为x2倍,即可解得m的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0, 可写成()2x m +,则中间项为x 和m 积的2倍, 故62x x m =, ∴m =9, 故答案填:9. 【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94 【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可. 【详解】(1)图1中,边长为a 的正方形的面积为:a 2, 边长为b 的正方形的面积为:b 2, ∴图1中剩余部分面积为:a 2-b 2, 图2中长方形的长为:a+b , 长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ), 故选:B ;(2)∵46x y +=,45x y -=, ∴221664x y -+ =(4)(4)64x y x y +-+ =6564⨯+ =94, 故答案为:94. 【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.20或30【分析】把表格中的前两对值代入求出m 与n 的值即可求出x 的值然后把x 的值代入求解即可【详解】解:由表格得x =0时m 0+n =-3∴n=-3;x =1时m1+(-3)=-1∴m =2;∵mx +n解析:20或30【分析】把表格中的前两对值代入求出m 与n 的值,即可求出x 的值,然后把x 的值代入求解即可.【详解】解:由表格得x =0时,m ⋅0+n =-3,∴n =-3;x =1时,m ⋅1+(-3)=-1,∴m =2;∵mx +n =17,∴2x -3=17,∴x =10,当点C 在线段AB 上时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键. 17.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键.18.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.19.【分析】先提取公因式再利用完全平方公式继续分解即可【详解】故答案为:2a(x-3y)2【点睛】本题考查了用提公因式法和公式法进行因式分解一个多项式有公因式首先提取公因式然后再用其他方法进行因式分解同解析:22(3)a x y -【分析】先提取公因式2a ,再利用完全平方公式继续分解即可.【详解】222ax 12axy 18ay -+222(6)9a x xy y =-+22(3)a x y =-,故答案为:2a(x-3y)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b(2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键.三、解答题21.(1)25x3y2-43x2y3;(2)5y-x【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x2y-4xy2)•13xy=25x3y2-43x2y3(2)[(x+3y)•(x-3y)-(x-y)2]÷(-2y)=[x2-9y2-(x2-2xy+y2)]÷(-2y)=(x2-9y2-x2+2xy-y2)÷(-2y)=(-10y2+2xy)÷(-2y)=5y-x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可;(2)设中间那个数为n,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,7==;(2)证明:设中间那个数为n,则:7==∴7..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.23.(1)见详解;(2)ABC 为等边三角形;(3)4249 【分析】(1)利用完全平方公式将等式的右边展开,合并同类项后即可得出等式的左边,从而得出该等式成立;(2)由a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0,利用偶次方的非负性即可得出a =b =c ,从而得出该三角形为等边三角形;(3)先求出17b c -=-,结合第(1)题的结论,即可求解. 【详解】(1)等式右边=()22222221222x xy y y z x yz xz z -++++-+- =()222122x y z y xy xz z ⨯++--- =222x y z xy yz xz ++---=等式左边.∴等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立. (2)∵a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0, ∴a−b =0,b−c =0,c−a =0,∴a =b =c ,∵a 、b 、c 分别是三角形的三条边,∴ABC 为等边三角形;(3)∵327a b -=,227a c -=, ∴17b c -=-,又∵2222221(2)22(2)(2)()2a b c ab ac bc a b a c b c ⎡⎤++---=-+-+-⎣⎦, ∴2222221321(2)22()()()2777a b c ab ac bc ⎡⎤++---=⨯++-⎢⎥⎣⎦=749, ∵22241a b c ++=,∴22ab bc ac ++=1-749=4249. 【点睛】 本题考查了整式的运算、偶次方的非负性以及等边三角形的判定,利用完全平方的展开式证出等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立是解题的关键.24.(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.25.(1)15x 3,﹣11x ;(2)m =-3;(3)2021【分析】(1)求多项式的最高次项,把每个因式的多项式最高次项相乘即可;求一次项,含有一次项的有x ,3x ,5x ,这三个中依次选出其中一个再与另外两项中的常数相乘最终积相加,或者展开所有的式子得出一次项即可.(2)先根据(1)所求方法求出一次项系数,最后用m 表示,列出等式,求出m ; (3)根据前两问的规律可以计算出第(3)问的值.【详解】(1)由题意得:(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为x ×3x ×5x =15x 3,一次项为:1×1×(﹣3)x +2×3×(﹣3)x +2×1×5x =﹣11x ,故答案为:15x 3,﹣11x ;(2)依题意有:1×m ×(﹣1)+1×(﹣3)×(﹣1)+1×m ×2=0,解得m =﹣3;(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数,∵2021(1)x +展开之后x 的一次项共有2021个,且每一项的系数都为2021(111)1⨯⨯⨯=, ∴20202021202120212021(111)+(111)(111)2021a =⨯⨯⨯⨯⨯⨯++⨯⨯⨯=故答案为:2021.【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.26.(1)(1)(1)x x x +-;(2)2(1)mn m -.【分析】(1)先提公因式,然后由平方差公式因式分解,即可得到答案;(2)先提公因式,然后由完全平方公式因式分解,即可得到答案.【详解】解:(1)32(1)(1)(1)x x x x x x x -=-=+-;(2)32222(21)(1)m n m n mn mn m m mn m -+=-+=-;【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法和公式法进行因式分解.。
八年级数学上册第四单元《整式的乘法与因式分解》检测卷(包含答案解析)
一、选择题1.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .202.下列各式由左边到右边的变形中,是分解因式的为( ) A .2105525x x x x x -=⋅- B .()a x y ax ay +=+C .()22442x x x -+=- D .()()2163443x x x x x -+=-++3.下列等式中从左到右边的变形是分解因式的是( )A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭4.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7B .18C .5D .95.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++B .222x xy y -+-C .221449x xy y -++ D .22193x x -+6.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .7.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .328.下列各多项式中,能用平方差公式分解因式的是( ) A .21x -+B .21x +C .21x --D .221x x -+9.下列各式运算正确的是( ) A .235a a a +=B .1025a a a ÷=C .()32626b b = D .2421a aa-⋅=10.下列运算中,正确的是( ) A .()23294x y x y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=-11.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( )A .34B .54- C .12-D .5412.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.若23x =,25y =,则22x y +=____________. 14.若2|1|0++-=a b ,则2020()a b +=_________.15.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x xx x x -+++=-;……(1)()432(1)1x x x x x -++++=___; (2)根据规律可得:()1(1)1n x xx --+++=_____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++;16.若294x kx ++是一个完全平方式,则k 的值为_____. 17.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.18.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________. 19.若2249x mxy y -+是一个完全平方式,则m =______ 20.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”; ②若2210m m +-=,则2425m m ++的值为7; ③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =. 其中正确的说法有________(填号即可).三、解答题21.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥(当且仅当m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.22.分解因式:(1)222ax axy ay ++;(2)4161y -23.化简:2(3)3(2)m n m m n +-+.24.在通常的日历牌上,可以看到一些数所满足的规律,表①是2020年12月份的日历牌.星期一 星期二 星期三 星期四 星期五 星期六 星期日1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728 293031(1)在表①中,我们选择用如表②那样22⨯的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.如:用正方形框圈出3,4,10,11四个数,然后将它们交叉相乘,再相减,即3114107⨯-⨯=-或4103117⨯-⨯=.请你用表②的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可). (2)在用表②的正方形框任意圈出的22⨯个数中,将它们先交叉相乘,再相减.若设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字,列出算式并算出结果(选择其中一个算式即可).(3)若选择用表③那样33⨯的正方形方框任意圈出33⨯个数,将正方形方框四角....位置上的4个数先交叉相乘,再相减,你发现了什么.选择一种情况说明理由. 25.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算: (1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.26.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++-【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值. 【详解】解:∵4a 2+ma+25是完全平方式, ∴4a 2+ma+25=(2a±5)2=4a 2±20a+25, ∴m=±20. 故选:B . 【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式; B 、()a x y ax ay +=+,不是分解因式; C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式;故选:C . 【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.3.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x 不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.C解析:C 【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3, ∴3x 2−4x +6=3, ∴3x 2−4x =−3, ∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C . 【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键.5.C解析:C 【分析】直接利用完全平方公式分解因式得出答案. 【详解】A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意;B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意;故选:C . 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 6.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.7.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D . 【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.8.A解析:A 【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答. 【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式; 故选:A . 【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.D解析:D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解. 【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误; B 、1028a a a ÷=,故本选项错误; C 、()32628b b =,故本选项错误;D 、24221a aa a --⋅==,正确. 故选:D . 【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.10.C解析:C 【分析】根据积的乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式分别计算各项,然后再进行判断即可. 【详解】 解:A. ()23264x y x y =,所以原选项计算错误,故不符合题意;B.3332x x x +=,所以原选项计算错误,故不符合题意;C.34x x x ⋅=,计算正确,符合题意;D.22(3)(3)9x y x y x y +-=-,所以原选项计算错误,故不符合题意. 故选:C . 【点睛】此题主要考查了乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式,要熟练掌握.11.B解析:B 【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案. 【详解】 ∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy −(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2, ∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B . 【点睛】此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75 【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解. 【详解】解:()2222222223575x y x y x y +=⋅=⋅=⨯=,故答案为:75. 【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键.14.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1 【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可. 【详解】∵|1|0-=b 0,|1|0b -≥,∴a+2=0,b-1=0, ∴a=-2,b=1,∴202020201()(21)a b +-+==, 故答案为:1. 【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.15.(1);(2);(3)【分析】(1)第二个括号里最高次数4根据观察可知结论中次数为4+1=5;(2)第二个括号里最高次数n-1根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x 次数根据解析:(1)51x -;(2)1n x -;(3)5131-. 【分析】(1)第二个括号里最高次数4,根据观察可知结论中次数为4+1=5; (2) 第二个括号里最高次数n-1,根据观察可知结论中次数为n-1+1=n ; (3)用3代替等式中的x ,次数根据观察规律确定即可. 【详解】(1)根据观察,发现结论是个二项式,且常数项为-1,另一项底数是x ,指数比第二个括号里多项式的最高次数多1,∵()4321x x x x ++++的最高次数是4, ∴()432(1)1x x x x x -++++=51x -, 故应该填51x -;(2)∵()11n xx -+++的最高次数是n-1,∴()1(1)1n x xx --+++=1n x -,故应该填1n x -; (3)由(2)知:()1(1)11n n x x x x --+++=-,令3x =,51n =,得:()504948251(31)33333131-++++++=-,故应该填5131-. 【点睛】本题考查了整式变化中的规律探索,解答时,抓住变化中变化项,不变项,变化的位置,变化的规律是解题的关键.16.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±. 【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可. 【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 17.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 18.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键. 19.【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 20.②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.三、解答题21.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2 (2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.22.(1)2()a x y +;(2)2(41)(21)(21)y y y ++-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可得出结果;(2)先利用平方差公式分解可得22(41)(41)y y +-,再次利用平方差公式对2(41)y -进行分解,即可完成.【详解】解:(1)原式22(2)a x xy y =++2()a x y =+,(2)原式22(41)(41)y y =+-2(41)(21)(21)y y y =++-.【点睛】本题考查了因式分解,掌握因式分解的基本方法,并能根据多项式的特点准确选择分解方法是解题的关键.23.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.24.(1)91710167⨯-⨯=-或10169177⨯-⨯=,(2)+1n ,n+7,n+8,()()()+178n n n n +-+,7,或()()()8+17n n n n +-+,-7;(3)1×17-3×15=-28或3×15-1×17=28,发现:它们最后得结果是28或-28,n ,+2n ,n+14,n+16,()()()+21416n n n n +-+,28,()()()16+214n n n n +-+,-28,它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【分析】(1)先画出选出的各数,再计算即可;(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+1n+7n+8n ,,,列出算式()()()+178n n n n +-+或()()()8+17n n n n +-+,求出即可;(3)先圈出各个数,列出算式,设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,列出算式,求出即可.【详解】(1)圈出的数如图,9,10;16,17,91710161531607⨯-⨯=-=-或10169171601537⨯-⨯=-=,(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为,+1n+7n+8n ,,,()()()+178n n n n +-+,=22878n n n n ++--,=7,或()()()8+17n n n n +-+,=22887n n n n +---,=-7;(3)圈出的数为1,2,3;8,9,10;15,16,17四角数位1,3,15,171×17-3×15=17-45=-28或3×15-1×17=35-17=28,发现:它们最后得结果是28或-28,理由是:设设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,()()()+21416n n n n +-+,=22162816n n n n ++--,=28,()()()16+214n n n n +-+,=22161628n n n n +---,=-28.结论:它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【点睛】本题考查整式的混合运算的应用,掌握整式的混合运算法则,能理解题意,会按要求列式是解题关键,培养阅读能力和计算能力.25.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.26.(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+- 22212x x x x =++--+ 3x =+,(2)原式[3(4)][3(4)]x y x y =--+- 229(4)x y =-- 229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .20 2.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 3.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 4.已知3x y +=,1xy =,则23x xy y -+的值是( )A .7B .8C .9D .12 5.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7 6.已知: 13m m +=, 则: 331m m +的值为( ) A .15B .18C .21D .9 7.化简()2003200455-+所得的值为( ) A .5-B .0C .20025D .200345⨯ 8.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .18 9.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <10082015 10.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab += 11.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+1 12.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a +=二、填空题13.若26x x m ++为完全平方式,则m =____.14.已知2m a =,5n a =,则2m n a -=___________.15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.16.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)17.分解因式:32520=x xy -________________.18.已知,a b 满足1,2a b ab -==,则a b +=____________19.分解因式3225a ab -=____.20.分解因式:2221218ax axy ay -+=_________.三、解答题21.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.22.分解因式(1)22363ax axy ay -+(2)()()22162x x x ---23.计算: (1)()2323298---(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--24.因式分解:(1)322242a a b ab -+(2)4481x y -25.分解因式:(1)325x x -;(2)(3)2(3)m a a -+-.26.把下列多项式因式分解:(1)2()4a b ab -+;(2)22()()a x y b y x -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值.【详解】解:∵4a 2+ma+25是完全平方式,∴4a 2+ma+25=(2a±5)2=4a 2±20a+25,∴m=±20.故选:B .【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.3.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.A解析:A【分析】先把3x y +=代入原式,可得23x xy y -+=22x y +,结合完全平方公式,即可求解.【详解】∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22xy +, ∵1xy =,∴23x xy y -+=22xy +=22()23217x y xy +-=-⨯=,故选A .【点睛】 本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键. 5.D解析:D【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 6.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案【详解】解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键7.D解析:D【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案.【详解】解:()2003200455-+=(-5)2003+(-5)2004=(-5)2003(1-5)=4×52003,故选:D .【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.8.A解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.9.D解析:D【分析】根据平方差公式因式分解然后约分,便可归纳出来即可.【详解】解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6,此选项不符合题意;B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意;C 、∵A 2=2131=24-, 且345674681012<<<<<, ∴n ≥2时,恒有A n ≤34, 此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯, 当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意;故选择:D .【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.10.A解析:A【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确.故选A.【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.11.C解析:C【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可.【详解】解:A:()()4444443381n n n a ba b a b --=--=- ,故答案正确; B:()41444n nn n a b a b +++=+ ,故答案正确; C:()()232262623427108n n n a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n n n n x x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确. 故选:C .【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.12.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.二、填空题13.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x =∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解. 14.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 15.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 16.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.17.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式=5x (x2-4y2)=故答案为:【点睛】本题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解题的关键解析:()()5 +2 -2x x y x y【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=5x (x 2-4y 2)=5(+2)(-2)x x y x y ,故答案为:5(+2)(-2)x x y x y【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 18.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案.【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=,∴3a b +=±,故答案为:3±.【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 19.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 20.【分析】先提取公因式再利用完全平方公式继续分解即可【详解】故答案为:2a(x-3y)2【点睛】本题考查了用提公因式法和公式法进行因式分解一个多项式有公因式首先提取公因式然后再用其他方法进行因式分解同解析:22(3)a x y -【分析】先提取公因式2a ,再利用完全平方公式继续分解即可.【详解】222ax 12axy 18ay -+222(6)9a x xy y =-+22(3)a x y =-,故答案为:2a(x-3y)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.22.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.23.(13;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式4232=--3=;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.24.(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.25.(1)(5)(5)x x x +-;(2)(3)(2)a m --.【分析】(1)先提公因式x ,再利用平方差公式进行分解,即可得出结果;(2)先将多项式进行变形,再利用提公因式法进行分解,即可得出结果.【详解】解:(1)325x x -2(25)x x =-(5)(5)x x x =+-;(2)(3)2(3)m a a -+-(3)2(3)m a a =---(3)(2)a m =--.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能根据多项式的特点准确选择分解方法是解题的关键.26.(1)2()a b +;(2)()()()a b a b x y +--【分析】(1)根据完全平方公式展开,合并,再根据完全平方公式即可分解;(2)先提取公因式(x y -),再根据平方差公式继续分解即可.【详解】解:(1)原式2224a ab b ab =-++222a ab b =++2()a b =+;(2)原式22()()a x y b x y =---()22()a b x y =--()()()a b a b x y =+--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。