平移、旋转和轴对称练习题
【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案
三年级上册数学单元测试- 6.平移、旋转和轴对称一、单选题1.下列现象中,既有平移现象又有旋转现象的是()A. 正在工作的电扇叶片B. 行驶中的汽车C. 扔出去的铅球D. 放飞的风筝2.如图。
将图1中的三角形甲平移到图2中所示的位置,与三角形乙拼成一个长方形,那么,下面的平移方法中,正确的是( )。
A. 先向下平移3格,再向右平移1格B. 先向下平移3格.再向右平移2格C. 先向下平移2格,再向F平移2格D. 先向有平移3格.再向F平移2格3.电风扇的运动是()A. 平移B. 旋转C. 既平移又旋转4.图①绕点O()变为图②。
A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°5.一个图形经过平移变换后,有以下几种说法,其中不恰当的说法是( )A. 平移后,图形的形状和大小都不改变B. 平移后的图形与原图形的对应线段、对应角都相等C. 平移后的图形形状不变,但大小可以改变D. 利用基本图形的平移可以设计美丽的图案6.从12时到12时30分,分针绕中心点()。
A. 逆时针旋转了90°B. 顺时针旋转了90°C. 顺时针旋转了180°7.下列哪种运动可以看成平移()A. 升国旗B. 电风扇叶片转动C. 钟摆的运动8.下列每组中的前后两个图形,()组通过平移就可以重合。
A. B. C. D.9.补全轴对称图形的时候,要先找到()A. 边界B. 对称轴C. 端点10.下列现象中,不属于平移的是()A. 乘直升电梯从一楼上到二楼B. 钟表的指针嘀嗒嘀嗒地走C. 火车在笔直的轨道上行驶D. 汽车在平坦笔直的公路上行驶二、判断题11.平移必须在水平方向上移动。
12.收费站转杆打开,旋转了180度。
13.电风扇转动是平移现象。
14.左图是由连续两次向右平移2个方格组成的图案。
15.小朋友们玩跷跷板是平移现象。
三、填空题16.看图回答图形B可以看作图形A绕点________顺时针方向旋转90°得到的。
平移旋转轴对称练习题
平移旋转轴对称练习题一、选择题:1. 平移变换不改变图形的:A. 形状B. 大小C. 位置D. 颜色2. 旋转变换不改变图形的:A. 形状B. 大小C. 位置D. 颜色3. 轴对称图形的对称轴是:A. 任意直线B. 垂直于图形的直线C. 与图形的某些部分重合的直线D. 与图形的某些部分垂直的直线4. 一个图形关于某直线对称,那么这条直线是图形的:A. 对称轴B. 垂直平分线C. 中心线D. 边界线二、填空题:1. 一个图形经过平移,其形状和大小不变,改变的是图形的________。
2. 一个图形经过旋转,其形状和大小不变,改变的是图形的________。
3. 轴对称图形的对称轴是图形中任意两点之间的________。
4. 如果一个图形关于直线L对称,那么直线L是图形的________。
三、判断题:1. 平移变换后,图形的面积不变。
(对/错)2. 旋转变换后,图形的面积不变。
(对/错)3. 轴对称图形的对称轴一定通过图形的中心。
(对/错)4. 一个图形可以有无数条对称轴。
(对/错)四、简答题:1. 描述平移变换和旋转变换的异同。
2. 解释为什么轴对称图形的对称轴是图形中任意两点之间的垂直平分线。
五、计算题:1. 一个正方形的边长为4厘米,它沿一条与边平行的直线平移了2厘米,求平移后正方形的中心点坐标。
2. 一个圆的半径为5厘米,它绕圆心顺时针旋转了90度,求旋转后圆上任意一点的新坐标。
六、作图题:1. 给定一个等腰三角形ABC,其中AB=AC,点A为顶点,画出三角形ABC关于线段BC的垂直平分线的对称图形。
2. 给定一个矩形,其长为6厘米,宽为4厘米,画出矩形绕其中心点旋转180度后的图形,并标出旋转后的对应点。
七、应用题:1. 一个长方形的长为10厘米,宽为6厘米,它绕其中心点顺时针旋转了45度,求旋转后长方形的长和宽。
2. 一个等边三角形的边长为8厘米,它经过平移后,一个顶点移动到了原位置的正上方,求平移的距离。
小学数学 《图形的平移、旋转与轴对称》习题1
1、分别画出将平行四边形向下平移4格,向左平移8格后得到的图形。
2、把图形向右平移7格后得到的图形涂上颜色。
3、把图形向左平移5格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画下面的图形向右平移6格后的图形。
6、小汽车向()平移了()格,小船机向()平移了()格,小飞机向()平移了()格。
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图1绕点“O”顺时针旋转()到达图4的位置;
(4)图2绕点“O”顺时针旋转()到达图4的位置;
(5)图2绕点“O”顺时针旋转900到达图()的位置。
10、选择。
(1)时钟从6:00走到18:00是围绕钟面中心旋转()。
(A)180°(B)90°(C)360°
(2)时钟围绕钟面中心旋转()才能从3:00走到9:00。
(A)180°(B)90°(C)360°
11、如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()。
A B C D
12、如图是用纸折叠成的图案,其中是轴对称图形的有()。
A B C
13、下面的图形是轴对称图形吗?如果是,请你画出它们的对称轴。
22、照这样排下去,第26图形是()。
23、有一列数按“654321654321……”排列着,则第34个数字应是()。
24、王兵在家练习硬笔书法时,写“我们爱科学我们爱科学……”依次写下去,那么第23个字应是()。
25、北京奥运北京奥运北京奥运……,根据排列规律,第43个字是(),第84个字是(),第105个字是(),第122个字是()。
7、画出三角形向右平移4格和梯形向左平移2格后的图形。
四年级下册数学单元测试-1.平移、旋转和轴对称 苏教版(含答案)
四年级下册数学单元测试-1。
平移、旋转和轴对称一、单选题1.下面各图形,不是轴对称图形的是()A. B. C.2.下列现象中,()属于旋转.A. 拉衣服的拉链B. 拧瓶盖C. 跳远时的腿部运动3.下面()的运动是旋转。
A. 旋转的呼啦圈B. 观光电梯C. 拨算珠4.下面()是顺时针旋转一周后的图形。
A. B. C. D.二、判断题5.数学“3”是轴对称图形。
()6.旋转改变了图形的大小和形状.()7.平移不改变图形的大小,只改变图形的位置.()8.圆绕中心点无论旋转多少度都与原来的图形重合,旋转一周可以重合无数次。
()三、填空题9.下列现象哪些是平移,画“√”;哪些是旋转,画“○”。
________ ________________ ________10.把一个图形绕某个点旋转,会得到一个新的图形,新图形与原图形的________和________完全相同。
11.下面的图案各是从哪张纸上剪下来的,连一连。
________ A、________ B、________ C、________ D、四、解答题12.解决问题如图,正方体中哪些线段可经由线段AB平移得到?线段AD可以由FB平移得到吗?13.(1)沿虚线画出图形的另一半,使它成为一个轴对称图形。
(2)图中的小船是经过向________平移________格,再向________平移________格得来的。
(3)先将三角形向左平移三格,然后绕A点逆时针旋转90°,在方格纸中画出旋转后的图形。
五、应用题14.在下面的方格纸上:①用数对表示三角形A三个顶点的位置.(,)(,)(,)②画出图形A向右平移8格后得到图形B;然后再以MN为对称轴,画出B的轴对称图形.参考答案一、单选题1.【答案】C【解析】【解答】平行四边形不是轴对称图形。
故答案为:C。
【分析】如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。
初中数学图形的平移,对称与旋转的经典测试题附答案
初中数学图形的平移,对称与旋转的经典测试题附答案一、选择题1.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .43B .6C .33D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质2.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A .线段BE 的长度B .线段EC 的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.a a>,那么3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.6.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b ,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b =0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.9.下列四个交通标志图中,是轴对称图形的是( )A .B .C .D .【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.11.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.13.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.14.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.16.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.17.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .5C .6D .26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABFADE∆∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==,AD DC25Q,2DE=∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC22'+22BC BD+.故选B.3419.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.20.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.。
2023年苏教版四年级数学下册第一单元平移、旋转和轴对称测试卷含答案
《平移、旋转和轴对称》学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题(共10分)1.(本题1分)平移所给图形可得()。
A.B.C.D.2.(本题1分)下面图形中,对称轴条数最多的是()。
A.B.C.D.3.(本题1分)街心花园的花圃进行了园艺造型设计(如下图),涂色部分种植月季花,其余部分种植郁金香,从示意图中可以看出种植月季花的面积是整个花圃的()。
A.13B.无法确定C.14D.124.(本题1分)钟表上时针指向2,分针指向12,3小时后,时针旋转了()°。
A.30B.90C.120D.1505.(本题1分)再画一个小正方形,使下图成为轴对称图形,共有()种不同的画法。
A.2B.3C.4D.56.(本题1分)下图都是常见的安全标记,其中()是轴对称图形。
A.B.C.D.7.(本题1分)从6:00到9:00,时针旋转了()度。
A.90°B.180°C.360°D.120°8.(本题1分)下列图形中,()是轴对称图形。
A.B.C.D.9.(本题1分)如图,在图形中再给2个格子涂上颜色,使整个图形成为一个轴对称图形。
有()种不同的涂法。
A.6B.7C.8D.910.(本题1分)这是一个电风扇开关,数字表示风速档。
现在风扇在“1”档运行,如果要关闭,可将旋钮()。
A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°评卷人得分二、填空题(共10分)11.(本题1分)下面的图形是绕( )点按( )方向旋转的。
12.(本题1分)(1)图1笑脸平移后得到的图形是( );(2)图2小船平移后得到的图形是( )。
13.(本题1分)如图,指针从“12”出发,绕点O顺时针旋转( )°到“4”。
西师版五年级数学上册图形的平移、旋转与轴对称练习题
西师版五年级数学上册图形的平移、旋转与轴对称练习题2.1 图形的平移1.一个边长为6厘米的正方形,连续向右平移6次后,这个正方形的边长是多少厘米?2.方格中的图形向左平移了几个格?3.图形先由位置①向上平移几个格,到位置②;再由位置②向右平移几个格,到位置③。
4.图形平移的过程中对应点间的距离都保持不变,图形平移后周长和面积不变。
5.下列图形中,由原图平移得到的图形是哪一个?2.2 图形的旋转1.一个边长为6厘米的等腰三角形,连续顺时针旋转4次后,和原图形重合。
2.分针从6:30到6:45,旋转了多少度?3.把图形绕着O点顺时针旋转90°后,得到的图形是哪一个?A。
B。
C。
D.4.旋转不能改变图形的形状,可以改变图形的位置。
5.时钟从3:00到6:00,时针顺时针旋转了多少度?2.3 轴对称图形1.直角梯形是轴对称图形。
2.下面交通标志图案中,是轴对称图形的是哪一个?A。
B。
C.3.下面的图形中,哪一个不是轴对称图形?A。
B。
C.4.正方形对称轴有无数条。
5.下面图形中,哪一个对称轴最多?A。
正方形 B。
等边三角形 C。
圆 D。
长方形2.4 设计图案1.图形的平移、旋转和对称都是图形的变换方式。
2.如图的图形中,哪一个是由旋转得到的?A。
B。
C。
D.3.平移和旋转不能改变图形的形状,可以改变图形的位置。
4.下面的图案是通过哪种变换得到的?5.下图的图案,既可以通过平移得到,又可以通过旋转得到。
A。
B。
C.2.5 探索规律1.看图填空。
摆1个平行四边形需要几根小棒。
摆2个平行四边形需要几根小棒。
摆3个平行四边形需要几根小棒。
2.观察下图第4个图形中有几个三角形。
3.摆1个三角形需要3根小棒;摆2个三角形至少需要几根小棒?4.第五个图形有多少个圆点?5.数一数梯形的个数。
二、下面的实线图形是通过怎样的平移得到的虚线图形的。
平行四边形向右平移5格;三角形向下平移2格;长方形向上平移3格;六边形向左平移4格。
轴对称平移、旋转、多边形组卷参考答案与试题解析
轴对称、平移、旋转、多边形组卷一.选择题(共15小题)1.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和△ACD面积相等②△BDF≌△CDE ③CE=BF ④BF∥CE,其中正确的有()A.1个 B.4个 C.3个 D.2个2.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()A.8 B.9 C.10 D.113.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.35.下列命题中,其中是真命题的个数有()①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.A.3个 B.2个 C.1个 D.0个.6.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm7.等腰三角形的两边长是7cm,5cm,它的周长是()A.19cm B.17cm C.17cm或19cm D.无法确定8.已知三角形的两边长分别为3cm和7cm,则下列长度的四条线段中能作为第三边的是()A.2cm B.3cm C.4cm D.5cm9.下面有4个汽车标致图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④10.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形11.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9 B.13 C.9或13 D.10或1212.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.1614.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或1015.下列标志中,是旋转对称图形但不是轴对称的有()A.2个 B.3个 C.4个 D.5个二.填空题(共13小题)16.一个两位数,十位数字是a,个位数字是b,把两位数的个位数字与十位数字交换位置,所得的数减去原数,差为72,则这个两位数是.17.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于度.18.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=度.19.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.21.一个多边形的内角和等于2340°,它的边数是.22.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是.23.把命题:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:.24.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则∠CDB=度.25.△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是三角形.(填“锐角”“直角”“钝角”)26.下列四组多边形中,能铺满地面的是.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.27.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=度.28.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为°.三.解答题(共12小题)29.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE;(2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.30.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.31.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.32.如图所示,E是∠AOB的平分线上一点,EC⊥OA,垂足为C,D为OB上一点,且OD=OC,连结ED,连结CD交OE于点F,求证:(1)ED⊥OB;(2)OE平分线段CD.33.如图:107国道OA和320国道OB在某市交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等,且PC=PD.请在∠AOB的内部画出货站的位置(不写画法,保留画图痕迹,写出结论)34.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.35.已知,如图,O是△ABC高AD与高BE的交点,∠C=50°,求∠AOB的度数.36.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A:∠ABC=3:4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:∠MCP=90°﹣∠A;(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC 的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.37.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?38.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.39.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N.(1)若CD的长为18厘米,求△PMN的周长;(2)若∠AOB=28°,求∠MPN.40.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC交BC于D,DE∥AB,交AC于E,EF是△ADE的高.求∠DEF的度数.轴对称、平移、旋转、多边形组卷参考答案与试题解析一.选择题(共15小题)1.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和△ACD面积相等②△BDF≌△CDE ③CE=BF ④BF∥CE,其中正确的有()A.1个 B.4个 C.3个 D.2个【分析】根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE,最后根据等底等高的三角形的面积相等判断出①正确.【解答】解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,∴△BDF≌△CDE(SAS),故②正确∴CE=BF,∠F=∠CED,故③正确,∴BF∥CE,故④正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故①正确,综上所述,正确的是①②③④共4个.故选:B.【点评】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,平行线的判定,熟练掌握三角形全等的判定方法并准确识图是解题的关键.2.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()A.8 B.9 C.10 D.11【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.3.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.3【分析】利用三角形的内角和外角之间的关系分析.【解答】解:根据三角形的内角和是180°可知,三角形内角最多只能有1个钝角,所以在三角形的三个外角中,锐角最多只有1个.故选:B.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.5.下列命题中,其中是真命题的个数有()①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.A.3个 B.2个 C.1个 D.0个.【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项.【解答】解:①形状相同的两个三角形是相似形,但不一定是全等形,故错误;②全等三角形对应边上的高、中线及对应角平分线分别相等,正确;③在在两个三角形中,相等的角是对应角,相等的边是对应边,对应边和对应角不一相等,故错误;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边的取值范围,然后选择答案即可.【解答】解:∵5+7=12cm,7﹣5=2cm,∴2cm<第三边<12cm,∵14cm、13cm、8cm、2cm中只有8cm在此范围内,∴能作为第三边的是8cm.故选:C.【点评】本题考查了三角形的三边关系,熟记关系式求出第三边的取值范围是解题的关键.7.等腰三角形的两边长是7cm,5cm,它的周长是()A.19cm B.17cm C.17cm或19cm D.无法确定【分析】等腰三角形两边的长为5cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是7cm时,能构成三角形,则其周长=5+5+7=17cm;②当底边是5cm,腰长是7cm时,能构成三角形,则其周长=5+7+7=19cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.应向学生特别强调.8.已知三角形的两边长分别为3cm和7cm,则下列长度的四条线段中能作为第三边的是()A.2cm B.3cm C.4cm D.5cm【分析】△ABC的两边a、b之和是10,a、b之差是4.根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长c的范围,然后由c 的范围来作出选择.【解答】解:设三角形的两边长分别为a、b,第三边是c.则:a+b=10cm、a﹣b=4cm,∴4cm<c<10cm.故选:D.【点评】本题考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.9.下面有4个汽车标致图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选:A.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形【分析】正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺.正七边形,正八边形同理可知不能密铺.正六边形的每个内角是120°,能整除360°,能密铺.【解答】解:正六边形的每个内角是120°,能整除360°,能密铺;正五边形,正七边形,正八边形的一个内角不能整除360°,所以都不能单独进行密铺.故选:B.【点评】根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则能进行平面镶嵌;若不能整除,则不能进行平面镶嵌.11.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9 B.13 C.9或13 D.10或12【分析】题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.【解答】解:设等腰三角形的底边长为x,腰长为y,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故选:C.【点评】本题考查的是等腰三角形的性质,根据题意画出图形,列出关于x、y 的方程组是解答此题的关键.12.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D ﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.【点评】本题考查了多边形内角与外角,多边形的内角和公式是解题关键.14.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.15.下列标志中,是旋转对称图形但不是轴对称的有()A.2个 B.3个 C.4个 D.5个【分析】根据轴对称图形与中心对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转一定的角度后能够与自身重合,那么这个图形就叫做旋转对称图形,这个点叫做旋转中心.对各图形分析后即可得解.【解答】解:第1个图形,既是旋转对称图形,也是轴对称图形,第2个图形,是旋转对称图形,不是轴对称图形,第3个图形,不是旋转对称图形,是轴对称图形,第4个图形,既是旋转对称图形,也是轴对称图形,第5个图形,是旋转对称图形,不是轴对称图形.所以,是旋转对称图形但不是轴对称图形的有:第2个,第5个共2个.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念,理解概念是解答此题的关键.二.填空题(共13小题)16.一个两位数,十位数字是a,个位数字是b,把两位数的个位数字与十位数字交换位置,所得的数减去原数,差为72,则这个两位数是19.【分析】首先要分别用a,b表示两个两位数,它们分别是10a+b,10b+a,然后根据所得的数减去原数,差为72就可以列出等式,然后根据等式和数字的特点就可以求出a,b.【解答】解:依题意得原数是10a+b,新数是10b+a,∴10b+a﹣(10a+b)=72,∴b﹣a=8,而a、b可能取的值只有0至9的整数,它们的最大差只有9,并且a≠0,∴a=1,b=9,∴所求两位数是19.【点评】此题考查了组成数的数字的特点,也考查了用数字如何表示几位数.17.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于70或20度.【分析】首先根据题意作图,然后由AB的垂直平分线与AC所在直线相交所得的锐角为52°,即可得∠ADE=52°,∠AED=90°,然后直角三角形的两锐角互余,①当三角形是锐角三角形时,即可求得∠A的度数,②当三角形是钝角三角形时,可得∠A的邻补角的度数;又由AB=AC,根据等边对等角与三角形内角和的定理,即可求得底角B的大小.【解答】解:∵AB的垂直平分线与AC所在直线相交所得的钝角为130°即∠EDC=130°,∠ADE=50°,∠AED=90°,①如图1,当△ABC是锐角三角形时,∠A=40°,∵AB=AC,∴∠B=∠C==70°,②如图2,当△ABC是钝角三角形时,∠BAC=∠ADE+∠AED=50°+90°=140°,∵AB=AC,∴∠B=∠C==20°.综上所述,底角B的度数是70°或20°.故答案为:70或20.【点评】此题考查了等腰三角形与线段垂直平分线的性质.此题难度不大,解题的关键是注意数形结合思想的应用,要注意分情况讨论.18.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=108度.【分析】根据等腰三角形的性质,依题意首先求出∠B=∠C=∠1.然后由已知∠4是△ABD的外角,可知道∠2=∠4=2∠C.最后可得出∠1+∠2=∠C+2∠C.【解答】解:如图:∵△ABC中,AB=AC,∴∠B=∠C,∵AD=BD,∴∠B=∠C=∠1,∵∠4是△ABD的外角,∴∠4=∠1+∠B=2∠C,∵AC=CD,∴∠2=∠4=2∠C,在△ADC中∠4+∠2+∠C=180°,即5∠C=180°∠C=36°,∴∠1+∠2=∠C+2∠C=3×36°=108°,即∠BAC=108°.故填108.【点评】本题考查的是等腰三角形的性质及三角形内角与外角的关系;题目中相等的量较多,有效的进行等量代换是正确解答本题的关键.19.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7cm.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.【点评】本题考查了翻折变换的知识,利用了折叠的性质.20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.21.一个多边形的内角和等于2340°,它的边数是15.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设多边形边数为n.则2340°=(n﹣2)•180°,解得n=15.故答案为:15.【点评】本题考查了多边形内角与外角,根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.22.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是到角的两边距离相等的点在角平分线上.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.把命题:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:如果一个四边形的四条边相等,那么这个四边形是正方形.【分析】把原命题的题设与结论交换即可.【解答】解:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:如果一个四边形的四条边相等,那么这个四边形是正方形.故答案为:如果一个四边形的四条边相等,那么这个四边形是正方形.【点评】本题考查了命题与定理,也考查了逆命题.如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.24.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则∠CDB=60度.【分析】根据角平分线的定义和直角三角形的两个锐角互余计算.【解答】解:∠CBD=∠ABC=30°,∠BDC=90°﹣∠CBD=60°.【点评】此题运用了角平分线的定义以及直角三角形的两个锐角互余的性质.25.△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是直角三角形.(填“锐角”“直角”“钝角”)【分析】根据三角形内角和定理和题目中三个内角的比值可以求得各个内角的度数,从而可以解答本题.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,设∠A=x,则x+2x+3x=180°,解得,x=30°,∴∠A=30°,∠B=60°,∠C=90°,∴这个三角形是直角三角形,故答案为:直角.【点评】本题考查三角形内角和定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形内角和解答.26.下列四组多边形中,能铺满地面的是①②③④.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.【分析】能够密铺地面的关键是看一看拼在同一顶点处的几个角能否构成周角.【解答】解:①正三角形内角为60°,正六边形内角120°,可由2个正三角形2个正六边形密铺;②正十二边形一个内角150°,两个正十二边形与一个正三角形可平密铺;③正八边形内角为135°,正方形内角为90°,2个正八边形和1个正方形可以密铺.④正三角形内角为60°,正方形内角为90°,可以由3个正三角形和2个正方形可以密铺;综上可得①②③④正确.故答案为:①②③④.【点评】本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.27.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【解答】解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.28.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为65°.【分析】由将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,可得△ACA′是等腰直角三角形,∠CAA′的度数,然后由三角形的外角的性质求得答案.【解答】解:∵将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,∴AC=A′C,∠ACA′=90°,∠B=∠AB′C,∴∠CAA′=45°,∵∠AA′B′=20°,∴∠AB′C=∠CAA′+∠AA′B=65°,∴∠B=65°.答案为:65°.【点评】此题考查了旋转的性质以及等腰直角三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.三.解答题(共12小题)29.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE;(2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.【分析】(1)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案;(2)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案.【解答】(1)证明:如图1,∵∠ABC=∠DBE=90°,∴∠ABC﹣∠CBD=∠DBE﹣∠DBC,即∠ABD=∠CBE.在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∵AD=CE,∠BAD=∠BCE.∵∠AGB与∠CGF是对顶角,∴∠AGB=∠CGF.∵∠BAD+∠AGB=90°,∴∠GCF+∠CGF=90°,∴∠CFG=90°,∴AD⊥CE;(2)AD=CE,AD⊥CE,理由如下如图2:,∵∠ABC=∠DBE=90°,∴∠ABC+∠CBD=∠DBE+∠DBC,即∠ABD=∠CBE.在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∴AD=CE,∠BAD=∠BCE.∵∠AGB与∠CGF是对顶角,∴∠AGB=∠CGF.∵∠BAD+∠AGB=90°,∴∠GCF+∠CGF=90°,∴∠CFG=90°,∴AD⊥CE.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.30.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.。
平移旋转轴对称练习题
平移旋转轴对称练习题一、选择题1. 下列图形中,哪一个图形可以通过平移得到另一个图形?A. 正方形B. 长方形C. 梯形D. 平行四边形2. 在平面直角坐标系中,点A(2, 3)经过平移后得到点B,若点B 的坐标为(5, 7),则平移向量为?A. (3, 4)B. (4, 3)C. (3, 5)D. (5, 3)3. 下列哪个图形是轴对称图形?A. 正三角形B. 正方形C. 等腰梯形D. 所有选项都是4. 下列哪个图形可以通过旋转90度得到自身?A. 正方形B. 长方形C. 等边三角形D. 圆二、填空题1. 图形平移时,对应点的连线__________。
2. 图形的旋转中心称为__________。
3. 轴对称图形的对称轴可以是__________、__________或__________。
4. 一个图形绕着某一点旋转180度后与原图形重合,这个点称为__________。
三、判断题1. 平移不改变图形的大小和形状。
()2. 旋转会改变图形的大小和形状。
()3. 轴对称图形的对称轴必须经过图形的中心。
()4. 平移和旋转都是刚体变换。
()四、作图题1. 请画出下列图形经过平移后的图形:(1)正方形,平移向量:(3, 2)(2)等腰三角形,平移向量:(4, 1)2. 请画出下列图形绕点O旋转90度后的图形:(1)正方形(2)等边三角形3. 请画出下列图形的对称轴:(1)正方形(2)等腰梯形五、解答题1. 请描述一个正方形绕其中心旋转180度后的位置变化。
2. 画出两个全等三角形,其中一个三角形通过平移、旋转或轴对称变换得到另一个三角形,并说明变换过程。
3. 请举例说明生活中平移、旋转和轴对称现象的应用。
六、应用题1. 在平面直角坐标系中,点P(1, 2)经过平移后到达点Q,点Q 的坐标是(4, 1)。
求平移向量,并画出平移后的图形。
2. 一个长方形的长是8厘米,宽是4厘米。
如果将这个长方形绕其一个顶点旋转90度,求旋转后长方形的面积。
平移旋转及轴对称练习试题
平移、旋转和轴对称练习题姓名:班级:一、下面的运动哪些是平移?哪些是旋转?1起落国旗2拧开水龙头3用钥匙拧开房间门4拉动抽屉5吊扇在空中运动6乘坐电梯7转动转盘8指针运动属于平移的有:属于旋转的有:二、选择正确答案的序号填在括号里。
( 1)教室门的打开和关上,门的运动是()①平移②旋转③既平移又旋转( 2)电风扇的运动是()①平移②旋转③既平移又旋转( 3)下面()的运动是平移。
①转动着的呼啦圈②电风扇的运动③拔算珠( 4)左图是图形经过()获取的。
①平移②旋转③既平移又旋转( 5)右图中,从图①到图②是()获取的,从图②到图③是()获取的。
A、向右平移 7 格①B、向右平移 9 格C、向右平移11 格D、向下平移 1 格②③E、向下平移 5 格F、向下平移 9 格三、想一想下面的运动,是平移的打“√”,是旋转的画“○” 。
1、小明向前面走了 3 米。
□2、树上的水果掉在了地上。
□3、汽车的轮子在不停地转动。
□4、火箭发射升空。
□5、风扇的叶子在转动。
□ 6 、拧开水龙头。
□7、暴风车在转动。
□8、射箭运动员把箭射在靶子上。
□9、小明推教室的门,门被打开了。
□四、看图填一填。
①④图①向()平移了(②)格。
图②向()平移了()格。
图③向()平移了()格。
图④向()平移了()格。
③五、移一移,画一画。
1(1)画出图 1 向下平移 4 格后的图形。
(2)画出图 2 向左平移 6 格后的图形。
( 3)画出图向右平移 8 格后的图形。
六、下面图形中是轴对称图形的有()。
A B C D 2七、下面哪些是平移,哪些是旋转。
()()()()八、着手实践1321.上图中的图形 1 向()平移了()格。
2.把图形 2 向左平移 4 格。
3.画出图形 3 绕B点顺时针旋转90 度九、△ ABC是△ FDE平移获取(如图)点 B 的对应点是点;点 C的对应点是点;线段 AC的对应线段是线段线段BC的对应线段是线段;;∠B 的对应角是;∠C的对应角是.△ABC平移的方向是,平移的距离是十、作出“三角旗”绕O点按逆时针旋转90°后的图案..O。
苏教版四年级下册平移,旋转和轴对称精选试卷练习(含答案)2
苏教版四年级下册平移,旋转和轴对称精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题1.下列字母全部是轴对称图形的是()A.A、B、C B.G、H、F C.E、G、H2.如下图,将三角形A绕点O(),可以得到三角形B.A.按顺时针方向旋转60°B.按逆时针方向旋转60°C.按顺时针方向旋转90°D.按逆时针方向旋转90°3.下面图形既能通过平移得到,又能通过旋转得到的是( )A.B.C.4.下面的图形中,不是轴对称图形的是()。
A.B.C.D.5.下图有()条对称轴。
A.1 B.2 C.3 D.无数6.钟面上分针旋转一周,那么时针旋转的角度是()。
A.5゜B.30゜C.60゜D.360゜7.下面的图形中,()不是轴对称图形。
A.B.C.8.下面图形中,对称轴条数最多的是()。
A.B.C.D.9.从6:00到6:30,分针旋转了()A.30°B.90°C.180°10.下列图形中,不是轴对称图形的是()。
A.正方形B.梯形C.圆11.下图中有三个三角形,说法正确的是().A.将三角形A向右平移2格可以得到三角形BB.将三角形B向右平移8格可以得到三角形CC.将三角形B向左平移8格可以得到三角形A评卷人得分二、作图题12.按要求画出下列图形。
把四边形绕点A顺时针旋转90°。
②把三角形绕点B逆时针旋转90°,再把旋转后图形向右平移5格。
③把最右边的图形补全,使它成为轴对称图形。
13.(1)把梯形ABCD划分成2个三角形,使它们的面积比是1:2.(2)梯形ABCD是一个轴对称图形的一半,请以BC边所在的直线为对称轴,画出这个轴对称图形的另一半.(3)将梯形ABCD绕A点顺时针旋转90°.画出旋转后的图形.旋转后D点的对应点用数对表示为().14.(1)将下图中三角形先向右平移5格,再向下平移4格。
第一单元 平移、旋转和轴对称-2022-2023年四年级数学下册(苏教版)-(含答案)
【分析】旋转是指在平面内将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。据此解答。
【详解】 是将 通过旋转后得到的。
故答案为:B。
【点睛】本题考查旋转的特征,旋转是物体或图形的位置发生变化而形状、大小不变,且本身方向发生了变化。
7.C
【分析】首先分析清楚哪个图形是原图形,哪个是平移后得到的图形,再判断出图形平移的方向和距离即可解答。
六、解答题(共36分)
25.画出下面轴对称图形的所有对称轴,填写 向上平移的格数,给 向右平移7格后的图形涂上颜色。
26.如图,根据图中对称轴,补全图形A的另一半,并计算 的周长。(图中每个正方形小格的边长为1厘米)
27.填一填,画一画。
(1)将图中①号图形先向()平移()格,再向()平移()格,就能和②号图形拼成一个正方形。
【详解】A. ,可以通过平移得到;
B. ,可以通过平移得到;
C. ,可以通过旋转得到。
故答案为:C
【点睛】本题主要考查学生对旋转和平移的特征及区别的掌握。
2.C
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
【详解】A. 有2条对称轴;
长方形的特征:四个角都是直角,对边平行且相等的四边形。
【详解】图形A、B无论绕哪个点,旋转多少度,再怎么平移,都不会组成长方形;图形C通过旋转,能形成长方形。
故答案为:C
【点睛】掌握平移、旋转的意义以及长方形的特征是解题的关键。
4.B
【分析】平移是指在平面内将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动。
【详解】平移和旋转都是物体或图形的位置发生变化而形状、大小不变。区别在于,平移时物体沿直线运动,本身方向不发生改变;旋转是物体绕着某一点或轴运动,本身方向发生了变化;所以判断正确。
图形的平移旋转与轴对称中考真题精选(部分难题有答案)
图形的平移旋转与轴对称中考真题精选(部分难题有答案)一、选择题1.(2022甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A.1个【答案】B2.(2022湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.【答案】D3.(2022江苏南通)如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()AOB(第3题)B.2个C.3个D.4个图1DCB.3πcmA.4πcmC.2πcm【答案】CD.πcm4.(2022江苏盐城)以下图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.矩形【答案】B5.(2022辽宁丹东市)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()3cmC.等腰梯形D.平行四边形3cm第5题图A.(10+213)cmB.(10+13)cmC.22cmD.18cm【答案】A6.(2022山东青岛)下列图形中,中心对称图形有().【答案】C7.(2022山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2022个图案是【答案】B8.(2022四川凉山)下列图案中,只要用其中一部分平移一次就可以得到的是()A.B.C.D.【答案】B9.(2022台湾)将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。
最后将图(七)的色纸剪下一纸片,如图(八)所示。
若下列有一图形为图(八)的展开图,则此图为何?()图(六)【答案】B(A)图(七)(B)图(八)(C)(D)10.(2022浙江杭州)如图,在△ABC中,CAB70.在同一平面内,将△ABC绕点A旋转到△AB/C/的位置,使得CC///AB,则BAB/()A.30B.35C.40D.50【答案】C11.(2022浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是()(A)【答案】C12.(2022浙江义乌)下列几何图形中,即是中心对称图形又是轴对称图形的是(▲)A.正三角形B.等腰直角三角形C.等腰梯形D.正方形【答案】D13.(2022重庆)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()OOOO(B)(C)(D)图①图②图③图④…A.图①B.图②C.图③D.图④【答案】B14.(2022重庆市潼南县)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位DABEC14题图F【答案】C15.(2022浙江义乌)如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥的个数是(▲)BC,下列结论中,一定正确..①BDF是等腰三角形②DE1BC2③四边形ADFE是菱形④BDFFEC2AADBFECA.1B.2C.3D.4【答案】C16.(2022江苏连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④【答案】C17.(2022山东济南)如图,ΔABC与ΔA’B’C’关于直线l对称,lCA50A'BB'30C'第17题则∠B的度数为()A.50°B.30°C.100°D.90°【答案】C18.(2022福建福州)下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.【答案】C19.(2022江苏无锡)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】B20.(2022河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是向右翻滚90°逆时针旋转90°图6-1图6-2D.2A.6【答案】BB.5C.321.(2022山东省德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A)【答案】B22.(2022山东莱芜)在下列四个图案中既是轴对称图形,又是中心对称图形的是(B)(C)(D)A.B.C.D.【答案】B23.(2022广东珠海)现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()A.BCD【答案】B24.(2022福建宁德)下列四张扑克牌图案,属于中心对称的是().【答案】B25.(2022浙江湖州)一个正方体的表面展开图如图所示,则正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博A.B.C.D.图1图2【答案】B.26.(2022浙江湖州)如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.【答案】C.27.(2022湖南常德)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()D.!ABC图4【答案】D28.(2022湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】B29.(2022江苏扬州)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()A.1个【答案】BB.2个C.3个D.4个30.(2022北京)美术课上,老师要求同学们将右图所示的白纸只沿虎虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是....【答案】B31.(2022四川乐山)下列图形中,是轴对称图形的是()【答案】B32.(2022山东泰安)下列图形:其中,既是轴对称图形,又是中心对称图功的个数是()A.1个【答案】B33.(2022黑龙江哈尔滨)一列图形中,是中心对称图形的是()B.2个C.3个D.4个【答案】D34.(2022江苏徐州)下列四个图案中,是轴对称图形,但不是中心对称图形的是A【答案】ABCD35.(2022江苏徐州)如图,在6某4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是A.点MB.格点NC.格点PD.格点Q【答案】B36.(2022四川内江)学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下△ABC时,应使∠ABC的度数为A.126°【答案】AB.108°C.100°D.90°37.(2022湖北襄樊)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个【答案】B38.(2022山东东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生......活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的......性质是()(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行B.3个C.2个D.1个【答案】B39.(2022四川绵阳)对右图的对称性表述,正确的是().A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B40.(2022山东淄博)如图,△A′B′C′是由△ABC经过变换得到的,则这个变换过程是(A)平移(B)轴对称(C)旋转(D)平移后再轴对称AA′BC′(第5题)B′【答案】D41.(2022天津)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(A)(B)(C)(D)【答案】B42.(2022内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B43.(2022贵州贵阳)如图3是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为(图3)(A)(B)(C)(D)【答案】C44.(2022湖北十堰)如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50°B.60°C.70°D.80°AA′B(第44【答案】A45.(2022广西玉林、防城港)下列图形中,既是轴对称图形又是中心对称图形的是:()A.等边三角形B.平行四边形C.菱形D.正五边形【答案】C46.(2022青海西宁)如图9,下列汉字或字母中既是轴对称图形,又是中心对称图形的有A.1个B.2个C.3个D.4个CB′【答案】B47.(2022广西梧州)下列图形中是轴对称图形的是()①④A.①②B.③④C.②③D.①④【答案】D48.(2022云南昭通)下列图形是轴对称图形的是()ABCD【答案】B49.(2022贵州遵义)下列图形既是中心对称图形,又是轴对称图形的是【答案】B50.(2022广东深圳)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】A51.(2022广东佛山)如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A.对称B.平移C.相似(相似比不为1)C.旋转【答案】C52.(2022湖北宜昌)如图,正六边形ABCDEF关于直线l的轴对称图形是六边形的是()。
轴对称、平移与旋转测试题(含答案)
轴对称、平移与旋转测试题(含答案)一、选择题(本大题共7小题,每小题5分,共35分;在每小题给出的四个选项中,只有一项符合题意)1.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A.B B.J C.4 D.0图12.如图1,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B 的度数为( )A.48°B.54°C.74°D.78°3.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平,你可以看到的图形是( )图24.如图3,在△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为( )A.56° B.50° C.46° D.40°图3 图45.如图4所示,将边长为2 cm的等边三角形ABC沿BC的方向向右平移1 cm得到△DEF,则四边形ABFD的周长为( )A.6 cm B.8 cm C.10 cm D.12 cm6.4张扑克牌如图5①所示放在桌面上,小敏把其中一张牌旋转180°得到图②,那么她所旋转的牌是从左数( )图5A.第一张 B.第二张 C.第三张 D.第四张7.下列说法正确的有( )图6(1)全等图形的面积相等,反过来,面积相等的两个图形是全等图形;(2)如图6所示的两个图形,放在一起能完全重合,但是图甲和图乙不全等;(3)如图7所示,△ABC与△DEF 是全等的,点A与点D是对应点,点B与点E是对应点,所以可以记为:△ABC≌△DEF;(4)如果两个图形的形状一样,大小一样,那么它们是全等图形.图7A.1个 B.2个 C.3个 D.4个二、填空题(本大题共7小题,每小题5分,共35分)8.如图8,下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行平移变换的是________,进行旋转变换的是________,进行轴对称变换的是________,进行中心对称变换的是________.(填序号)图89.如图9所示,在正方形网格中,格点三角形DEF是由格点三角形ABC平移得到的,则点B向右移动了________格.图910.如图10所示,大长方形的长为8 cm,宽为4 cm,则阴影部分的面积是________.图1011.如图11,将长方形纸片ABCD的一角沿EF折叠,使点C落在长方形ABCD的内部点C′处.若∠EFC=35°,则∠DEC′=________°.图11 图1212.如图12是4×4的正方形网格,其中已有3个小方格涂成了黑色.现要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案是轴对称图形,这样的白色小方格有________个.13.数轴上的点A表示-2,将数轴上到点A的距离为3的点B向右平移5个单位长度得到点C,再把点C绕点A旋转180°得到点D,则AD的长为________.图1314.如图13,在直角三角形ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的度数为________.三、解答题(本大题共3小题,共30分)15.(8分)在如图14所示的网格中有四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称?若对称,请在图中画出对称轴或对称中心.图1416.(10分)如图15所示,在△ABC中,∠C=90°,将△ABC沿直线DE对折,点B刚好与点A重合,连结AD,∠DAE与∠DAC的度数之比为2∶1,求∠B的度数.图1517.(12分)取一副三角尺按图16①所示的方式放在一起,∠ACD=30°,∠BAC=45°,固定三角尺ADC,将三角尺ABC以点A为中心按顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图②所示.(1)当α为多少度时,能使得AB∥DC?(2)连结BD,当0°<α≤45°时,探究∠DBC′+∠CAC′+∠BDC的值的大小变化情况,并说明理由.图16教师详解详析1.[解析] D A.B不是中心对称图形,是轴对称图形,故本选项错误;B.J不是中心对称图形,也不是轴对称图形,故本选项错误;C.4不是中心对称图形,也不是轴对称图形,故本选项错误;D.0既是中心对称图形又是轴对称图形,故本选项正确.2.[答案] B3.[答案] C4.[解析] C∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67°,AC′=AC,∴∠AC′C=∠C=67°,∴∠B′C′B=180°-∠AC′C-∠AC′B′=180°-67°-67°=46°.5.[解析] B由题意知△ABC≌△DEF,AD=BE=1 cm,DF=AC=2 cm,四边形ABFD的周长=AB+BF+DF+AD=8 cm.6.[答案] A7.[答案] B8.[答案] ③①④②④9.[答案] 5[解析] 注意点B的对应点是点E,从点B到点E向右平移了5格.10.[答案] 8 cm2[解析] 通过平移、旋转,可知阴影部分的面积是大长方形总面积的错误!.11.[答案] 7012.[答案] 413.[答案] 8或2[解析] 数轴上到点A的距离为3的点表示的数有两个:1和-5,向右平移5个单位长度得到的数分别是6和0,所以AC绕点A旋转180°得AD=8或2.14.[答案] 2α15.解:(1)四边形A1B1C1D1如图所示.(2)四边形A2B2C2D2如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2对称,对称轴为图中的直线EF.16.解:由翻折的性质知,DE平分∠ADB,所以∠ADE=∠BDE,∠DAB=∠B.又因为∠DAE与∠DAC的度数之比为2∶1,所以设∠DAC=x°,则∠B=∠DAB=2x°.因为∠C=90°,根据三角形的内角和为180°,得x°+2x°+2x°=90°,解得x=18,所以∠B=36°.17.解:(1)由题意得∠CAC′=α,要使AB∥DC,须∠BAC=∠ACD=30°,∴α=∠CAC′=∠BAC′-∠BAC=45°-30°=15°,即α=15°时,能使得AB∥DC.(2)如图,连结BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°.理由:当0°<α≤45°时,总有△EFC′存在.∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠CAC′+∠C,∠EFC′+∠FEC′+∠C′=180°,∴∠BDC+∠DBC′+∠C+α+∠C′=180°.又∵∠C′=45°,∠C=30°,∴∠DBC′+∠CAC′+∠BDC=105°.。
六年级下册数学总复习试题-画轴对称、平移、旋转后的图形专项练 全国版(含答案)
画轴对称、平移、旋转后的图形一、单选题1.如图,将立方体绕它的对角线AC1旋转,应该形成()种立体图形.A. B. C. D.2.下面哪种方法可以把图②移回图①的位置?()A. 向左平移1格,向上平移3格B. 向右平移5格,向下平移3格C. 向左平移5格,向上平移2格D. 向上平移3格,向左平移5格3.下图是一些国家的国旗,其中是对称图形的有( )A. 4个B. 2个C. 1个4.如图,将三角形A绕点O(),可以得到三角形B.A. 按逆时针方向旋转90°B. 按顺时针方向旋转60°C. 按顺时针方向旋转90°5.一个图形在方格中先向右平移7格,再向上平移5格,然后向左平移2格,再向左平移5格,此时的位置是()A. 同到原俯罟了B. 原位置向上平移了5格C. 原位置向上平移了2格6.你能猜出下面的数字吗?它是( )A. 2B. 3C. 8D. 67.下面哪个数字是轴对称数字()A. 8B. 4C. 58.下面哪些图案可以通过平移得到?()A. B. C.9.下面哪个图案是通过平移右面的图案得到的()A. B. C.10.下面的轴对称图形是从哪张纸上剪下来的?()A. B. C.二、填空题11.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是________ ,折痕所在的直线叫做________12.像等图形,沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形是________,折痕所在的这条直线叫作________。
13.下面的汉字哪些可以看成轴对称图形?根据观察的结果分类.(填题中顺序填写文字上方的字母)(1)是轴对称图形的有________.(2)不是轴对称图形的有________.14.圆的对称轴有________条,半圆形的对称轴有________条15.看图回答蜡烛向________平移了________格.小船向________平移了________格.凳子向________平移了________格.酒杯向________平移了________格.三、作图题16.根据题意解答(i)在图中标出点A(2,5),B (2,2),C (4,2),再依次连成三角形.17.你能按对称轴画出另一半吗18.画出下面每个图形的另一半,使它们分别成为一个轴对称图形.(1)这两个轴对称图形分别是什么三角形?填在下面的括号里.19.下面的轴对称图形只露出了一半,你能猜出它们是什么吗?20.请你以直线l为对称轴,画出图形的另一半.21.(I)画出a的另一半,使它成为一个轴对称图形.(II)把b绕O点逆时针旋转90°.(III)把图c按3:1的比放大.22.(I)以直线MN为对称轴,作图形A的轴对称图形,得到图形B.(II)把图形B向右平移4格,得到图形C.以点O为中心,把图形C顺时针旋转90°,得到图形D.(III)O点的位置可以用数对()表示.23.画出轴对称图形的另一半.24.按要求画图.(每个小正方形的面积都是1平方厘米)①画出把三角形绕点O顺时针旋转90°后的图形C.②按2:1的比画出三角形缩小后的图形B.③画一个与原三角形面积相等的平行四边形.25.(I)画出图A的另一半,使它成为一个轴对称图形;(II)把图B绕点O顺时针旋转90°;(III)把图C向右平移5格.26.在方格纸上画出下面图形的轴对称图形.27.在下圆中作一图形,使整个图形只有两条对称轴,并画出这两条对称轴.28.如图每个小正方形的边长表示1厘米,请按要求画图形.(I)把图①按2:1的比放大.(II)把图①绕B点逆时针旋转90度.(III)在A点南偏东45°方向画一个直径4厘米的圆.29.(I)将图形A沿着O点逆时针旋转90度,得到图形B.(II)再将图形A按1:2缩小,得到图形C.30.下图向下平移3格后,三角形在什么位置?请画出。
苏教版四年级数学下册第一单元 《平移、旋转和轴对称》专项精选试卷 附答案
苏教版四年级数学下册单元综合素质评价第一单元平移、旋转和轴对称一、填空。
(第5题每空2分,其余每空1分,共30分)1.欣赏下面图形,它们分别是通过什么变换得到的?(填“平移”或“旋转”)( ) ( ) ( ) ( ) 2.钟面上的分针从3:30到3:45,按( )时针方向旋转了( )°。
3.正方形有( )条对称轴,长方形有( )条对称轴,圆有( )条对称轴。
4.寓意深远的汉字文化中也蕴含着数学的美,在“昌、日、比、台、正、全”这些汉字中,有( )个轴对称的字。
5.下面的物体是向哪个方向平移的?(1)飞机向( )平移(2)汽车向( )平移6.观察下图,图形①绕点O顺时针旋转90°到图形( )所在的位置,图形( )绕点O( )时针旋转90°到图形③所在的位置。
7.如果上图中把葡萄从托盘中拿下来,指针会( )时针旋转( )°。
8.体育课上,当老师喊“立正,向左转”时,你的身体( )时针旋转( )°;当老师喊“立正,向右转”时,你的身体( )时针旋转( )°。
9.右图中:(1)图形B向下平移可以得到图形( )。
(2)图形F绕点N逆时针旋转180°得到图形( )。
(3)图形A绕点M顺时针旋转90°得到图形( )。
(4)图形E绕点M逆时针旋转90°得到图形( )。
(5)与图形C可以组成轴对称图形的是图形( )、( )和( )。
二、选择。
(将正确答案的字母填在括号里)(每小题2分,共12分)1.每年12月2日是全国交通安全日。
下列交通标志中,是轴对称图形的有( )个。
A.2 B.3 C.4 D.52.下图是一个电风扇开关,数字表示风速档。
现在风扇在“1”档运行,如果要关闭,可将旋钮( )。
A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°3.把任意一个图形绕任意点顺时针旋转( ),又回到了原来的位置。
七年级数学《轴对称、平移、旋转》专项训练试卷及答案解析
七年级数学《轴对称、平移、旋转》专项训练试卷及答案解析时间:120分钟满分:120分班级______ 姓名______ 得分______一、选择题(每小题3分,共30分)1.下列图形一定是轴对称图形的是( )A.直角三角形 B.六边形C.直角梯形 D.正方形2.下列各组的两个图形属于全等图形的是( )3.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.如图,该图形围绕其旋转中心,按下列角度旋转后,能与自身重合的是( ) A.150° B.120° C.90° D.60°第4题图第5题图第6题图5.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )A.1条 B.2条 C.4条 D.8条6.如图,在网格纸中,△ABC经过变换得到△DEF,正确的变换是( )A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°7.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是( )A.∠1=∠2 B.AD=CBC.∠D=∠B D.AC=BC第7题图8.如图,△ABC与△A1B1C1关于直线MN对称,P为MN上任一点,下列结论中错误的是( ) A.△AA1P是等腰三角形B.MN垂直平分AA1,CC1C.△ABC与△A1B1C1的面积相等D.直线AB,A1B1的交点不一定在MN上第8题图第9题图9.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,则线段A′B与线段AC的关系是( )A.垂直 B.相等C.平分 D.平分且垂直10.如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是( )第10题图第11题图二、填空题(每小题3分,共24分)11.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为________条.12.如图,△ABC是由四个形状大小相同的三角形拼成的,则可以看成是△ADF平移得到的小三角形是______________.第12题图第13题图13.如图是贝贝制作的风筝,为了平衡做成轴对称图形,已知OC是对称轴,∠A=35°,∠BOC=115°,那么∠ACB的大小是________.14.如图,四边形ABCD与四边形A′B′C′D′全等,∠A=________,四边形A′B′C′D′的周长为________.第14题图第15题图15.如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是____________.16.两个完全相同的直角梯形重叠在一起,将其中一个直角梯形按如图所示平移,则图中阴影部分的面积为________.第16题图第17题图17.如图,电风扇的叶片是一个旋转对称图形,电风扇的叶片旋转__________度能与自身重合.18.如图,将△ABC绕其中一个顶点顺时针连续旋转n′1,n′2,n′3所得到的三角形和△ABC的对称关系是______________。
二次函数平移、旋转、轴对称变换汇总
二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换1、抛物线的平移变换:一般都是在顶点式的情况下进行的。
抛物线的上下平移:___________________y=a(x-h)2+k y=a(x-h)2+k ± m抛物线的左右平移:___________________y=a(x-h)2+k y=a(x-h ± m)2+k练习:( 1)函数图象沿 y 轴向下平移 2 个单位,再沿 x 轴向右平移 3个单位,得到函数______________ 的图象。
(2)抛物线y x2 2x 5向左平移3个单位,再向下平移 6 个单位,所得抛物线的解析式是。
2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。
1)将抛物线绕其顶点旋转180 (即两条抛物线关于其顶点成中心对称)22y a x h k 关于顶点对称后,得到的解析式是 y a x h k 。
(2)将抛物线绕原点旋转180 (即两条抛物线关于原点成中心对称)22y a x h k 关于原点对称后,得到的解析式是 y a x h k 。
练(1)抛物线y 2x2 4x 6 绕其顶点旋转180 后,所得抛物线的解析式是(2)将抛物线y=x2+1绕原点O旋转180°,则旋转后抛物线的解析式为()22 2 2A.y=-x2B.y=-x2+1 C.y=x2-1 D.y=-x2-13、抛物线的轴对称变换:关于 x 轴对称y ax2 bx c关于 x轴对称后,得到的解析式是 y ax2 bx c ;22y a x h k 关于 x 轴对称后,得到的解析式是 y a x h k ;关于y 轴对称22 y ax2 bx c关于y 轴对称后,得到的解析式是 y ax2 bx c;22y a x h k 关于y 轴对称后,得到的解析式是y a x h k ;练习:已知抛物线C1:y (x 2)2 3 (1)抛物线C2与抛物线C1关于y 轴对称,则抛物线C2的解析式为2)抛物线C3与抛物线C1关于x 轴对称,则抛物线 C 3的解析式为总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此 a 永远不变。
华师大版七年级下册数学第10章 轴对称、平移与旋转含答案(综合考察)
华师大版七年级下册数学第10章轴对称、平移与旋转含答案一、单选题(共15题,共计45分)1、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,连结ED.若∠B =70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°2、数轴上一点A表示﹣3,若将A点向左平移5个单位长度,再向右平移6个单位长度,则此时A 点表示的数是()A.﹣1B.﹣2C.﹣3.D.13、如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C′,连接AA′,若∠1=22°,则∠B的度数是()A.67°B.62°C.82°D.72°4、将一张矩形纸片对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 ( )A.三角形B.矩形C.菱形D.梯形5、观察下列图案,是轴对称而不是中心对称的是()A. B. C. D.6、请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.7、如图正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE 的长为()A. B. C. D.8、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为().A.(1,2).B.(2,1).C.(2,2).D.(3,1).9、下列不是图形的旋转、平移、轴对称的共同特征的是()A.对应角的大小不变B.图形的大小不变C.图形的形状不变D.对应线段平行10、下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.11、下面的每组图形中,左面的图形平移后可以得到右面图形的是()A. B. C. D.12、自新冠肺炎疫情发生以来,全国人民共同抗疫,十堰市张湾区积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A. B. C. D.13、将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是( )A. B. C. D.14、下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A.1个B.2个C.3个D.4个15、七巧板是一种传统智力游戏,是中国古代劳动人民的发明,用七块板可拼出许多有趣的图形.在下面这些用七巧板拼成的图形中,可以看作轴对称图形的(不考虑拼接线)有()A.5个B.4个C.3个D.2个二、填空题(共10题,共计30分)16、如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是________.17、如图中,,,中,,,点D在线段AC上,点E在段BC的延长线上,将绕点C旋转得到,则________.18、如图,已知△ABC的面积为16,BC的长为8,现将△ABC沿BC向右平移m 个单位到△A′B′C′的位置。
图形的平移,对称与旋转的技巧及练习题附答案
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八单元对称、平移和旋转测试题
班级姓名分数
一、画出下面图形的对称轴(每题3分)
二、画出下面每个图形所有的对称轴(每题5分)
三、选择(将正确答案的序号填在括号里)(每题2分)
1.下面图形不是轴对称图形的是()。
①长方形②等腰梯形③平行四边形④等边三角形
2.长方形有()条对称轴,圆有()条对称轴,正方形有()条对称轴。
① 1 ② 2 ③ 3 ④ 4 ⑤无数
3.从6:00到9:00,时针旋转了()。
① 30°② 60°③ 90°④ 180°
四、看图填一填(每空2分)
(1)小帆船先向()平移了()格,再向()平移了()格。
(2)三角形先向()平移了()格,再向()平移了()格。
(注意:图在格内所画的竖线、横线都是与格子竖线、横线重合的!!!)
2、指针从B开始,顺时针旋转90°到()。
指针从B开始,逆时针旋转90°到()
五、按要求画一画 1.将六边形先向下平移4格,再向右平移5格。
(10分)
2.将小旗图围绕A点顺时针旋转90°。
(9分)。