第2讲 动能定理及其应用
第2讲 动能定理及其应用
3-1 如图所示,质量m=1 kg的木块静止在高h=1.2 m的平台上,木块与平 台间的动摩擦因数μ=0.2,用水平推力F=20 N,使木块产生位移l1=3 m时 撤去,木块又滑行l2=1 m后飞出平台,求木块落地时速度的大小。
答案 11.3 m/s
解析 解法一 取木块为研究对象。其运动分三个过程,先匀加速前进
F1=μmg ①
根据动能定理,对物块由A到B整个过程,初末状态速度均为0;因此初末 状态的动能均为0
栏目索引
Fx1-F1x=0 ② 代入数据,解得 x1=16 m③ (2)设刚撤去力F时物块的速度为v,此后物块的加速度为a,滑动的位移为 x2,则 x2=x-x1 ④ 由牛顿第二定律得
F1 a= ⑤ m
栏目索引
答案 见解析 解析 (1)物块恰好能到达M点,则
2 vM mg=m R
vM= gR = 10 m/s
(2)物块从B点运动到M点的过程中,由动能定理得:
栏目索引
2 2 -mgR(1+cos 37°)= mv mv M - B
1 2
1 2
vB= 46 m/s
(3)由乙图可知,物体在斜面上运动时,加速度大小为 a=10 m/s2,方向沿斜面向下,所以有 mg sin 37°+μmg cos 37°=ma 则μ=0.5
l1,后匀减速前进l2,再做平抛运动,对每一过程,分别列动能定理得:
1 m Fl1-μmgl1= v12 2
栏目索引
2 2 v2 -μmgl2= m - mv 1 2 2 mgh= mv mv 3 - 2
1 2
1 2
1 2
1 2
解得:v3=11.3 m/s 解法二 对全过程由动能定理得 Fl1-μmg(l1+l2)+mgh= mv2-0 代入数据解得v=11.3 m/s
第五章第2讲动能定理及其应用-2025年高考物理一轮复习PPT课件
高考一轮总复习•物理
第7页
3.物理意义: 合力 的功是物体动能变化的量度. 4.适用条件 (1)既适用于直线运动,也适用于曲线运动 . (2)既适用于恒力做功,也适用于 变力 做功. (3)力可以是各种性质的力,既可以同时作用,也可以 分阶段
作用.
高考一轮总复习•物理
第8页
1.思维辨析 (1) 一 定 质 量 的 物 体 动 能 变 化 时 , 速 度 一 定 变 化 , 但 速 度 变 化 时 , 动 能 不 一 定 变 化.( √ ) (2)处于平衡状态的物体动能一定保持不变.( √ ) (3)做自由落体运动的物体,动能与下落时间的二次方成正比.( √ ) (4)物体在合外力作用下做变速运动,动能一定变化.( ) (5)物体的动能不变,所受的合外力必定为零.( )
答案
高考一轮总复习•物理
第19页
解析:因为频闪照片时间间隔相同,对比图甲和乙可知图甲中滑块加速度大,是上滑阶 段;根据牛顿第二定律可知图甲中滑块受到的合力较大,故 A 错误.从图甲中的 A 点到图乙 中的 A 点,先上升后下降,重力做功为 0,摩擦力做负功;根据动能定理可知图甲经过 A 点 的动能较大,故 B 错误.对比图甲、乙可知,图甲中在 A、B 之间的运动时间较短,故 C 正 确.由于无论上滑还是下滑,受到的滑动摩擦力大小相等,故图甲和图乙在 A、B 之间克服 摩擦力做的功相等,故 D 错误.
高考一轮总复习•物理
第9页
2.运动员把质量是 500 g 的足球踢出后,某人观察它在空中的飞行情况,估计上升的
最大高度是 10 m,在最高点的速度为 20 m/s.估算出运动员踢球时对足球做的功为( )
A.50 J
B.100 J
C.150 J
第六章 第2讲 动能定理及其应用
第2讲 动能定理及其应用 目标要求 1.理解动能定理,会用动能定理解决一些基本问题.2.掌握解决动能定理与图象结合的问题的方法.考点一 动能定理的理解和基本应用 基础回扣1.动能(1)定义:物体由于运动而具有的能量叫做动能.(2)公式:E k =12m v 2,单位:焦耳(J).1 J =1 N·m =1 kg·m 2/s 2. (3)动能是标量、状态量.2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.(2)表达式:W =ΔE k =E k2-E k1=12m v 22-12m v 12. (3)物理意义:合力做的功是物体动能变化的量度.技巧点拨1.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.2.解题步骤3.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1 (2019·辽宁大连市高三月考)如图1所示,一名滑雪爱好者从离地h =40 m 高的山坡上A 点由静止沿两段坡度不同的直雪道AD 、DC 滑下,滑到坡底C 时的速度大小v =20 m/s.已知滑雪爱好者的质量m =60 kg ,滑雪板与雪道间的动摩擦因数μ=0.25,BC 间的距离L =100 m ,重力加速度g =10 m/s 2,忽略在D 点损失的机械能,则下滑过程中滑雪爱好者做的功为( )图1A .3 000 JB .4 000 JC .5 000 JD .6 000 J答案 A解析 根据动能定理有W -μmgL AD cos α-μmgL CD cos β+mgh =12m v 2,即:W -μmgL +mgh =12m v 2,求得W =3 000 J ,故选A. 例2 (多选)(2020·贵州安顺市网上调研)如图2所示,半圆形光滑轨道BC 与水平光滑轨道AB 平滑连接.小物体在水平恒力F 作用下,从水平轨道上的P 点,由静止开始运动,运动到B 点撤去外力F ,小物体由C 点离开半圆轨道后落在P 点右侧区域.已知PB =3R ,重力加速度为g ,F 的大小可能为( )图2A.12mgB.5mg 6 C .mg D.7mg 6答案 BC解析 小球能通过C 点应满足m v C 2R≥mg , 且由C 点离开半圆轨道后落在P 点右侧区域,则有2R =12gt 2,v C t <3R , 对小球从P 点到C 点由动能定理得F ·3R -2mgR =12m v C 2, 联立解得5mg 6≤F <25mg 24,故B 、C 正确,A 、D 错误.1.(动能定理的理解)(2018·天津卷·2)滑雪运动深受人民群众喜爱.如图3所示,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )图3A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变答案 C解析 运动员从A 点滑到B 点的过程中速率不变,则运动员做匀速圆周运动,其所受合外力指向圆心,A 错误;如图所示,运动员受到的沿圆弧切线方向的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,B 错误;由动能定理知,运动员匀速率下滑动能不变,合外力做功为零,C 正确;运动员下滑过程中动能不变,重力势能减小,机械能减小,D 错误.2.(动能定理的应用)(多选)(2019·宁夏银川市质检)如图4所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,载人滑草车与草地之间的动摩擦因数均为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度大小为g ,sin 37°=0.6,cos 37°=0.8).则( )图4A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7。
第五章 第2讲 动能定理及其应用
C.对物体,动能定理的表达式为 WN-mgH=12mv22-12mv12
D.对电梯,其所受合力做功为12Mv22-12Mv12
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
2.[动能定理的简单应用] (2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业来自首页 上页 下页 尾页
高频考点·分类突破
2.动能定理公式中体现的“三个关系” (1)数量关系:即合力所做的功与物体动能的变化具有等量替代关系.可以通 过计算物体动能的变化,求合力做的功,进而求得某一力做的功. (2)单位关系:等式两边物理量的国际单位都是焦耳. (3)因果关系:合力的功是引起物体动能变化的原因.
解得 h′=1-Rcμocso3t73°7°=0.48 m. 答案:0.48 m
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
[拓展延伸2] 若在[典例]中斜面轨道光滑,滑块从 A 点释放后滑到 C 点,对轨 道的压力是重力的多少倍?(原 AB 高度差 h=1.38 m 不变) 解析:由 A→C 应用动能定理,设 C 点时的速度为 vC. mgh-mg(R+Rcos θ)=12mv2C① NC+mg=mRv2C② 由①②得 NC=2.3mg,故是重力的 2.3 倍. 答案:2.3
C.等于克服摩擦力所做的功
D.大于克服摩擦力所做的功
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
3.A 球[动向能右定运理动求0解.1变m力时做,功vA]=3(2m01/s9,·吉O林A′长=春0模.4拟m),如O图B所′示=,0.3竖m直,平设面此内时放∠一B直′角A′杆O=
高考一轮复习 -动能定理及其应用
第2讲动能定理及其应用知识点一动能1.定义:物体由于________而具有的能.2.公式:E k=________.3.单位:________,1 J=1 N·m=1 kg·m2/s2.4.物理意义(1)动能是状态量,v是________(选填“瞬时速度”或“平均速度”).(2)动能是________(选填“矢量”或“标量”),只有正值,动能与速度方向________(选填“有关”或“无关”).5.动能的变化物体________与________之差,即ΔE k=________________________.知识点二动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中____________.2.表达式:W=________________.3.物理意义:________的功是物体动能变化的量度.4.动能定理的特点思考辨析(1)一定质量的物体动能变化时,速度一定变化;而速度变化时,动能也一定变化.( )(2)动能不变的物体一定处于平衡状态.( )(3)物体的动能不变,所受的合力必定为零.( )(4)物体做变速运动时动能不一定变化.( )(5)合力做功不等于零时,物体的动能一定变化.( )(6)如果物体的动能增加,那么合力一定做正功.( )教材改编[人教版必修2P75T5改编]运动员把质量是500 g的足球踢出后,某人观察它在空中的飞行情况,估计上升的最大高度是10 m,在最高点的速度为20 m/s.估算出运动员踢球时对足球做的功为( ) A.50 J B.100 JC.150 J D.无法确定考点一对动能定理的理解和应用自主演练1.对“外力”的两点理解(1)“外力”可以是重力、弹力、摩擦力、电场力、磁场力等,它们可以同时作用,也可以不同时作用.(2)“外力”既可以是恒力,也可以是变力.2.动能定理公式中“=”体现的“三个关系”数量关系合力的功与物体动能的变化可以等量代换单位关系国际单位都是焦耳因果关系合力做的功是物体动能变化的原因3.“一个参考系”:高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.[多维练透]1.(多选)一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k为( )A.Δv=0 B.Δv=12 m/s C.ΔE k=1.8 J D.ΔE k=02.(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增大到v2时,上升高度为H,重力加速度为g,则在这个过程中,下列说法正确的是( )A.对物体,动能定理的表达式为W=m-m,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W-mgH=m-m,其中W为支持力做的功D.对电梯,其所受的合力做功为M-M3.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图象是( )考点二动能定理的应用师生共研题型1|应用动能定理求变力的功例1 如图所示,在半径为0.2 m的固定半球形容器中,一质量为1 kg的小球(可视为质点)自边缘上的A点由静止开始下滑,到达最低点B时,它对容器的正压力大小为15 N.重力加速度g取10 m/s2,则球自A点滑到B点的过程中克服摩擦力做的功为( )A.0.5 J B.1.0 J C.1.5 J D.1.8 J题型2|动能定理在直线运动中的应用例2 有两条雪道平行建造,左侧相同而右侧有差异,一条雪道的右侧水平,另一条的右侧是斜坡.某滑雪者保持一定姿势坐在雪橇上不动,从h1高处的A点由静止开始沿倾角为θ的雪道下滑,最后停在与A 点水平距离为s的水平雪道上.接着改用另一条雪道,还从与A点等高的位置由静止开始下滑,结果能冲上另一条倾角为α的雪道上h2高处的E点停下.若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则( )A.动摩擦因数为tan θ B.动摩擦因数为C.倾角α一定大于θ D.倾角α可以大于θ题型3|动能定理在曲线运动中的应用(多过程问题)例3 如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙.BP为圆心角等于143°,半径R=1 m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处.现有一质量m=2 kg的物块在外力作用下将弹簧缓慢压缩到D点后(不拴接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为x=12t-4t2(式中x单位是m,t单位是s),假设物块第一次经过B点后恰能到达P点,(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)试求:(1)若CD=1 m,物块从D点运动到C点的过程中,弹簧对物块所做的功.(2)B、C两点间的距离x.【考法拓展1】在【例3】中,求物块释放后通过与O点等高的位置Q点时对轨道的压力.【考法拓展2】在【例3】中,若BC部分光滑,把物块仍然压缩到D点释放,求物块运动到P点时受到轨道的压力大小.练1 如图,MN为半径R=0.4 m、固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平,O 为圆心,M、O、P三点在同一水平线上,M的下端与轨道相切处放置竖直向上的弹簧枪,可发射速度不同但质量均为m=0.01 kg的小钢珠,小钢珠每次都在M点离开弹簧枪.某次发射的小钢珠沿轨道经过N点时恰好与轨道无作用力,水平飞出后落到OP上的Q点,不计空气阻力,取g=10 m/s2.求:(1)小钢珠经过N点时速度的大小v N;(2)小钢珠离开弹簧枪时的动能E k;(3)小钢珠在平板上的落点Q与圆心O点的距离s.练2 新型冠状病毒肺炎疫情发生后,全国人民踊跃捐款捐物,支持武汉人民抗疫.为了与时间赛跑,运送抗疫物资的某运输车以恒定功率P启动后以最大速度v m行驶.已知运输车总重为m.(1)求运输车速度为v m时的加速度;(2)假设运输车启动后经过时间t1,达到最大速度v m,求时间t1内运输车行驶的距离;(3)假设运输车启动后行驶距离s到达武汉,运输车刹车时所受合外力等于正常行驶时阻力的2倍,求运输车行驶的总时间.题后反思应用动能定理解题的基本步骤考点三动能定理与图象问题的结合多维探究题型1|vt图象例4 [2020·湖南湘潭一中月考]质量为m的物体从高为h的斜面顶端由静止下滑,最后停在水平面上,若该物体以v0的初速度从顶端下滑,最后仍停在水平面上,如图甲所示.图乙为物体两次在水平面上运动的vt图象,则物体在斜面上运动过程中克服摩擦力所做的功为( )A.m-3mgh B.3mgh-mC.m-mgh D.mgh-m题型2|Fx图象例5 [2020·济南模拟]静止在地面上的物体在不同合外力F的作用下通过了相同的位移x0,下列情况中物体在x0位置时速度最大的是( )题型3|E kx图象例6 [2020·江苏卷,4]如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图象是( )练3 (多选)光滑水平面上静止的物体,受到一个水平拉力作用开始运动,拉力F随时间t变化的图象如图所示,用E k、v、x、P分别表示物体的动能、速度、位移和拉力F的功率,下列四个图象分别定性描述了这些物理量随时间变化的情况,其中正确的是( )练4 [2020·临沂二模]狗拉雪橇是人们喜爱的滑雪游戏.已知雪橇与水平雪道间的动摩擦因数μ=0.1,人和雪橇的总质量m=50 kg.在游戏过程中狗用水平方向的力拉雪橇,使雪橇由静止开始运动.人和雪橇的动能E k与其发生位移x之间的关系如图所示(g=10 m/s2).求:(1)雪橇在x=30 m时的加速度;(2)在前40 m位移过程中拉力对人和雪橇做的功.题后反思解决物理图象问题的基本思路(1)弄清纵坐标、横坐标所对应的物理量及图线的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)对比图线和函数关系式,利用图线的斜率、截距、交点、面积和特定值求物理量.思维拓展巧选过程规范答题[2020·江苏无锡6月模拟](12分)如图所示是滑板运动的轨道示意图,BC和DE是两段光滑的圆弧形轨道,BC的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.2.某运动员从轨道上的A点以v=3 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点与水平轨道CD的竖直高度分别为h=2 m和H=2.5 m,g=10 m/s2.(1)求运动员从A点运动到B点时的速度大小v B.(2)求水平轨道CD的长度L.(3)通过计算说明,第一次返回时,运动员能否回到B点?如果能,求出运动员回到B点时速度的大小;如果不能,求出运动员最后停止的位置距C点的距离.[教你解决问题](1)刚好沿着轨道的切线方向滑入圆弧轨道→B点速度分解→到达B点时的速度大小.(2)从B到E→动能定理→水平轨道CD的长度L.(3)从E到第一次返回左侧最高处→动能定理→总路程→最后停止的位置.解答规范解答书写区自查项目(1)滑板在B点刚好沿着轨道的切线方向滑入圆弧轨道,由题意得v B=①(1分)解得v B=6 m/s.②(1分)(2)从B到E的过程,由动能定理得mgh-μmgL-mgH=0-m③(2分)有必要的文字说明指明对象和所用规律列式规范,无连等式、无代数过程题后反思1.灵活选择研究过程求解多过程问题既可分段考虑,也可全过程考虑,但要优先考虑全过程.2.注意运用做功的特点(1)重力的功取决于物体的初、末位置,与路径无关.(2)摩擦力做的功等于力的大小与路程的乘积.(3)求全过程的总功时,注意有些力不是全过程一直作用.第2讲动能定理及其应用基础落实知识点一1.运动2.mv23.焦耳4.(1)瞬时速度(2)标量无关5.末动能初动能m-m知识点二1.动能的变化量2.m-m3.合外力4.(3)曲线运动(4)变力做功(5)分阶段思考辨析(1)×(2)×(3)×(4)√(5)√(6)√教材改编解析:根据动能定理W-mgh=mv2得,W=150 J,故选项C正确.答案:C考点突破1.解析:取初速度方向为正方向,则Δv=|(-6)-6| m/s=12 m/s,由于速度大小没变,动能不变,故动能变化量ΔE k=0,故选项B、D正确.答案:BD2.解析:电梯上升的过程中,对物体做功的有重力mg、支持力F N,这两个力的总功(即合力做的功)才等于物体动能的增量,即W合=m-m,选项A、B错误,C正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,选项D正确.答案:CD3.解析:对于整个竖直上抛过程(包括上升与下落),速度与时间的关系为v=v0-gt,v2=g2t2-2v0gt+,E k=mv2,可见动能与时间是二次函数关系,由数学中的二次函数知识可判断A正确.答案:A例1 解析:在B点对小球由牛顿第二定律得F N-mg=m,解得E kB=mv2= (F N-mg)R,小球由A滑到B的过程由动能定理得mgR-W f=mv2-0,解得W f=R(3mg-F N)=×0.2×(30-15) J=1.5 J,故C正确,A、B、D错误.答案:C例2 解析:第一次停在BC上的某点,由动能定理得mgh1-μmgcos θ·-μmgs′=0mgh1-μmg=0mgh1-μmgs=0μ=A错误,B正确;在AB段由静止下滑,说明μmgcos θ<mgsin θ,第二次滑上CE在E点停下,说明μmgcos α≥mgsin α,若α>θ,则雪橇不能停在E点,所以C、D错误.答案:B例3 解析:(1)由x=12t-4t2知,物块在C点速度为v0=12 m/s,a=8 m/s2设物块从D点运动到C点的过程中,弹簧对物块所做的功为W,由动能定理得W-mgsin 37°·=m代入数据得W=m+mgsin 37°·=156 J.(2)物块在CB段,根据牛顿第二定律,物块所受合力F=ma=16 N物块在P点的速度满足mg=C到P的过程,由动能定理得-Fx-mgR(1+cos 37°)=m-m解得x= m=6.125 m.答案:(1)156 J (2)6.125 m考法拓展1 解析:物块在P点时满足mg=,物块从Q点到P点过程中,由动能定理得-mgR=m-m.物块在Q点时有F N=.联立以上各式得F N=3mg=60 N.由牛顿第三定律可知物块通过Q点时对轨道压力为60 N,方向水平向右.答案:60 N 方向水平向右考法拓展 2 解析:物块从C到P的过程中,由动能定理得-mgxsin 37°-mgR(1+cos37°)=m-m物块在P点时满足F N+mg=,联立以上两式得F N=49 N答案:49 N练1 解析:(1)小钢珠沿轨道经过N点时恰好与轨道无作用力,则有mg=m解得v N==2 m/s(2)小钢珠在光滑圆弧轨道,由动能定理得-mgR=m-E k解得E k=0.06 J(3)小钢珠水平飞出后,做平抛运动,R=gt2,s=v N t解得s= m答案:(1)2 m/s (2)0.06 J (3) m练2 解析:(1)由P=fv m,解得f=,由P=F解得运输车速度为v m时的牵引力F=,由牛顿第二定律有F-f=ma,解得加速度a=.(2)由动能定理得Pt1-fx1=m,解得时间t1内运输车行驶的距离x1==.(3)运输车刹车时匀减速运动的加速度为a′=,从刹车到运输车停下需要的时间t3=,联立解得t3=,从刹车到运输车停下运动的距离x3==,运输车匀速运动的距离x2=s-x1-x3=,运输车匀速运动的时间t2=,又f=,则运输车行驶的总时间t=t1+t2+t3=.例4 解析:本题考查动能定理与图象结合的问题.若物体由静止开始从顶端下滑,由动能定理得mgh-W f=m,若该物体以v0的初速度从顶端下滑,由动能定理得mgh-W f=m-m,由题图乙可知,物体两次滑到水平面的速度关系为v2=2v1,由以上三式解得W f=mgh-m,D正确,A、B、C错误.答案:D例5 解析:由于Fx图象所包围的面积表示力做功的大小,已知物体在不同合外力F的作用下通过的位移相同,C选项中图象包围的面积最大,因此合外力做功最多,根据动能定理W合=mv2-0,可得C选项物体在x0位置时速度最大,故A、B、D错误,C正确.答案:C例6 解析:在斜面上,物块受竖直向下的重力、沿斜面向上的滑动摩擦力以及垂直斜面向上的支持力,设物块的质量为m,斜面的倾角为θ,物块沿斜面下滑的距离对应的水平位移为x,由动能定理有mgsinθ·-μ1mgcos θ·=E k-0,解得E k=(mgtan θ-μ1mg)x,即在斜面上时物块的动能与水平位移成正比,B、D项均错误;在水平面上,物块受竖直向下的重力、竖直向上的支持力以及水平向左的滑动摩擦力,由动能定理有-μ2mg(x-x0)=E k-E k0,解得E k=E k0-μ2mg(x-x0),其中E k0为物块滑到斜面底端时的动能,x0为物块沿斜面下滑到底端时的距离对应的水平位移,即在水平面上物块的动能与水平位移为一次函数关系,且为减函数,A项正确,C项错误.答案:A练3 解析:由于拉力F恒定,所以物体有恒定的加速度a,则v=at,即v与t成正比,选项B正确;由P=Fv=Fat可知,P与t成正比,选项D正确;由x=at2可知x与t2成正比,选项C错误;由动能定理可知E k=Fx=Fat2,E k与t2成正比,选项A错误.答案:BD练4 解析:(1)雪橇从20 m到40 m做匀加速直线运动,由动能定理得:F合·Δx=E k2-E k1由牛顿第二定律得:F合=ma联立解得:a=0.5 m/s2.(2)前40 m的运动过程由动能定理得:W-μmgx=E k2解得:W=2 900 J.答案:(1)0.5 m/s2(2)2 900 J。
第2讲动能定理及其应用
第2讲动能定理及其应用思维诊断(1)动能是机械能的一种表现形式,凡是运动的物体都具有动能.()(2)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.()(3)动能不变的物体所受合外力一定为零.()(4)做自由落体运动的物体,动能与下落距离的平方成正比.()(5)物体做变速运动时动能一定变化.()考点突破2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少;合外力对物体不做功,物体的动能不变.4.高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.5.适用范围:直线运动、曲线运动、恒力做功、变力做功、各个力同时做功、分段做功均可用动能定理.mv2变式训练1如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,则木盒滑行的距离()A.不变B.变小C.变大D.变大变小均可能=Mv+.显然考点二动能定理的应用1.应用动能定理解题的步骤:2.注意事项:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法要简便.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理没有任何依据.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.(4)应用动能定理时,必须明确各力做功的正、负.当一个力做负功时,可设物体克服该力做功为W,将该力做功表达为-W,也可以直接用字母W表示该力做功,使其字母本身含有负号.[例2]如图所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功W f;(2)小船经过B点时的速度大小v1;(3)小船经过B点时的加速度大小a.2m1-④点时绳的拉力大小为F,绳与水平方向夹角为+1--2m1-+1--f m考点三用动能定理处理多过程问题优先考虑应用动能定理的问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.(4)含有F、l、m、v、W、E k等物理量的力学问题.[例3]如图是翻滚过山车的模型,光滑的竖直圆轨道半径R=2 m,入口的平直轨道AC和出口的平直轨道CD均是粗糙的,质量m=2 kg的小车与水平轨道之间的动摩擦因数为μ=0.5,加速阶段AB的长度l=3 m,小车从A点由静止开始受到水平拉力F=60 N的作用,在B点撤去拉力,取g=10 m/s2.试问:(1)要使小车恰好通过圆轨道的最高点,小车在C点的速度为多少?(2)满足第(1)的条件下,小车能沿着出口平直轨道CD滑行多远的距离?(3)要使小车不脱离轨道,求平直轨道BC段的长度范围.[解析](1)设小车恰好通过最高点的速度为mg=mv20R①变式训练3如图所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h=0.8 m,质量为m=2 kg的小物块M从斜面顶端A处由静止滑下,从O点进入光滑水平滑道时无机械能损失,为使M制动,将轻弹簧的一端固定在水平滑道延长线B处的墙上,另一端恰位于水平轨道的中点C.已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g=10 m/s2,下滑时逆着毛的生长方向.求:(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零).(2)若物块M能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M在斜面上下滑过程中的总路程.示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.A.2 m/sB.8 m/s类题拓展质量均为m的两物块A、B以一定的初速度在水平面上只受摩擦力而滑动,如图所示是它们滑动的最大位移x与初速度的平方v20的关系图象,已知v202=2v201,下列描述中正确的是()A.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是对B做功的2倍B.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是v2H H⎛⎫11质点在轨道最低点时受重力和支持力,根据牛顿第三定律可知,支持力2R,得v=gR.对质点的下滑过程应用动能定理,,C正确..甲车的刹车距离随刹车前的车速v变化快,甲车的刹车性能好乙车与地面间的动摩擦因数较大,乙车的刹车性能好.以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好。
第2节 动能定理及其应用
错误。
答案:C
【要点解读】
返回
1.动能与动能的变化的区别
(1)动能与动能的变化是两个不同的概念,动能是状态量,
动能的变化是过程量。
(2)动能没有负值,而动能变化量有正负之分。ΔEk>0 表
示物体的动能增加,ΔEk<0 表示物体的动能减少。 2.对动能定理的理解
(1)做功的过程就是能量转化的过程,动能定理表达式中
mgh-μmg cos 37°·sinh37°=12 mvB2-0
代入数据解得 h=1.38 m。 答案:(1)2 m/s (2)4.29 m/s (3)1.38 m
返回
考点三 动能定理与图像的结合问题 [互动共研类] 动能定理与图像结合问题的分析方法 (1)首先看清楚所给图像的种类(如 v-t 图像、F-x 图像、Ek x 图像等)。 (2)挖掘图像的隐含条件——求出所需要的物理量,如由 v-t 图像所包围的“面积”求位移,由 F-x 图像所包围的“面 积”求功,在横轴的上下表示做功的正负;由 Ekx 图像的斜 率求合外力等。 (3)分析有哪些力做功,根据动能定理列方程,求出相应的 物理量。
返回
(2)为使小球仅仅与挡板碰撞一次,且小球不会脱离 CDO 轨道,H 最小时必须满足能上升到 O 点,由动能定理得:mgHmin -μmgL=12 mv02-0
在 O 点有:mg=mvr02 代入数据解得:Hmin=0.65 m 仅仅与弹性挡板碰撞一次,且小球不会脱离 CDO 轨道, H 最大时,碰后再返回最高点能上升到 D 点,则有: mg(Hmax+r)-3μmgL=0 代入数据解得:Hmax=0.7 m 故有:0.65 m≤H≤0.7 m。 [答案] (1)84 N (2)0.65 m≤H≤0.7 m
第2讲 动能定理及其应用
用,在 0~6 s 内其速度与时间的关系图像和该拉力的功率与时间的关系图像分
别如图所示。下列说法中正确的是(g 取 10 m/s2)
()
A.0~6 s 内拉力做的功为 140 J B.物体在 0~2 s 内所受的拉力为 4 N C.物体与粗糙水平地面间的动摩擦因数为 0.5 D.合外力在 0~6 s 内做的功与 0~2 s 内做的功相等
()
A.FL=12Mv2
B.Fs=12mv2
C.Fs=12mv20-12(M+m)v2
D.F(L+s)=12mv20-12mv2
解析:根据动能定理,对子弹,有-F(L+s)=12mv2-12mv20,选项 D 正确; 对木块,有 FL=12Mv2,选项 A 正确;由以上二式可得 Fs=12mv20-12(M +m)v2,选项 C 正确,只有选项 B 错误。 答案:ACD
联立解得:t=
2L gsin θ-μ1cos θ
可见, t 与 m 无关,小华与小明下滑的时间相同。
[答案] (1)2.4 m (2)2 2 m/s (3)见解析
[规律方法] (1)在恒力作用下的直线运动问题可以应用牛顿运动定律与运动学公式结合求
解,也可以应用动能定理求解。 (2)在不涉及时间的问题中,可优先考虑应用动能定理。 (3)动能定理中的位移和速度均是相对于同一参考系的,一般以地面为参考系。
(2)冲上斜面的过程,由动能定理得 -mgLsin 30°=0-12mv2A 解得冲上斜面 AB 的长度 L=5 m。 [答案] (1)5 2 m/s (2)5 m
考法(四) 动能定理与 v-t、P-t 图像的合
[例 4] (多选)放在粗糙水平地面上质量为 0.8 kg 的物体受到水平拉力的作
(1)求滑梯的高度 h; (2)若小明裤料与滑板间的动摩擦因数 μ1=13,求他从滑梯上由静止滑到底 端的瞬时速度大小; (3)若体重比小明重、穿相同裤料的小华,从滑梯上由静止滑到底端,有 人认为小华滑行的时间比小明长。这种说法是否正确?简要说明理由。
第2讲 动能定理及其应用(师)
第2讲动能定理及其应用[基础知识·填一填][知识点1]动能1.定义:物体由于运动而具有的能.2.公式:E k =12m v 2.3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关.4.单位:焦耳,1J =1N·m =1kg·m 2/s 2.5.动能的相对性:由于速度具有相对性,所以动能也具有相对性.6.动能的变化:物体末动能与初动能之差,即ΔE k =12m v 22-12m v 21.[知识点2]动能定理1.内容:合外力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式(1)W =ΔE k .(2)W =E k2-E k1.(3)W =12m v 22-12m v 21.3.物理意义:合外力的功是物体动能变化的量度.4.适用范围广泛(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.判断正误,正确的划“√”,错误的划“×”.(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√)(2)动能不变的物体一定处于平衡状态.(×)(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.(√)(4)物体在合外力作用下做变速运动时,动能一定变化.(×)(5)物体的动能不变,所受的合外力必定为零.(×)(6)做自由落体运动的物体,动能与时间的二次方成正比.(√)[教材挖掘·做一做]1.(人教版必修2P74第1题改编)改变汽车的质量和速度,都能使汽车的动能发生变化,则下列说法正确的是()A.质量不变,速度增大到原来的2倍,动能增大为原来的2倍B.速度不变,质量增大到原来的2倍,动能增大为原来的4倍C.质量减半,速度增大到原来的4倍,动能增大为原来的2倍D.速度减半,质量增大到原来的4倍,动能不变答案:D2.(人教版必修2P75第4题改编)民用航空客机的紧急出口打开时,会自动生成一个由气囊构成的斜面,模型简化如图所示.光滑斜面的竖直高度AB=3.2m,斜面长AC=4.0 m,斜面与水平地面CD段间由一段小圆弧平滑连接.当物体由静止开始滑下,其与地面间的动摩擦因数为0.5,不计空气阻力,g取10m/s2.(1)人滑到斜面底端C时的速度大小;(2)人离开C点后还要在地面上滑行多远才能停下?解析:(1)在AC过程中由动能定理得m v2C,mgh=12解得v C=8m/s.(2)设人在CD水平面上滑行的距离为s在AD过程中由动能定理得mgh-μmgs=0解得s=6.4m.答案:(1)8m/s(2)6.4m考点一对动能定理的理解及简单应用[考点解读]1.做功的过程就是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号.2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.4.若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.[典例赏析][典例1](2017·全国卷Ⅱ)为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s 0和s 1(s 1<s 0)处分别放置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1.重力加速度大小为g .求:(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度.[解析](1)设冰球的质量为m ,冰球与冰面之间的动摩擦因数为μ,由动能定理得-μmgs 0=12m v 21-12m v 20①解得μ=v 20-v 212gs 0(2)冰球到达挡板时,满足训练要求的运动员中,刚好到达小旗处的运动员的加速度最小,设这种情况下,冰球和运动员的加速度大小分别为a 1和a 2,所用的时间为t .由运动学公式得v 20-v 21=2a 1s 0②v0-v1=a1t③s1=12a2t2④联立②③④式得a2=s1(v1+v0)22s20.[答案](1)v20-v212gs0(2)s1(v0+v1)22s20用好动能定理的“5个”突破突破①——研究对象的选取动能定理适用于单个物体,当题目中出现多个物体时可分别将单个物体取为研究对象,应用动能定理.突破②——研究过程的选取应用动能定理时,选取不同的研究过程列出的方程是不相同的.因为动能定理是个过程式,选取合适的过程往往可以大大简化运算.突破③——受力分析运用动能定理时,必须分析清楚物体在过程中的全部受力情况,找出哪些力不做功,哪些力做功,做多少功.从而确定出外力的总功,这是解题的关键.突破④——位移的计算应用动能定理时,要注意有的力做功与路程无关,只与位移有关,有的力做功却与路程有关.突破⑤——初、末状态的确定动能定理的计算式为标量式,v为相对同一参考系的速度,所以确定初、末状态动能时,必须相对于同一参考系而言.[题组巩固]1.(2018·全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功解析:A[由动能定理可知W拉-W f=E k-0,因此,E k<W拉,故A正确,B错误;E k可能大于、等于或小于W f,选项C、D错误.]2.(2019·运城模拟)如图所示,将一光滑圆轨道固定竖直放置,其中A 点为圆轨道的最低点,B 点为圆水平直径与圆弧的交点.一个质量为m 的物体静置于A 点,现用始终沿轨道切线方向、大小不变的外力F 作用于物体上,使其沿圆轨道到达B 点,随即撤去外力F ,要使物体能在竖直圆轨道内维持圆周运动,外力F 至少为()A.2mg πB.3mg πC.4mg πD.5mg π解析:D[物体由A 点运动到最高点的过程,由动能定理可得F ·12πR -mg ·2R =12m v 2-0,物体刚好经过最高点,在最高点对物体由牛顿第二定律得mg =m v 2R ,联立以上两式解得F =5mg π,因此外力F 至少为5mgπ,故D 正确,A 、B 、C 错误.]3.物体在水平面上从x 轴坐标原点O 以v 0=20m/s 的初速度沿x 轴正方向开始运动,由x 1=20m 处滑上一个倾角为45°的斜面,又滑了下来,物体每次经过斜面底端时都不损失机械能.已知动摩擦因数均为μ=0.50,g 取10m/s 2.求:物体停止运动时位置的坐标.(计算结果保留三位有效数字)解析:沿斜面上滑位移为L 时速度减到零,由动能定理得:-μmgx 1-μmg cos 45°L -mgL sin 45°=0-12m v 20解得L sin 45°=12v 20-μgx 1(1+μ)g下滑后停在坐标x 2处,由动能定理得:mgL sin 45°-μmgL cos 45°-μmg (x 1-x 2)=0解得x 2=x 1-L sin 45°=13.3m.答案:13.3m考点二动能定理在多过程中的应用[考点解读]1.由于多过程问题的受力情况、运动情况比较复杂,从动力学的角度分析多过程问题往往比较复杂,但是,用动能定理分析问题,是从总体上把握其运动状态的变化,并不需要从细节上了解.因此,动能定理的优越性就明显地表现出来了,分析力的作用是看力做的功,也只需把所有的力做的功累加起来即可.2.运用动能定理解决问题时,有两种思路:一种是全过程列式,另一种是分段列式.3.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意运用它们的功能特点.(1)重力的功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力的功等于力的大小与路程的乘积.(3)弹簧弹力做功与路径无关.[典例赏析][典例2](2018·全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切,BC为圆弧轨道的直径,O为圆心,OA和OB之间的夹角为α,.一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平sinα=35轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.[审题指导](1)研究对象:小球(2)过程分析小球①C 力的合成法牛顿第二定律F 向=mv 2R ②A →动能定理动量p =m v 1③C →竖直方向的分运动为匀加速运动,由运动学公式求解时间t[解析](1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α①F 2=(mg )2+F 20②设小球到达C 点时的速度大小为v ,由牛顿第二定律得F =m v 2R③由①②③式和题给数据得F 0=34mg ④v =5gR2⑤(2)设小球到达A 点的速度大小为v 1,作CD ⊥PA ,交PA 于D 点,由几何关系得DA =R sin α⑥CD =R (1+cos α)⑦由动能定理有-mg ·CD -F 0·DA =12m v 2-12m v 21⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为p =m v 1=m 23gR 2⑨(3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ⑩v ⊥=v sin α⑪由⑤⑦⑩⑪式和题给数据得t =355R g⑫答案:(1)34mg5gR 2(2)m 23gR 2(3)355R g利用动能定理求解多过程问题的基本思路1.弄清物体的运动由哪些过程组成.2.分析每个过程中物体的受力情况.3.各个力做功有何特点,对动能的变化有无影响.4.从总体上把握全过程,表达出总功,找出初、末状态的动能.5.对所研究的全过程运用动能定理列方程.[题组巩固]1.(2019·山东潍坊)如图所示,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直,质量为m 的小球从A 点左上方距A 点高为h 的斜面上方P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度为g ,取R =509h ,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球被抛出时的速度v 0;(2)小球从C 到D 过程中摩擦力做的功W f .解析:(1)小球到达A 点时,速度与水平方向的夹角为θ,如图所示,则有v yv 0=tan θ,竖直方向上有v 2y =2gh ,联立以上两式,得v 0=432gh(2)小球从P 经A 、B 、C 至D 全过程,重力做功为零,弹力都不做功,只有摩擦力做功,就全过程应用动能定理W f =0-12m v 20,解得W f =-169mgh答案:(1)432gh(2)-169mgh2.(2019·银川模拟)如图所示,一质量m=0.4kg的滑块(可视为质点)静止于动摩擦因数μ=0.1的水平轨道上的A点.现对滑块施加一水平外力,使其向右运动,外力的功率恒为P=10.0W.经过一段时间后撤去外力,滑块继续滑行至B点后水平飞出,恰好在C点以5m/s的速度沿切线方向进入固定在竖直平面内的光滑圆弧形轨道,轨道的最低点D处装有压力传感器.已知轨道AB的长度L=2.0m,半径OC和竖直方向的夹角α=37°,圆形轨道的半径R=0.5m.(空气阻力可忽略,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8),求:(1)滑块运动到D点时压力传感器的示数.(2)水平外力作用在滑块上的时间t.解析:(1)滑块由C点运动到D点的过程,由动能定理得:mgR(1-cos37°)=12m v2D-12m v2C解得:v D=33m/s在D点,对滑块由牛顿第二定律得:F N′-mg=m v2D R解得:F N=25.6N根据牛顿第三定律得滑块对轨道的压力F N′=F N=25.6N,方向竖直向下.(2)滑块离开B点后做平抛运动,恰好在C点沿切线方向进入圆弧形轨道,由几何关系可知,滑块运动在B点的速度为v B=v C cos37°=4m/s滑块由A点运动到B点的过程,由动能定理得:Pt-μmgL=12m v2B-0解得:t=0.4s.答案:(1)25.6N(2)0.4s3.(2019·郴州模拟)如图甲所示是高速公路出口的匝道,车辆为了防止在转弯时出现侧滑的危险,必须在匝道的直道上提前减速.现绘制水平面简化图如图乙所示,一辆质量m =2000kg的汽车原来在水平直道上做匀速直线运动,行驶速度v0=108km/h,恒定阻力F f=1000N.现将汽车的减速运动简化为两种方式:方式一为“小踩刹车减速”,司机松开油门使汽车失去牵引力,在水平方向上仅受匀速运动时的恒定阻力作用;方式二为“刹车减速”,汽车做匀减速直线运动的加速度a=6m/s2.(1)求汽车原来匀速直线行驶时的功率.(2)司机在离弯道口Q距离为x1的地方开始减速,全程采取“小踩刹车减速”,汽车恰好能以15m/s的安全速度进入弯道,求出汽车在上述减速直线运动的过程中克服阻力做功的大小以及距离x1的大小.(3)在离弯道口Q距离为125m的P位置,司机先采取“小踩刹车减速”滑行一段距离x2后,立即采取“刹车减速”,汽车仍能恰好以15m/s的安全速度进入弯道,求x2的大小.解析:(1)汽车匀速运动的速度为:v0=108km/h=30m/s因为汽车做匀速直线运动,所以牵引力为:F=F f汽车的功率为:P=F v0故P=F f v0=30kW(2)全程采取“小踩刹车减速”时,由动能定理得:-W f=12m v21-12m v20解得克服阻力做功为:W f=6.75×105J 又:W f=F f x1解得:x1=675m(3)从P到Q的过程中,由动能定理得:-F f x2-ma(125m-x2)=12m v21-12m v20解得:x2=75m.答案:(1)30kW(2)6.75×105J675m(3)75m考点三动能定理中的图象问题[考点解读]1.解决动能定理与图象问题的基本步骤2.四类图象所围“面积”的意义[典例赏析][典例3](2017·江苏卷)一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k与位移x关系的图线是()[解析]C[设物块与斜面间的动摩擦因数为μ,物块的质量为m,则物块在上滑过程中根据动能定理有-(mg sin θ+μmg cos θ)x =E k -E k0,即E k =E k0-(mg sin θ+μmg cos θ)x ,物块沿斜面下滑的过程中有(mg sin θ-μmg cos θ)(x 0-x )=E k ′,由此可以判断C 项正确.][母题探究]母题典例3探究1.动能定理与F -x 图象结合问题探究2.动能定理与P -t 图象结合问题探究3.动能定理与v -t 图象结合问题[探究1](2019·临沂模拟)(多选)水平面上质量为m =6kg的物体,在大小为12N 的水平拉力F 的作用下做匀速直线运动,从x =2.5m 位置处拉力F 逐渐减小,力F 随位移x 变化规律如图所示,当x =7m 时拉力减为零,物体也恰好停下,g 取10m/s 2,下列结论正确的是()A .物体与水平面间的动摩擦因数为0.2B .合外力对物体所做的功为-27JC .物体匀速运动时的速度为3m/sD .物体在减速阶段所受合外力的冲量为12N·s解析:ABC [物体做匀速运动时,由平衡条件得F f =F =12N ,μ=F f mg =12N 6×10N=0.2,故A 正确;图象与坐标轴围成的“面积”表示拉力做的功,则由图象可知W F =12×2.5J +12×(7-2.5)×12J =57J ,滑动摩擦力做的功为W f =-μmgx =-0.2×6×10×7J =-84J ,所以合外力做的功为W 合=-84J +57J =-27J ,故B 正确;由动能定理得W 合=0-12m v 20,解得v 0=3m/s ,故C 正确;由动量定理得I =0-m v 0=-6×3N·s =-18N·s ,故D 错误.][探究2]动能定理与P -t 图象结合问题(2019·南平模拟)(多选)放在粗糙水平地面上质量为0.8kg 的物体受到水平拉力的作用,在0~6s 内其速度与时间的关系图象和该拉力的功率与时间的关系图象分别如图所示.下列说法中正确的是()A .0~6s 内拉力做的功为140JB .物体在0~2s 内所受的拉力为4NC .物体与粗糙水平地面的动摩擦因数为0.5D .合外力在0~6s 内做的功与0~2s 内做的功相等解析:AD [由于P -t 图象与t 轴围成的“面积”表示拉力所做的功,所以0~6s 内拉力做的功为W =12×2×60J +4×20J =140J ,故A 正确;由水平拉力的功率P =F v 可得,在0~2s 内拉力F =P v 6N,2~6s ,拉力F ′=P ′v ′=2N ,故B 错误;物体在水平面上只受摩擦力和拉力,在2~6s 内物体受力平衡可得F f =μmg =F ′,解得μ=F ′mg =2N 0.8×10N =0.25,故C 错误;由v -t 图象可知,物体在2s 末的速度与6s 末的速度相等,由动能定理W 合=ΔE k 可知,0~6s 与0~2s 动能的变化量相同,所以合外力在0~6s 内做的功与0~2s 内做的功相等,故D 正确.][探究3]动能定理与v -t 图象结合问题(2019·昆明模拟)低空跳伞是一种危险性很高的极限运动,通常从高楼、悬崖、高塔等固定物上起跳,在极短时间内必须打开降落伞,才能保证着地安全,某跳伞运动员从高H =100m 的楼层起跳,自由下落一段时间后打开降落伞,最终以安全速度匀速落地.若降落伞视为瞬间打开,得到运动员起跳后的速度v 随时间t 变化的图象如图所示,已知运动员及降落伞装备的总质量m =60kg ,开伞后所受阻力大小与速率成正比,即F f =k v ,g 取10m/s 2,求:(1)打开降落伞瞬间运动员的加速度.(2)打开降落伞后阻力所做的功.解析:(1)匀速运动时,则有:mg =k v解得:k =120N/(m·s -1)打开降落伞的瞬间,速度为:v 1=18m/s由牛顿第二定律得:k v 1-mg =ma解得:a =26m/s 2方向竖直向上(2)根据图线围成的面积知,自由下落的位移为:x 1=12×2×18m =18m 则打开降落伞后的位移为:x 2=H -x 1=100m -18m =82m由动能定理得:mgx 2+W f =12m v 2-12m v 21代入数据解得:W f =-58170J.答案:(1)26m/s 2,方向竖直向上(2)-58170J思想方法用动能定理巧解往复运动问题方法阐述对于具有重复性的往复运动过程,由于动能定理只涉及物体的初末状态,而不计运动过程的细节,所以用动能定理分析这类问题可使解题过程简化.1.灵活选择研究过程求解多过程问题既可分段考虑,也可全过程考虑,但要优先考虑全过程.2.注意运用做功特点(1)重力的功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做的功等于力的大小与路程的乘积.(3)求全过程的总功时,注意有些力不是全过程一直作用.[典例赏析][典例](2019·江苏泰州模拟)如图所示,足够长的固定木板的倾角为37°,劲度系数为k =36N/m 的轻质弹簧的一端固定在木板上的P 点,图中AP 间距等于弹簧的自然长度.现将质量m =1kg 的可视为质点的物块放在木板上,在外力作用下将弹簧压缩到某一位置B点后释放.已知木板PA 段光滑,AQ 段粗糙,物块与木板间的动摩擦因数μ=38,物块在B 点释放后向上运动,第一次到达A 点时速度大小为v 0=33m/s ,取重力加速度g =10m/s 2.(1)求物块第一次向下运动到A 点时的速度大小v 1;(2)请说出物块最终的运动状态,并求出物块在A 点上方运动的总路程s .[审题指导](1)把握过程构建运动模型过程①物块上滑匀变速直线运动过程②物块下滑匀变速直线运动过程③物块在A 点下方往复运动(2)选好过程,列出方程①过程①②分别列出动能定理方程.②对多次往复后的全程列出动能定理方程.[解析](1)设物块从A 点向上滑行的最大距离为s 1.根据动能定理,上滑过程有:-mgs 1sin 37°-μmgs 1cos 37°=0-12m v 20下滑过程有:mgs 1sin 37°-μmgs 1cos 37°=12m v 21-0联立解得:s 1=1.5m ,v 1=3m/s(2)物块最终在A 点下方做往复运动,最高点为A根据动能定理:μmgs cos 37°=12m v 20代入数据解得:s =4.5m.[答案](1)3m/s (2)物块最终在A 点下方做往复运动4.5m1.应用动能定理求解往复运动问题时,要确定物体的初状态和最终状态.2.重力做功与物体运动路径无关,可用W G =mgh 直接求解.3.滑动摩擦力做功与物体运动路径有关,可用W f =-F f s 求解,其中s 为物体相对滑行的路程.[题组巩固]1.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ,求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力;(3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件.解析:(1)因为摩擦力始终对物体做负功,所以物体最终在圆心角为2θ的圆弧轨道上做往复运动.对整体过程由动能定理,得mgR ·cos θ-μmg cos θ·s =0所以总路程为s =R μ(2)对B →E 过程mgR (1-cos θ)=12m v 2①F N -mg =m v 2R②由①②,得F N =(3-2cos θ)mg由牛顿第三定律可知,物体对轨道的压力是(3-2cos θ)·mg ,方向竖直向下.(3)设物体刚好到D 点,则mg =m v 2D RL ′取最小值时,对全过程由动能定理,得mgL ′sin θ-μmg cos θ·L ′-mgR (1+cos θ)=12m v 2D ④由③④,得L ′=3+2cos θ2(sin θ-μcos θ)·R 故应满足的条件为L ′≥3+2cos θ2(sin θ-μcos θ)·R .答案:(1)R μ(2)(3-2cos θ)mg ,方向竖直向下(3)L ′≥3+2cos θ2(sin θ-μcos θ)·R 2.如图所示,在竖直平面内,粗糙的斜面AB 长为2.4m ,其下端与光滑的圆弧轨道BCD 相切于B ,C 是最低点,圆心角∠BOC =37°,D 与圆心O 等高,圆弧轨道半径R =1.0m ,现有一个质量为m =0.2kg 可视为质点的滑块,从D 点的正上方h =1.6m 的E 点处自由下落,滑块恰好能运动到A 点(sin 37°=0.6,cos 37°=0.8,g 取10m/s 2,计算结果可保留根号).求:(1)滑块第一次到达B 点的速度.(2)滑块与斜面AB 之间的动摩擦因数.(3)滑块在斜面上运动的总路程及总时间.解析:(1)第一次到达B 点的速度为v 1,根据动能定理得:mg (h +R cos 37°)=12m v 21代入数据解得:v 1=43m/s(2)从E 到A 的过程中,由动能定理得:mg (h +R cos 37°-L AB sin 37°)-μmg cos 37°·L AB =0代入数据解得:μ=0.5(3)全过程由动能定理得:mg (h +R cos 37°)-μmg cos 37°s =0代入数据解得:s =6m沿斜面上滑加速度为:a 1=g sin 37°+μg cos 37°=10m/s 2沿斜面下滑加速度为:a 2=g sin 37°-μg cos 37°=2m/s 2因为v 212a 1=v 222a 2,解得:v 2=a 2a 1v 1=15v 1v 3=a 2a 1v 215v 1…v n =15n -1v 1则:t =v 1a 1+v 2a 1+v 3a 1+…+v n a 1+v 2a 2+v 3a 2+…+v n a 2代入数据解得:t =315+535s.答案:(1)43m/s (2)0.5(3)6m 315+535s。
第2讲 动能定理及应用
第2讲 动能定理及应用一、动能1.定义:物体由于运动而具有的能。
2.公式:E k =12m v 2。
3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。
4.动能是标量,是状态量。
5.动能的变化:ΔE k =12m v 22-12m v 21。
二、动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
2.表达式:W =E k2-E k1=12m v 22-12m v 21。
3.物理意义:合力做的功是物体动能变化的量度。
4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)动能定理既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用。
【自测 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变,则物体所受合力一定为零答案 A命题点一 动能定理的理解1.两个关系(1)数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合力做的功。
(2)因果关系:合力做功是引起物体动能变化的原因。
2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。
当然动能定理也就不存在分量的表达式。
【例1 随着高铁时代的到来,人们出行也越来越方便,高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。
在启动阶段,列车的动能( )图1A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的加速度成正比答案 B解析 列车在启动阶段做v 0=0的匀加速直线运动,列车的动能E k =12m v 2=12m (at )2=12m ·(2ax ),可见B 正确,A 、C 、D 错误。
【针对训练1】 (多选)用力F 拉着一个物体从空中的a 点运动到b 点的过程中,重力做功-3 J ,拉力F 做功8 J ,空气阻力做功-0.5 J ,则下列判断正确的是( )A .物体的重力势能增加了3 JB .物体的重力势能减少了3 JC .物体的动能增加了4.5 JD .物体的动能增加了8 J答案 AC解析 因为重力做负功时重力势能增加,所以重力势能增加了3 J ,A 正确,B 错误;根据动能定理W 合=ΔE k ,得ΔE k =-3 J +8 J -0.5 J =4.5 J ,C 正确,D 错误。
高中物理【动能定理及其应用】知识点、规律总结
at 图 由公式 Δv=at 可知,at 图线与坐标轴围成的面积表示物体速度的变化量
Fx 图 由公式 W=Fx 可知,Fx 图线与坐标轴围成的面积表示力所做的功
Pt 图 由公式 W=Pt 可知,Pt 图线与坐标轴围成的面积表示力所做的功
2.解决物理图象问题的基本步骤
运用动能定理巧解往复运动问题 [素养必备]
考点二 应用动能定理求解多过程问题
师生互动
1.首先需要建立运动模型,选择合适的研究过程能使问题得ห้องสมุดไป่ตู้简化.当物体的运
动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部子过程作为研究
过程.
2.当选择全部子过程作为研究过程,涉及重力、大小恒定的阻力或摩擦力做功时,
要注意运用它们的做功特点:
(1)重力的功取决于物体的初、末位置,与路径无关.
1.动能是标量,12mv2 中的 v 指物体的合速度,动能定理中的功指所有力做的总功, 所以不能把速度分解到某个力的方向上应用动能定理.
2.动能与动能的变化是两个不同的概念,动能是状态量,动能的变化是过程量.动 能为非负值,而动能变化量有正负之分.ΔEk>0 表示物体的动能增加,ΔEk<0 表示物体 的动能减少.
考点一 对动能定理的理解
自主学习
1.对动能定理的理解
(1)做功的过程就是能量转化的过程,动能定理表达式中“=”的意义是一种因果关
系在数值上相等的符号.
(2)动能定理中的“力”指物体受到的所有力,既包括重力、弹力、摩擦力,也包括 电场力、磁场力或其他力,功则为合力所做的总功.
2.应用动能定理的流程
(2)大小恒定的阻力或摩擦力的功等于力的大小与路程的乘积.
3.专注过程与过程的连接状态的受力特征与运动特征(比如:速度、加速度或位移).
第2课 动能 动能定理及其应用
第2课动能动能定理及其应用考点一动能1.定义.物体由于运动而具有的能.2.表达式.E k=12mv2.3.物理意义.动能是状态量,是标量(填“矢量”或“标量”).4.单位.焦耳,符号J.5.动能的相对性.由于速度具有相对性,所以动能也具有相对性.6.动能的变化.物体末动能与初动能之差,即ΔE k=12mv22-12mv21.考点二动能定理1.内容.合力对物体所做的功等于物体动能的变化.2.表达式.(1)W=ΔE k;(2)W =E k2-E k1;(3)W =12mv 22-12mv 21. 3.物理意义.合外力做的功是物体动能变化的量度.4.适用条件.(1)动能定理既适用于直线运动,也适用于曲线运动.(2)即适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,即可以同时作用,也可以不同时作用.1.光滑斜面上有一小球自高为h 的A 处由静止开始滚下,抵达光滑的水平面上的B 点时速度大小为v 0,光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的活动阻挡条,如图所示,小球越过n 条活动阻挡条后停下来.若让小球从h 高处以初速度v 0滚下,则小球能越过活动阻挡条的条数为(设小球每次越过活动阻挡条时克服阻力做的功相同)(B )A .nB .2nC .3nD .4n解析:设每条阻挡条对小球做的功为W ,小球自高为h 的A 处由静止开始滚下,根据动能定理,有:mgh =12mv 20,nW =0-12mv 20;小球自高为h 的A 处以初速度v 0滚下,根据动能定理,有:mgh -n′W=0-12mv 20;以上三式联立解得:n′=2n. 2.质量m =1 kg 的物体,在水平拉力F(拉力方向与物体初速度方向相同)的作用下,沿粗糙水平面运动,经过位移4 m时,拉力F 停止作用,运动到位移是8 m 时物体停止,运动过程中E k s 的图线如图所示.(g 取10 m/s 2)求:(1)物体的初速度多大;(2)物体和水平面间的动摩擦因数为多大;(3)拉力F 的大小.解析:(1)由图象知:E k0=12mv 20=2 J ;代入数据得:v 0=2 m/s ;故物体的初速度为2 m/s.(2)4~8 m 内,物体只受摩擦力作用,由动能定理得:-μmgx 2=0-E k1;代入数据得:μ=E k1mgx 2=101×10×4=0.25; 故物体和水平面间的动摩擦因数为0.25.(3)0~4 m 内,由动能定理得:Fx 1-μmgx 1=E k1-E k0;代入数据得:F =4.5 N .故拉力F 的大小为4.5 N.答案:(1)2 m/s (2)0.25 (3)4.5 N3.如图甲所示,质量不计的弹簧竖直固定在水平面上,t =0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则(C)A.t 1时刻小球动能最大B.t2时刻小球动能最大C.t2~t3这段时间内,小球的动能先增加后减少D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能解析:在t1时刻,小球刚好与弹簧接触,重力大于弹力,合外力与速度方向一致,故小球继续加速,即小球动能继续增加,A项错;在t2时刻弹簧弹力最大,说明弹簧被压缩到最短,此时,小球速度为零,B项错;t2~t3过程中,弹簧从压缩量最大逐渐恢复到原长,在平衡位臵时,小球动能最大,所以小球的动能先增大后减小,C项正确;t2~t3过程中小球和弹簧组成的系统机械能守恒,故小球增加的动能与重力势能之和等于弹簧减少的弹性势能,D项错.课时作业一、单项选择题1.如图所示,质量为m的物体静止于倾角为α的斜面体上,现对斜面体施加一水平向左的推力F ,使物体随斜面体一起沿水平面向左匀速移动x ,则在此匀速运动过程中斜面体对物体所做的功为(D )A .FxB .mgxcos αsin αC .mgxsin αD .0解析:由于物体做匀速运动,其处于平衡状态.物体动能和势能在运动过程中都不发生变化,故根据动能定理知合外力对物体做功为零.而重力做功为零,所以斜面体对物体做功为零,故应选D.2.如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,AB =2BC.小物块P(可视为质点)与AB 、BC 两段斜面间的动摩擦因数分别为μ1、μ2.已知P 由静止开始从A 点释放,恰好能滑动到C 点而停下,那么θ、μ1、μ2间应满足的关系是(B )A .tan θ=μ1+2μ23B .tan θ=2μ1+μ23C .tan θ=2μ1-μ2D .tan θ=2μ2-μ1解析:由动能定理得mg·AC·sin θ-μ1mgcos θ·AB -μ2mgcosθ·BC =0,则有tan θ=2μ1+μ23,B 项正确. 3.人用手托着质量为m 的物体,从静止开始沿水平方向运动,前进距离x 后,速度为v(物体与手始终相对静止),物体与人手掌之间的动摩擦因数为μ,则人对物体做的功为(D )A .mgxB .0C.μmgx D.12mv2解析:物体与手掌之间的摩擦力是静摩擦力,静摩擦力在零与最大值μmg之间取值,不一定等于μmg.在题述过程中,只有静摩擦力对物体做功,故根据动能定理,摩擦力对物体做的功W=12mv2.4.构建和谐型、节约型社会深得民心,节能器材遍布于生活的方方面面.自动充电式电动车就是很好的一例.电动车的前轮装有发电机,发电机与蓄电池连接.当骑车者用力蹬车或电动自行车自动滑行时,自行车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以500 J的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图中图线①所示;第二次启动自动充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是(A)A.200 J B.250 JC.300 J D.500 J解析:滑行时阻力F f恒定,由动能定理对图线①有:ΔE k=F f x1,x1=10 m.对图线②有:ΔE k=F f x2+E电,x2=6 m.所以E电=410ΔE k=200 J,故A正确.5.如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是(A )A .mgh -12mv 2 B.12mv 2-mgh C .-mgh D .-(mgh +12mv 2) 解析:由A 到C 的过程运用动能定理可得:-mgh +W =0-12mv 2,所以W =mgh -12mv 2,所以A 正确. 二、不定项选择题6.如图所示,板长为l ,板的B 端静放有质量为m的小物体P ,物体与板间的动摩擦因数为μ,开始时板水平,若缓慢转过一个小角度α的过程中,物体保持与板相对静止,则这个过程中(CD )A .摩擦力对P 做功为μmg cos α·l(1-cos α)B .摩擦力对P 做功为mgsin α·l(1-cos α)C .支持力对P 做功为mglsin αD .板对P 做功为mglsin α解析:对物体运用动能定理:W 合=W G +WF N +W 摩=ΔE k =0,所以WF N +W 摩=-W G =mglsin α.因摩擦力的方向(平行于木板)和物体速度方向(垂直于木板)始终垂直,对物体不做功,故斜面对物体做的功就等于支持力对物体做的功,即WF N =mglsin α,故C 、D 正确.7.人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示,则在此过程中(BD )A .物体所受的合外力做功为mgh +12mv 2B .物体所受的合外力做功为12mv 2C .人对物体做的功为mghD .人对物体做的功大于mgh解析:物体沿斜面做匀加速运动,根据动能定理有W 合=W F -W f -mgh =12mv 2,其中W f 为物体克服摩擦力做的功.人对物体做的功即是人对物体的拉力做的功,所以W 人=W F =W f +mgh +12mv 2,A 、C 两项错误,B 、D 两项正确.8.两根光滑直杆(粗细可忽略不计)水平平行放置,一质量为m 、半径为r 的均匀细圆环套在两根直杆上,两杆之间的距离为3r ,如图甲所示为立体图,如图乙所示为侧视图.现将两杆沿水平方向缓慢靠近直至两杆接触为止,在此过程中(BD )A .每根细杆对圆环的弹力均增加B .每根细杆对圆环的最大弹力均为mgC .每根细杆对圆环的弹力均不做功D .每根细杆对圆环所做的功均为-14mgr 解析:本题考查物体平衡的动态分析和动能定理.以圆环为研究对象,由于两杆始终处于同一水平面,因此两杆对环的作用力大小始终相等,且它们的合力始终等于环的重力,即合力F 是一定值,当两杆水平靠近时,两个弹力与竖直方向的夹角变小,根据三角形边与角的关系可知,两个弹力逐渐变小,A 项错误;因此开始时两杆相距3r 时弹力最大,由几何关系可知,这时F N =F =mg ,B 项正确;在缓慢移动的过程中,圆环的重心下降r 2,设两个弹力做的功各为W ,则根据动能定理,2W +mgr 2=0,则W =-14mgr ,D 项正确.9.如图所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物体从静止开始做匀加速直线运动.已知物体和木板之间的摩擦力为F f .当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中(ABC )A .物体到达木板最右端时具有的动能为(F -F f )(L +x)B .物体到达木板最右端时,木板具有的动能为F f xC .物体克服摩擦力所做的功为F f (L +x)D .物体和木板增加的机械能为Fx解析:由题意画示意图可知,由动能定理对小物体:(F -F f )·(L +x)=12mv 2,故A 正确.对木板:F f ·x =12Mv 2,故B 正确.物块克服摩擦力所做的功F f ·(L +x),故C 正确.物块和木板增加的机械能12mv 2+12Mv 2=F·(L +x)-F f ·L =(F -F f )·L +F·x ,故D 错误. 10.如图所示为某探究活动小组设计的节能运动系统.斜面轨道倾角为30°,质量为M 的木箱与轨道的动摩擦因数为36.木箱在轨道端时,自动装货装置将质量为m 的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程.下列选项正确的是(BC )A .m =MB .m =2MC .木箱不与弹簧接触时,上滑的加速度大于下滑的加速度D .在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能解析:受力分析可知,下滑时加速度为:gsin θ-μg cos θ,上滑时加速度为:gsin θ+μg cos θ,所以C正确.设下滑的距离为l,根据能量守恒有:μ(m+M)glcos θ+μMgl cos θ=mglsin θ,得:m=2M;B正确.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能转化为弹簧的弹性势能和内能,所以D错误.三、非选择题11.如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动,已知圆弧轨道的圆心O与A、D在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:(1)滑块第一次至左侧AC弧上时距A点的最小高度差h.(2)滑块在斜面上能通过的最大路程s.解析:(1)由动能定理得:mgh-μmgcos θ·Rtan θ=0,得h=μRcos2θsin θ=μR cos θcot θ.(2)滑块最终至C点的速度为0时对应在斜面上的总路程最大,由动能定理得:mgRcos θ-μmg cos θ·s=0,得:s=R μ.答案:(1)μR cos θcot θ(2)Rμ12.如图所示,一半径为R 的半圆形轨道BC 与一水平面相连,C 为轨道的最高点,一质量为m 的小球以初速度v 0从圆形轨道B 点进入,沿着圆形轨道运动并恰好通过最高点C ,然后做平抛运动.求:(1)小球平抛后落回水平面D 点的位置距B 点的距离;(2)小球由B 点沿着半圆轨道到达C 点的过程中,克服轨道摩擦阻力做的功.解析:(1)小球刚好通过C 点,由牛顿第二定律mg =m v 2C R小球做平抛运动,有2R =12gt 2,s =v C t 解得小球平抛后落回水平面D 点的位臵距B 点的距离s =2R.(2)小球由B 点沿着半圆轨道到达C 点,由动能定理-mg·2R -W f =12mv 2C -12mv 20 解得小球克服摩擦阻力做功W f =12mv 20-52mgR.答案:(1)2R (2)12mv 20-52mgR 13.如图所示,倾角θ=37°斜面上,轻弹簧一端固定在A 点,自然状态时另一端位于B 点,斜面上方有一半径R =1 m 、圆心角等于143°的竖直圆弧形光滑轨道与斜面相切于D 处,圆弧轨道的最高点为M.现有一小物块将弹簧缓慢压缩到C 点后释放,物块经过B 点后的位移与时间关系为x =8t -4.5t 2(x的单位是m ,t 的单位是s),若物块经过D 点后恰能到达M 点,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)BD 间的距离x BD .解析:(1)由x =8t -4.5t 2知,物块在B 点的速度v 0=8 m/s ,从B到D 过程中加速度大小a =9 m/s 2,由牛顿第二定律得:a =F m gsin 37°+μg cos 37°,得:μ=38. (2)物块在M 点的速度满足mg =m v 2M R,物块从D 到M 过程中,有:12mv 2D =mgR(1+cos 37°)+12mv 2M,物块在由B 到D 过程中,有:v 2D -v 20=-2ax BD ,解得:x BD =1 m.答案:(1)38 (2)1 m。
第5章-第2讲 动能定理及其应用
和h分别为( D )
A.tan θ和H2 B.2vg2H-1tan θ和H2
C.tan θ和H4 D.2vgH2 -1tan θ和H4
试题
解析
由动能定理有-mgH-
μmgcos
θ
H sin θ
=0-
1 2
mv2,-mgh-μmgcos θ
h sin
θ
=0-
1 2
m
v 2
2,解得
μ= 2vgH2 -1 tan θ,h=
NO.2 题组训练 提升能力
试题
解析
1.(2016·怀化模拟)放在粗糙水平面上的物 体受到水平拉力的作用,在 0~6 s 内其速 度与时间图象和该拉力的功率与时间图 象分别如图甲和乙所示,下列说法正确的
是( C )
A.0~6 s 内物体位移大小为 36 m B.0~6 s 内拉力做的功为 30 J C.合力在 0~6 s 内做的功与 0~2 s 内做 的功相等 D.滑动摩擦力大小为 5 N
第2讲 动能定理及其应用
考点一 考点二 考点三 知能提升演练 上页 下页
考点一
NO.1 梳理主干 填准记牢
NO.2 题组训练 提升能力
2.一物块沿倾角为θ的斜坡向上滑
动.当物块的初速度为v时,上升的最大
高度为H,如图所示;当物块的初速度
为
v 2
时,上升的最大高度记为h.重力加速
度大小为g.物块与斜坡间的动摩擦因数
NO.2 题组训练 提升能力
第2讲 动能定理及其应用
考点一 考点二 考点三 知能提升演练 上页 下页
考点三
NO.1 梳理主干 牢固记忆
2.力学中四类图象所围“面积”的意义
NO.2 题组训练 提升能力
高中物理课件-第2讲 动能定理及其应用
1 2
mv2
二、动能定理: W
1 2
mv22
1 2
mv12
三、利用动能定理解题的一般思路:
(1)明确研究对象.
(可以是一个物体,也可以是一个系统)
(2)确定研究过程. (可以是物体运动中的某一阶段,也可以是多个阶段)
(3)进行受力分析和总功的计算.
(4)明确研究对象的初、末动能.
(5)应用动能定理列出相应关系式.
对动能定理的进一步理解:
包括重力
(1)动能定理中所说的“外力”,是指物体受到的所有力
(2)位移、速度必须选用同一个参考系(以地面为参考系)
(3) 适用范围:①直线运动、曲线运动; ②恒力做功、变力做功;
③ 某一阶段、多个阶段 (力可以同时作用,也可以不同时作用)
④一个物体、一个系统。
一、动能:
E
k
第2讲 动能定理及其应用
一、动能
1.定义:物体由于
2.公式:E k
1 2
mv 2
3. 单位: 焦耳
运动
而具有的能.
4.动能概念的理解: ① 动能是标量,且只有正值。
② 动能具有瞬时性.
③ 动能具有相对性.
④
动能的变化
Ek
1 2
mv2 2
1 2
mv12
说明:动能是一个状态量,
而动能的变化是 一个过程量
二、动能定理
1.内容:外力对物体所做的总功,等于物体动能的改变量
2.表达式:W
1 2
mv 2 2
1 2
mv12
对动能定理的进一步理解:
包括重力
(1)动能定理中所说的“外力”,是指物体受到的所有力
二、动能定理
必修2 第五章 第2讲
2
2
知识点 2
1.内容
动能定理
Ⅱ
力在一个过程中对物体做的功,等于物体在这个过程中 动能的变化 ___________。 2.表达式 Δ Ek (1)W=____;
Ek2 Ek1 (2)W=__________;
【思考辨析】 (1)动能是机械能的一种表现形式,凡是运动的物体都具有动 能。( )
(2)一定质量的物体动能变化时,速度一定变化,但速度变化 时,动能不一定变化。( ) )
(3)动能不变的物体,一定处于平衡状态。(
(4)做自由落体运动的物体,动能与下落距离的平方成正比。
( (5)如果物体所受的合外力为零,那么,合外力对物体做的功 一定为零。( ) )
(6)物体在合外力作用下做变速运动,动能一定变化。( (7)物体的动能不变,所受的合外力必定为零。( )
)
分析:动能是运动物体都具有的能量,是机械能的一种表现形
式,(1)对;由Ek=
变化,速度一定变化,但当速度方向变化,速率不变(如匀速 圆周运动)时,动能不变,(2)对;动能不变,如匀速圆周运
1 2 mv 可知,当m恒定时,Ek变化,速率一定 2
(1)小滑块第一次到达D点时的速度大小; (2)小滑块第一次与第二次通过C点的时间间隔; (3)小滑块最终停止的位置距B点的距离。 【解题探究】(1)重力与摩擦力做功的特点有何不同? 与路径无关 ①重力做功:___________。 与路径有关 ②摩擦力做功:___________。 (2)应用动能定理时应主要进行哪些分析? 提示:受力分析、过程分析及各力做功情况分析。
(2)小船经过B点时的速度大小v1;
第五章 第二讲 动能定理及其应用
第二讲
抓基础·双基夯实
动能定理及其应用
课后练·知能提升
研考向·考点探究
1-2.[直线运动]
(多选)如图所示,甲、乙两个质量相同的物
体,用大小相等的力 F 分别拉它们在水平面上从静止开始运动 相同的距离 s.甲在光滑水平面上,乙在粗糙水平面上,则下列 关于力 F 对甲、乙做的功和甲、乙两物体获得的动能的说法中 正确的是( )
第五章
第二讲
抓基础·双基夯实
动能定理及其应用
课后练·知能提升
研考向·考点探究
(3)动能定理往往用于单个物体的运动过程,由于不涉及加速度 和时间,比动力学研究方法更简便; (4)当物体的运动包含多个不同过程时,可分段应用动能定理求 解;当所求解的问题不涉及中间的速度时,也可以全过程应用 动能定理求解.
第五章
机械能
第五章
第二讲
抓基础·双基夯实
动能定理及其应用
课后练·知能提升
研考向·考点探究
[学习目标] 1.理解动能定理,掌握动能定理的适用条件. 2.熟练掌握应用动能定理解题的一般步骤.
第五章
第二讲
抓基础·双基夯实
动能定理及其应用
课后练·知能提升
研考向·考点探究
第五章
第二讲
抓基础·双基夯实
动能定理及其应用
A. 力 F 对甲做功多 B.力 F 对甲、乙两个物体做的功一样多 C.甲物体获得的动能比乙大 D.甲、乙两个物体获得的动能相同
解析
答案
第五章
第二讲
抓基础·双基夯实
动能定理及其应用
课后练·知能提升
研考向·考点探究
解析:由功的公式 W=Fs 可知,两种情况下力 F 对甲、乙两 个物体做的功一样多,A 错误,B 正确;根据动能定理,对甲 有:Fs=Ek1,对乙有:Fs-Ffs=Ek2,可知 Ek1>Ek2,C 正确, D 错误. 答案:BC
第六章第2讲 动能定理及其应用--2025版高考总复习物理
第6章 机械能及其守恒定律
1.(2021·河北卷)一半径为 R 的圆柱体水平固定,横截面如图所示。长度
为πR、不可伸长的轻细绳,一端固定在圆柱体最高点 P 处,另一端系
一个小球。小球位于 P 点右侧同一水平高度的 Q 点时,绳刚好拉直。将
小球从 Q 点由静止释放,当与圆柱体未接触部分的细绳竖直时,小球的
3.(2023·新课标卷)无风时,雨滴受空气阻力的作用在地面附近会以恒定
的速率竖直下落。一质量为 m 的雨滴在地面附近以速率 v 下落高度 h 的
过程中,克服空气阻力做的功为(重力加速度大小为 g)( )
A.0
B.mgh
C.12mv2-mgh
D.12mv2+mgh
返回导航
第6章 机械能及其守恒定律
过程中,根据动能定理有 Ek=mgx tan θ,即Exk=mg tan θ,下滑过程中 开始阶段倾角θ不变,Ekx 图像为一条直线;经过圆弧轨道过程中,θ先
物体克服摩擦力做的功为 Wf=μmgx2=8 J,C 正确;物体在 2~4 m 内,
返回导航
第6章 机械能及其守恒定律
18-12 拉力 F2= 4-2
N=3
N,加速度 a2=F2-mμmg=-1
m/s2,则物体做匀
减速直线运动,故物体在 x=2 m 时的速度最大,故由 x2=12a1t22知,物体 运动到 x=2 m 所用的时间 t2= 2 s,则 v2=a1t2=2 2 m/s,则动量最大 为 p2=mv2=2 2 kg·m/s,D 错误。
返回导航
第6章 机械能及其守恒定律
例2 (2024·四川眉山诊断)一物块沿倾角为 θ 的斜坡向上滑动,当物块的
初速度为 v 时,上升的最大高度为 H,如图所示,当物块的初速度为v2时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时规范训练[基础巩固题组]1.(2018·天津卷)滑雪运动深受人民群众喜爱.某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变解析:选C .运动员做的是匀速圆周运动,具有向心加速度,所以其所受的合外力不为零,A 错误;运动员在匀速下滑的过程中,所受的摩擦力始终与重力沿滑道切线方向的分力大小相等,由于该分力大小一直在改变,所以摩擦力大小也一直在改变,B 错误;运动员的动能没有改变,根据动能定理,合外力做功为零,C 正确;整个过程中存在摩擦力做功,所以机械能不守恒,D 错误.2.如图所示,已知物体与三块材料不同的地毯间的动摩擦因数分别为μ、2μ和3μ,三块材料不同的地毯长度均为l ,并排铺在水平地面上,该物体以一定的初速度v 0从a 点滑上第一块,则物体恰好滑到第三块的末尾d 点停下来,物体在运动中地毯保持静止,若让物体从d 点以相同的初速度水平向左运动,则物体运动到某一点时的速度大小与该物体向右运动到该位置的速度大小相等,则这一点是( )A .a 点B .b 点C .c 点D .d 点解析:选C .对物体从a 运动到c ,由动能定理,-μmgl -2μmgl =12m v 21-12m v 20,对物体从d 运动到c ,由动能定理,-3μmgl =12m v 22-12m v 20,解得v 2=v 1,选项C 正确. 3.(2018·江苏卷)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是( )解析:选A .竖直上抛运动的速度v 与时间t 的关系为v =v 0-gt ,由于E k =12m v 2=12m (v 0-gt )2,故E k t 图象应是A .4.打桩机是利用冲击力将桩贯入地层的桩工机械.某同学对打桩机的工作原理产生了兴趣.他构建了一个打桩机的简易模型,如图甲所示.他设想,用恒定大小的拉力F 拉动绳端B ,使物体从A 点(与钉子接触处)由静止开始运动,上升一段高度后撤去F ,物体运动到最高点后自由下落并撞击钉子,将钉子打入一定深度.按此模型分析,若物体质量m =1 kg ,上升了1 m 高度时撤去拉力,撤去拉力前物体的动能E k 与上升高度h 的关系图象如图乙所示.(g 取10 m/s 2,不计空气阻力)(1)求物体上升到0.4 m 高度处F 的瞬时功率;(2)若物体撞击钉子后瞬间弹起,且使其不再落下,钉子获得20 J 的动能向下运动.钉子总长为10 cm.撞击前插入部分可以忽略,不计钉子重力.已知钉子在插入过程中所受阻力F f 与深度x 的关系图象如图丙所示,求钉子能够插入的最大深度.解析:(1)撤去F 前,根据动能定理,有 (F -mg )h =E k -0由题图乙得,斜率为k =F -mg =20 N ,得F =30 N 又由题图乙得,h =0.4 m 时,E k =8 J 则v =4 m/s ,P =F v =120 W.(2)碰撞后,对钉子,有-F -f x ′=0-E k ′已知E k ′=20 J ,F -f =k ′x ′2又由题图丙得k ′=105 N/m ,解得:x ′=0.02 m. 答案:(1)120 W (2)0.02 m5.如图所示,光滑的轨道ABO 的AB 部分与水平部分BO 相切,轨道右侧是一个半径为R 的四分之一的圆弧轨道,O 点为圆心,C 为圆弧上的一点,OC 与水平方向的夹角为37°.现将一质量为m 的小球从轨道AB 上某点由静止释放.已知重力加速度为g ,不计空气阻力.⎝⎛⎭⎫sin 37°=35,cos 37°=45(1)若小球恰能击中C 点,求刚释放小球的位置距离BO 平面的高度; (2)改变释放点的位置,求小球落到轨道时动能的最小值.解析:(1)设小球经过O 点的速度为v 0,从O 点到C 点做平抛运动,则有 R cos 37°=v 0t ,R sin 37°=12gt 2从A 点到O 点,由动能定理得mgh =12m v 20联立可得,刚释放小球的位置距离BO 平面的高度h =415R .(2)设小球落到轨道上的点与O 点的连线与水平方向的夹角为θ,小球做平抛运动, R cos θ=v 0′t ′ R sin θ=12gt ′2对此过程,由动能定理得mgR sin θ=E k -12m v 0′2解得E k =mgR ⎝⎛⎭⎫34sin θ+14sin θ 当sin θ=33时,小球落到轨道时的动能最小,最小值为E k =32mgR . 答案:(1)4R 15 (2)3mgR2[能力提升题组]6.一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,如图所示,那么在这段时间内,其中一个力做的功为( )A .16m v 2B .14m v 2C .13m v 2D .12m v 2解析:选B .在合力F 的方向上,由动能定理得W =Fl =12m v 2,某个分力的功为W 1=12W =14m v 2,B 正确. 7.(多选)如图所示,某人通过光滑滑轮将质量为m 的物体,沿光滑斜面由静止开始匀加速地由底端拉上斜面.物体上升的高度为h ,到达斜面顶端的速度为v ,则在此过程中( )A .物体所受的合力做功为mgh +12m v 2B .物体所受的合力做功为12m v 2C .人对物体做的功为mghD .人对物体做的功大于mgh解析:选BD .对物体应用动能定理可得W 合=W 人-mgh =12m v 2,故W 人=mgh +12m v 2,B 、D 选项正确.8.质量为m 的小球在竖直向上的拉力作用下从静止开始运动,其v -t 图象如图所示(竖直向上为正方向,DE 段为直线).已知重力加速度大小为g ,下列说法正确的是( )A .t 3~t 4时间内,小球竖直向下做匀减速直线运动B .t 0~t 2时间内,合力对小球先做正功后做负功C .0~t 2时间内,小球的平均速度一定为v 22D .t 3~t 4时间内,拉力做的功为m v 3+v 42[(v 4-v 3)+g (t 4-t 3)]解析:选D .根据题意,竖直向上为正方向,故在t 3~t 4时间内,小球竖直向上做匀减速直线运动,故选项A 错误;t 0~t 2时间内,小球速度一直增大,根据动能定理可知,合力对小球一直做正功,故选项B 错误;0~t 2时间内,小球的平均速度等于位移与时间的比值,不一定为v 22,故选项C 错误;根据动能定理,在t 3~t 4时间内:W F -mg v 3+v 42·(t 4-t 3)=12m v 24-12m v 23,整理可得:W F =m v 3+v 42[(v 4-v 3)+g (t 4-t 3)],故选项D 正确. 9.如图所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,OA 之间的水平面光滑,固定曲面在B 处与水平面平滑连接.AB 之间的距离s =1 m .质量m =0.2 kg 的小物块开始时静置于水平面上的B 点,物块与水平面间的动摩擦因数μ=0.4.现给物块一个水平向左的初速度v 0=5 m/s ,g 取10 m/s 2.(1)求弹簧被压缩到最短时所具有的弹性势能E p ; (2)求物块返回B 点时的速度大小;(3)若物块能冲上曲面的最大高度h =0.2 m ,求物块沿曲面上滑过程所产生的热量. 解析:(1)对小物块从B 点至压缩弹簧最短的过程,由动能定理得, -μmgs -W 克弹=0-12m v 20W 克弹=E p代入数据解得E p =1.7 J.(2)对小物块从B 点开始运动至返回B 点的过程,由动能定理得, -μmg ·2s =12m v 2B -12m v 20 代入数据解得v B =3 m/s. (3)对小物块沿曲面的上滑过程, 由动能定理得-W 克f -mgh =0-12m v 2B产生的热量Q =W 克f =0.5 J. 答案:(1)1.7 J (2)3 m/s (3)0.5 J10.如图甲所示,轻弹簧左端固定在竖直墙上,右端点在O 点位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功; (2)O 点和O ′点间的距离x 1;(3)如图乙所示,若将另一个与A 完全相同的物块B (可视为质点)与弹簧右端拴接,将A 放在B 右边,向左推A 、B ,使弹簧右端压缩到O ′点位置,然后从静止释放,A 、B 共同滑行一段距离后分离.分离后物块A 向右滑行的最大距离x 2是多少?解析:(1)物块A 从P 点出发又回到P 点的过程,根据动能定理得 克服摩擦力所做的功为W f =12m v 20.(2)物块A 从P 点出发又回到P 点的过程,根据动能定理得 -2μmg (x 1+x 0)=0-12m v 20解得x 1=v 204μg -x 0.(3)A 、B 在弹簧处于原长处分离,设此时它们的共同速度是v 1,弹出过程弹力做功为W F只有物块A 时,从O ′到P 有 W F -μmg (x 1+x 0)=0-0 A 、B 共同从O ′到O 有 W F -2μmgx 1=12×2m v 21 分离后对A 有12m v 21=μmgx 2联立以上各式可得x 2=x 0-v 208μg.答案:(1)12m v 20 (2)v 204μg -x 0 (3)x 0-v 208μg。