材料力学课件全套ppt课件

合集下载

材料力学 ppt课件

材料力学  ppt课件

③应力分析:画危险面应力分布图,叠加;
④强度计算:建立危险点的强度条件,进行强度
计算。
PPT课件
20
2、两相互垂直平面内的弯曲
有棱角的截面
max
Mz Wz

My Wy
[ ]
圆截面
max
M
2 z

M
2 y
[ ]
W
3、拉伸(压缩)与弯曲
有棱角的截面
max

FN ,max A
(4)确定最大剪力和最大弯矩
3、弯曲应力与强度条件
(1)弯曲正应力
My
I PPT课件 z
12
M max Wz
yt,max yc,max
Oz y
PPT课件
t,max

Myt,max Iz
c,max

Myc,max Iz
13
(2)梁的正应力强度条件
M max
Wz

M
2 z

M
2 y
T
2
Mr4
M
2 z

M
2 y

0.75T
2
PPT课件
22
5、连接件的强度条件
剪切的强度条件
FS [ ]
AS
挤压强度条件
bs

Fbs Abs
[ bs ]
PPT课件

M z,max Wz

M y,max Wy
[ ]
圆截面
max
FN ,max A PPT课件

M max W
[ ]
21
4、弯曲与扭转

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。

材料力学课件PPT

材料力学课件PPT

力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能













材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r

抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob

材料力学全套ppt课件

材料力学全套ppt课件

___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
10
§1.1 材料力学的任务
四、材料力学的研究对象
m F4

m
F3
F4

F3
目录
17
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
18
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
灰口铸铁的显微组织 球墨铸铁的显微组织
目录
12
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
13
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
材料力学
目录
1
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录

材料力学PPT课件

材料力学PPT课件

通常用
MPa=N/mm2 = 10 6 Pa
有些材料常数 GPa= kN/mm2 = 10 9 Pa
工程上用 kg/cm2 = 0.1 MPa
正应力s
剪应力
二、轴向拉压时横截面上应力
dA
dN dA •s
N
s dN
N dN s dA
A
A
求应力,先要找到应力在横截面上的分布情况。
应力是内力的集度,而内力与变形有关,所以
绘轴力图
(2)求应力 AB段:A1=240240mm=57600mm2
BC段:A2=370370mm=136900mm2
s1
N1 A1
50 103 57600
0.87 N
/ mm 2
0.87MPa
s2
N2 A2
150 103 136900
1.1N
/ mm 2
1.1MPa
应力为负号表示柱受压。正应力的正负号与轴力N相同。
Nl
A
l
————虎克定律(Hooke)
EA
l Pl
EA
计算中用得多
lE——N——弹性s横量(Mpa,
Gpa)
s
E
l EA E
实验中用得多
计算变形的两个实例:
1.一阶梯轴钢杆如图,AB段A1=200mm2,BC和CD段截面积相同A2=A3= 500mm2;l1= l2= l3=100mm。弹性模量E=200GPa,荷载P1=20kN,P2 =40kN 。试求:(1)各段的轴向变形;(2)全杆AD的总变形;
N1=-20kN(压) N2=-10kN(压) N3=+30kN(拉)
§3 应力
一、应力:
内力在杆件截面上某一点的密集程度

材料力学全ppt课件

材料力学全ppt课件
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1

材料力学(全套精)单辉祖ppt课件

材料力学(全套精)单辉祖ppt课件
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
强 稳刚 度 定度
问 题
.
工程构件的强度、刚度和稳定问题
强度—不因发生断裂或塑性变形而失效; 刚度—不因发生过大的弹性变形而失效; 稳定性—不因发生因平衡形式的突然转 变而失效。
.
折断 轴 齿轮
齿轮 轴
内力)及变形。
F
FN
F
.
如何简化出火车车 轮轴的计算模型?
如何设计车轮轴 的横截面?
.
2)材料力学的特点:逻辑性强、概念丰富 3)学习方法:吃透概念、加强练习 4)本门课程的地位
是土木、机械和力学等专业的技术基础课; 是了解和学习相关专业知识和技术的第一门 重要课程。
.
§1-2 材料力学的基本假设
正确答案为[B]。负重爬坡时,链条在强大的拉力的作用下产生很大的变形, 并且超出齿轮和链条能够正常啮合的范围,导致链条打滑;打滑发生后自行 车又能正常骑行,说明打滑后链条完全恢复原状,所发生的变形为弹性变形。
2. 自行车负重爬坡出现“链条脱落”现象,并且无法安 装和继续前行,从力学的角度分析,此现象表明链条的
p
裂纹
虽然不折断,但变形过大, 影响正常传动。
P
失去原来的直线平衡状态
P
材料力学就是在满足强度、刚度 和稳定性要求的前提下,为设计既经 济又安全的构件,提供必要的理论基 础和计算方法。
本门课程的特点与地位 1)与理论力学的关系 理论力学研究刚体的外部效应(构件受到的外力)
A
B
FA
FB
F
F
材料力学研究变形固体的内部效应(构件受到的

(精品)材料力学(全套752页PPT课件)

(精品)材料力学(全套752页PPT课件)

Page46
§1-5 应变
构件受外力时单 元体(微体)会产 生变形
棱边长度改变
棱边夹角改变
b’ b
a
b b’
a
用正应变(normal strain)和切应变(shearing strain) 来描述微体的变形
Page47
棱边长度改变
ab ab ab ab线段的平均正应变
ab ab
lim ab a点沿ab方向的正应变
高压电线塔
毁坏的高压电线塔
Page14
码头吊塔
Page15
单梁式导弹翼面 1-辅助梁;2-翼肋;3-桁条;4-蒙皮;5-副翼;6-后墙; 7-翼梁;8-主接头;9-辅助接头
Page16
➢ 材料力学的基本假设 材料力学研究材料的宏观力学行为 材料力学主要研究钢材等金属材料
关于材料的基本假设: 连续性假设:认为材料无空隙地充满于整个构件。
ab0 ab
a
b b’
棱边夹角改变
c’ c
直角bac的改变量——直角bac的切应变
tan
a
b
Page48
§1-6 胡克定律
应力:正应力,切应力 应变:正应变,切应变
➢ 胡克定律(Hooke’s law) 单向受力
纯剪切
b’ b
切变模量
E
G
弹性(杨氏)模量 a
Page49
思考题:求a, b, c面上的切应力,并标明方向。 a b c
胡克的弹性实验装置
1678年:
发现“胡克定律”
雅各布.伯努利,马略特:
得出了有关梁、柱性能的 基础知识,并研究了材料的 强度性能与其它力学性能。
库伦:
修正了伽利略、马略特关 于梁理论中的错误,得到了 梁的弯曲正应力和圆杆扭转 切应力的正确结果

材料力学(全套483页PPT课件)-精选全文

材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。

材料力学全套ppt

材料力学全套ppt
cr
2 s 1 c
a s b
o
p
E p
2
λ
c
λ
14

l
i
——柔度(长细比) slenderness
柔 度—影响压杆承载能力的综合指标。 根据压杆柔度不同,可将压杆分成三类:
细长杆、中长杆、短粗杆。
15
三类不同的压杆
47
48
49
作业
10-2, 3, 5, 8, 14, 15
再见
50
F F>Fcr
稳定平衡
临界状态
不稳定平衡
二、欧拉公式的一般形式
上节回顾
EI Fcr 2 l
2
(10-5)
μ —— 长度因数 μl —— 相当长度
适用于细长压杆!
上节回顾
F
B
Fcr
Fcr
Fcr
B 0.7l D
B 0.25l
l
A
l
C
l
C A A
0.5l
0.25l
铰 -铰
自 -固
铰 -固
6 6
6
=318.75 kN 3. 稳定校核
Fcr 318.75 nw 3.04 >[nw] 满足稳定条件 F 105
10.5 提高压杆稳定性的措施
σ σsσcr=σs σp 粗短杆
A
σcr=a−bλ
B
中长杆
2E cr 2
细长杆
O
λO
λp
λ
提高压杆稳定性的措施,从其计算公式考虑:
正确答案:D
45
11.图示结构中,分布载荷q = 20 kN/m。梁的 截面为矩形,b = 90 mm,h = 130 mm。柱 的截面为圆形,直径d = 80 mm。梁和柱均 为Q235钢,E=200GPa, [σ]=160 MPa, 稳定安全因数nst=3。试校核结构的安全。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a'b ab ab
0.025 125106 200
g
a'
ab, ad 两边夹角的变化:
即为切应变g 。
g tang 0.025 100106 (rad ) 250
目录
§1.6 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
拉压变形
剪切变形
目录
§1.6 杆件变形的基本形式
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内
力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
横向线ab、cd
仍为直线,且
ac
F
a
cபைடு நூலகம்
b
d
bd
仍垂直于杆轴
线,只是分别
F 平行移至
a’b’、 c’d’。
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
A
该式为横截面上的正应力σ计
算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
固定,变形后a'b, a'd
仍为直线。
250
b
200 0.025
求:ab 边的m 和 ab、ad 两边夹
角的变化。
a
解:
d
m
扭转变形
弯曲变形
目录
第二章 拉伸、压缩与剪切(1)
目录
第二章 拉伸、压缩与剪切
§2.1 轴向拉伸与压缩的概念和实例 §2.2 轴向拉伸或压缩时横截面上的内力和应力 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 §2.4 材料拉伸时的力学性能 §2.5 材料压缩时的力学性能 §2.7 失效、安全因数和强度计算 §2.8 轴向拉伸或压缩时的变形 §2.9 轴向拉伸或压缩的应变能 §2.10 拉伸、压缩超静定问题 §2.11 温度应力和装配应力 §2.12 应力集中的概念 §2.13 剪切和挤压的实用计算
0.8m
B C
Fmax
FRCx C FRCy
d
1.9m
例题2.2 悬臂吊车的斜杆AB为直径 d=20mm的钢杆,载荷W=15kN。当W
A 移到A点时,求斜杆AB横截面上的 应力。
解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
四川彩虹桥坍塌
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
F1 F1
25 CD段
FN 2 F1 F2 10 20 10kN
Fx 0
FN 3 F4 25kN
x
2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
目录
§1.1 材料力学的任务
比萨斜塔
美国纽约马尔克大桥坍塌
§1.1 材料力学的任务
二、基本概念 1、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等) 理论力学—研究刚体,研究力与运动的关系。 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的 改变。(宏观上看就是物体尺寸和形状的改变)
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体*
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
45° B
C
2
FN 1
F
y
FN 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0 Fy 0 FN1 sin 45 F 0
F
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
W
斜杆AB横截面上的应力为
Fmax
FmaxA
FN A
38.7 103
(20103)2
4
W
123106 Pa 123MPa
目录
§2.3 直杆轴向拉伸或压缩时斜截面上的应力
实验表明:拉(压)杆的破坏并不总是沿
横截面发生,有时却是沿斜截面发生的。
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN 1
F
y
FN 2 45° B x
F
1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN 2 A2
20103 152 106
89106 Pa 89MPa
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
—— C点的应力
p
F4
F3
F4
应力是矢量,通常分解为
C
— 正应力 — 切应力
F3
应力的国际单位为 Pa(帕斯卡) 1Pa= 1N/m2
1kPa=103N/m2 1MPa=106N/m2 1GPa=109N/m2
目录
§1.5 变形与应变
1.位移 MM'
M'
刚性位移; 变形位移。
2.变形
M
物体内任意两点的相对位置发生变化。
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
F5
m F4
杆切开
F1
(2)留下左半段或右半段
F2
m
F3
(3)将弃去部分对留下部 分的作用用内力代替 F1
(4)对留下部分写平衡方
程,求出内力的值。
F5
F2
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
相关文档
最新文档