《随机过程》教程第12讲随机信号的正交分解
正交分解
正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
利用力的正交分解法求合力:这是一种比较简便的求合力的方法,它实际上是利用了力的分解的原理把力都分解到两个互相垂直的方向上,然后就变成了在同一直线上的力的合成问题了.这样计算起来就简单多了。
力的正交分解法步骤如下:1、正确选定直角坐标系:通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定。
原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其它方向较简便时,也可选用。
一般选水平和竖直方向上的直角坐标;也可以选沿运动方向和垂直运动方向上的直角坐标.在力学计算上,这两种选择可以使力的计算最简单,只要计算到互相垂直的两个方向就可以了,不必求总合力.2、分别将各个力投影到坐标轴上:分别求x轴和y轴上各力的投影的合力和其中:(式中的轴上的两个分量,其余类推。
)这样,共点力的合力大小可由公式:求出。
设力的方向与轴正方向之间夹角是。
∴通过数学用表可知数值。
注意:如果这是处理多个力作用下物体平衡问题的好办法。
计算方法举例:例:如图所示,物体A在倾角为θ的斜面上匀速下滑,求物体受到的摩擦力及动摩擦因数。
分析:选A为研究对象分析A受力作受力图如图,选坐标如图:将不在坐标轴上的重力在x,y坐标上分解:Gx=GžsinθGy=Gžcosθf在x轴(反向),N在y轴上(正向)∵物体匀速下滑则有则一、合力与分力:在实际问题中,一个物体往往同时受到几个力的作用。
如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。
二、力的合成与分解:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
合力与分力有等效性与可替代性。
求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。
《随机过程》课程教学大纲
《随机过程》课程教学大纲课程名称随机过程课程编码131510019 课程类型(学院内)跨专业课程适用范围数学与应用数学学分数 3 先修课程数学分析,概率论学时数48 其中实验学时其中实践学时考核方式考试制定单位数学与信息科学学院执笔者审核者一、教学大纲说明(一)课程的性质、地位、作用和任务随机过程理论在自然科学、社会科学和工程技术的多个领域得到广泛的应用。
本课程是作为数学专业本科生基地班的专业基础课而开的。
该课程通过讲述随机过程的基本理论,介绍若干常用的随机过程,使学生掌握随机过程的基本工具和基本方法,从而为进一步学习随机分析以及随机过程的专业领域应用打下理论基础。
(二)教学目的和要求通过本课程的学习,应使学生对随机过程的基本理论有一个全面的认识,能够利用随机过程的理论和方法解决一些实际中遇到的相关问题。
学习本课程后,要求学生了解随机过程的基本概念和若干基本类型,理解不同类型随机过程在不同领域的应用,掌握随机过程理论的基本工具和基本方法,重点掌握几种在理论和实际应用都占有重要地位的特殊随机过程:泊松过程、布朗运动、马尔可夫过程、鞅过程等。
(三)课程教学方法与手段利用数学软件对随机过程进行绘图和动态模拟,加强学生对抽象随机过程的直观认识,培养学生对数学概念的直觉思考能力。
(四)课程与其它课程的联系随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分,因此本课程是先修课程概率论在理论上的深化,也可看做先修课程数学分析在概率论中的深入应用。
数学分析中的积分和傅里叶变换是学习随机过程必备的基本理论工具。
随机过程是后继课程随机分析、随机微分方程的直接基础,这些后继课程以随机过程为基本研究对象,特别是以布朗运动、马尔可夫过程、鞅过程等基本随机过程为基础,进一步应用分析工具得到更加深刻的理论结果。
(五)教材与教学参考书1.方兆本、缪柏其,随机过程,科学出版社,2011年.2.何声武,随机过程引论,高等教育出版社,1999 年.3.张波、张景肖,应用随机过程,清华大学出版社,2004年.4.杜雪樵、惠军,随机过程,合肥工业大学出版社,2006.二、课程的教学内容、重点和难点第一章随机过程的基本概念和统计描述1.1 基本概念和例子.1.2 有限维分布和数字特征.1.3 平稳过程和独立增量过程.第二章两个重要的基本随机过程2.1 布朗运动及其变换.(重点)2.2 泊松过程及其推广.(重点)第三章马尔可夫链3.1 马尔可夫性及其概率刻画.3.2 转移矩阵和多步转移概率的确定.(重点)3.3 极限定理与平稳分布.(重点)3.4 分支过程.第四章鞅论初步4.1 条件数学期望.4.2 鞅的定义和例子.4.3 鞅的停时定理.(难点)4.4 鞅的收敛定理.(难点)四、课内实践教学安排无。
随机过程课件PPT资料(正式版)
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。
随机过程课件.ppt
随机过程的统计描述 二 有限维分布族
两种描述
分布函数 特征数
设随机过程X (t),t T,对每一固定的t T ,随机变量X (t)的分布函数与t有关, 记为FX (x,t) PX (t) x,x R,称它为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
为了描述随机过程在不同时刻状态之间的统计联系, 一般地,对任意n(n 2,3,L )个不同的时刻,t1,t2,L tn T
研究生课程
随机过程
汪荣鑫编 主讲教师:田ቤተ መጻሕፍቲ ባይዱ俊
2013年9月
第一章 随机过程基本概念
第1节 随机过程及其概率分布
1)随机过程概念 随机过程被认为是概率论的“动力学”部分,即
它的研究对象是随时间演变的随机现象,它是从 多维随机变量向一族(无限多个)随机变量的推广。
自然界中事物的变化过程可以大致分成为两类: 确定性过程:事物变化的过程可用时间的确定函数表示;
4
x1 (t )
3
2
1
t1' t1 t2 t2' t3 t3' t4' t4
t
4
例5:考虑抛掷一颗骰子的试验:
(1) 设X n是第n次(n 1)抛掷的点数,对于n 1, 2,L 的不同值,
X n是随机变量,服从相同的分布,P( X n
i)
1 6
,i
1, 2,3, 4,5, 6
因而X n , n 1构成一随机过程,称为伯努利过程或伯努利随机序列,
它的状态空间为1,2,3,4,5,6。
(2) 设Yn是前n次抛掷中出现的最大点数,Yn , n 1也是
一随机过程,它的状态空间仍是1, 2,3, 4,5, 6。
随机过程 北京理工课件
π
2 2
2
3 2 2
P
π F (x; ) = 4
1 3
0, 1 , 3 2 , 3 1,
1 3
x < 2 2
1 3
∴
2 ≤ x < 2 2 ≤ x < x ≥ 3 2 2 3
2 2 2
X(
π
2
) = A cos π
∴
0, π F ( x, ) = 2 1,
4
随机过程 的有限维分布族
对任意固定的t∈ , 是一维随机变量, 对任意固定的 ∈T,X(t)是一维随机变量 其分 是一维随机变量 布函数是P{X(t)≤x}, 记为 记为F(x; t), 即 布函数是 F(x; t)= P{X(t)≤x}, 为随机过程X(t)的一维分布函数。 的一维分布函数。 称F(x; t)为随机过程 为随机过程 的一维分布函数 如对任意两个固定t 是二个随 如对任意两个固定 1 , t2∈T , X(t1) , X(t2)是二个随 机变量, 机变量,称 F(x1, x2 ; t1, t2) = P{X(t1)≤x1, X(t2) ≤x2} 为随机过程X(t) 的二维分布函数; 的二维分布函数; 为随机过程 一般地,对任意固定的t 一般地,对任意固定的 1, t2, … , tn∈T。X(t1), 。 个随机变量, X(t2) , … , X(tn)是n个随机变量,称 是 个随机变量 F(x1, …, xn ; t1, …, tn) = P{X(t1)≤x1, …, X(tn)≤xn} 5 为随机过程X(t) 的n 维分布函数 维分布函数. 为随机过程
= 0 取值仅一个0,且知 P ( X ( ) = 0) = 1 取值仅一个0 2 2
ch12随机信号的正交分解
2019/5/2
3
正交分解
X (t) 为定义于 [a,b] 二阶矩过程,样本空间为 L2[a,b]
n
(t)
n
为L2[a,
b]中的一个正交函数系,若有
为 X (t) 的一个正交分解 令
这样分解可用一个随机变量序列的性质完全刻画连续时间 随机过程。
2019/5/2
4
随机信号的Fourier正交分解
n (t) n=e
jnt , n
1,2,,
2
T
,T
b
a
为L2[a,b]上的一个正交函数系, 且Cn T
2019/5/2
5
2019/5/2
6
随2
8
2019/5/2
9
2019/5/2
10
《随机过程》教程
第12讲 随机信号的正交分解
2019/5/2
1
内容提要
正交分解和随机信号的表示 随机信号的Fourier正交分解 随机信号的K-L正交分解
2019/5/2
2
正交分解和随机信号的表示
正交函数系 标准正交函数系
设有二阶矩集合 L2[a, b]
完备正交函数系
(t) L2[a,b]
n
(t)
n
为L2[a,
b]中的一个正交函数系,
若 Cn
1
称为标准正交函数系
任意f (t) L2[a,b]
f (t)= an n (t) n-
其中an
1 Cn
b f (t) * (t)dt
a
n
n
随机过程新版
2 0
sin(0t
)
1
2
d
0
自有关函数为
R t1, t2 E[ (t1) (t2 )] E[sin0t1 sin0t2 ]
令t1=t,t2=t+τ则
Rt,t E[sin0t sin0t 0 ]
2 0
sin0t
sin0t
0
1
2
d
1 2
cos 0
第3章 随机过程
可见,自有关函数与时间t无关,仅与τ有关。
第3章 随机过程
第3章 随机过程
随机过程 平稳随机过程 高斯随机过程 平稳随机过程经过线性系统 窄带随机过程 高斯白噪声和带限白噪声
第3章 随机过程
§3.1 随机过程旳基本概念
• 随机信号
信号旳某个或某几种参数不能预知或不能完全被预知, 这种具有随机性旳信号称为随机信号。
• 随机噪声
不能预测旳噪声统称为随机噪声。 从统计学旳观点看,随机信号和噪声统称为随机过程。
第3章 随机过程
原则正态分布 a=0,σ=1 其分布函数为φ(x)
f (x)
1
2
exp
x2 2
正态分布函数:
x
F(x)
1
2
exp[
(x a)2
2 2
]dx
(
x
Байду номын сангаас
a)
误差函数:
erf (x) 2 x ez2 dz
0
互补误差函数:erfc(x)=1-erf(x)=
2 ez2 dz
x
当x≤a时,erfc(x)=2-2φ( 2 x)
1
(2 )n / 21 2 n
B 1/2
信号正交分解
信号空间:将信号看做空间里的向量内积:(jiang2)内积为0—正交范数:(jiang3)/zh-cn/%E6%AD%A3%E4%BA %A4/jsjy/kc/xhyjs/chap6/chap6_1/chap6_1_1.htm第一讲信号的正交分解把实际的信号分解为信号单元是信号分析和处理中常用的方法。
一方面,信号的分解使我们能了解它的性质与特征,有助于我们从中提取有用的信息,这一点,在信号的傅里叶变换中就已经体现出来了。
另一方面,把信号分解之后,可以按照我们的意愿对它进行改造,对于信号压缩、分析等都有重要的意义。
信号分解的方法有很多。
例如,对一离散信号,我们可把它分解成一组函数的组合,即,式中,。
但这种分解无实用意义,因为的权重即是信号自己。
另一种分解的方法是把N点数据看成是N维空间的一个向量,我们选择该空间的单位基向量作为分解的“基”,也就是按照这种分解方法,各正交向量的权仍是信号自己的各个分量,也无太大意义,但这一分解已经体现了“正交”分解的概念。
一般,我们可把信号看成N维空间中的的一个元素,可以是连续信号,也可以是离散信号。
N可以是有限值也可以是无穷大。
设是由一组向量所张成,即这一组向量可能是线性相关的,也可能是线性独立的。
如果它们线性独立,我们则称它们为空间中的一组“基”。
各自可能是离散的,也可能是连续的,这视而定。
这样,我们可将按这样一组向量作分解,即(6-1-1)式中是分解系数,它们是一组离散值。
因此,上式又称为信号的离散表示(Discrete Representation)。
如果是一组两两互相正交的向量,则(6-1-1)式称为的正交展开(或正交分解)。
分解系数是在各个基向量上的投影。
若N=3,其含意如图6-1-1所示。
图6-1-1 信号的正交分解为求分解系数,我们设想在空间中另有一组向量:,这一组向量和满足:(6-1-2)这样,用和(6-1-1)式两边做内积,我们有,即:(6-1-3a)或(6-1-3b)(6-1-3a)式对应连续时间信号,(6-1-3b)式对应离散时间信号。
《随机过程教程》PPT课件幻灯片PPT
主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象
《随机过程》课件
泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。
第二章 随机过程
程孤 立的时间点上的统计特性。 • 随机过程孤立的时间点上的统计特性不能反
映随机过程的起伏程度, 故采用两时刻或更多 时刻状态的相关性去描述起伏程度。
4.自相关函数
设和
分别是随机过程 在时刻
和的状态,称它们的二阶原点混合矩
统计特性也可分为:
1、幅值域描述: 数学期望、均方值、方差 等; 2、时间域描述: 自相关函数、互相关函数 ; 3.频率域描述: 功率谱密度函数、互功率谱 密度函数;
2.2.1.随机过程的概率分布
随机过程 , 在任意固定时刻 , 都 是随机变量。 随机事件:
发生概率:
1.一维分布函数
与 和 都有直接的关系,是 二元函数,记为:
7、当平稳随机过程含有均值 , 那它的自相 关函数也将会含有一个常数项 。
8、平稳随机过程的自相关函数的傅里叶变换在 整个频率轴上是非负的,即
且对于所有 都成立。 注: 即不含有阶跃函数的因子,如: 平顶、垂
直边或幅度上的任何不连续。
用平稳过程的自相关函数表示数字特征: (1).数学期望
(2) 均方值 (3) 方差 (4).协方差
• 随机过程 具有以下四种含义:
1.若 和 在发生变 一族时间函数,或化一,族则随随机机变过量程,是构成 了随机过程的完整概念; 2.若和 都固定,则随机过程是一个 确定值;
3.若 取固定值,则随机过程是一个确定 的时间函数,即样本函数,对应于某次试 验的结果;
4.若 取固定值,则随机过程是一个随 机变量;
图 随机过程数字特征
例2-14.设随机过程 的自相关函数为
求它的均值、均方值、方差和自协函数方差。 解:
随机过程课件
解得实值连续函数
x( t ) = x0e , t ≥ 0.
2)随机性方法 设时刻t 细菌数为随机变量X(t),设(t, t+Δt)内 增加的细菌数与Δt 有关而与t无关, 在X(t)=x条件下,X(t+Δt)变为x+1个的概率为
λt
P{X ( t + ∆t ) = x + 1 X ( t ) = x} = λx∆t + o(∆t )
X(t) p
2cost 2/3
-2cost 1/3
特别
X(0) 2
p 2/3
1
-2 1/3
X(
π
4 p
)
2
− 2
2/3
1/3
2) 分析
2
x(t,ω1)=2cost
-1
− 2
x(t,ω2)=-2cost
有
(X(0),X(π/4)) ( −2,− 2 ) ( 2, 2 )
p
1/3
2/3
服从二维两点分布 问题: 随机变量X(0)和X(π/4)是否相互独立?
称F为XT 的有限维分布函数族.
XT的任意有 限维分布函 数的全体构 成的集合
定义3 过程{ X ( t ), t ∈ T } 的n 维特征函数定义为
φ (t1 , t 2 ,L , t n ; θ1 ,θ 2 ,L ,θ n )
= E {e
i [θ 1 X ( t 1 ) + L+θ n X ( t n )]
Tt1 ,L , Tt n 相互独立.
3) 独立增量过程
, 对任一正整数n及任意 t i ∈ T , t1 < t 2 < L < t n 随 机变量
第12讲 随机信号正交分解-PPT文档资料
东南大学无线电工程系
3
正交分解
2019/3/7
东南大学无线电工程系
4
随机信号的Fourier正交分解
2019/3/7
东南大学无线电工程系
5
随机信号的K-L正交分解
2019/3/7
东南大学无线电工程系
6
2019/3/7
东南大学无线电工程系
7
2019/3/7
东南大学无线电工程系
8
2019/3/7
东南大学无线电工程系
9
作业
5.1
2019/3/7
东南大学无线电工程系
10
《随机过程》 第12讲 “随机信号的正交分解”终。
2019/3/7
东南大学无线电工程系Βιβλιοθήκη 11《随机过程》教程
第12讲 随机信号的正交分解
2019/3/7
东南大学无线电工程系
1
内容提要
正交分解和随机信号的表示 随机信号的Fourier正交分解 随机信号的K-L正交分解
2019/3/7
东南大学无线电工程系
2
正交分解和随机信号的表示
正交函数系 标准正交函数系 完备正交函数系
2019/3/7
大学课程随机信号分析随机过程课件
1, x 0 t 0, P[0 x] 0, x 0
x 0:0
t 0, P[A x / t2 ] 0 x t2 : x / t2
x
t
2
:
1
2. fX (x;t) FX (x;t) / x
t 0, (x)
x 0:0 t 0, 0 x t2 : 1/ t2
x t2 : 0
第二章
随机过程
随机信号的时域分析
2.1.1、随机过程的基本概念(回顾)
— 随机相位信号 —
随机相位信号: asin(t+Φ)
U(0,2)
2 / 30
2.1.2、随机过程的分类
一、按时间和幅度(状态)是连续还是离散
• 连续型:时间和状态均连续 • 离散型:时间连续但状态离散
• 连续随机序列:状态连续但时间离散
上述范围内,Y 取值范围位于极小区间 (y,y+y) 的概率应与 X
落在 (x,x+x) 的概率相等,其中 x h(y),即
y+y
y fY (z)dz fY(y)y fX[x h(y)]x
这样可得:
y d y g(x)
y
c
fY(y) fX[x h(y)]x/y
fY(y)
fX(x)
fX[x h(y)]|dh(y)/dy| fX(x)|dg(x)/dx|-1|xh(y)
X(t)
t1
X(t1)
一、一维概率分布
t rraannddoommpvreoccteosrs
FX (x;t1 ) P{X(t1 ) x} :一维分布函数 FX(x;t)
fX (x;t1 )
FX (x;t1 ) x
确定函数
:一维概率密度 fX(x7;/t3)0
东南大学随机过程课件--第12讲常见随机信号的性质
第12讲 常见随机信号的性质
内容提要
随机信号的带宽 带限随机信号 带通随机信号 带限随机信号的调制
带宽的定义
绝对带宽 等效带宽 有效带宽 3dB带宽 均方根带宽 功率带宽 零点到零点带宽
带限随机信号
定义 采样定理 通过线性系统的性质 均方解析 一致均方连续
带通随机信号
定义 表达方式 宽平稳性质 带通过程的一个充分条件 Hilbert变换及其性质 解析过程的定义及其性质
带限随机信号的调制
作业
5.5(注:X(t)宽平稳) 5.10 5.12 5.13 性质6)
《随机过程》 第13讲 “常见随机信号的性质”终。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲 随机信号的正交分解
东南大学移动通信国家重点实验室 陈 明 制作
chenming@ /incoming/document/随机过程
2019/5/10
东南大学无线电工程系
1
内容提要
正交分解和随机信号的表示 随机信号的Fourier正交分解 随机信号的K-L正交分解
2019/5/10
东南大学无线电工程系
2
正交分解和随机信号的表示
正交函数系 标准正交函数系 完备正交函数系
2019/5/10
东南大学无线电工程系
3
正交分解
2019/5/10
东南大学无线电工程系
4
随机信号的Fourier正交分解
2019/5/10
东南大学无线电工程系
5
随机信号的K-L正交分解
2019/5/10
东南大学无线电工程系
6
2019/5/10
东南大学无线电工程系
7
2019/5/10
东南大学无线电工程系
8
2019/5/10
东南大学无线电工程系
9作业Βιβλιοθήκη 5.12019/5/10
东南大学无线电工程系
10
《随机过程》 第12讲 “随机信号的正交分解”终。
2019/5/10
东南大学无线电工程系
11