工程热力学-第三、四章公式总结
工程热力学03章:理想气体的性质
c q 或 c q
dT
dt
1mol物质的热容称为摩尔热容『Cm, J/(mol·K)』。
标态下1m3 物质的热容为体积热容『C ’, J/(m3N·K)』。
上述三种比热容之间的关系为:
Cm Mc 0.0224141C (3-9)
热力设备中,工质往往是在接近压力不变或体积不变的 条件下吸热或放热的,因此定压过程和定容过程的比热容最
<4> 平均比热容直线关系式
c
|t2
t1
b 2
t2
t1
(3-17)
§3-4 理想气体的热力学能、焓和熵
一、热力学能和焓 du cV dt cV dT
dh cpdt cpdT
二、状态参数熵
(见1-6节)
ds qrev
T
三、理想气体的熵变计算
ds
cpdT vdp T
cp
dT T
Rg
dp p
v T
C1
pc
p T
C2
vc
pv C3Tc
pv T
C
Rg
(3-1)
注:式(3-1)可反证之
显然,上式中的Rg只与气体种类有关,而与气体所
处状态无关,故称之为某种气体的气体常数。
二、摩尔质量和摩尔体积
摩尔(mol)是表示物质的量的基本单位。
摩尔质量( ) :1mol物质的质量,单位是g/mol或
s12
c T2
T1 p
dT T
Rg
ln
p2 p1
(3-18) (3-19) (3-20)
(3-21) (3-22)
基准状态的确定:
规定p0=101325Pa、T0=0K时,熵s00K 0。则任
《工程热力学》总复习
名称含义说明体积功(或膨胀功)W 系统体积发生变化所完成的功。
2①当过程可逆时,W = ∫ pdV 。
1②膨胀功往往对应闭口系所求的功。
轴功W系统通过轴与外界交换的功。
①开口系,系统与外界交换的功为轴功Ws。
②当工质的进出口间的动位能差被忽略时,Wt=Ws,所以此时开口系所求的轴功也是技术功。
《工程热力学》期末总结一、闭口系能量方程的表达式有以下几种形式:1kg 工质经过有限过程:q = ∆u + w(2-1)1kg 工质经过微元过程:δq = du+δw(2-2)mkg 工质经过有限过程:Q = ∆U +W(2-3)mkg 工质经过微元过程:δQ = dU +δW(2-4)以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。
在应用以上各式时,如果是可逆过程的话,体积功可以表达为:2δw =pdv(2-5)w= ∫1 pdv2(2-6)δW = pdV(2-7)W = ∫1 pdV(2-8)闭口系经历一个循环时,由于U 是状态参数,∫dU = 0 ,所以∫δQ = ∫δW(2-9)式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。
二、稳定流动能量方程q = ∆h + 1∆c 2 2= ∆h + wt + g∆z + ws(2-10)(适用于稳定流动系的任何工质、任何过程)2q = ∆h −∫vdp(2-11)1(适用于稳定流动系的任何工质、可逆过程)三、几种功及相互之间的关系(见表一)表一几种功及相互之间的关系s1名称 质量比热容c体积比热容 c '摩尔比热容 M c 三者之间的关系单位 J/(k g ·K )J/(m 3·K )J/ (kmol ·K )M cc ' = c ρ 0 =22.4ρ 0 − 气体在标准状况下的密度定压 c'c pM c p定容c V'c VM c V推 动功W push开口系因工质流动而传 递的功。
工程热力学-03 理想气体u、h、s的计算
11
5、理想气体比定容热容cV0和比定压热容cp0的关系
(1) c=p0
d=h dT
d (u += pv) dT
d dT
(u
+
RgT=)
du dT
+
d dT
(RgT )
c p0 = cV 0 + Rg
(2)比热容比:比定压热容和比定容热容之比,符号 γ
γ = cp0
cV 0
cV 0
=
γ
1 −
1
Rg
(3-13a)
p
s= 2 − s1
cV 0 ln
p2 p1
+ cp0
ln
v2 v1
(3-14b)
19
若把理想气体的比热容看作定值:
= ds
cV 0
dT T
+
Rg
dv v
= ds
cp0
dT T
−
Rg
dp p
= ds
cV
0
dp p
+
cp0
dv v
s2= − s1
cV 0
ln T2 T1
+
Rg
ldu dT
(3-5)
任何过程中,单位质量的理想气体的温度升高1K时,比 热力学能增加的数值即等于其比定容热容cV0的值。
9
3、任意气体的比定压热容cp
按照比定压热容的定义式:cp
=
( δq dT
)p
设h=f (T , p)
δ=q
dh − vdp
=
(
∂h ∂T
1、分压力:混合物中的某种组成气体单独占有混合物的容积, 并具有与混合物相同温度时的压力。
工程热力学笔记
⼯程热⼒学笔记熵:⼀、任意过程熵与热量的关系系统的熵变是可以⽤可逆吸热计算的,当实际过程不可逆时,可以采⽤假设可逆过程的⽅法。
按假设可逆过程计算熵变,即⽤热温⽐计算,其中的热量度其实是包括两部分:实际传⼊的热量和耗散热量(可逆功-实际功)——总热量⼀个关系:(假设)可逆传热-(假设)可逆功=传热-功(实际)=系统内能变化(因为内能是状态参量,是只与前后状态有关的,与过程是否可逆⽆关)即:系统在某⼀温度下的熵变是系统在该温度下所得到的总热量除以该系统的温度,与可逆与否⽆关。
Tr Q W WQds TTTδδδδ-==+,注意⽤的是系统温度⽽不是热源温度,因为熵本⾝就是系统的状态量。
——第⼀熵⽅程⼆、微观解释系统微观粒⼦热运动能量增量与热运动强度之⽐(运动有序程度的度量)反应了系统宏观状态对应的微观状态数。
注:任何不可逆过程都将⼀定功化为等量热。
——效果与功⽣热⼀样。
——则任⼀不可逆过程都可能通过加功消除变化。
三、熵流与熵产熵产是真正的不可逆程度的度量,是不可逆的本质,是熵的根本来源。
闭系,熵变=熵流+熵产,任意系统熵变可正可负,熵流可正可负,但熵产必然是⼤于或等于0的,孤⽴系统,没有熵流,则熵变就是熵产,所以有孤⽴系熵增原理。
总⽅程:()r rrW WQQQds T TT Tδδδδδ-=+-+——第⼆熵⽅程熵流如果计算熵流⽤的是系统温度QTδ,则熵产中就只有耗散项,⽽不包括温差传热项。
两者熵产项不相等,是因为考虑的过程不同,所选择的系统也不同。
⽤热源温度计算熵流时,计算的是从热源流出的熵流,⽽熵变是系统的熵变,则系统的熵变理应包括温差传热带来的熵产。
⽽⽤系统温度计算熵流时,计算的是流⼊系统的熵流,⽽流⼊系统的熵流已经包括温差传热的熵产了。
——温差传热的熵产是最终到受热⽅的,是流⼊的熵流的⼀部分。
开⼝系多⽤QTδ计算熵流⽽不⽤rQT δ,因为⼯质系统⼀般是研究对象,简单清楚。
应⽤:热机可逆热机:12120Q Q TT +=——以⼯质为系统,在两个恒温热源处的熵流之和为零(系统循环⼀周,也只在热源处有吸放热,即有熵流,所以也即循环总熵流为零,⽽系统循环⼀周,状态不变,即总熵不变,则可逆熵产为零,实际上熵流为零是倒推的)。
工程热力学第四章理想气体热力过程
03
CHAPTER
等容过程
等容过程是指气体在变化的整个过程中,其容积保持不变的过程。
定义
特点
适用场景
气体在等容过程中,气体温度和压力会发生变化,但容积保持不变。
等容过程常用于高压、高温或低温等极端条件下的气体处理。
03
02
01
等容过程定义
在等容过程中,气体吸收的热量等于气体所做的功和气体温度升高所吸收的热量之和。
多变过程的具体形式取决于气体所经历的压力和温度的变化规律。
多变过程定义热力学第一定律 Nhomakorabea热力学第二定律
理想气体状态方程
热效率
多变过程的热力学计算
01
02
03
04
能量守恒定律,用于计算多变过程中气体吸收或释放的热量。
熵增原理,用于分析多变过程中气体熵的变化。
描述气体压力、体积和温度之间的关系,可用于多变过程的计算。
衡量多变过程能量转换效率的指标,通过比较输入和输出的热量来计算。
提高热效率的方法
优化多变过程参数,如压力和温度的变化规律,以减少不可逆损失和提高能量转换效率。
热效率与熵增的关系
根据熵增原理,不可逆过程会导致熵的增加,从而降低热效率。因此,减少不可逆损失是提高多变过程热效率的关键。
热效率计算公式
$eta = frac{Q_{out}}{Q_{in}}$,其中$Q_{out}$为输出热量,$Q_{in}$为输入热量。
计算公式
通过优化气体的初态和终态,以及选择合适的加热和冷却方式,可以提高等容过程的热效率。同时,也可以通过改进设备结构和操作方式来提高热效率。
提高热效率的方法
等容过程的热效率
04
CHAPTER
工程热力学基本概念及重要公式
工程热力学基本概念及重要公式1.热力学系统和热力学过程:热力学系统是指一定空间区域内被观察的物质或物体,它可以是一个封闭系统、开放系统或隔离系统。
热力学过程是指系统经历的状态变化过程,可以分为等温过程、绝热过程、等容过程和等焓过程等。
2.热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表述,即能量守恒原则。
它可以表示为:ΔU=Q-W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。
该定律说明了系统内能的变化等于系统吸收的热量减去系统对外做的功。
3.热力学第二定律:热力学第二定律是热力学中的基本定律之一,也被称为熵增定律。
它可以表述为系统总熵永不减小,即所有自然界的过程和现象都遵循熵增的趋势。
根据熵的定义,dS≥Q/T,其中dS表示系统熵的增量,Q表示吸收的热量,T表示温度。
这个公式说明了系统的熵增量等于吸收的热量除以温度。
4.等温过程和绝热过程:在等温过程中,系统与外界保持温度不变,即温度恒定。
根据理想气体状态方程,PV=常数,即在等温过程中,气体的压强与体积呈反比关系。
在绝热过程中,系统与外界在热量交换上完全隔绝,即吸收或放出的热量为零。
根据理想气体状态方程,PV^γ=常数,其中γ为绝热指数,指的是在绝热过程中,气体压强与体积的幂指数之积的常数。
5.卡诺循环:卡诺循环是热力学中一种完美的热机循环,它由两个等温过程和两个绝热过程组成。
卡诺循环是理想的热机循环,它在可逆过程中实现了最大的功效率。
卡诺循环的功效率可表示为η=(T1-T2)/T1,其中T1表示高温热源的温度,T2表示低温热源的温度。
6.热力学第三定律:热力学第三定律是热力学中的基本定律之一,它表明在温度等于绝对零度时,所有系统的熵都将趋于零。
这个定律的提出为研究低温物理学和凝聚态物理学提供了重要的基础。
这些是工程热力学中的一些基本概念和重要公式。
工程热力学作为能源工程和热力工程等领域的基础学科,对于能量转换和热力设备的设计与运行具有重要作用。
工程热力学 第三章 气体和蒸汽的性质.
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 水蒸汽的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
dT
p
dh vdp dT
p
h T
p
cV
q
dT
V
du
pdv dT
V
u T
V
☆注意:上式适用于任何工质,表明 c p、cV为状态参数
●理想气体
热力学能只包括内动能,只与温度有关,u f (T )
cp,423K 1.01622kJ /(kg K) cp,623K 1.05652kJ /(kg K)
623K
cp 423K (1.01622 1.05652) / 2 1.0364kJ /(kg K)
623K
qp cp 423K (T2 T1) 1.0364 (623 423) 207.27kJ / kg
5、不同形式的理想气体状态方程式
1kg的气体: pv RgT mkg的气体: pV mRgT 1mol的气体:pVm RT nmol的气体:pV nRT 流量形式: pqV qm RgT qn RT
例3-2:某台压缩机每小时输出 3200m3、表压力 pe 0.22MPa 温度t 156℃的压缩空气。设当地大气压pb 765mmHg ,求 压缩空气的质量流量qm及标准状态下的体积流量qV 0 。
工程热力学理想气体的热力性质及基本热力过程
气体 CV,m Cp,m 种类 [J/(kmol· K)] [J/(kmol· K)] 单原子 3×R/2 5×R/2 双原子 5×R/2 7×R/2 多原子 7×/2 9×R/2
Cm c M
Cm c' 22 .4
22
对1kg(或标态下1m3)气体从T1变到T2所需热量为:
q cdT c dT cT2 T1
17
比较cp与cv的大小:
结论:cp>cv
18
理想气体定压比热容与定容比热容的关系 迈耶公式: c p
令
cV Rg (适用于理想气体)
cp / c k , . V 称为比热比或绝热指数
当比热容为定值时,К为一常数,与组成气体的 原子数有关。如:
单原子气体 К=1.66;
双原子气体 К=1.4;
R 8314 J /( kmol K )
各种物量单位之间的换算关系:
1kmol气体的量 Mkg气体的量 标态下22.4m 气体的量
3
7
气体常数Rg与通用气体常数R的关系:
m pV nRT RT M pV mRg T
R 8314 Rg 或 R MRg M M
w
0 4
2 3 v
q 0 4 3 s
w pdv
1
2
q Tds
1
14
2
3-2 理想气体的比热容
一、比热容的定义及单位
1.比热容定义
热容量:物体温度升高1K(或1℃)所需的热量 称为该物体的热容量,单位为J /K.
比热容:单位物量的物质温度升高1K(或1℃) 所需的热量称为比热容,单位由物量单位决定。
工程热力学公式知识点总结
工程热力学公式知识点总结热力学是研究热现象和能量转化的一门物理学科。
它不仅适用于工程领域,也适用于物理、化学、地质等领域。
热力学公式是热力学知识的重要组成部分,掌握好热力学公式可以帮助工程师更好地理解和应用热力学知识。
本文将对工程热力学公式知识点进行总结,并进行详细解释。
1. 热力学基本公式1.1 第一定律:热力学第一定律也称为能量守恒定律,它表明了能量在物质之间的转化和传递过程中的基本规律。
数学表达式为:\[dU = \delta Q - \delta W\]其中,dU表示系统内能的变化量,\(\delta Q\) 表示系统吸收的热量,\(\delta W\) 表示系统对外做功的量。
1.2 第二定律:热力学第二定律指出了自然界不可逆过程的特性,也就是热量永远不能自发地由低温物体传递到高温物体。
热力学第二定律的数学表达式有多种形式,其中最常见的是开尔文表述和克劳修斯表述。
开尔文表述表示为:\[\oint \frac{dQ}{T} \leq 0\]即,对于任何经过完整循环的过程而言,系统吸收的热量与温度的比值总是小于等于零。
而克劳修斯表述表示为:\[\text{不可能使得热量从低温物体自发地转移到高温物体,而不引入外界作用。
}\]1.3 熵增原理:熵是描述系统混乱程度或者无序性的物理量,熵增原理指出了自然界中系统总是朝着熵增长的方向发展。
数学表达式为:\[\Delta S \geq \frac{\delta Q}{T}\]其中,\(\Delta S\)代表系统的熵增量,\(\frac{\delta Q}{T}\)表示系统的对外吸收的热量与温度的比值。
2. 热力学循环公式2.1 卡诺循环公式:卡诺循环是一个理想的热力学循环,它包括两个绝热过程和两个等温过程。
卡诺循环可以用来评价热能机械的性能,其热效率被称为卡诺热效率。
卡诺热效率的数学表达式为:\[\eta_{\text{Carnot}} = 1 - \frac{T_c}{T_h}\]其中,\(\eta_{\text{Carnot}}\)表示卡诺热效率,\(T_c\)表示循环的低温端温度,\(T_h\)表示循环的高温端温度。
工程热力学第三章 热力学第一定律
进入控制体的能量Q(h11 2c12gz1)m1
离开控制体的能量W s(h21 2c2 2gz2)m 2
控制体储存能变化: dE cv(EdE )cvE cv 根据热力学第一定律建立能量方程
Q(h11 2c1 2gz1)m 1(h21 2c2 2gz2)m 2W sdEcv Q(h21 2c2 2gz2)m 2(h11 2c1 2gz1)m 1W sdEcv
可逆过程能量方程
可逆过程能量方程 以下二式仅适用可逆过程:
q du pdv
2
q u pdv 1
闭口系统能量方程反映了热功转换的实质,是热 力学第一定律的基本方程式,其热量、内能和膨 胀功三者之间的关系也适用于开口系统
二、热力学第一定律在循环过程中的应用
q12 u2 u1 w12 q23 u3 u2 w23 q34 u4 u3 w34 q41 u1 u4 w41
h g i hi i 1
n
H n H i i 1
只有当混合气体的组成成分一定时,混合气体 单位质量的焓才是温度的单值函数
第六节 稳态稳流能量方程的应用
一、动力机
利用工质在机器中膨胀获得机械功的设备
由q
(h2
h1)
1 2
(c22
c12
)
g(z2
z1)
ws
g(z2 z1) 0
1 2
(c22
pv
对 移 动 1kg工 质 进 、 出 控 制 净 流 动 功
w
=
f
p 2 v 2-
p1v1
流动功是一种特殊的功,其数值取决于控制体进出口
界面工质的热力状态
工程热力学第4章 气体与蒸汽的热力过程
分析热力过程的一般步骤
➢ 确定过程方程 p = f ( v )
➢ 确定初态、终态参数的关系及热力学 能、焓、熵的变化量
➢ 确定过程中系统与外界交换的能量
➢ 在p-v图和T-s图画出过程曲线,直观地 表达过程中工质状态参数的变化规律及 能量转换
§4-1 理想气体的热力过程
例4:将理想气体在可逆绝热过程中所作技术功的 大小,表示在T-s图上。
[分析]:
绝热过程技术功:
wt cp(T1T2)
cp(T1T2)
1 T
2' 2
q12
=面积1ba2’1
a
bS
五、多变过程
❖ 工程实际中有些热力过程,p、v、T有明显变化, 且系统与外界交换的Q不可忽略。则不能用上述4种 基本热力过程来描述。
u cV (T2 T1 )
h c p (T2 T1 )
s
c
p
ln
T2 T1
Rg ln
p2 p1
3. 能量转换
w 2 1
pdv
p1v1n
2 1
dv vn
n
1 1(
p1v1
p2v2 )
R n
1(T1
T2 )
wt nw
nRT111
p2 p1
(n1)/n
q
u
w
cV
(T2
T1)
R n
1(T1
ucV(T2 T1)
hcp(T2 T1)
sv
cV
lnT2 T1
Rg
l
nv2 v1
cV
l
nT2 T1
cV
l
np2 p1
工程热力学公式大全
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学基本概念及重要公式
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学公式大全
工程热力学公式大全第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学知识点总结大全
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
清华大学热工基础课件工程热力学加传热学(4)第三章
物质的多少还以物质的量(摩尔数)来衡量。 物质的量:n ,单位: mol(摩尔)。 摩尔质量: M ,1 mol物质的质量,kg/mol。
4
物质的量与摩尔质量的关系: n m M
摩尔质量与气体的相对分子量之间的关系:
1 kmol物质的质量数值与气体的相对分子质 量的数值相同。
MO2 = 32.0010-3 kg/mol MN2 = 28.0210-3 kg/mol
19
2) 理想气体的熵
根据熵的定义式及热力学第一定律表达式,
可得
ds q du pdv du p dv
Τ
T
TT
ds q dh vdp dh v dp
T
T
TT
对于理想气体,
du cV dT , dh cpdT , pv RgT
代入上面两式,可得
20
ds
cV
dT T
Rg
dv v
ds
cp
dT T
Rg
dp p
比热容为定值时 ,分别将上两式积分,可得
代入
s
cV ln
T2 T1
Rg ln
v2 v1
s
c
p
ln
T2 T1
Rgln
p2 p1
pv RgT和迈耶公式cp cV=Rg ,得 21
结论:
s
cV ln
p2 p1
cpln
v2 v1
(1)理想气体比熵的变化完全取决于初态和终 态,与过程所经历的路径无关。这就是说,理 想气体的比熵是一个状态参数。
M空气 = 28.96 10-3 kg/mol
5
摩尔体积 Vm :1 mol物质的体积, m3/mol。
工程热力学第三章气体和蒸气的性质
•
capacity per unit of mass)
•质量定容热容(比定容热容)
•及
•(constant volume specific heat
• capacity per unit of mass)
•二、理想气体比定压热容,比定容热容和迈耶公式
•1.比热容一般表达式
•代入式(A)得
•2. cV
h’=191.76, h”=2583.7
s’=0. 649 0, s”=8.1481
t
v
h
s
v
h
s
v
h
s
℃ m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg·
K)
K)
K)
0 0.0010002 -0.05 -0.0002 0.0010002 -0.05 -0.0002 0.0010002 -0.04 -0.0002 10 130.598 2519.0 8.9938 0.0010003 42.01 0.1510 0.0010003 42.01 0.1510
•本例说明:低温高压时,应用理想气体假设有较大误差。
•例A411133
•讨论理想气体状态方程式
•3–2 理想气体的比热容
•一、比热容(specific heat)定义和分类 •c与过程有关
•定义: •分类:
•c是温度的函数
•按物 量
•质量热容(比热容)c J/(kg·K)
•(specific heat capacity per unit of mass)
• 干饱和蒸汽(dry-saturated vapor; dry vapor )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pvk=c
pvn=c
初终态p、v、T的关系式
热力学能变化Δu
0
焓变化Δh
0
熵变化Δs
0
定容过程
定压过程
定温过程
定熵过程
多变过程
过程功
0
技术功
0
过程热量
q
0
过程比热容
∞
0
第三、四章公式总结
一、理想气体状态方程
适用于1kg气体
适用于mkg气体
适用于1mol气体
适用于n mol气体
二、理想气体的比热容
表1比热容的种类
名称
比热容
摩尔热容
容积热容
单位
J/(kg K)
J/(mol K)
J/(m3K)
比定压热容
cp
Cp,m
C’p
比定容热容
cv
CV,m
C’v
迈耶方程 或
;
真实比热容
平均比热容
定值比热容
三、理想气体的热力学能、焓、熵
表2理想气体的热力学能、焓、熵
类型
热力学能
焓
熵
微元变化
有限变化
(真实比热容)
有限容)
四、理想气体的热力过程
表3理想气体的各种热力过程
定容过程
定压过程
定温过程
定熵过程
多变过程
多变指数n
±∞
0
1
k
n
过程方程式
v=c
p=c