飞机发动机指示系统共31页
民用飞机发动机指示系统设计考虑
民用飞机发动机指示系统设计考虑作者:梁秋明来源:《科学与财富》2011年第08期[摘要] 本文详细地描述了在设计民用飞机的发动机指示系统时需要考虑的因素,明确指出了在设计发动机指示系统时需要遵循的设计准则,并依据适航要求给出了发动机指示系统图标设计的建议,为设计民用飞机的发动机指示系统提供了基本设计思路和基础。
[关键词] 民用发动机 EI 指示图标设计0、前言在飞机的整个飞行过程中,发动机的指示系统EI(Engine Indication)是发动机工作情况的晴雨表,是飞行员知晓发动机工作状态最重要的手段。
发动机指示系统为飞行员提供了发动机工作的重要参数指示和推力指令,为飞行员控制发动机推力提供参考,并且及时、准确地通知飞行员发动机参数的异常状况,最终达到最大程度确保飞行安全的目的。
1、民机发动机指示系统概述目前,民用飞机的发动机指示系统基本采用先进的数字电子式控制,具有高可靠性、高精度、显示直观等优点,大大减轻了飞行员负担,提高了飞行的安全系数。
发动机指示系统主要依靠发动机传感器和发动机控制系统提供的数据,经由飞机航电系统的计算机处理后,将发动机参数显示在发动机指示与机组告警系统EICAS(Engine Indication and Crew Alerting System)的显示屏上。
2、民机发动机参数指示民用飞机的发动机参数分为主要发动机参数和次要发动机参数。
依据SAE APR5364《民用飞机在多功能显示器MFD(Multi-function Display)设计人为因素考虑》的设计指导,主要发动机信息应该包括能够在每一个飞行阶段正确反映发动机推力并且能够指导飞行员调节正确推力的发动机参数,或者是能够监控发动机当前运行状态并且能够确认发动机正确操作的发动机参数。
涡轮发动机推力调节依据的主要发动机参数一般是指发动机排气压力比EPR(Exhaust Pressure Ratio)、发动机扭矩或发动机低压转子转速N1。
空客航后各系统页面正常显示
在AMM31-67-00 - ECAM SYSTEM/STATUS DISPLAY里有关于各系统显示的详细描述,这里只是简单介绍,并给大家展现各页面航后可接受状态,帮助大家识别不正常状态。
空客飞机航后ECAM各页面正常显示上ECAM——发动机/警告显示1、航后发动机主要参数显示XX。
在发动机停转5分钟内或者刚接电5分钟内会有参数显示,若超过5分钟还有显示,则要警惕是否是FADEC电门未关闭或者是发动机主电门手柄不在OFF位。
地面ECU长时间通电有可能烧坏。
2、warning信息显示区——航后只有一个因T13驾驶舱门跳开关拔出导致的C/B跳出提示。
如果警告信息太多,WARNING区域显示不全,会出现向下的箭头提示翻页,也会在MEMO区域显示警告信息。
3、MENO——在该区域经常会看见许多绿色的提示信息,像TCAS STBY、HF VOICE等。
不用理会是正常现象。
4、襟缝翼位置指示——襟缝翼收上。
下ECAM——系统和状态显示下ECAM分为上下两个区,上半区域为系统和状态显示区,下半区域为永久参数显示区一、永久参数显示区UTC时间正常显示,不要是XX飞机总重及重心显示,需人工输入,航后不用管。
总温和静温,确认氧气压力时用。
二、发动机辅助参数页面标准:1、已用燃油显示为02、滑油量在正常范围3、滑油压力显示为0,滑油压力下降,滑油滤堵塞会显示CLOG。
4、滑油温度有数值显示、N1和N2震动值为0。
以上显示任一出现琥珀色XX即为不正常。
三、引气页面四、客舱压力页面1、客舱压差△P:无指针,数值显示XX2、垂直速度V/S:指针绿色,数值为03、客舱高度 CAB ALT:绿色指针,数值绿色稳定显示。
4、着陆机场标高LDG ELEV:通常显示AUTO(绿色)0 FT(绿色)MAN (绿色)0 Ft (绿色)AUTO (绿色)XX FT (AMBER)不正常当增压模式选在人工模式时,该处显示消失。
须注意,要把模式电门复位。
飞机发动机操纵系统 共16页
当反推杆拉起时,发动机的转速将增加。 它们的运动由操纵系统传到燃油控制器,控制器的设计使
得功率杆在慢车域的任一方向运动,供油量都会增加。
3. 操纵信号的传送
驾驶员启动运转发动机和停车命令,正向推 力和反推力要求从驾驶舱通过操纵系统传到 位于发动机附件齿轮箱上的燃油控制器。
每根起动手柄操作6 个电门。两个电门发送信号至EEC。两个 电门与发动机点火系统接口。另外两个电门发送信号至发动 机供油系统中的活门。
反推联锁电磁线圈
反推联锁电磁线圈有两个,每台发动机一个。每个反推联锁 电磁线圈限制反推力杆的运动范围。你能够展开反推力装置 ,但是在反推力装置套筒靠近全开位置之前,你不能够增加 反推力。EEC 操作这些电磁线圈。推力杆联锁电磁线圈在自 动油门组件内。
在驾驶舱地板下的控制鼓轮上面的凸轮,作动 燃油切断活门的电门和点火电门。它们控制着 飞机油箱供往发动机去的燃油切断活门开、关 和点火激励器的通、断电,继而控制供油和点 火。
有的飞机上,供油命令是通过驾驶舱操纵台上燃油 控制电门给出的。
当置于运转位时,使燃油计量装置的启动/运转 电磁活门通电;
置
两个公用显示系统(CDS/DEU)显示电子装置知道起动手柄在慢车 (发动机运转)位置
当移动起动手柄至关断位置时:
燃油控制板接收一个起动手柄位置输入 电源关闭发动机燃油翼梁活门 从EEC断掉点火电源 两个发动机起动手柄继电器移至关断位置 电源关闭在液压机械装置(HMU)内的高压切断活门(HPSOV) EEC的通道A和通道B 复位。
推力杆解算器
推力杆解算器组件有两个,每台发动机一个。每个推力杆解 算器组件有两个解算器,一个是EEC通道A的,一个是EEC通 道B 的。推力杆解算器把机械的正推推力杆和反推推力杆位 置改变为模拟的推力杆解算器角度(TRA)信号。这些信号 输至EEC。EEC使用这些信号控制发动机。
737-NG_发动机指示
有效性77—00—00发动机指示 - 介绍功用发动机指示系统连续地提供发动机数据至公用显示系统(CDS )。
发动机指示系统有这些分系统:- 低压转子转速(N1) - 高压转子转速(N2) - 排气温度(EGT ) - 机载振动监控(AVM )公用显示系统(CDS )通常在两个显示装置(DU )上显示发动机数据。
一个显示装置显示发动机主要的显示和另一个显示装置显示发动机次要的显示。
发动机主要的显示总是在上部中央显示装置(DU )上。
发动机次要的显示总是在下部中央显示装置上。
发动机数据也能显示在内侧的显示装置(DU ) 缩语和略语 altn - 备用的 AVM - 机载振动监控 BITE - 自检设备 CAS - 校准空速 CDS - 公用显示系统 CDU — 控制显示装置 chap - 章 DEU - 显示电子装置 DU - 显示装置EEC - 发动机电子控制器 EGT - 排气温度FDAU - 飞行数据采集装置 FDR - 飞行数据记录器FFCCV - 风扇框架/压气机机匣垂直面(传感器) FMCS - 飞行管理计算机系统 FMV - 燃油计量活门 HPC - 高压压气机 HPT- 高压涡轮HPTACC - 高压涡轮间隙主动控制 LPC - 低压压气机 LPT- 低压涡轮LPTACC - 低压涡轮间隙主动控制 REV - 反排装置套筒位置 tach - 转速表TBV - 过渡放气活门TRA - 推力杆解算器角度 TRF - 涡轮后框架UTC - 世界时(一致的) VBV - 可调放气活门 VSV - 可调静子叶片 vib- 振动77—00—00—000 R e v 4 10/24/2000有效性77—00—0077—00—00—000 R e v 4 07/21/1997N2转子转速发动机指示 - 介绍公用显示系统 上部中央显示装置 (发动机主要的显示)机载振动监控(AVM )排气温度(EGT )N1转子转速公用显示系统下部中央显示装置 (发动机次要的显示)有效性77—00—00发动机指示 - 一般说明概述发动机指示系统显示每台发动机的这些参数: - 低压转子转速(N1) - 高压转子转速(N2) - 排气温度(EGT ) - 发动机振动 发动机电子控制器发动机电子控制器(EEC )从这些发动机传感器接收模拟的输入:- N1转速传感器 - N2转速传感器- EGT 探头(T49.5)EEC 把模拟的信号改变为数字的信号。
737NG飞机发动机EGT指示系统超限分析
图 3 故障分类
EGT 指示系统故障可能导致虚假超温信号,是发动机 维修工作中的常见故障,往往是外场排故工作中最不容易 排除的因素。EGT 指示超限的原因有以下几种:电插头接 触不良或连接松动;EGT 热电偶故障;J9/ CJ9 或 J10/CJ10 线束故障;EEC 故障。如图 5 所示,统计最近三年来航线 故障报告中关于 EGT 指示超限问题的处理方案表明:插头 污染或接触不良占绝大多数故障比例,清洁相关电气插头 后测试恢复正常;少数原因是 T49.5 热电偶故障和 CJ9/ CJ10 线束绝缘性不好。
线路屏蔽层破损会对信号传输产生影响,也会产生虚 假 EGT 信号。通过测量插针对地绝缘电阻进行判断。
(1) 测量 J9、J10、CJ9、CJ10、T49.5 热电偶整体绝 缘电阻。如表 5 所示,比较实测值和标准阻值来判断线路 故障位置。
表 5 绝缘阻值
电插头 位置
插针
标准阻值 实测值
DP0909 S1 b-ground& u-ground 大于 20 MΩ
CFM56-7B 发动机排气温度 EGT 指示系统监测二级低 压涡轮出口的排气温度。EGT 系统具有 8 个热电偶和 4 个 T49.5 热电偶导线束组件,如图 1 所示。EGT 热电偶提供一 个与排气温度成正比例的模拟信号。在每侧涡轮机匣上有 2 个 T49.5 热电偶导线束组件。热电偶旁的接线盒通过导线 束连到 EEC。每个导线束组件有两个热电偶并把这个模拟 信号输入给 EEC,如图 2 所示。EEC 利用 EGT 信号来进行 发动机控制和指示。EEC 把 EGT 信号送到 DEUs,用来在 CDS 上显示。EGT 计算逻辑正常是 4 组热电偶输入值的平 均值以提高探测精度。当存在任一组热电偶数值和平均值 差值大于 200 ℃时,该组热电偶数值被丢弃,不计入计
波音737ng机型基础知识总结ATA31
波音737ng机型基础知识总结ATA31展开全文ATA31章指示记录系统电子时钟位于P1 P3 外侧现在UTC时间即格林威治时间(MMR 控制)当地时间(北京时间UTC+8)日期因可由热电瓶汇流条供电所以时钟时刻有电黑匣子:坐舱话音记录器(CVR,记录最后2h语音信息)位于后货舱飞行数据记录器(FDR,记录最后25h数据)位于后厨房顶板橘红色飞行数据记录系统飞行记录器/马赫空速测试组件位于P5后顶板飞行数据采集组件(FDAU)位于电子舱飞行数据记录器(FDR)位于后厨房顶板打印机(printer)位于P8板(因构型而异)FDAU状态继电器位于前轮舱音响警告系统自驾脱开着陆警告超速警告起飞或客舱高度警告火警谐音“录音机”位于P9板下部只有一个在副驾位置主警告系统P7板 4个灯(左右各4个)通用显示系统EFIS(电子飞行仪表系统)控制面板位于P7板(共2个)显示源选择器位于P5板发动机显示控制面板(P2)显示电子组件(DEU)共2个位于电子舱显示选择面板位于P1 P3 各一个远距离光传感器(RLS)(共2个)自动调节DU亮度(位于遮光板上面)DU框上面有白色的感光点也能自动调节DU亮度亮度控制面板(2个)位于P1 P3共有6个DU(PDU ND)任一一个DEU科控制显示任一DUDEU产生视频信号在DU上显示上DU 主发动机显示下DU 次要发动机显示或者系统页面显示PFD比ND重要当PFD损坏时会在UD显示(自动切换)ND能通过P1 P2 P3 面板人工切换详情看31章图ATA32章起落架起落架作用为飞机提供支撑滑行、转弯、起跑减震和耗能刹车和减速NG飞机起落架为前三点可收放油气支柱套筒双轮式起落架选择活门:控制来自转换活门的液压压力流向主起落架和前起落架的收放管路。
起落架控制手柄通过连接到选择活门控制杆上的控制钢索来控制选择活门的位置。
起落架转换活门:起落架转换活门可将起落架压力供应自动或人工地由液压系统A转向液压系统B。
飞机发动机指示系统课件
谢谢观看
多功能集成
01
将发动机指示系统与其他飞机系统进行集成,实现数据共享和
协同工作,提高飞机整体性能和安全性。
定制化解决方案
02
根据不同航空公司的需求,提供定制化的发动机指示系统解决
方案,满足其特定的运营和维护要求。
跨领域合作
03
加强与航空产业链上下游企业的合作,共同研发更先进的发动
机指示系统,推动产业整体发展。
显示
处理后的数据通过仪表盘 或电子显示屏展示给飞行 员,使飞行员能够实时监 控发动机的工作状态。
发展历程
初期阶段
早期的飞机发动机指示系统比较 简单,仅包括油压表、转速表等
基本参数的显示。
发展阶段
随着航空技术的进步,指示系统 逐渐增加了更多的参数显示,如
排气温度、滑油压力等。
现代化阶段
现代的飞机发动机指示系统已经 高度集成化、数字化,通过电子 显示屏可以展示更加丰富、详细 的信息,同时还能够进行故障诊
飞机发动机指示系统课件
目录
• 飞机发动机指示系统概述 • 系统组成与部件 • 系统工作流程 • 系统操作与维护 • 安全注意事项 • 系统发展趋势与展望
01
飞机发动机指示系统概 述
定义与功能
定义
飞机发动机指示系统是用于监控和显示飞机发动机工作状态的设备,它能够提 供关于发动机性能、燃油流量、排气温度等关键参数的实时数据。
检查电源
定期检查电源线是否完好,确保供电 稳定。
清洁和除尘
定期对发动机指示系统的仪表和显示 屏进行清洁,去除灰尘和污垢,保持 其良好的工作状态。
校准和调整
根据维护手册的要求,定期对发动机 指示系统进行校准和调整,确保其准 确性。
航空发动机控制系统ppt
放气活门VBV(Variable Bleed Valve)和导向叶片VSV (Variable Stator Vane)的控制。 涡轮间隙TCC(Turbine Clearance Control)的控制
8.1.2 发动机控制的内容和方法
推力控制
根据发动机的工作状态和飞机的飞行状态,计量供给然 烧室的燃油,获得所需的推力。推力控制包括 : 转速控制、 压比控制、反推力控制。 过渡控制的目的是使发动机过度过程能迅速、稳定和可 靠地进行。一般包括有: 起动、加速和减速过程的控制及 压气机的防喘控制。 安全限制的目的是保证发动机安全正常的工作。防止超 温、超压、超转和超功率。安全限制系统只有当出现有 超温、超压、超转和超功率是才起作用而工作。
控制相关概念
控制对象
被控制的技术对象称为控制对象,如发动机
控制器
控制对象以外的,为完成控制任务的机构的总合
控制对象和控制器的总合称为控制系统 能表征被控对象(发动机)的工作状态,又能被控制的 变量称为被控变量。如发动机的转速
控制系统
被控变量
可控变量
能影响被控对象(发动机)的工作过程,用来改变被控 变量大小的变量称为可控变量 对于涡喷发动机一般供油量为可控变量; 对于涡桨发动机, 一般供油量和桨叶角为可控变量
计算系统
功用
感受各种参数,在发动机所有工作阶段控制计量部分的 输出 感受参数有发动机转速,压气机出口总压,压气机出口 总温,压气机进口总温,油门杆角度等
组成
计算系统由压气机出口压力传感器、压气机出口压力限 制器、转速调节器、压气机进口温度传感器及操纵机构 等组成
第十一章--航空发动机数据系统PPT课件
•26.03.2024
•8
四、流量及传感器
质量流量 体积流量 涡轮流量传感器:前后直管段长度应大于15倍和5倍 磁电式转换器:磁阻式、感应式、霍尔元件、光电元件变
换器等;
涡轮流量传感器特点:精度高、线性特性、测量范围宽、 反应灵敏、压力损失小等。
五、振动及传感器
(P390,表11.2)位置:风扇轴承、压气机、中介机匣、涡轮 传感器:速度式、加速度式 1、速度式测振原理 2、加速度式振动传感器原理
•26.03.2024
•9
六、位移测量 差动变压器式位移传感器 形式:1)II型;2)螺旋管型;3)“山”字型 特点:结构简单、灵敏度高、线性度好、测量范围宽。
温度测量:热电偶—400~12000C
电阻温度计—-60~4000C
压力测量:晶体振荡式传感器—可靠性高、稳定性好
转速传感器:齿轮式
•26.03.2024
•5
位移和转角测量:可变差动变压器(LVDT和RVDT)
一、转速及传感器
直接式:r/min(活塞式发动机) 相对转速:x%nmax 磁电感应式传感器(PW400、RB211、V2500、A320) EEC发电机(N2转速信号源)
第二节 典型的机载测试与显示系统
一、概述
FADEC系统将传感器采集、数字信号传给EEC(ECU),经 计算判断,发出指令控制发动机。
显示系统:EICAS或ECAM
二、boeing747-400飞机的机载显示系统
发动机指示及机组警告系统(EICAS) 1、驾驶舱EICAS系统:主发、辅发、警告、警戒、忠告、
航空发动机控制系统课件
案例三:某型飞机发动机控制系统的设计优化
设计优化目标
设计优化方案
优化效果评估
总结
提高某型飞机发动机控制系统 的性能和可靠性,降低故障率 。
对发动机控制系统的电路和控 制算法进行优化,采用更加先 进的传感器和执行器,提高系 统的自动化程度和智能化水平 。
经过优化后,发动机控制系统 的性能和可靠性得到了显著提 高,故障率大幅降低。同时, 系统的自动化和智能化水平也 得到了提升,提高了飞机的整 体性能。
REPORTING
日常维护与保养
01
02
03
每日检查
检查控制系统的外观是否 正常,各部件连接是否紧 固,线路是否完好等。
清洁与除尘
定期清洁航空发动机控制 系统的表面,去除灰尘和 污垢,保持清洁的工作环 境。
功能测试
对控制系统的各个功能进 行测试,确保其正常工作 。
定期维护与保养
定期更换磨损部件
01
供应量减少。
气动控制系统的工作原理
气动控制系统是利用空气作为工作介质来控制发动机的各种参数,如进气压力、进 气温度和进气流量等。
气动控制系统通常由空气压缩机、气瓶、调节阀和传感器等组成。
当发动机需要增加进气压力时,调节阀会打开,使更多的空气进入发动机;反之, 当发动机需要减小进气压力时,调节阀会关闭,使空气供应量减少。
陶瓷复合材料
陶瓷复合材料具有耐高温、耐磨损等特性,可用于制造高温部件, 提高发动机的工作温度和效率。
金属基复合材料
金属基复合材料具有高刚性和轻量化特点,可用于制造发动机的旋 转部件,提高发动机的稳定性和可靠性。
新技术的应用
人工智能技术
人工智能技术可用于航空发动机 控制系统的故障诊断和预测,提 高发动机的可靠性和安全性。
A320第一章(指示记录系统)
第一张指示记录系统1.1 电子仪表系统1.1.1 电子仪表系统描述1)介绍电子仪表系统由以下组成:- 电子飞行仪表系统- 飞行电子中央监控系统六块显示器是一样的并且可以互换2)电子飞行仪表系统电子飞行仪表系统显示所有主要飞行参数用于飞行操控;导航显示器显示航行和雷达数据。
电子飞行仪表系统显示器分别是:主飞行显示器;导航显示器。
3)飞行电子中央监控系统发动机和警告显示器显示发动机参数,燃油量,和襟翼缝翼位置;下面的显示器显示天气界面或者地形界面。
飞行电子中央监控系统显示器分别是:发动机和警告显示器;系统或状态显示器。
4)警醒系统警告信息是伴随着控制警告或控制警示中的一个以及语音警告。
听觉警告是由两个扬声器发出。
5)电子飞行仪表系统控制电子飞行仪表系统显示器是由两个电子飞行仪表系统控制板控制。
主飞行显示器和导航显示器的转换按钮在每个控制板的边上。
6)飞行电子中央监控系统控制飞行电子中央监控系统显示器是由一个飞行电子中央监控系统控制板控制。
飞行电子中央监控系统控制板和各开关被固定在中央基座上。
7)重组构建如果发现了系统错误显示可以自动转换。
这种功能当然也可以手动来实现。
1.1.2电子仪表系统构架1)电子飞行仪表系统和飞行电子中央监控系统电子飞行仪表系统显示在一个统一显示单元上。
电子飞行仪表显示系统显示单元是通过电子飞行仪表系统控制板控制。
飞行电子中央监控系统页面显示在一个统一显示单元上。
飞行电子中央监控系统显示单元是通过飞行电子中央监控系统控制板控制。
2)图像管理计算机图像管理计算机处理信息处理信息用于生成命令代码和图像代码并将这些代码输送给显示器。
特别要注意的是3号图像管理计算机可以替换1号和2号图像管理计算机中的任何一个。
图像管理计算机处理后的信息显示在以下显示器中:主飞行显示器,导航显示器以及上部和下部飞行电子中央监控显示器。
3)飞行警告计算机飞行警告计算机监视飞行系统。
这三个计算机是飞行电子中央监控系统的核心。