2.按实际效果分解力的几个实例.doc
力的分解 课件
力的分解及分解法则 1.一个力在不受条件限制下可分解为无数组分力 将某个力进行分解,如果没有条件约束,从理论上讲有无数组 解,因为同一条对角线可以构成的平行四边形有无穷多个(如图所 示),这样分解是没有实际意义的.实际分解时,一个力按力的作用 效果可分解为一组确定的分力.
2.一个合力分解为一组分力的情况分析 (1)已知合力和两个分力的方向时,有唯一解.
4.正交分解法求合力的步骤 (1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x 轴和y轴的选择应使尽量多的力在坐标轴上.
(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴 上,并求出各分力的大小,如图所示.
(3)分别求出x轴、y轴上各分力的矢量和,即: Fx=F1x+F2x+… Fy=F1y+F2y+… (4)求共点力的合力:合力大小F= F2x+F2y ,合力的方向与x轴 的夹角为α,则tan α=FFxy.
小球对墙面的压力F1=F1′=mgtan 60°=100 3 N,方向垂直 墙壁向右;
小球对A点的Βιβλιοθήκη 力F2=F2′=mg cos 60°
=200
N,方向沿OA方
向.
[答案] 见解析
上例中,若将竖直墙壁改为与左端相同的墙角B撑住小球且B端 与A端等高,则小球对墙角的压力分别为多大?方向如何?
[提示] 由几何关系知:FA=FB=mg=100 N,故小球对A、B 点的压力大小都为100 N,方向分别沿OA、OB方向.
【例3】 在同一平面内共点的四个力F1,F2,F3,F4的大小依 次为19 N,40 N,30 N和15 N,方向如图所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)
思路点拨:①由F1与F2,F2与F3间夹角的大小确定x轴和y轴方 向,便于几个力在坐标轴上的分力计算.
14第四节、力的合成与分解
第四节、力的合成与分解[问题设计]如图2所示,一个大人能够提起一桶水,两个小孩用力也可以提起这桶水.(1)那么大人与小孩施加的力有什么关系呢?(2)这一个力(大人的力)叫什么?那两个力(小孩的力)叫什么?知识梳理1.合力与分力(1)定义:如果一个力的作用效果与几个力共同作用的效果相同,这个力就叫做那几个力的合力,原来的几个力叫做这个力的分力.(2)合力与分力的关系:合力与分力是作用效果上的一种等效替代关系.2.力的合成:求几个力的合力叫做力的合成.4.共点力:作用于物体上同一点,或者力的作用线相交于同一点的几个力称为共点力.5.合力与分力的三性(判断一下正误)1.合力与分力是同时作用在物体上的力.( )2.合力产生的效果与分力共同产生的效果一定相同.( )3.可以用合力代替分力.( )4.共点力不一定作用在同一物体的同一点.( )例题分析:例题1 (多选)关于F1、F2及它们的合力F,下列说法正确的是()A.合力F一定与F1、F2共同作用产生的效果相同 B.两力F1、F2一定是同种性质的力C.两力F1、F2一定是同一个物体受的力 D.两力F1、F2与F是物体同时受到的三个力变式训练1如图252所示,下列情况下日光灯所受的拉力T1、T2及重力G一定不是共点力的是 ( )甲乙丙A.甲情况下B.乙情况下C.丙情况下 D.甲、乙、丙三种情况下2两个共点力的大小分别为F1=15 N,F2=9 N.它们的合力不可能等于 ( ) A.9 N B .25 N C.6 N D.21 N探究共点力合成的规律一、实验目的1.验证互成角度的两个共点力合成的平行四边形定则2.进一步练习作图法求两个共点力的合力二、实验原理如果使F1、F2的共同作用效果与另一个力F′的作用效果相同(橡皮条在某一方向伸长一定的长度),那么,F′就是力F1、F2的合力.再以F1、F2为邻边用平行四边形定则求出合力F,那么在实验误差允许范围内,F与F′应该大小相等、方向相同.三、实验器材方木板、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(若干)、铅笔四、实验步骤1.仪器的安装:用图钉把白纸钉在水平桌面上的方木板上.用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套,如图253所示.2.操作与记录(1)两力拉:用两个弹簧测力计分别钩住两个细绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O(如图所示).用铅笔描下结点O的位置和两条细绳套的方向,并记录弹簧测力计的读数.(2)一力拉:只用一个弹簧测力计,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧测力计的读数和细绳套的方向.3.作图与分析(1)理论值:在白纸上,按比例从O点开始作出两个弹簧测力计同时拉时的拉力F1和F2的图示,利用刻度尺和三角板根据平行四边形定则求出合力F.(2)测量值:按同样的比例,用刻度尺从O点起作出一个弹簧测力计拉橡皮条时拉力F′的图示.(3)相比较:比较F′与用平行四边形定则求得的合力F在实验误差允许的范围内是否相等.4.重复做实验:改变两个分力F1和F2的大小和夹角,再重复实验两次,比较每次的F 与F′在实验误差允许的范围内是否相等.五、误差分析产生原因减小方法偶然误差读数正视、平视弹簧测力计刻度作图(1)两分力夹角在60°~120°之间(2)弹簧测力计读数尽量大1.弹簧测力计使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差).还需用钩码检查是否存在示数值误差,若存在,应加以校正.2.被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦.3.在同一次实验中,使橡皮条拉长时结点O的位置一定要相同.4.在具体实验时,两分力间夹角不宜过大,也不宜过小,以60°~120°之间为宜.5.读数时应正视、平视刻度.6.使用弹簧测力计测力时,读数应尽量大些,但不能超出它的测量范围.例题分析:例题1在“验证力的平行四边形定则”实验中,某同学用图钉把白纸固定在水平放置的木板上,将橡皮条的一端固定在板上一点,两个细绳套系在橡皮条的另一端.用两个弹簧测力计分别拉住两个细绳套,互成角度地施加拉力,使橡皮条伸长,结点到达纸面上某一位置,如图255所示.请将以下的实验操作和处理补充完整:①用铅笔描下结点位置,记为O;②记录两个弹簧测力计的示数F1和F2,沿每条细绳(套)的方向用铅笔分别描出几个点,用刻度尺把相应的点连成线;③只用一个弹簧测力计,通过细绳套把橡皮条的结点仍拉到位置O,记录测力计的示数F3,________________________________________________④按照力的图示要求,作出拉力F1、F2、F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较________的一致程度,若有较大差异,对其原因进行分析,并作出相应的改进后再次进行实验.变式训练1李明同学在做“验证力的平行四边形定则”实验时,利用坐标纸记下了橡皮筋的结点位置O点以及两只弹簧测力计拉力的大小,(1)试在图甲中作出无实验误差情况下F1和F2的合力图示,并用F表示此力.(2)(多选)有关此实验,下列叙述正确的是________.A.两弹簧测力计的拉力可以同时比橡皮筋的拉力大B.橡皮筋的拉力是合力,两弹簧测力计的拉力是分力C.两次拉橡皮筋时,需将橡皮筋结点拉到同一位置O,这样做的目的是保证两次弹簧测力计拉力的效果相同D.若只增大某一只弹簧测力计的拉力大小而要保证橡皮筋结点位置不变,只需调整另一只弹簧测力计拉力的大小即可(3)图乙是李明和张华两位同学在做以上实验时得到的结果,其中哪一个实验比较符合实验事实?(力F′是用一只弹簧测力计拉时的图示)答:______________________(4)在以上实验结果比较符合实验事实的一位同学中,造成误差的主要原因是:答:________________________互成角度的两个力的合成知识梳理1.平行四边形定则求两个成一定角度的力的合力时,可以用表示这两个力的线段为邻边,作平行四边形,这两邻边所夹的对角线就表示合力的大小和方向.这种方法叫平行四边形定则.所有矢量的合成都遵循平行四边形定则.2.多力的合成求两个以上的力的合力时,可以先求出任意两个力的合力,再求出这个合力与第三个力的合力,以此类推,直到求出所有力的合力为止.3.合力与分力间的大小关系(1)两个力的合成当两分力F1、F2大小一定时,①最大值:两力同向时合力最大,F=F1+F2,方向与两力同向;②最小值:两力方向相反时,合力最小,F=|F1-F2|,方向与两力中较大的力同向;③合力范围:两分力的夹角θ(0°≤θ≤180°)不确定时,合力大小随夹角θ的增大而减小,所以合力大小的范围是:|F1-F2|≤F≤F1+F2.(2)三个力的合成三个力进行合成时,先将其中两个力F1、F2进行合成,则这两个力的合力F12的范围为|F1-F2|≤F12≤F1+F2.再将F12与第三个力F3合成,则合力F的范围为|F12-F3|≤F≤F12+F3.对F的范围进行讨论:①最大值:当三个力方向相同时F12=F1+F2,F=F12+F3,此时合力最大,大小为F max=F1+F2+F3.②最小值:若F3的大小介于F1、F2的和与差之间,F12可以与F3等大小,即|F12-F3|可以等于零,此时三个力合力的最小值就是零;若F 3不在F 1、F 2的和与差之间,合力的最小值等于最大的力减去另外两个较小的力的和的绝对值.③合力范围:F min ≤F ≤F max .求合力的方法1.作图法根据平行四边形定则用作图工具作出平行四边形,后用测量工具测量出合力的大小、方向,具体操作流程如下:2.计算法(1)两分力共线时:①若F 1与F 2方向相同,则合力大小F =F 1+F 2,方向与F 1和F 2的方向相同;②若F 1与F 2方向相反,则合力大小F =|F 1-F 2|,方向与F 1和F 2中较大的方向相同.(2)两分力不共线时:可以先根据平行四边形定则作出分力及合力的示意图,然后由几何知识求解对角线,即为合力.以下为求合力的两种常见特殊情况:类型 作图 合力的计算两分力相互垂直大小:F =F 21+F 22方向:tan θ=F 1F 2 两分力等大,夹角为θ大小:F =2F 1cos θ2 方向:F 与F 1夹角为θ2 把两个矢量首尾相连,从第一个矢量的始端指向第二个矢量的末端的有向线段就表示合矢量的大小和方向.三角形定则与平行四边形定则实质上是一样的.例题分析:例题1水平横梁一端A 插在墙壁内,另一端装有一小滑轮B .一轻绳的一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量为m =10 kg 的重物,∠CBA =30°,如图258所示,则滑轮受到绳子的作用力大小为 ( )A .50 NB .50 3 NC .100 ND .100 3 N变式训练1有两个大小相等的力F1和F2,当它们的夹角为90°时,合力为F,则当它们的夹角为120°时,合力的大小为( )A.2F B.22F C.2F D.F2 如图259所示,两个人共同用力将一个牌匾拉上墙头.其中一人用了450 N的拉力,另一个人用了600 N的拉力,如果这两个人所用拉力的夹角是90°,求它们的合力.3.下列各组共点力的合力有可能等于零的是()A.16N、5N、6N B.3N、4N、5N C.4N、7N、11N D.11N、8N、20N4.在做“探究求合力的方法”中,要使每次合力与分力产生的效果相同,必须使( ) A. 每次把橡皮条拉到相同的位置 B. 每次橡皮条拉直C. 每次读出弹簧测力计的示数D. 每次记准细绳的方向5.(高一下学期开学检测)架在A、B两根电线杆之间的均匀电线在夏、冬两季由于热胀冷缩的效应,电线呈现如图所示的两种形状。
新教材高中物理必修一 3.4.2力的效果分解法和力的正交分解法
第2课时力的效果分解法和力的正交分解法[学习目标] 1.学会根据力的效果分解力.2.初步理解力的正交分解法.3.会根据不同给定条件分解力.一、按效果分解力导学探究1.如果不受限制,分解同一个力能作出多少平行四边形?有多少组解?答案无数个无数组2.已知合力F和两分力的方向(如图1),利用平行四边形定则,能作多少平行四边形?两分力有几组解?图1答案1个1组3.如图2甲所示,小明用斜向上的力拉行李箱,其简化图如图乙所示,拉力会产生两个效果,如何分解拉力,写出两个分力大小.图2答案如图所示,F1=F cos θ,F2=F sin θ4.如图3,将一质量为m的木块放在倾角为θ的斜面上,木块的重力产生哪两个效果,如何分解重力,写出两个分力的大小.图3答案一个效果使木块沿斜面下滑,另一个效果使木块压紧斜面.G1=mg sin θ,G2=mg cos θ知识深化1.按效果分解(1)分解原则:根据力的作用效果确定分力的方向,然后再画出力的平行四边形.(2)基本思路2.两种常见典型力的分解实例实例分析地面上物体受到斜向上的拉力F可分解为水平向前的力F1和竖直向上的力F2,F1=F cos θ,F2=F sin θ放在斜面上的物体的重力产生两个效果:一是使物体具有沿斜面下滑的趋势;二是使物体压紧斜面;F1=mg sin α,F2=mg cos α如图4所示,一质量分布均匀的小球静止在固定斜面和竖直挡板之间,各接触面均光滑,小球质量为m=100 g,按照力的效果作出重力及其两个分力的示意图,并求出各分力的大小.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)图4答案见解析图0.75 N 1.25 N解析把球的重力沿垂直于斜面和垂直于挡板的方向分解为力G1和G2,如图所示:G 1=G tan 37°=100×10-3×10×0.75 N =0.75 N ; G 2=G cos 37°=100×10-3×100.8N =1.25 N.在日常生活中,力的分解有着广泛的应用,如图5甲用斧子把木桩劈开,已知两个侧面之间的夹角为2θ,斧子对木桩施加一个向下的力F 时,产生了大小相等的两个侧向分力F 1、F 2,由图乙可得下列关系正确的是( )图5A .F 1=F 2=F 2sin θB .F 1=F 2=F2cos θC .F 1=F 2=F2sin 2θD .F 1=F 2=F2cos 2θ答案 A解析 根据力的平行四边形定则,力F 与它的两个分力如图所示,由几何关系知F 1=F 2=F2sin θ,故A 正确.二、力的正交分解法 1.力的正交分解法把力沿着两个经选定的互相垂直的方向分解的方法叫力的正交分解法. 如图6所示,将力F 沿x 轴和y 轴两个方向分解,则图6F x=F cos αF y=F sin α2.正交分解法求合力(1)建立直角坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.图7(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图7所示.(3)分别求出x轴、y轴上各分力的矢量和,即:F x=F1x+F2x+…,F y=F1y+F2y+….(4)求共点力的合力:合力大小F=F2x+F2y,设合力的方向与x轴的夹角为α则tan α=F y F x.在同一平面内的三个力F1、F2、F3的大小依次为18 N、40 N、24 N,方向如图8所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)图8答案50 N,方向与F1相同解析建立直角坐标系,把F2分解F2x=F2cos 37°=32 NF2y=F2sin 37°=24 NF y=F2y-F3=0F x=F2x+F1=50 N所以合力F=F x=50 N,方向与F1相同.如图9所示,甲、乙、丙三个物体质量相同,与地面间的动摩擦因数均相同,受到三个大小相同的作用力F,当它们滑动时,下列说法正确的是()图9A.甲、乙、丙所受摩擦力相同B.甲受到的摩擦力最大C.乙受到的摩擦力最大D.丙受到的摩擦力最大答案 C解析将甲、乙图中的F沿水平方向和竖直方向正交分解,则三个物体对地面的压力分别为F N甲=mg-F sin θ,F N乙=mg+F sin θ,F N丙=mg,因它们均相对地面滑动,由F f=μF N知,F f乙>F f丙>F f甲,故C正确.三、力的分解中定解条件讨论把力按照题中给定的条件分解.若代表合力的对角线与给定的代表分力的有向线段能构成平行四边形(或三角形),说明合力可以分解成给定的分力,即有解;若不能,则无解.常见的有几种情况.已知条件分解示意图解的情况已知两个分力的方向唯一解已知一个分力的大小和方唯一解向已知一个分力(F2)的大小①F2<F sin θ无解和另一个分力(F1)的方向②F 2=F sin θ唯一解③F sin θ<F 2<F两解④F 2≥F唯一解一个成人与一个小孩分别在河的两岸拉一条船,船沿河岸前进,成人的拉力为F 1=400 N ,方向如图10所示(未画出小孩的拉力方向),要使船在河流中平行于河岸行驶.求小孩对船施加的最小力F 2的大小和方向.图10答案 200 N 方向垂直于河岸解析 为使船在河流中平行于河岸行驶,必须使成人与小孩的合力平行于河岸方向,根据三角形定则,将F 2的起点与F 1的“箭头”相连,只要F 1的起点与F 2的“箭头”的连线落在平行于河岸的方向上,F 1、F 2的合力F 的方向就与河岸平行,如图所示,当F 2垂直于河岸时,F 2最小,得F 2min =F 1sin 30°=400×12N =200 N.即小孩对船施加的最小力F 2的大小为200 N ,方向垂直于河岸.1.(力的效果分解)将处于静止状态的物体所受重力按力的效果进行分解,图中错误的是( )答案 C解析图C中重力的两个效果分别是使物体挤压斜面和竖直面,两分力应分别垂直于斜面和竖直面.2.(力的效果分解)如图11所示,小明在倾斜的地面上使用一台没有故障的体重秤,那么测出来的体重示数比他实际体重()图11A.偏大B.偏小C.准确D.不准确,但无法判断偏大还是偏小答案 B解析在倾斜的地面上使用一台体重秤测体重,该情景可简化为斜面模型,人站在斜面上,受到的支持力大小等于重力G垂直于斜面的分力,为G cos θ(θ为斜面的倾角),故人对体重秤的压力大小等于G cos θ,该力小于重力,即测出的体重比实际体重小,选项B正确.3.(力的正交分解)如图12所示,重为30 N的物体A放于水平桌面上,现用大小为20 N、方向与水平方向成30°角的力拉物体A,物体A仍保持静止,则物体A对桌面的压力大小为()图12A.30 N B.20 N C.10 N D.0答案 B解析将拉力F沿水平方向和竖直方向分解,如图所示,则F2=F sin 30°=20×12N=10 N,故桌面对A的支持力大小F N=G-F2=20 N,由牛顿第三定律知F N′=F N=20 N,B项正确.4.(力的分解的讨论)已知两个共点力的合力大小为50 N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N,则()A.F1的大小是唯一的B.F2的方向是唯一的C.F2有两个可能的方向D.F2可取任意方向答案 C解析如图所示,以F的“箭头”为圆心,以F2的大小30 N为半径画一个圆弧,与F1所在直线有两个交点,因此F2有两个可能的方向,F1的大小有两个可能的值,C正确.考点一按效果分解力1.如图1,将F沿水平和竖直方向分解,则其竖直方向的分力为()图1A.F sin θB.F cos θC.Fsin θ D.Fcos θ答案 A解析将F按作用效果分解为水平方向和竖直方向的分力,根据平行四边形定则,竖直方向上的分力为F sin θ,故A正确,B、C、D错误.2.如图2,静止在斜面上的重物的重力可以分解为沿斜面方向向下的分力F1和垂直于斜面方向的分力F2,关于这两个分力,下列说法正确的是()图2A.F1作用在物体上,F2作用在斜面上B.F2的性质是弹力C.F2就是物体对斜面的正压力D.F1和F2是与物体的重力等效的力,实际存在的就是重力答案 D解析物体受重力、支持力与摩擦力.而F1、F2是重力的两个分力,实际不存在,物体实际受到的就是重力,作用在物体上,所以A错误,D正确;F2是使物体紧压斜面的分力,不是物体对斜面的正压力,根据平衡条件,F2与斜面对物体的支持力相等,所以B、C错误.3.小明想推动家里的衣橱,但使出了很大力气也推不动,他便想了个妙招,如图3所示,用A、B两块木板,搭成一个底角较小的人字形架,然后往中央一站,衣橱居然被推动了!下列说法正确的是()图3A.这是不可能的,因为小明根本没有用力去推衣橱B.这是不可能的,因为无论如何小明的力气也没那么大C.这有可能,A板对衣橱的推力有可能大于小明的重力D.这有可能,但A板对衣橱的推力不可能大于小明的重力答案 C解析由小明所受重力产生的效果分解,小明的重力可分解为沿两个木板方向的分力,由于两个木板夹角接近180°,根据平行四边形定则,可知分力远大于小明的重力,选项C正确.4.(2019·沈阳市期中)如图4所示为斧头劈柴的剖面图,BC边为斧头背,AB、AC边为斧头的两刃面.要使斧头更容易劈开木柴,需要()图4A.BC边短一些,AB边也短一些B.BC边长一些,AB边短一些C.BC边短一些,AB边长一些D.BC边长一些,AB边也长一些答案 C解析如图所示,斧头对木柴的作用力按力的作用效果可分解为对木柴两端的两个压力,两压力大小相等、与斧头的AB、AC边相互垂直,由几何关系可知,当BC边短一些,AB边长一些时,两力之间的夹角更大,则在合力不变的情况下两分力更大,即斧头更容易劈开木柴,C正确,A、B、D错误.考点二力的正交分解5.如图5所示,物块m静止于一斜面上,斜面固定.若将斜面的倾角θ稍微增大一些,物块m仍静止在斜面上,则()图5A.斜面对物块的摩擦力变小B.斜面对物块的摩擦力变大C.斜面对物块的支持力变大D.物块所受的合外力变大答案 B解析物块m静止不动,受力平衡,可对物块受力分析:重力mg、支持力F N和摩擦力F f,将重力G沿平行斜面方向和垂直斜面方向分解,由平衡条件得知:F N=mg cos θF f=mg sin θ则知,θ稍微增大一些,F N变小,F f变大,故A、C错误,B正确;物块m始终静止在斜面上,合力始终为零,故D错误.6.(多选)如图6所示,质量为m的物体放在水平桌面上,在与水平方向成θ角的拉力F作用下保持静止,已知物体与桌面间的动摩擦因数为μ,下列判断正确的是()图6A.物体对地面的压力为mgB.物体受到地面的支持力为mg-F sin θC.物体受到的摩擦力为FD.物体受到的摩擦力为F cos θ答案BD解析对物体受力分析,如图所示:物体对地面的压力与地面对物体的支持力是作用力与反作用力,而支持力F N=mg-F·sin θ,故A错误,B正确;物体受到的摩擦力为F f=F cos θ,故C错误,D正确.考点三力的分解的讨论7.如图7所示,将一个已知力F分解为F1和F2,已知F=10 N,F1与F的夹角为37°,则F2的大小不可能是(sin 37°=0.6,cos 37°=0.8)()图7A.4 N B.6 NC.10 N D.100 N答案 A解析根据力的合成与分解,只有当F2与F1垂直时,F2最小,此时F2=F sin 37°=10×0.6 N =6 N,所以不可能是4 N,故选A.8.将力F分解成F1和F2,若已知F1的大小以及F2与F的夹角θ(θ为锐角),则错误的是() A.当F1<F sin θ时,无解B.当F1=F sin θ时,有一解C.当F<F1时,有一解D.当F1>F sin θ时,有两解答案 D解析F1<F sin θ时,分力和合力不能构成三角形,无解,故A正确.当F1=F sin θ时,两分力和合力恰好构成三角形,有唯一解,故B正确.当F>F1>F sin θ时,根据平行四边形定则,有两组解;若F1>F,只有一组解,故C正确,D 错误.9.如图8所示,轻杆OB左端用铰链与墙连接,与竖直方向的夹角为θ,右端用轻绳与墙连接,轻绳OA水平,质量为m的物体悬挂在O点,设轻绳OA和轻杆OB作用于O点的弹力分别为F1和F2,以下结果正确的是()图8A.F1=mg sin θB.F1=mgsin θC.F2=mg cos θD.F2=mgcos θ答案 D解析mg可分解为沿绳向外的分力和沿杆斜向下的分力,如图所示,则F1=mg tan θ,F2=mgcos θ,故选D.10.如图9所示,将绳子的一端系在汽车上,另一端系在等高的树干上,两端点间绳长为10 m.用300 N的拉力把水平绳子的中点往下拉离原位置0.5 m,不考虑绳子的重力和绳子的伸长量,则绳子作用在汽车上的力的大小为()图9A .1 500 NB .6 000 NC .300 ND .1 500 3 N答案 A解析 由题意可知绳子与水平方向夹角的正弦值为sin α=0.55=0.1,所以绳子的作用力为F绳=F2sin α=1 500 N ,A 项正确,B 、C 、D 项错误.11.如图10所示,用绳AB 和BC 吊起一重物P 处于静止状态,AB 绳与水平面间的夹角为53°,BC 绳与水平面的夹角为37°.求:当所挂重物质量为10 kg 时,AB 绳、BC 绳上的拉力各为多大?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8).图10答案 80 N 60 N解析 结点B 受到三根绳子的拉力处于平衡状态,BP 绳的拉力等于重物的重力mg ,如图所示,根据力的分解可得:F AB =mg cos 37°=10×10×0.8 N =80 N F BC =mg sin 37°=10×10×0.6 N =60 N.12.如图11所示,在水平地面上用绳子拉一质量m =46 kg 的箱子,绳子与地面的夹角为37°,拉力F =100 N 时箱子恰好匀速移动.g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图11(1)箱子所受的摩擦力大小;(2)地面和箱子之间的动摩擦因数.答案(1)80 N(2)0.2解析(1)以箱子为研究对象,受力分析如图,水平方向所受合力为零:F cos 37°-F f=0代入数据解得:F f=80 N(2)竖直方向所受合力为零:F N+F sin 37°-mg=0代入数据解得:F N=400 N由F f=μF N=0.2.可得:μ=F fF N13.(2019·西安一中模拟)如图12所示是扩张机的原理示意图,A、B为活动铰链,C为固定铰链,在A处作用一水平力F,滑块就以比F大得多的压力向上顶物体D,已知图中2l=1.0 m,b=0.05 m,F=400 N,滑块与左壁接触,接触面光滑,则D受到向上顶的力为(滑块和杆的重力不计)()图12A.3 000 N B.2 000 N C.1 000 N D.500 N答案 B解析将力F按作用效果沿AB和AC两个方向进行分解,作出力的分解图如图甲所示.则有2F1cos α=F,则得F1=F2=F2cos α再将F1按作用效果分解为F N和F N′,作出力的分解图如图乙所示.则有F N=F1sin α,联立得F N=F tan α2根据几何知识得tan α=l=10b得F N=5F=2 000 N,故选项B正确.。
力的分解
第三章 第5节
第37页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
A.N1始终减小,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大
第三章 第5节
第38页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(三)完美答案(20 N<F2<40 N) (四)解后总结规律方法 应用三角形定则分析力的分解问题中解的个数 对于将一个力分解,讨论解的个数的问题,借助三角形定 则比借助平行四边形定则更方便,即看代表合力及分力的有向 线段能否按要求构成三角形,以及能构成三角形的个数,从而 说明解的情况.
第三章 第5节
第11页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(1)运算时遵循三角形定则的物理量一定是矢量.(
)
(2)由于矢量的方向用正负表示,故具有正负值的物理量一 定是矢量.( ) )
(3)矢量与标量的本质区别是它们的运算方法不同.(
第三章 第5节
第12页
金版教程 · 人教版物理 · 必修1
第三章 第5节
第16页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
2.一个力有唯一解的条件
第三章 第5节
第17页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第三章 第5节
第18页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
课前新知预习 课堂师生共研 课后提升考能
_新教材高中物理第3章相互作用5力的分解学案教科版必修第一册
力的分解学习目标:1.[物理观念]知道力的分解的概念,知道力的分解是力的合成的逆运算. 2.[物理观念]理解力的分解应遵循平行四边形定则. 3.[科学思维]会用作图法、计算法对力进行分解. 4.[科学思维]理解并会应用正交分解法.一、一个力可用几个力来替代1.力的分解:一个力作用在物体上可以用几个共同作用在物体上的共点力来等效替代,这几个力称为那一个力的分力.求一个已知力的分力叫作力的分解.2.力的分解与力的合成的关系:力的分解是力的合成的逆运算.二、力的分解方法1.力的分解遵循的法则平行四边形定则——把已知力F作为平行四边形的对角线,与力F共点的平行四边形的两个邻边就表示力F的两个分力F1和F2.如图所示:2.力的分解的依据(1)同一个力可以分解为无数组大小、方向不同的分力,因为同一条对角线可以构成的平行四边形有无数多个,如图所示.(2)在实际问题中要根据力的实际效果进行分解.三、力的正交分解1.定义:将一个力沿着相互垂直的两个方向分解的方法.如图所示.2.公式:F x=F cos θ,F y=F sin θ.3.适用:正交分解适用于各种矢量运算.4.优点:将矢量运算转化成坐标轴方向上的标量运算.1.思考判断(正确的打“√”,错误的打“×”)(1)将一个力F分解为两个力F1和F2,那么物体同时受到F1、F2和F三个力的作用.(×)(2)某个分力的大小可能大于合力.(√)(3)一个力只能分解为一组分力.(×)(4)正交分解法中的两个坐标轴一定是水平和竖直的.(×)2.为了行车方便与安全,高大的桥要造很长的引桥,其主要目的是 ( )A.减小过桥车辆受到的摩擦力B.减小过桥车辆的重力C.减小过桥车辆对引桥面的压力D.减小过桥车辆的重力平行于引桥面向下的分力D[车辆在引桥上时其重力产生两个效果:一是使物体沿斜面下滑,相当于分力F1的作用;二是使物体垂直压紧斜面,相当于分力F2的作用.F1=mg sin α,F2=mg cos α,如图所示.引桥越长,倾角α越小,沿斜面下滑的分力F1越小,而压紧斜面的分力F2越大,故A、B、C错误,D正确.] 3.(多选)已知合力的大小和方向求两个分力时,下列说法中正确的是( )A.若已知两个分力的方向,分解是唯一的B.若已知一个分力的大小和方向,分解是唯一的C.若已知一个分力的大小及另一个分力的方向,分解是唯一的D.此合力有可能分解成两个与合力等大的分力ABD[根据选项A、B只能画出一个平行四边形,分解时有唯一解,选项C可能画出多个平行四边形,分解时不只有唯一解,选项A、B正确,C错误;由合力与分力的大小关系知选项D正确.]力的分解的几种情况(a) (b)图(a)、图(b)中G应该怎样分解?提示:1.一个力在不受条件限制下可分解为无数组分力一个力分解为两个力,从理论上讲有无数组解.因为同一条对角线可以构成的平行四边形有无穷多个(如图所示),这样分解是没有实际意义的,实际分解时,按力的作用效果可分解为两个确定的分力.2.一个力分解时解的情况将一个力按一定条件分解时合力可能能按要求进行分解,即有解,也可能不能按要求进行分解,即无解.分析是否有解的方法是看代表合力的有向线段与代表分力的有向线段能否按要求构成平行四边形,如果能构成平行四边形,说明有解;如果它们不能构成平行四边形,说明无解.典型的情况有以下几种:(1)已知合力和两个分力的方向时,有唯一解.甲乙(2)已知合力和一个分力的大小和方向时,有唯一解.丙丁(3)已知合力以及一个分力的大小和另一个分力的方向时,有下面几种可能:①当F sin θ<F2<F时,有两解;②当F2=F sin θ时,有唯一解;③当F2<F sin θ时,无解;④当F2>F时,有唯一解.特别提醒:根据已知条件,利用作图法作平行四边形可能用到的作图方法有:(1)过一点作另一条直线的平行线.(2)以某点为圆心,以定长为半径画圆弧.【例1】已知两个共点力的合力为50 N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N,则( )A.F1的大小是唯一的B.F2的方向是唯一的C.F2有两个可能的方向D.F2可取任意方向思路点拨:①作出合力F和分力F1的方向.②以合力F的箭头端点为圆心,以F2大小为半径作圆,看与F1所在直线有几个交点,有几个交点即有几组解.③由这几个交点分别指向合力F箭头端点的连线方向,即为F2可能的方向.C[由F1、F2和F的矢量三角形图可以看出:当F2=F20=25 N时,F1的大小才是唯一的,F2的方向才是唯一的.因F2=30 N>F20=25 N,所以F1的大小有两个,即F1′和F1″,F2的方向有两个,即F2′的方向和F2″的方向,故选项A、B、D错误,选项C正确.]三角形定则的妙用(1)三角形定则:把两个矢量首尾相接,从而求出合矢量的方法(如图所示).三角形定则与平行四边形定则在本质上是一样的.(2)对于将一个力分解,讨论解的个数的问题,借助三角形定则比借助平行四边形定则更方便,即看代表合力及分力的有向线段能否按要求构成三角形,以及能构成三角形的个数,从而说明解的情况.[跟进训练]1.将一个力F分解为两个分力,下列分解方法中不可能的是( )A.一个分力的大小与F的大小相同B.一个分力与力F相同C.一个分力垂直于FD .两个分力与F 都在同一条直线上B [根据平行四边形的特点,它的一条边与对角线相等或垂直都是可能的,所以选项A 、C 都有可能;当一个分力与F 相同时,另一个分力为零,选项B 不可能;分解为两个分力,合力与分力在一条直线时F =F 1+F 2,选项D 可能是可能的,B 正确.] 力的效果分解法一辆拖拉机拉着耙前进,拉力产生怎样的效果?提示:一个向前的效果和另一个向上的效果.1.按力的效果分解的基本思路实际问题―――――→根据力的作用效果确定分力的方向―――――→根据平行四边形定则作出平行四边形――――――――→把对力的计算转化为边角的计算数学计算求分力2.按实际效果分解的几个实例实例 分析地面上物体受斜向上的拉力F ,拉力F 一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F 可分解为水平向前的力F 1和竖直向上的力F 2.F 1=F cos α,F 2=F sin α质量为m 的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F 1,二是使物体压紧斜面的分力F 2.F 1=mg sin α,F 2=mg cos α质量为m 的光滑小球被竖直挡板挡住而静止于斜面上时,其重力产生两个效果:一是使球压紧板的分力F 1,二是使球压紧斜面的分力F 2.F 1=mg tan α,F 2=mgcos α质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1,二是使球拉紧悬线的分力F2.F1=mg tan α,F2=mg cos α质量为m的物体被OA、OB绳悬挂于O点,重力产生两个效果:对OA 的拉力F1和对OB的拉力F2.F1=mg tan α,F2=mg cos α质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1,二是压缩BC的分力F2.F1=mg tan α,F2=mg cos α特别提醒:(1)对力进行分解时,按力的作用效果准确确定出两分力的方向是关键.(2)作出平行四边形后分力大小的计算常用到直角三角形、相似三角形等有关的几何知识.【例2】如图所示,光滑斜面的倾角为θ,有两个相同的小球分别用光滑挡板A、B 挡住,挡板A沿竖直方向,挡板B垂直于斜面,则两挡板受到小球的压力大小之比为多大?斜面受到两小球的压力大小之比为多大?思路点拨:求解本题应把握以下两点:①根据重力的作用效果确定两分力的方向.②根据三角函数关系和几何关系求分力大小.[解析]对小球1所受的重力G来说,其效果有二:第一,使小球沿水平方向挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图甲所示,由此可得两个分力的大小分别为F1=G tan θ,F2=Gcos θ.对小球2所受的重力G来说,其效果有二:第一,使小球垂直挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图乙所示,由此可得两个分力的大小分别为F3=G sin θ,F4=G cos θ.由力的相互性可知,挡板A、B受到小球的压力之比为F1∶F3=1∶cos θ,斜面受到两小球的压力之比为F2∶F4=1∶co s2θ.甲乙[答案] 1∶cos θ 1∶cos 2θ确定力的实际作用效果的技巧若物体受3个力并处于平衡状态,确定其中一个力的实际作用效果时,可先作出物体所受的3个力的示意图,其中一个力的两个实际作用效果的方向一定在其余两个力的反向延长线上. [跟进训练] 2.如图所示,一位重600 N 的演员悬挂在绳上.若AO 绳与水平方向的夹角为37°,BO 绳水平,则AO 、BO 两绳受到的力各为多大?(sin 37°=0.6,cos 37°=0.8)[解析] 人对竖直绳的拉力F 等于人的重力G ,由于该力的作用,AO 、BO 也受到拉力的作用,因此F 产生了沿AO 方向、BO 方向使O 点拉绳的分力F 1、F 2,将F 沿AO 方向和BO 方向分解成两个分力.如图所示,由画出的平行四边形可知:AO 绳上受到的拉力F 1=G sin 37°=600sin 37° N =1 000 N BO 绳上受到的拉力F 2=G tan 37°=600tan 37°N =800 N. [答案] 1 000 N 800 N力的正交分解12.正交分解的目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分”的目的是为了更好地“合”.3.力的正交分解的依据:分力与合力的等效性.4.正交分解的基本步骤(1)建立坐标系以共点力的作用点为坐标原点,直角坐标系x 轴和y 轴的选择应使尽量多的力落在坐标轴上.(2)正交分解各力将每一个不在坐标轴上的力分解到x 轴和y 轴上,并求出各分力的大小,如图所示.(3)分别求出x 轴、y 轴上各分力的合力,即:F x =F 1x +F 2x +…F y =F 1y +F 2y +…(4)求共点力的合力合力大小F =F 2x +F 2y ,合力的方向与x 轴的夹角为α,则tan α=F yF x,即α=arctan F y F x. 【例3】 在同一平面内共点的四个力F 1、F 2、F 3、F 4的大小依次为19 N 、40 N 、30 N 和15 N ,方向如图所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)思路点拨:解答本题可以按以下思路:[解析] 本题若直接运用平行四边形定则求解,需解多个斜三角形,需多次确定各个力的合力的大小和方向,计算过程十分复杂.为此,可采用力的正交分解法求解此题.甲 乙如图甲,建立直角坐标系,把各个力分解到这两个坐标轴上,并求出x 轴和y 轴上的合力F x 和F y ,有F x =F 1+F 2cos 37°-F 3cos 37°=27 NF y =F 2sin 37°+F 3sin 37°-F 4=27 N.因此,如图乙所示,合力:F =F 2x +F 2y ≈38.2 N ,tan φ=F y F x=1.即合力的大小约为38.2 N ,方向与F 1夹角为45°斜向右上.[答案] 38.2 N ,方向与F 1夹角成45°斜向右上坐标轴方向的选取技巧(1)建立坐标系之前,要对物体进行受力分析,画出各力的示意图,一般各力的作用点都移到物体的重心上,坐标原点建在重心上.(2)坐标轴的选取是任意的,为使问题简化,建立坐标系时坐标轴的选取一般有以下两个原则:①使尽量多的力处在坐标轴上;②尽量使某一轴上各分力的合力为零.(3)常见的几种情况:①研究水平面上的物体时,通常沿水平方向和竖直方向建立坐标轴.②研究斜面上的物体时,通常沿斜面方向和垂直斜面方向建立坐标轴.③研究物体在杆或绳的作用下转动时,通常沿杆(或绳)方向和垂直杆(或绳)的方向建立坐标轴.[跟进训练]3.两物体M 和m 用跨过光滑定滑轮的轻绳相连,如图所示放置,OA 、OB 与水平面的夹角分别为30°和60°,M 重20 N ,m 静止在水平面上.求:(1)OA 绳和OB 绳的拉力大小;(2)m 受到的摩擦力.[解析] (1)结点O 的受力如图所示,根据平衡条件,竖直方向上:T A s in 30°+T B sin 60°-Mg=0水平方向上:T A cos 30°-T B cos 60°=0解得T A=10 N,T B=10 3 N≈17.3 N.(2)由于m也处于平衡状态,故在水平方向上T B-T A-f=0所以摩擦力大小f=T B-T A=7.3 N,方向水平向左.[答案](1)10 N 17.3 N (2)7.3 N 方向水平向左1.物理观念:力的分解概念,力的分解遵循的定则.2.科学思维:会根据力的效果法、力的正交分解法分解力,并会进行有关计算.1.将一个力F分解为两个力F1、F2,下列情况不可能的是 ( )A.F1或F2垂直于FB.F1、F2都与F在同一直线上C.F1或F2的大小等于FD.F1、F2的大小和方向都与F相同D[一个力F可以分解成无数对分力,分力的大小和方向都是不确定的,F1和F2可以与F在同一直线上,但是不可能同时大小也都与F相同,因为两力合力的最大值为两力之和,故D正确.]2.如图所示,用拇指、食指捏住圆规的一个针脚,另一个有铅笔芯的脚支撑在手掌位置,使OA水平,然后在外端挂上一些不太重的物品,这时针脚A、B分别对手指和手掌有作用力,对这两个作用力方向的判断,下列图中大致正确的是( )C[以圆规上的O点为研究对象,O点所挂重物的两个作用效果是沿AO方向向左拉OA 和沿OB方向斜向下压OB,通过圆规两针脚作用在手上的力如选项C所示,C正确.] 3.在图中,AB、AC两光滑斜面互相垂直,AC与水平面成30°角.如果把球O的重力G 按照其作用效果分解,则两个分力的大小分别为( )A .12G ,32G B .33G, 3G C .23G ,22G D .22G ,32GA [对球所受重力进行分解如图所示,由几何关系得F 1=G sin 60°=32G ,F 2=G sin 30°=12G ,A 正确.] 4.(多选)如图所示,放在水平面上的物体A 用轻绳通过光滑定滑轮连接另一物体B ,并静止,这时A 受到水平面的支持力为N ,摩擦力为f ,若把A 向右移动一些后,A 仍静止,则( )A .N 将增大B .f 将增大C .轻绳拉力将减小D .物体A 所受合力将增大AB [物体A 受力分析如图,系统处于静止状态,绳子的拉力不变,始终等于B 的重力,即F =m B g ,A 所受合力为零,故C 、D 均错误;当A 向右移动时,θ角减小,N =m A g -F sin θ,f =F cos θ,由此可得,N 、f 均增大,故A 、B 正确.]5.(新情景题)生活中的物理知识无处不在,如图是我们衣服上的拉链的一部分,在把拉链拉开的时候,我们可以看到有一个三角形的物体在两链中间运动,使很难直接分开的拉链很容易拉开,关于其中的物理原理,以下说法中正确的是( )A.拉开拉链时,三角形的物体增大了分开拉链的力B.拉开拉链时,三角形的物体只是为了将拉链分开并没有增大分开拉链的力C.拉开拉链时,三角形的物体增大了分开拉链的力,但合上拉链时减小了合上拉链的力D.以上说法均不正确A[拉开拉链时,三角形的物体在两链间和拉链一起运动,手的拉力在三角形的物体上产生了两个分力,如图甲所示,在α角很小的情况下,F1=F2>F,即分力大于手的拉力,所以很难直接分开的拉链很容易地被三角形的物体分开.甲乙合上拉链时,手的拉力在三角形物体上产生的两个分力,如图乙所示,根据边角关系,仍有F1=F2>F,即增大了合上的力,故A正确.]。
课件1:3.4 第2课时 力的效果分解法和力的正交分解法
矢量 既有大小又有方向,相加时遵从平行四边形定则(或三角形定则)的 物理量. 标量 只有大小,没有方向,求和时按照算术法则相加的物理量. 三角形定则 把两个矢量首尾相接,练
1.将一个竖直向下的8N的力分解为两个力,其中一个分力方向 水平,大小为6 N,那么另一个分力大小为( A ) A.10 N B.8 N C.6 N D.2 N
新知探究
知识点 1 力的分解
【归纳】力的效果分解法的一般思路 在实际问题中一个力究竟该分解成怎样的两个力,要看力的实际 作用效果. (1)根据力F所产生的两个效果画出分力F1和F2的方向. (2)根据平行四边形定则用作图法求出分力F1和F2的大小,要注意 标度的选取. (3)根据数学知识用计算法求力F1和F2的大小.
课堂训练
3. 关于力的分解,下列说法正确的是(ABCD ) A.力的分解的本质就是用同时作用于物体的几个力产生的作 用效果代替一个力的作用效果 B.某个分力的大小可能大于合力大小 C.力的分解是力的合成的逆运算,同样遵循平行四边形定则 D.分解一个力往往根据它产生的效果来分解
课堂训练
4. 在光滑斜面上自由下滑的物体受到的力有( A ) A.重力和斜面的支持力 B.重力、下滑力 C.重力、下滑力和斜面的支持力 D.重力、下滑力、正压力和斜面的支持力
新知探究 知识点 1 力的分解 【想一想】如图,一个力F,如果没有限制条件,能分解为多少对 分力?
提示:可以分解为无数对大小、方向不同的分力.
新知探究
知识点 1 力的分解
对力的分解的理解 1.不受条件限制的分解 一个力分解为两个力,从理论上讲有无数组解.因为同一条对角线可 以构成的平行四边形有无穷多个(如图所示).
新知探究
高中物理《力的分解》教案
高中物理《力的分解》优秀教案高中物理《力的分解》优秀教案(通用5篇)作为一名老师,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
我们该怎么去写教案呢?下面是我为大家整理的高中物理《力的分解》优秀教案,希望能够帮助到大家。
高中物理《力的分解》优秀教案 1教学目标1、学生能说出分解力的方法2、学生会用作图法求分力,并能根据作图法说出力的分解在理论上是无限的3、学生能结合实际需要对指定力进行分解,会用直角三角形的知识计算分力的大小,能用作图法分析分力的变化4、学生能结合问题体会力的分解在生活中的应用,体会力的分解是有用的教学重难点教学重点和难点按照实际情况通过平行四边形定则分解指定的力成为本课的重点,而判定分力的方向则成为本课的难点。
教学过程教学过程设计(1)课题引入实验演示,引入新课教师演示:两个绳提起矿泉水瓶,一根绳也可以实现。
复习合力分力概念,明确合成的规律。
问题引入:一个力提起重物,能否用两个力来代替。
设计意图:开门见山,为后续学习活动提供时间保障。
(2)引导学生发现,在活动中发现规律力的分解多样性的活动设计问题引导:请同学们画两个力,用来替代事先画在投影片上的力。
学生活动:用彩笔把作图分解。
完成作图后,将作图利用实物投影仪投影到屏幕上。
教师引导:作图是否正确?判断依据是什么?(满足平行四边形定则) 教师叠加不同分组展示并追问:都正确吗?你能得到什么结论?设计意图:让学生在活动中体验力的分解满足平行四边形、力的分解的不唯一性,体现学生学习的主体性地位。
设计意图:实验器材常见,贴近生活。
矿泉水瓶即便落地,破坏作用很小。
通过活动,自然驱动学生对问题的探究。
同时用定性分析替代定量计算,做到重点突出,难点分散。
实例:角色扮演的方式,巧拉汽车问题情境:如何借助绳索和大树将陷入淤泥中的汽车拉出。
小组合作讨论,并请三位同学模拟实验。
学生活动:一位扮演大树,一位扮演汽车,第三个人充当司机。
教师引导:直接拉可以吗?一个较小的.力,能不能产生一个较大的分力作用效果呢?设计意图:通过合作学习,体验力的分解是有用的。
3.4 力的合成和分解(第2课时)
3.4力的合成和分解(第2课时)一、力的分解1.定义:已知一个力求的过程叫做力的分解;2.分解法则:力的分解是力的合成的,遵守力的定则;如果没有限制,同一个力可以分解为对大小、方向不同的分力。
如图所示。
二、对一个已知力的分解可根据力的实际作用效果来分解1.具体步骤如下:(1)根据力的实际作用效果确定两个分力的方向;(2)根据两个分力的方向作出力的平行四边形;(3)利用三角函数等数学知识求三角形的边,从而计算出分力的大小。
2.常见的力的分解实例实例分析地面上物体受到斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2,F1=,F2=(θ为拉力F与水平方向的夹角)放在斜面上的物体的重力产生两个效果:一是使物体具有沿斜面下滑的趋势;二是使物体压紧斜面;相当于分力F1、F2的作用,F1=,F2=(α为斜面倾角)用斧头劈柴时,力F产生的作用效果为垂直于两个侧面向外挤压接触面,相当于分力F1、F2的作用,且F1=F2=【例1】(单选)如图所示,用一根细绳和一根杆组成三角支架,绳的一端绕在手指上,杆的一端顶在掌心,当挂上重物时,绳与杆对手指和手掌均有作用,则手指与手掌所受的作用力方向判断完全正确的是()【练1】(单选)漫画中的大力士用绳子拉动汽车,绳中的拉力为F,绳与水平方向的夹角为θ;若将F沿水平和竖直方向分解,则其竖直方向的分力为()A.F sin θB.F cos θC.Fsin θD.Fcos θ【例2】(单选)如图所示,把光滑斜面上的物体所受重力mg分解为F1、F2两个力。
图中F N 为斜面对物体的支持力,则下列说法正确的是( )A.F1是斜面作用在物体上使物体下滑的力B.物体受到mg、F N、F1、F2共四个力的作用C.F2是物体对斜面的压力D.力F N、F1、F2这三个力的作用效果与mg、F N这两个力的作用效果相同【例3】(单选)小明想推动家里的衣橱,但使出了很大的力气也推不动,他回忆起物理课堂上学习的“力的分解”知识,便想了个妙招,如图所示,用A、B两块木板,搭成一个底角较小的人字形架,然后往中央一站,衣橱居然被推动了!下列说法中正确的是() A.这是不可能的,因为小明根本没有用力去推衣橱B.这是不可能的,因为无论如何小明的力气也没那么大C.这有可能,A板对衣橱的推力有可能大于小明的重力D.这有可能,但A板对衣橱的推力不可能大于小明的重力【练2】(单选)人们不可能用双手掰开一段木桩,然而,若用斧子就容易把木桩劈开。
3.5力的分解编辑
2、已知合力和一个分力的大小方向, 求另一分力的大小方向。 唯一解
例:已知合力F=10N,方向正东。它 的其中一个分力F1=10N,方向正 南,求F的另一个分力F2
3、已知合力F、一个分力F1的大小及另 一个分力F2的方向,求F1的方向和F2的大 小 可能一解、可能两解、可能无解 例:已知合力F=10N,方向正东。它的其 中一个分力F1方向向东偏北300,另一 个分力F2的大小为 8 N ,求F1大小和 F2的方向,有几个解? 两解 若另一个分力F2的大小为5 N,如何? 唯一解 若另一个分力F2的大小为4 N,如何? 无解
黄石长江大桥
高大的桥要造很长的引桥, 来减小桥面的坡度
赵州桥是当今世界 上跨径最大、建造最早 的单孔敞肩型石拱桥。 距今1400多年。
G
F
平板桥上方加圆形钢架拉索
实例4: 轻质三角支架O点所受拉力F的分解。如 图8、9、10 (课内分组活动:每两同学一组,一同 学用手叉腰,另一同学施一竖直向下的 力于叉腰同学的肘关节处。。。。。。 叉腰同学感受上臂、腰部的受力情 况。。。。。。体验F产生的效果,揣 摩分力的方向)如图11
例1:倾角为θ的斜面上放 有一个物体,如图所示。 该物体受到的重力G能对 G1 物体产生那些效果?应当 θ 怎样分解重力?分力的大 小各是多大?
θ
G G2
• 思考:(给出公园滑梯和大桥引桥的 视频)讨论为什么公园的滑梯倾角比 较大,而高大的桥要很长的引桥来减 小倾角?(环山公路螺旋式上升,每 段路面与水平面夹角较小)
根据平行四边 形或三角形知 识确定分力的 大小和方向.
练习2:把的物体挂在成角度的两根细绳MO, NO上,易知物体对悬点O的拉力T等于物体所 受的重力G。如图所示,怎样把力T按其作用 效果分解?它的两个分力的大小、方向如何? (sin370=0.6, cos370=0.8) M
4-2 力的分解(解析版)
4.2 力的分解考点精讲考点1:分力力的分解1.力的分解原则(1)一个力分解为两个力,从理论上讲有无数组解.因为同一条对角线可以构成的平行四边形有无穷多个(如图所示).(2)把一个力分解成两个分力,仅是一种等效替代关系,不能认为在这两个分力方向有两个施力物体(或受力物体).(3)也不能错误地认为F2就是物体对斜面的压力,因为F2不是斜面受到的力,且性质与压力不同,仅在数值上等于物体对斜面的压力.(4)实际分解时,按力的作用效果可分解为两个确定的分力.2.按实际效果分解的几个实例(1)重力的两个效果:①使球压紧竖直墙壁的分力F1①使球拉紧悬线的分力F2(2)分力大小:F1=mg tan α,F2=mgcos α(1)重力的两个效果:①对OA的拉力F1①对OB的拉力F2(2)分力大小:F1=mg tan α,F2=mgcos α(1)重力的两个效果:①拉伸AB的分力F1①压缩BC的分力F2(2)分力大小:F1=mg tan α,F2=mgcos α【例1】将一个有确定方向的力F=10 N分解成两个分力,已知一个分力F1有确定的方向,与F成30°夹角,另一个分力F2的大小为6 N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解【解析】B由已知条件可得F sin 30°=5 N,又5 N<F2<10 N,即F sin 30°<F2<F,所以F1、F2和F可构成如图所示的两个三角形,故此时有两组解,选项B正确.【例2】如图所示,光滑斜面的倾角为θ,有两个相同的小球分别用光滑挡板A、B挡住,挡板A沿竖直方向,挡板B垂直于斜面,则两挡板受到小球的压力大小之比为多大?斜面受到两小球的压力大小之比为多大?【解析】对小球1所受的重力来说,其效果有二:第一,使小球沿水平方向挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图甲所示,由此可得两个分力的大小分别为F1=G tan θ,F2=Gcos θ.对小球2所受的重力G来说,其效果有二:第一,使小球垂直挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图乙所示,由此可得两个分力的大小分别为F3=G sin θ,F4=G cos θ.由力的相互性可知,挡板A、B受到小球的压力之比为F1①F3=1①cos θ,斜面受到两小球的压力之比为F2①F4=1①cos2θ.甲 乙【技巧与方法】力的分解的原理与步骤1. 原理:若两个力共同作用的效果与某一个力作用时的效果完全相同,则可用这两个力“替代”这一个力.2. 步骤① 根据已知力的实际效果确定两个分力的方向.① 根据两个分力的方向作出力的平行四边形,确定表示分力的有向线段. ① 利用数学知识解平行四边形或三角形,计算分力的大小和方向. 【针对训练】1.(多选)一根长为L 的易断的均匀细绳,两端固定在天花板上的A 、B 两点.若在细绳的C 处悬挂一重物,已知AC >CB ,如图所示,则下列说法中正确的是( )A .增加重物的重力,BC 段先断B .增加重物的重力,AC 段先断 C .将A 端往左移比往右移时绳子容易断D .将A 端往右移比往左移时绳子容易断【解析】AC 研究C 点,C 点受重物的拉力,其大小等于重物的重力,即T =G .将重物对C 点的拉力分解为对AC 和BC 两段绳的拉力,其力的平行四边形如图所示.因为AC >CB ,得F BC >F AC .当增加重物的重力G 时,按比例F BC 增大得较多,所以BC 段绳先断,因此A 项正确,B 项错误.将A 端往左移时,F BC 与F AC 两力夹角变大,合力T 一定,则两分力F BC 与F AC 都增大.将A 端向右移时两分力夹角变小,两分力也变小,由此可知C 项正确,D 项错误.故选A 、C.2.甲、乙两人用绳子拉船,使船沿OO ′方向航行,甲用1 000 N 的力拉绳子,方向如图所示,要使船沿OO ′方向航行,乙的拉力最小值为( )A .500 3 NB .500 NC .1 000 ND .400 N【解析】B 要使船沿OO ′方向航行,甲和乙的拉力的合力方向必须沿OO ′方向.如图所示,作平行四边形可知,当乙拉船的力的方向垂直于OO ′时,乙的拉力F 乙最小,其最小值为F 乙min =F 甲sin 30°=1 000×12N =500 N ,故B 正确.考点2:力的正交分解1.正交分解的适用情况:适用于计算三个或三个以上共点力的合成.2.正交分解的目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分”的目的是为了更好地“合”.3.力的正交分解的依据:分力与合力的等效性. 4.正交分解的基本步骤(1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x 轴和y 轴的选择应使尽量多的力落在坐标轴上.(2)正交分解各力:将每一个不在坐标轴上的力分解到x 轴和y 轴上,并求出各分力的大小,如图所示.(3)分别求出x 轴、y 轴上各分力的合力,即: F x =F 1x +F 2x +… F y =F 1y +F 2y +…(4)求共点力的合力: 合力大小F =F 2x +F 2y ,合力的方向与x 轴的夹角为α,则tan α=F yF x,即α=arctanF yF x. 【例3】 在同一平面内共点的四个力F 1、F 2、F 3、F 4的大小依次为19 N 、40 N 、30 N 和15 N ,方向如图所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)【分析】当物体受多个力作用时,一般采用正交分解法求解,可按以下思路: 建立坐标系→分解各力→求F x 、F y →求F 合【解析】如图甲,建立直角坐标系,把各个力分解到这两个坐标轴上,并求出x 轴和y 轴上的合力F x和F y ,有甲F x =F 1+F 2cos 37°-F 3cos 37°=27 N , F y =F 2sin 37°+F 3sin 37°-F 4=27 N.因此,如图乙所示,合力:乙F =F 2x +F 2y≈38.2 N ,tan φ=F y F x=1. 即合力的大小约为38.2 N ,方向与F 1夹角为45°斜向右上. 【答案】38.2 N ,方向与F 1夹角为45°斜向右上【技巧与方法】正交分解时坐标系的选取原则与方法(1)原则:用正交分解法建立坐标系时,通常以共点力作用线的交点为原点,并尽量使较多的力落在坐标轴上,以少分解力为原则.(2)方法:应用正交分解法时,常按以下方法建立坐标轴. ① 研究水平面上的物体时,通常沿水平方向和竖直方向建立坐标轴. ① 研究斜面上的物体时,通常沿斜面方向和垂直斜面方向建立坐标轴.① 研究物体在杆或绳的作用下转动时,通常沿杆(或绳)方向和垂直杆(或绳)的方向建立坐标轴. 【针对训练】3.如图所示,一物块置于水平地面上,当用与水平方向成60°角的力F 1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F 2推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为( )A.3-1 B .2-3 C.32-12D .1-32【解析】B 将两种情况下的力沿水平方向和竖直方向正交分解,因为两种情况下物块均做匀速直线运动,故有F 1cos 60°=μ(mg -F 1sin 60°),F 2cos 30°=μ(mg +F 2sin 30°),再由F 1=F 2,解得μ=2-3,故B 正确.4.大小均为F 的三个力共同作用在O 点,如图所示,F 1、F 3与F 2之间的夹角均为60°,求它们的合力.【解析】 以O 点为原点、F 1的方向为x 轴正方向建立直角坐标系.分别把各个力分解到两个坐标轴上,如图所示.F 1x =F 1,F 1y =0,F 2x =F 2cos 60°,F 2y =F 2sin 60°,F 3x =-F 3cos 60°,F 3y =F 3sin 60°,x 轴和y 轴上的合力分别为F x =F 1x +F 2x +F 3x =F 1+F 2cos 60°-F 3cos 60°=F ,F y =F 1y +F 2y +F 3y =0+F 2sin 60°+F 3sin 60°=3F ,求出F x 和F y 的合力即是所求的三个力的合力,如图所示.F 合=F 2x +F 2y ,代入数据得F 合=2F ,tan θ=F yF x =3,所以θ=60°,即合力F 合与F 2的方向相同. 【答案】 2F ,与F 2的方向相同考点达标一、选择题1.关于共点力,下列说法中不正确的是( )A .作用在一个物体上的两个力,如果大小相等,方向相反,这两个力是共点力B .作用在一个物体上的两个力,如果是一对平衡力,则这两个力是共点力C .作用在一个物体上的几个力,如果它们的作用点在同一点上,则这几个力是共点力D .作用在一个物体上的几个力,如果它们的作用线交于同一点,则这几个力是共点力【解析】A 共点力是几个力作用于同一点或力的作用线相交于同一点的力.若受两个力平衡的物体,则物体所受的必定是共点力,所以A 错,B 、C 、D 对.2.如图所示,F 1、F 2为两个相互垂直的共点力,F 是它们的合力,已知F 1的大小为6 N ,F 的大小等于10 N ,若改变F 1、F 2的夹角,则它们的合力大小还可能是( )A.0B.8 NC.16 N D.18 N【解析】B F1、F2为两个相互垂直的共点力,合力F的大小等于10 N,所以根据勾股定理可得,F2=F2-F21=102-62N=8 N,两力合成时,合力范围为:|F1-F2|≤F≤F1+F2,故2 N≤F≤14 N,所以还可能是B选项.3.下列图中,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是()A B C D【解析】C由矢量合成法则可知A图的合力为2F3,B图的合力为0,C图的合力为2F2,D图的合力为2F3,因F2为直角三角形的斜边,故这三个力的合力最大的为C图.4.有三个力,大小分别为13 N、3 N、29 N.那么这三个力的合力最大值和最小值应该是()A.29 N,3 N B.45 N,0 NC.45 N,13 N D.29 N,13 N【解析】C当三个力同方向时,合力最大,为45 N;任取其中两个力,如取13 N、3 N两个力,其合力范围为10 N≤F≤16 N,29 N不在该范围之内,故合力不能为零,当13 N、3 N的两个力同向,与29 N的力反向时,合力最小,最小值为13 N,则C正确,A、B、D错误.5.如图所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,F1、F2和F3三个力的合力为零.下列判断正确的是()A.F1>F2>F3B.F3>F1>F2C.F2>F3>F1D.F3>F2>F1【解析】B三个力的合力为零,即F1、F2的合力F3′与F3等大反向,三力构成的平行四边形如图所示,由数学知识可知F3>F1>F2,B正确.6.如图所示为两个共点力的合力F的大小随两分力的夹角θ变化的图像,则这两个分力的大小分别为()A .1 N 和4 NB .2 N 和3 NC .1 N 和5 ND .2 N 和4 N【解析】B 由题图知,两力方向相同时,合力为5 N .即F 1+F 2=5 N ;方向相反时,合力为1 N ,即|F 1-F 2|=1 N .故F 1=3 N ,F 2=2 N ,或F 1=2 N ,F 2=3 N ,B 正确.二、非选择题7.如图所示,有五个力作用于同一点O ,表示这五个力的有向线段恰分别构成一个正六边形的两邻边和三条对角线.已知F 1=10 N ,则这五个力的合力大小为多少?【解析】 方法一:巧用对角线特性.如图甲所示,根据正六边形的特点及平行四边形定则知:F 2与F 5的合力恰好与F 1重合;F 3与F 4的合力也恰好与F 1重合;故五个力的合力大小为3F 1=30 N.甲 乙方法二:利用对称法.如图乙所示,由于对称性,F 2和F 3的夹角为120°,它们的大小相等,合力在其夹角的平分线上,故力F 2和F 3的合力F 23=2F 2cos 60°=2(F 1cos 60°)cos 60°=F 12=5 N .同理,F 4和F 5的合力也在其角平分线上,由图中几何关系可知:F 45=2F 4cos 30°=2(F 1cos 30°)cos 30°=32F 1=15 N .故这五个力的合力F =F 1+F 23+F 45=30 N.巩固提升一、选择题1.某物体所受n 个共点力的合力为零,若把其中一个力F 1的方向沿顺时针方向转过90°,并保持其大小不变,其余力保持不变,则此时物体所受的合力大小为 ( )A .F 1 B.2F 1 C .2F 1D .0【解析】B 物体所受n 个力的合力为零,则其中n -1个力的合力一定与剩下来的那个力等大反向,故除F 1以外的其他各力的合力的大小也为F 1,且与F 1反向,故当F 1转过90°时,合力应为2F 1,B 正确.2.一根细绳能承受的最大拉力是G,现把一重为G的物体系在绳的中点,分别握住绳的两端,先并拢,然后缓慢地左右对称地分开,若要求绳不断,则两绳间的夹角不能超过()A.45° B.60°C.120° D.135°【解析】C由于细绳是对称分开的,因而两绳的拉力相等,为保证绳不断,两绳拉力的合力大小等于G,随着两绳夹角的增大,两绳中的拉力增大,当两绳的夹角为120°时,绳中拉力刚好等于G.故C正确,A、B、D错误.3.如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M受到的摩擦力的合力方向()A.竖直向下B.竖直向上C.斜向下偏左D.斜向下偏右【解析】A物体M受四个力作用(如图所示),支持力F N和重力G的合力一定在竖直方向上,由平衡条件知,摩擦力F f和推力F的合力与支持力F N和重力G的合力必定等大反向,故F f与F的合力方向竖直向下.4.手握轻杆,杆的另一端安装有一个轻质小滑轮C,支撑着悬挂重物的绳子,如图所示,现保持滑轮C的位置不变,使杆向下转动一个角度,则杆对滑轮C的作用力将()A.变大B.不变C.变小D.无法确定【解析】B物体的重力不变,那么绳子的拉力大小仍然等于物体的重力,保持滑轮C的位置不变,即两段绳子间的夹角不变,所以两绳子拉力的合力不变,轻质滑轮的重力不计,所以两绳子拉力的合力与杆对滑轮C的作用力等大反向,所以杆对滑轮C的作用力不变,故选B.二、非选择题5.如图所示,一条小船在河中向正东方向行驶,船上挂起一风帆,帆受侧向风作用,风力大小F1为100 N,方向为东偏南30°,为了使船受到的合力能恰沿正东方向,岸上一人用一根绳子拉船,绳子取向与河岸垂直,求出风力和绳子拉力的合力大小及绳子拉力F2的大小.【解析】如图所示,以F 1、F 2为邻边作平行四边形,使合力F 沿正东方向, 则F =F 1cos 30°=100×32N =50 3 N. F 2=F 1sin 30°=100×12N =50 N.6.(13分)如图所示,两根相同的橡皮条OA 、OB ,开始时夹角为0°,在O 点处打结吊一重50 N 的物体后,结点O 刚好位于圆心.现将A 、B 分别沿圆周向两边移到A ′、B ′,使①AOA ′=①BOB ′=60°.欲使结点仍为圆心处,则此时结点处应挂多重的物体?【解析】根据在原位置时物体静止,求出橡皮条的拉力.由于变化位置后结点位置不变,因此每根橡皮条的拉力大小不变,但是方向变化.设OA 、OB 并排吊起重物时,橡皮条产生的弹力均为F ,则它们产生的合力为2F ,且与G 1平衡,所以F =G 12=502 N =25 N .当A ′O 、B ′O 夹角为120°时,橡皮条伸长不变,橡皮条产生的弹力仍为25 N ,两根橡皮条互成120°角,所以合力的大小为25 N ,即应挂的重物重25 N.。
(完整word版)高一物理力的合成与分解基础知识讲解
高一物理力的合成与分解基础知识讲解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。
要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
高一物理教案力的分解(优秀5篇)
高一物理教案力的分解(优秀5篇)高一物理力的分解教案篇一题目关于“杆的受力分解”与“绳的受力分解”研究由于日常生活中,我们劳动、学习的工具一般以杆和绳子为主,其他的工具也可以依照其进行分析,研究“杆的受力分解”与“绳的受力分解”具有实践意义。
有关内容可以参见备课资料中的“扩展资料”。
让同学观察周围的力学工具,对比杆与绳子,分析说明各个物体的受力特点,与其有关的题目可以参见如下:1、晾晒衣服的绳子,为什么晾衣绳不易过紧?2、为什么软纸经过折叠后,抗压性能提高?对比拱桥的设计,有什么感想?力的分解教案篇二一、活动目标1、引导幼儿通过动手操作,感知10的分解组成,掌握10的9种分法。
2、在感知数的分解组成的基础上,掌握数组成的递增、递减规律和互相交换的规律。
3、发展幼儿观察力、分析力,培养幼儿对数学的兴趣。
二、活动重点感知整体与部分的关系,学习并记录10的9种分法。
三、活动难点总结归纳10以内数的分解和组成规律。
四、活动准备1、10以内数的分解和教学光盘。
2、若干小矮人图片和小房子。
3、数字卡片若干。
五、活动过程(一)、问答形式复习以前学过的数的组成和分解。
如:师:我来问,你来答,9可以分成3和几?(幼儿边拍手边回答)(二)、学习10 的。
组成和分解。
1、故事导入。
教师:在一座茂密的森林里,住着一位美丽的白雪公主,今天,白雪公主非常高兴,因为有小客人要到森林里作客,你们看,他们来了。
提问:1〉来了几位小矮人?2〉10位小矮人要住进两座小房子里,该怎么住呢?引出课题《10的分解与组成》。
2、幼儿动手操作,把10张小矮人卡片摆一摆,记一记来思考10的多种分法,帮助白雪公主做出不同的安排方法。
1〉把幼儿分成10组,每四人一组。
2〉每组请一名幼儿做记录,其余幼儿动手操作。
3〉教师根据幼儿操作情况总结10的9种分法:高一物理力的分解教案篇三一、预习目标1、说出力的分解的概念2、知道力的分解要根据实际情况确定3、知道矢量、标量的概念二、预习内容1、力的分解:几个力________________跟原来____________的效果相同,这几个力就叫做原来那个力的分力。
对“按力的实际效果分解”说法的质疑
对“按力的实际效果分解”说法的质疑高考物理一、问题的缘起在处理《相互作用》一章“力的分解”问题时,几乎所有教辅资料和绝大多数教师都提到过一种说法——“力可以按实际产生的效果来分解”,并且除了举下图所示两个基本例子之外,①②还举了如下一些重力分解的实例——而从教学效果来说,这些分解方式学生接受和掌握的情况并不好,因此很多老师除了在该节讲过这种分解方式之后,就几乎再也不用它了,而是用的正交分解或者闭合矢量三角形处理相关问题。
③④⑤⑥上述分解方式的难点在于,学生很难想象出重力的两个所谓的“实际效果”,即便老师进行了如第三幅图一样的实验,拿到新的问题时,学生还是束手无策——实际上,学生很难接受重力产生了这样的两个“实际效果”,尤其是竖直方向的重力如何产生水平方向的效果!其实,更根本的问题时,重力真的产生了这样的“实际效果”了吗?所谓“按力的实际效果分解”这个说法真的就科学吗?二、效果都是想象出来的笔者认为,分力的效果和分运动的效果,都是想象出来的,都是根据研究问题的需要或者个人思维习惯想象出来的。
下面以前述③④的两个例子来说明我的看法。
【例1】如右图所示,物块受到三个力的作用而静止在斜面上,有些老师喜欢按前述方式分解,并认为是重力产生了使物体挤压挡板和挤压斜面的两个效果。
但实际上,我们也可以水平、竖直分解F N 1和F N 2,并认为,重力的效果就是使物体竖直下落,但是F N 1和F N 2的竖直分量平衡了重力的这种效果,而F N 1和F N 2的水平分量彼此平衡。
很显然,后一种想象,学生好理解的多,不过计算上是稍复杂点儿。
另外,如右图所示,本题还通常将力往平行斜面和垂直斜面方向分解;这时,我们也能说出明显的效果——重力G 平行斜面向下的分量使物体有下滑趋势,此时挡板挡住了物体,给物体一个弹力F N 2,其平行斜面分量与重力平行斜面分量平衡。
而重力G 和F N 2垂直斜面分量均使物体压向斜面,从而使斜面向下形变而给物体一个支持力F N 1。
力的分解-力的分解典型例题
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
题目 关于“杆的受力分解〞与“绳的受力分解〞商量 由于日常生活中,我们劳动、学习的工具一般以杆和绳子为主,其他 的工具也可以根据其进行分析,商量“杆的受力分解〞与“绳的受力分解〞 具有实践意义。有关内容可以参见备课资料中的“扩展资料〞。让同学观 看四周的力学工具,对比杆与绳子,分析说明各个物体的受力特点,与其 有关的题目可以参见如下: 1、晾晒衣服的绳子,为什么晾衣绳不易过紧? 2、为什么软纸经过折叠后,抗压性能提高?对比拱桥的设计,有什 么感想?
一、关于力的分解的教材分析和教法建议 力的分解是力的合成的逆预算,是求一个已知力的两个分力.在对已 知力进行分解时对两个分力的方向的确定,是根据力的作用效果进行 的.在前一节力的合成学习的基础上,学生对于运算规律的把握会比较快 速,而难在是对于如何根据力的效果去分解力,课本上列举两种状况进行 分析,一个是水平面上物体受到斜向拉力的分解,一个是斜面上物体所收 到的重力的分解,具有典型范例作用,教师在讲解时留意从以下方面具体 分析: 1、对合力特征的描述,如例题 1 中的几个关键性描述语句:水平面、
向上提物体,,因此力 可以分解为沿水平方向的分力 、和沿着竖直方向
教师总结并分析:图中重物拉铅笔的力 常被分解成 和 , 压缩铅笔,
的分力 ,力 和力 的大小为:
拉伸橡皮筋.
〔2〕学生试验 2,观看图示,分析 力的作用效果,用橡皮筋和铅笔
重复试验,对比结论是否正确.
例题 2:放在斜面上的物体,常把它所受的重力分解为平行于斜面的
手边的工具〔橡皮筋、铅笔、细绳、橡皮、三角板〕按图组装仪器、分组 按力的作用效果来分解.
商议 力产生的效果,并作出 力〔细绳对铅笔的拉力〕的分解示意图.
初中物理力的分解
在初中物理中,力的分解是指将一个已知的力沿着不同方向分解为两个或更多的分力,这些分力共同作用产生的效果与原来那个力的效果完全相同,即遵循等效替代原理。
力的分解主要基于矢量的概念和矢量加法的平行四边形法则。
以下是力的分解的几种常见方法:
1.利用力的作用效果分解:
o分析力在物体上产生的不同效应,比如位移变化、转动效应或者形变程度,从而决定如何分解力。
o如例中提到的重球挂墙问题,重力被分解为沿绳方向的分力(张力)和平行于墙壁的分力(压力),这两个分力分别对应重力造成绳子拉
伸和球体挤压墙壁的两种效果。
2.按题目具体要求分解:
o在解决具体问题时,根据题目所给条件和坐标系的选择,将力分解到适合求解问题的坐标轴上。
o例如,如果题目已经设定了一组垂直和水平方向,就可以使用正交分解法,即将力分解为水平和垂直两个分量。
3.正交分解法:
o选取相互垂直的两个坐标轴(通常是x轴和y轴),将力沿着这两个轴的方向分解。
o利用三角函数(如正弦、余弦),根据力与选定坐标轴之间的夹角,计算出力在各个轴上的投影,即为分力的大小。
在实际操作过程中,力的分解往往结合平行四边形法则来进行图形分析。
若两个分力已知,还可以通过平行四边形法则合成回原来的力。
需要注意的是,在没有额外约束条件下,一个力可以有无限多种分解方式,但只有满足问题情境的那一种分解才是正确的。
人教版高一物理必修一课件:3.5《力的分解——正交分解法》
正交分解法
y
Fy
α
o
F
Fx F cos
Fx x Fy F sin
用力的正交分解求多个力的合力
1、建立直角坐标系(让尽量多的力在坐标轴上)
2、正交分解各力(将各力分解到两个坐标轴上)
3、分别求出x 轴和y 轴上各力的合力:
F x F 1 x F 2 x F 3 x F2
y
F yF 1y F 2y F 3y
F x F 1 x F 2 x F 3 x 0
F yF 1 y F 2y F 3y 0
5、根据方程求解。
正交分解问题解题步骤
1. 对物体进行受力分析 2. 选择并建立坐标系 3. 将各力投影到坐标系的X、Y轴上 4. 依据两坐标轴上的合力分别为零,
列方程求解
学以至用
● 力 的 分 解
刀、斧、凿、刨等切削工具的刃部叫做劈,劈的纵截面
力的分解—正交分解法
一、力的分解的方法
1、按实际作用效果分解力: 分解的步骤:
(1)分析力的作用效果
(2)据力的作用效果定分力的方向;(画两个分力
的方向) (3)用平行四边形定则定分力的大小;
(4)据数学知识求分力的大小和方向。
2.实例:
(1)放在水平面上的 物体,受到与水平方向 成角的拉力F的作用。
(3)重为G的球放在光滑的竖直挡板和倾角为
的斜面之间,求挡板和斜面对球的作用力各多大?
N
解:球受到重力G、挡 板弹力F、斜面支持力 G1
F
N,共三个力作用。
把重力分解为 水平方向的分力G1, 和垂直于斜面方向 的分力G2。
G2
G
F=G1 =G tan
N=G2 =G/cos
按实际效果分解的几个实例
F1=mgห้องสมุดไป่ตู้anα,F2=
质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1;二是使球拉紧悬线的分力F2.
F1=mgtanα,F2=
质量为m的物体被OA、OB绳悬挂于O点,重力产生两个效果:对OA的拉力F1和对OB的拉力F2.
F1=mgtanα,F2=
质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1;二是压缩BC的分力F2.
F1=mgtanα,F2=
按实际效果分解的几个实例
实例
分析
地面上物体受斜向上的拉力F,其效果为一方面使物体沿水平地面前进,另一方面向上提物体,因此可分解为水平向前的力F1和竖直向上的力F2.
F1=Fcosα,F2=Fsinα
质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F1,二是使物体压紧斜面的分力F2.F1=mgsinα,F2=mgcosα
(最新原创)力的分解实例
(双选)已知力 F 的一个分力 F1 跟力 F 成 30°角,大小未知,另一个分力 F2 的大 小为 33F,方向未知,则力 F1 的大小可能是 () A. 33F B. 23F C.233F D. 3F
答案 AC
例1:倾角为θ的斜面上放有一个物体,物体 静止,如图所示。该物体受到的重力G能对物 体产生那些效果?应当怎样分解重力?物体 给斜面的压力和物体受到的摩擦力各是多大?
y
F1y
F2y
F1
②沿xoy轴将各力分解 F2X O ③求xy轴上的合力Fx,Fy
F3y
④最后求Fx和Fy的合力F
大小: F Fx2 Fy2
方向: tan Fx
Fy
F3x F1x x F3
力的分解有唯一解的条件
1、已知合力和两个
分力的方向,求两个
分力的大小。
o
F1 F
F2
2、已知合力和一个 F1 分力的大小和方向,
F2
θ
F F1 F cos
F2 F sin
F1
作业:如图所示:球都处于静止状态,且各接 触面均光滑,球质量是m,如何将重力按作 用效果进行分解?分解后,它的两个分力分
别是多大?
α
α
2力的正交分解 (1)定义:把一个已知力沿着两个互相
垂直的方向进行分解
(2)正交分解步骤: ①建立xoy直角坐标系 F2
求另一个分力的大小
O
F
和方向。
F2
3.已知合力和两个分力的大小: (F1+F2>F且F1≠F2)两组解
当|F1-F2|>F或F>F1+F2时无解 4.已知合力及一个分力的大小和另一个分力的方向
①当F2<Fsinθ时,无解 ②当F2=Fsinθ时,一组解 ③当Fsinθ<F2<F时,两组解 ④当F2>F时,一组解
第三章第五节 力的分解 (1)
A.50 N
B. 50 3 N
C.100 N
D. 100 3 N
【解析】选C.以滑轮为研究对象,悬挂 重物的绳的张力F=mg=100 N,故小滑轮受
到绳的作用力沿BC、BD方向,大小都是
100 N,从图中看出,∠CBD=120°, ∠CBE=∠DBE,得∠CBE=60°,即△CBE
是等边三角形,故滑轮受到绳子的作用力为100 N.
2
竖直方向:FN=G-F1sin 60° =(500-200× 3 )N =100(5- 3 )N.
2
5.物体的质量为2 kg,两根轻细绳AB和AC 的一端连接于竖直墙上,另一端系于物体上, 在物体上另施加一个方向与水平线成θ 角的 拉力F,相关几何关系如图16所示,θ =60°, 若要使绳都能伸直,求拉力F的大小范围. (g取10 m/s2)
作业1、刀、斧、凿、刨等切削工具的刃部叫做劈, 劈的纵截面是一个三角形,如图所示。使用劈的时 候,在劈背上加力F,这个力产生两个效果,使劈 的侧面挤压物体,把物体劈开。设劈的纵截面是一 个等腰三角形,劈背的宽度是d,劈的侧面长度是 L。试证明劈的两个侧面对物体的压力F1、F2满足: F1=F2=F(L/d)
三、力的分解有确定解的几种情况:
1、已知合力和两个分力的方向,(唯一解) 2、已知合力和一个分力的大小和方向(唯一解) 3、已知合力和两个分力的大小 F1 F2 F1
F1
F
F1
O
F
O
F
O
F2 F2 F2
首页
结束 上一页 下一页
4.已知合力F及一个分力F1的大小和另一个分力 F2 的方向 (F2与F的夹角为θ) ①当F1<Fsinθ时,无解 ②当F1=Fsinθ时,一组解 ③当Fsinθ<F1<F时,两组解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.按实际效果分解力的几个实例
实例
分析
地面上的物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的分力F1和竖直向上的分力F2.F1=Fcosθ,F2=Fsinθ
质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑的趋势,二是使物体压紧斜面.因此其重力可分解为沿斜面向下的分力F1和垂直斜面向下的分力F2.F1=mgsinα,F2=mgcosα
质量为m的光滑小球被竖直挡板挡住而静止于斜面上ห้องสมุดไป่ตู้,其重力产生两个效果:一是使球压紧板,二是使球压紧斜面.因此其重力可分解为垂直挡板向左的分力F1和垂直斜面向下的分力F2.F1=mgtanα,F2=
质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁,二是使球拉紧悬线.因此其重力可分解为垂直墙壁向左的分力F1和沿悬线向下的分力F2.F1=mgtanα,F2=
A、B两点位于同一平面上,质量为m的物体被AO、BO两线拉住,其重力产生两个效果:一是使物体拉紧AO线,二是使物体拉紧BO线.因此其重力可分解为沿AO线向下的分力F1和沿BO线向下的分力F2.F1=F2=
质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB,二是压缩BC.因此其重力可分解为沿AB向右的分力F1和沿BC向下的分力F2.