2011年威海市中考数学试题及答案

合集下载

【人教】2011年山东省威海市学业考试试卷

【人教】2011年山东省威海市学业考试试卷

威海市2011年初中学业考试历史试卷第I卷(选择题 30分)一、选择题:本大题共30小题,每小题1分,共30分。

在每小题列出的四个选项中,只有一项是符合题目要求的。

1.某同学准备利用暑假实地考察我国境内已知的最早人类遗址,他应该去A.北京周口店 B.云南元谋 C.河南安阳 D.陕西西安2.“白露早,寒露迟,秋分种麦正当时。

”这句谚语说明了节气对指导农业生产的重要作用。

我国测定出一年24个节气是在A.夏朝时期 B.西周时期 C.春秋时期 D.战国时期3.下列我国古代以少胜多的战役中,按发生时间的先后顺序排列正确的是①赤壁之战②巨鹿之战③官渡之战④淝水之战A.①②③④ B.②③④① C.①④②③ D.②③①④4.2011年是“中印交流年”。

古代历史上,在中国和印度的交往中最杰出的使者是A.张骞 B.鉴真 C.玄奘 D.文成公主5.宋史记载:“国家根本,仰给东南”。

这一现象说明了南宋时期A.经济重心转移到南方 B.政治中心转移到南方C.东南沿海一带农民赋税负担沉重 D.国家重视东南沿海的开发6.某校历史研究性学习小组开展以“明朝君主集权加强”为主题的探究活动。

其搜集的历史资料中不恰当...的是A.设立军机处 B.在地方废除行中书省,设立三司C.在中央废除丞相,由六部分理朝政 D.设立锦衣卫和东厂7.在鸦片战争、第二次鸦片战争、八国联军侵华战争中,均参与了侵略中国的国家是A.法国 B.英国 C.日本 D.俄国8.右图为李明同学记录某一历史事件的课堂笔记。

据此推断他学习的内容是A.洋务运动 B.辛亥革命C.新文化运动 D.戊戌变法9.在中国,有这样一座城市,它因为中国近代第一个不平等条约在这里签订而受辱,因为三十万军民在这里被日寇屠杀而饮恨。

“它”指的是A.北京 B.上海 C.南京 D.重庆10.右图是1945年8月毛泽东远行前的一张照片,与此照片相关的历史事件是A.西安事变 B.中共七大 C.重庆谈判 D.转战陕北11.为了改变旧中国积贫积弱的状况,许多仁人志士进行了顽强的探索。

山东省威海市2011年中考数学试卷-解析版

山东省威海市2011年中考数学试卷-解析版

山东省威海市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•威海)在实数0,﹣,,﹣2中,最小的是()A、﹣2B、﹣C、0D、考点:实数大小比较。

专题:计算题。

分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为|﹣|<|﹣|,所以最小的数是﹣2.故选A.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、(2011•威海)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A、180,180,178B、180,178,178C、180,178,176.8D、178,180,176.8考点:众数;算术平均数;中位数。

专题:计算题。

分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.再根据平均数、众数和中位数的定义求解即可.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选C.点评:本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A、1:2B、1:3C、2:3D、2:5考点:相似三角形的判定与性质;平行四边形的性质。

山东威海中考《数学》试题及答案-中考.doc

山东威海中考《数学》试题及答案-中考.doc

2013山东威海中考《数学》试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

山东威海中考数学试题及答.doc

山东威海中考数学试题及答.doc

2015年山东威海中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

题库 中考 试卷---威海市2011—2012学年度第二学期八年级下数学期末模拟试卷及答案(二)

题库 中考 试卷---威海市2011—2012学年度第二学期八年级下数学期末模拟试卷及答案(二)

山东省威海市2011—2012学年度第二学期八年级下数学期末模拟试卷及答案(二)一、你的数学风采,在于你的合理选择!(每小题3分,共30分) 1.一直角三角形两边分别为3和5,则第三边为( )A 、4B 、34C 、4或34D 、22.用两个全等的等边三角形,可以拼成下列哪种图形( )A 、矩形B 、菱形C 、正方形D 、等腰梯形3.小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数4.王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、cm 320第4题图 第5题图 第7题图5.如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、106.已知,a 、b ,这个代数式是( )A .a+bB .abC .2aD .2b7.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、3008.若x 2+mx+3=(x+3)(x+1),则方程mx 2+3mx+8=0的两个根是( ).A .x 1=1,x 2=2B .x 1=-1,x 2=-2;C .x 1=1,x 2=-2D .x 1=-1,x 2=2 9.下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

山东省17市2011年中考数学试题分类解析专题(1-12)-1

山东省17市2011年中考数学试题分类解析专题(1-12)-1

山东省17市2011年中考数学专题11:圆一. 选择题1.(日照4分)已知AC⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ab a b+的是【答案】D 。

【考点】三角形的内切圆与内心,切线的性质,正方形的判定和性质,解一元一次方程,相似三角形的判定和性质。

【分析】设圆的半径是r 。

A 、设圆切BC 于D ,切AC 于E ,切AB 于F ,连接OD ,OE ,OF ,如图,根据切线的性质可得到正方形OECD ,AE =AF ,BD =BF ,则a -r +b -r =c ,∴r=2a b c +-,故本选项错误;B 、设圆切AB 于F ,连接OF ,如图,则OF =r ,AO =b -r ,△BCA∽△OFA,∴OF AO CB AB=,即r r b a c -=,∴r=ab a c +,故本选项错误;C 、连接OE 、OD ,根据AC 、BC 分别切圆O 于E 、D ,如图,根据切线的性质可得到正方形OECD ,则OE =r ,AE =b -r ,△BCA∽△OEA,∴OE AE BC AC =,即r r b a b-=,∴r=ab a b +,故本选项正确;D 、设圆切BC 于D ,连接OD ,OA ,则BD =a +r ,由BA =BD 得c =a +r ,即r =c -a ,故本选项错误。

故选C 。

2.(滨州3分)如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为A 、(﹣4,5)B 、(﹣5,4)C 、(5,﹣4)D 、(4,﹣5)【答案】D 。

【考点】垂径定理,勾股定理,正方形的性质。

【分析】过点M 作MD⊥AB 于D ,交OC 于点E ,连接AM 。

设⊙M 的半径为r .∵以边AB 为弦的⊙M 与x 轴相切,AB∥OC,∴DE⊥CO。

∴DE 是⊙M 直径的一部分。

山东威海数学中考答案

山东威海数学中考答案

2010威海中考数学试题答案~二、填空题(本大题共6小题,每小题3分,共18分)13.x ≤3; 14.105°; 15.2; 16.﹙0,1﹚; 17.20%; 18.2611+. 三、解答题(本大题共7小题, 共66分) 19.(本小题满分7分)解:⎪⎩⎪⎨⎧-≤--+-②(①>).342125,3231x x xx解不等式①,得x <5. ………………………………………………………………3分解不等式②,得x ≥-2. ………………………………………………………………6分因此,原不等式组的解集为-2≤x <5. ………………………………………………7分 20.(本小题满分7分)解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³.……1分根据题意,得 10%)251(9096=+-x x . …………………………………………………3分解这个方程,得x =2.4. …………………………………………………………………6分 经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元).所以,该市今年居民用气的价格为3元/ m³. ………………………………………7分 21.(本小题满分9分)﹙1﹚80;…………………………………………………………………………………3分 ﹙2﹚26.4, 27, 27; ………………………………………………﹙每空1分﹚6分﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ……………………………………9分 22.(本小题满分10分)解:(1)∵ 反比例函数x m y =的图象经过点A ﹙-2,-5﹚, ∴ m =(-2)×( -5)=10.∴ 反比例函数的表达式为x y 10=. ……………………………………………………2分 ∵ 点C ﹙5,n ﹚在反比例函数的图象上,∴ 2510==n .∴ C 的坐标为﹙5,2﹚. ……………………………………………………………3分 ∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得⎩⎨⎧+=+-=-.5225b k b k , 解得⎩⎨⎧-==.31b k , …………………………………………………5分 ∴ 所求一次函数的表达式为y =x -3. …………………………………………………6分 (2) ∵ 一次函数y =x -3的图像交y 轴于点B ,∴ B 点坐标为﹙0,-3﹚. …………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . …………10分 23.(本小题满分10分)解:连接OE ,OA .……………………1分 ∵ AB ,AD 分别与⊙O 相切于点E ,F .∴ OE ⊥AB ,OE =3㎝.………………2分 ∵ ∠DAB =60°, ∴ ∠OAE =30°. ……………………3分在Rt △AOE 中,AE=3tan tan 30OE OAE ︒==∠㎝. …………………………………5分 ∵ AD ∥BC ,∠DAB =60°,∴ ∠ABC =120°. ………………………………………………………………6分 设当运动停止时,⊙O 与BC ,AB 分别相切于点M ,N ,连接ON ,OB . ………7分同理可得 BN =3㎝. ……………………………………………………………9分∴ )3415(33315-=--=--=BN AE AB EN ㎝.∴ ⊙O 滚过的路程为()3415-㎝. ……………………………………………10分 24.(本小题满分11分)(1)证明:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=AC ,∠2=∠7,∠A =∠1.∴ ∠3=∠A =∠1. ………………………………………………………………1分 ∴ BC 1∥AC .∴ 四边形ABC 1C 是平行四边形. ………………2分∴ AB ∥CC 1. ∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6, ∴ ∠B 1C 1C =∠B 1BC .……………………………4分﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分理由如下:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A =∠2. ∴ ∠3=∠A ,∠4=∠7. ………………………6分 ∵ ∠1+∠FBC =∠8+∠FBC , ∴ ∠C 1BC =∠A 1BA . …………………………7分 ∵ ∠4=21(180°-∠C 1BC ),∠A=21(180°-∠A 1BA ).∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6,∴ ∠A 1C 1C =∠A 1BC .……………………………………………………………………9分 ﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚ 25.(本小题满分12分)A B (A 1) C B 1 C 1 图 ② E 14 32 56 7A 1 C 1C A B (B 1)图 ③F3 645 1 2 7 8﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F . ∵ AD ∥BC ,AD =BC , ∴ 四边形ABCD 为平行四边形.∴ AB ∥CD .∴ ME = NF .∵S △ABM =ME AB ⋅21,S △ABN =NFAB ⋅21, ∴ S △ABM = S △ABN . ……………………………………………………………………1分 ②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA =∠EKB =90°. ∵ AD ∥BE ,∴ ∠DAH =∠EBK . ∵ AD =BE , ∴ △DAH ≌△EBK . ∴ DH =EK . ……………………………2分 ∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EKAB ⋅21, ∴ S △ABM = S △ABG . …………………………………………………………………3分 ﹙2﹚答:存在. …………………………………………………………………………4分解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y . 又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a .∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . ………………………5分 ∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k .∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-.∴ CH =CG -HG =4-2=2. …………………………………………………………6分设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC 的面积相等.①若E 点在直线AD 的上方﹙如图③-1﹚,则PF =m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分当2=m 时,PF =3-2=1,EF=1+2=3. ∴ E 点坐标为(2,3).同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. ……………………………………………9分 ∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分A BD C M N 图 ①E F HC图 ②A B D M F E G K当2173+=m 时,E 点的纵坐标为2171221733+-=-+-;当2173-=m 时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ………………12分﹙其他解法可酌情处理﹚。

2011中考数学真题解析1 数轴、绝对值、相反数(含答案)

2011中考数学真题解析1 数轴、绝对值、相反数(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编数轴、绝对值、相反数一、选择题1.(2011江苏淮安,1,3分)3 的相反数是()A.-3B.-13C.13D.3考点:相反数。

专题:计算题。

分析:根据相反数的定义即可求出3的相反数.解答:解:3的相反数是﹣3故选A.点评:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(2011 江苏连云港,1,3分)2的相反数是()A.2 B.-2 C D.1 2考点:相反数。

专题:计算题。

分析:根据相反数的意义,相反数是只有符号不同的两个数,改变﹣2前面的符号,即可得﹣2的相反数.解答:解:由相反数的意义得,﹣2的相反数是2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2011•泰州,1,3分)12-的相反数是()A、12-B、12C、2D、﹣2考点:相反数。

专题:计算题。

分析:根据相反数的定义进行解答即可. 解答:解:由相反数的定义可知,12-的相反数是﹣(12-)=12.故选B .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数. 4. (2011•江苏徐州,1,2)﹣2的相反数是( ) A 、2B 、﹣2C 、12D 、12-考点:相反数。

专题:计算题。

分析:根据相反数的定义:只有符号不同的两个数就是相反数,进行判断. 解答:解:根据相反数的定义,﹣2的相反数是2. 故选A .点评:本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断. 5. (2011盐城,1,3分)-2的绝对值是( )A.﹣2B.21-C.2D.21考点:绝对值. 专题:计算题.分析:根据负数的绝对值等于它的相反数求解. 解答:解:因为|-2|=2,故选C .点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(2011江苏无锡,1,3分)|﹣3|的值等于( )A .3B .﹣3C .±3D .3考点:绝对值。

2011年中考数学试题汇编---一元一次不等式(组)

2011年中考数学试题汇编---一元一次不等式(组)

选择题(每小题x 分,共y 分)(2011•潜江市)4.某不等式组的解集在数轴上表示如图,则这个不等式组可能是B A .23x x -⎧⎨⎩≥≤ B .23x x -⎧⎨<⎩≥ C .⎩⎨⎧<->32x x D .23x x >-⎧⎨⎩≤〔2011•浙江省台州市〕6.不等式组⎩⎨⎧2x -4≤x +2x ≥3的解集是【 C 】A .x ≥3B .x ≤6C .3≤x ≤6D .x ≥6 (2011•宁波)3.不等式1x >在数轴上表示正确的是C(B) (C) (D)(2011•威海市)11.如果不等式组()2131x x x m--⎧⎪⎨⎪⎩><的解集是2x <,那么m 的取值范围是 DA .m =2B .m >2C .m <2D .m ≥2(2011•苏州市)6.不等式组30,32x x -≥⎧⎪⎨<⎪⎩的所有整数解之和是BA .9B .12C .13D .15〔2011•湖北省武汉市〕3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是BA.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.(2011•益阳市)6.不等式312->+x-2 0ABC D(第4题图)〔2011•浙江省义乌〕7.不等式组⎨⎧≥->+125523x x 的解在数轴上表示为C〔2011•日照市〕6.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是A(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =71. 〔2011•凉山州〕下列不等式变形正确的是( B )A .由a b >,得ac bc >B .由a b >,得22a b ->-C .由a b >,得a b ->-D .由a b >,得22a b -<-(2011•茂名市)4、不等式组⎩⎨⎧≥+<-0302x x 的解集在数轴上正确..表示的是 D (2011•金华市)8.不等式组211420x x ->⎧⎨-⎩,≤的解在数轴上表示为(C ▲ )二、填空题(每小题x 分,共y 分)〔2011•大理〕10.不等式:2x +6<0的解集是 x <-3 . (2011•株洲市)9.不等式10x ->的解集是 1x > .(2011•黄冈市)7.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则1 02C1 02D1 02A1 02BA .B .C .D .a的取值范围为__ a<4____.三、解答题:(共x分)(2011•呼和浩特市)23、(6分)生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环,如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环?我们可以按以下思路分析:首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8次射击需要得到的成绩,并完成下表:根据以上分析可得如下解答:解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:_______________________________________解得 _______________所以第8次设计不能少于________环.23、8环或9环或10环…………………………………(1分)9环或10环………………………………………………………(2分)10环…………………………………………………………………(3分)++x…………………………………………………………(4分)2061>88x………………………………………………(5分)7>8环 ……………………………………………………………………(6分)(2011•桂林市)24.(本题满分8分)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒?(用含x 的代数式表示). (2)该敬老院至少有多少名老人?最多有多少名老人? 解:(1)牛奶盒数:(538)x +盒 …………1分(2)根据题意得:5386(1)55386(1)1x x x x +--<⎧⎨+--≥⎩…………4分∴不等式组的解集为:39<x ≤43 …………6分 ∵x 为整数∴x =40,41,42,43答:该敬老院至少有40名老人,最多有43名老人. …………8分(2011•天津)解不等式组215432x x x x +>-⎧⎨≤+⎩解:∵21543 2 x x x x +>-⎧⎨≤+⎩①②解不等式①.得6x >-. 解不等式②.得2x ≤.∴原不等式组的解集为62x -<≤.(2011•黄石市)23.(本小题满分8分)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题: 为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该用户六月份用水量为x 吨,缴纳水费为y 元,试列出y 与x 的函数式; (3)若该用户六月份用水量为40吨,缴纳水费y 元的取值范围为7090y ≤≤,试求m 的取值范围。

山东省17市2011年中考数学试题分类解析汇编 专题9 三角形

山东省17市2011年中考数学试题分类解析汇编 专题9 三角形

山东17市2011年中考数学试题分类解析汇编专题9:三角形一、选择题1. (日照4分)在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=ba.则下列关系式中不成立的是A、tanA·cotA=1B、sinA=tanA·cosAC、cosA=cotA·sinAD、tan2A+cot2A=12.(滨州3分)在△ABC中,∠C=90°,∠A=72°,AB=10,则边AC的长约为(精确到0.1)A、9.1B、9.5C、3.1D、3.53.(烟台4分)如果△ABC中,,则下列最确切的结论是A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等腰直角三角形D. △ABC是锐角三角形4.(东营3分)河堤横断面如图所示.堤高BC=5,迎水坡AB的坡比是坡比是坡面的铅直高度BC 与水乎宽度AC之比).则AC的长是A,米 8.10米 C. 15米 D.5.(济南3分)如图,在△ABC中,∠ACB=90º,AC>BC,分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S16.(潍坊3分)如图,已知等腰三角形ABC,AB = AC,底边BC的长为2,DE是它的中位线,则下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1︰4. 其中正确的有.A.0个 B.1个 C.2个 D.3个7.(潍坊3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面夹角如表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是.A .甲B .乙C .丙D .丁8.(临沂3分)如图,△ABC 中,sinC=35,AC=5,则△ABC 的面积是 A 、212 B 、12 C 、14D 、21 9.(威海3分)在 ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF=A .1:2B .1:3C .2:3D .2:510.(威海3分)在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF ,则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等A .EF∥AB B .BF=CFC .∠A=∠DFED .∠B=∠DEF11.(枣庄3分)如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APC 是等腰三角形,则点P 的坐标不可能...是A .(2,0)B .(4,0)C .(-0)D .(3,0)二、填空题1. (滨州4分)边长为6cm 的等边三角形中,其一边上高的长度为 ▲ .2.(滨州4分)在等腰△ABC 中,∠C=90°,则tanA = ▲ .3.(济宁3分)如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD=BE ,AE 与CD 交于点F ,AG⊥CD 于点G ,则FG AF= ▲ 。

山东威海中考数学试题解析版.doc

山东威海中考数学试题解析版.doc

山东省威海市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•威海)在实数0,﹣,,﹣2中,最小的是()A、﹣2B、﹣C、0D、考点:实数大小比较。

专题:计算题。

分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为|﹣|<|﹣|,所以最小的数是﹣2.故选A.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、(2011•威海)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A、180,180,178B、180,178,178C、180,178,176.8D、178,180,176.8考点:众数;算术平均数;中位数。

专题:计算题。

分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.再根据平均数、众数和中位数的定义求解即可.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选C.点评:本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A、1:2B、1:3C、2:3D、2:5考点:相似三角形的判定与性质;平行四边形的性质。

山东威海中考数学试题解析版.doc

山东威海中考数学试题解析版.doc

山东省威海市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•威海)在实数0,﹣,,﹣2中,最小的是()A、﹣2B、﹣C、0D、考点:实数大小比较。

专题:计算题。

分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为|﹣|<|﹣|,所以最小的数是﹣2.故选A.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、(2011•威海)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A、180,180,178B、180,178,178C、180,178,176.8D、178,180,176.8考点:众数;算术平均数;中位数。

专题:计算题。

分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.再根据平均数、众数和中位数的定义求解即可.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选C.点评:本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A、1:2B、1:3C、2:3D、2:5考点:相似三角形的判定与性质;平行四边形的性质。

2022中考数学专项五-动手操作

2022中考数学专项五-动手操作

2022中考数学专项五-动手操作1.(2011四川省乐山市)7、如图(4),直角三角板ABC 的斜边AB=12㎝,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A B C '''的位置后,再沿CB方向向左平移, 使点B '落在原三角板ABC 的斜边AB 上, 则三角板A B C '''平移的距离为( )(A) 6㎝ (B) 4㎝ (C ) (6-23 )㎝ (D )(436-)㎝解:C2.(2011广东省广州市)如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )考点:剪纸问题。

分析:严格按照图中的方法亲自动手操作一下,即可专门直观地出现出来,也可认真观看图形特点,利用对称性与排除法求解. 解答:解:∵第三个图形是三角形, ∴将第三个图形展开,可得,即可排除答案A ,∵再展开可知两个短边正对着, ∴选择答案D ,排除B 与C . 故选D .点评:本题要紧考查学生的动手能力及空间想象能力.关于此类问题,学生只要亲自动手操作,答案就会专门直观地出现.3..(2011黑龙江省鸡西市)如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2 ②图中有4对全 等三角形 ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上④BD=BF ⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( ) A 1个 B 2个 C 3个 D 4个30°BA B'A'考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义。

2011年山东省威海市中考数学试卷

2011年山东省威海市中考数学试卷

2011年山东省威海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选均不得分)1.(3分)在实数0,,,﹣2中,最小的是()A.﹣2B.C.0D.2.(3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178B.180,178,178C.180,178,176.8D.178,180,176.83.(3分)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:54.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣ab)2=﹣a3b35.(3分)下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(,3)6.(3分)在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF 7.(3分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是()A.﹣1<x<3B.x<﹣1C.x>3D.x<﹣3或x>3 8.(3分)计算1的结果是()A.﹣m2﹣2m﹣1B.﹣m2+2m﹣1C.m2﹣2m﹣1D.m2﹣19.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A.0B.8C.4±2D.0或810.(3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()A.3B.4C.5D.611.(3分)如果不等式组><的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥212.(3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分,只要求填出最后结果)13.(3分)计算的结果是.14.(3分)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标(0,4),B 点坐标(﹣3,0),则C点坐标.15.(3分)如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED =.16.(3分)因式分解:16﹣8(x﹣y)+(x﹣y)2=.17.(3分)如图①,将一个量角器与一张等腰三角形(△ABC)纸片放置成轴对称图形.∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,测得CE=5cm;将量角器沿DC方向平移2cm,半圆(量角器)恰与△ABC的边AC,BC相切,如图②.则AB的边长为cm.(精确到0.1cm)18.(3分)如图,在平面直角坐标系xOy中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…l n分别交于点A1,A2,A3,…A n,函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3,…B n.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2011=.三、解答题(本大题共7小题,共66分)19.(7分)解方程:.20.(8分)我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心.(1)如图①,△ABC≌△DEF.△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;(2)如图②,△ABC≌△MNK.△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)21.(9分)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.22.(9分)为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.23.(10分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.24.(11分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.25.(12分)如图,抛物线y=ax2+bx+c交x轴于点A(﹣3,0),点B(1,0),交y轴于点E(0,﹣3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F 且与y轴平行.直线y=﹣x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.2011年山东省威海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选均不得分)1.(3分)在实数0,,,﹣2中,最小的是()A.﹣2B.C.0D.【解答】解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为||<||,所以最小的数是﹣2.故选:A.2.(3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178B.180,178,178C.180,178,176.8D.178,180,176.8【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选:C.3.(3分)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:5【解答】解:∵四边形ABCD是平行四边形,∴△AEF∽△BCF,∴,∵点E为AD的中点,∴,故选:A.4.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣ab)2=﹣a3b3【解答】解:A、a3•a2=a5,故A错误;B、(x3)3=x9,故B错误;C、x5+x5=2x5,故C错误;D、(﹣ab)5÷(﹣ab)2=﹣a5b5÷a2b2=﹣a3b3,故D正确.故选:D.5.(3分)下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(,3)【解答】解:∵函数,∴﹣6=xy,只要把点的坐标代入上式成立即可,把答案A、B、D的坐标代入都不成立,只有C成立.故选:C.6.(3分)在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF 【解答】解:A、∵EF∥AB,∴∠BDF=∠EFD,∵DE分别是ABAC的中点,∴DE BC,DE∥BC(三角形的中位线定理),∴∠EDF=∠BFD(平行线的性质),∵DF=DF,∴△BFD≌△EDF,故本选项正确;B、∵DE BC=BF,∠EDF=∠BFD,DF=DF,∴△BFD≌△EDF,故本选项正确;C、由∠A=∠DFE证不出△BFD≌△EDF,故本选项错误;D、∵∠B=∠DEF,∠EDF=∠BFD,DF=DF,∴△BFD≌△EDF(AAS),故本选项正确.故选:C.7.(3分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是()A.﹣1<x<3B.x<﹣1C.x>3D.x<﹣3或x>3【解答】解:由图象可以看出:y<0时,自变量x的取值范围是﹣1<x<3;故选:A.8.(3分)计算1的结果是()A.﹣m2﹣2m﹣1B.﹣m2+2m﹣1C.m2﹣2m﹣1D.m2﹣1【解答】解:11(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m ﹣1.故选:B.9.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A.0B.8C.4±2D.0或8【解答】解:∵一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=0,即(m﹣2)2﹣4×1×(m+1)=0,整理,得m2﹣8m=0,解得m1=0,m2=8.故选:D.10.(3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()A.3B.4C.5D.6【解答】解:根据主视图与左视图,第一行的正方体有1(只有一边有)或2(左右都有)个,第二行的正方形可能有2(左边有)或3(左右都有)个,∵1+2=3,1+3=4,2+2=4,2+3=5,故不可能有6个.故选:D.11.(3分)如果不等式组><的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥2【解答】解:解第一个不等式得,x<2,∵不等式组><的解集是x<2,∴m≥2,故选:D.12.(3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【解答】解:当点N在AD上时,即0≤x≤1,S△AMN x×3x x2,点N在CD上时,即1≤x≤2,S△AMN x×3x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN x×(9﹣3x)x2x,开口方向向下.故选:B.二、填空题(本大题共6小题,每小题3分,共18分,只要求填出最后结果)13.(3分)计算的结果是3.【解答】解:原式=(52)3.故答案为:3.14.(3分)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标(0,4),B 点坐标(﹣3,0),则C点坐标(1,﹣3).【解答】解:过C点作CE⊥x轴于E.∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,又∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∠AOB=∠BEC=90°,∴△ABO≌△BCE,∴CE=OB=3,BE=OA=4,∴C点坐标为(4﹣3,﹣3),即(1,﹣3).故答案为:(1,﹣3).15.(3分)如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED =30°.【解答】解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH CD(垂径定理);∵CD=4,∴DH=2;又∵AE=5,BE=1,∴AB=6,∴OA=OD=3(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH1(勾股定理);在Rt△OEH中,OH OE,∴∠OEH=30°,即∠AED=30°.故答案为:30°.16.(3分)因式分解:16﹣8(x﹣y)+(x﹣y)2=(4﹣x+y)2.【解答】解:16﹣8(x﹣y)+(x﹣y)2,=[4﹣(x﹣y)]2,=(4﹣x+y)2.故答案为:(4﹣x+y)2.17.(3分)如图①,将一个量角器与一张等腰三角形(△ABC)纸片放置成轴对称图形.∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,测得CE=5cm;将量角器沿DC方向平移2cm,半圆(量角器)恰与△ABC的边AC,BC相切,如图②.则AB的边长为24.5cm.(精确到0.1cm)【解答】解:如图,设图②中半圆的圆心为O,与BC的切点为M,连接OM,则OM⊥MC,∴∠OMC=90°,依题意知道∠DCB=45°,设AB为2x,∵△ABC是等腰直角三角形,∴CD=BD=x,而CE=5cm,又将量角器沿DC方向平移2cm,∴半圆的半径为x﹣5,OC=x﹣2,∴sin∠DCB,∴,∴x,∴AB=2x=224.5(cm).故答案为:24.5.18.(3分)如图,在平面直角坐标系xOy中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…l n分别交于点A1,A2,A3,…A n,函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3,…B n.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2011=2010.5.【解答】解:∵函数y=x的图象与直线l1,l2,l3,…l n分别交于点A1,A2,A3,…A n,∴A1(1,1),A2(2,2),A3(3,3)…A n(n,n),又∵函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3,…B n,∴B1(1,2),B2(2,4),B3(3,6),…B n(n,2n),∴S1•1•(2﹣1),S2•2•(4﹣2)•1•(2﹣1),S3•3•(6﹣3)•2•(4﹣2),…S n•n•(2n﹣n)•(n﹣1)[2(n﹣1)﹣(n﹣1)]n2(n﹣1)2=n.当n=2011,S2011=20112010.5.故答案为2010.5.三、解答题(本大题共7小题,共66分)19.(7分)解方程:.【解答】解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.20.(8分)我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心.(1)如图①,△ABC≌△DEF.△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;(2)如图②,△ABC≌△MNK.△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)【解答】解:(1)能.点O1就是所求作的旋转中心;(2)能.点O2就是所求作的旋转中心.21.(9分)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.【解答】解:公平.理由:∴一共有36种结果,每种结果出现的可能性是相同的,其中两个数字之和为偶数的有18种,数字之和为奇数的有18种,∴P(甲胜)=P(乙胜).∴游戏是公平的.22.(9分)为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【解答】解:方法1:设自行车路段的长度为x米,长跑路段的长度为y米,则:,解得.答:自行车路段的长度为3000米,长跑路段的长度为2000米.方法2:设自行车路段的长度为x米,长跑路段的长度为(5000﹣x)米,则:15,解得x=3000,5000﹣x=5000﹣3000=2000.答:自行车路段的长度为3000米,长跑路段的长度为2000米.23.(10分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC×tan60°=10,∵AB∥CF,∴BM=BC×sin30°=105,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.24.(11分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.【解答】解:(1)∵四边形ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=∠1=70°,∴∠MKN=40°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠KNM=∠KMN,∴MK=NK,又∵MK≥ME,∴NK≥1.∴△MNK的面积NK•ME.∴△MNK的面积不可能小于.(3)分两种情况:情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合.MK=MB=x,则AM=5﹣x.由勾股定理得12+(5﹣x)2=x2,解得x=2.6.∴MD=ND=2.6.S△MNK=S△MND 1.3.情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC.MK=AK=CK=x,则DK=5﹣x.同理可得MK=NK=2.6.∵MD=1,∴S△MNK 1.3.△MNK的面积最大值为1.3.25.(12分)如图,抛物线y=ax2+bx+c交x轴于点A(﹣3,0),点B(1,0),交y轴于点E(0,﹣3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F 且与y轴平行.直线y=﹣x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.【解答】解:(1)设抛物线的函数表达式为y=a(x﹣1)(x+3)∵抛物线交y轴于点E(0,﹣3),将该点坐标代入上式,得a=1∴所求函数表达式为y=(x﹣1)(x+3),即y=x2+2x﹣3;(2)∵点C是点A关于点B的对称点,点A坐标(﹣3,0),点B坐标(1,0),∴点C坐标(5,0),∴将点C坐标代入y=﹣x+m,得m=5,∴直线CD的函数表达式为y=﹣x+5,设K点的坐标为(t,0),则H点的坐标为(t,﹣t+5),G点的坐标为(t,t2+2t﹣3),∵点K为线段AB上一动点,∴﹣3≤t≤1,∴HG=(﹣t+5)﹣(t2+2t﹣3)=﹣t2﹣3t+8=﹣(t)2,∵﹣3<<1,∴当t时,线段HG的长度有最大值;(3)∵点F是线段BC的中点,点B(1,0),点C(5,0),∴点F的坐标为(3,0),∵直线l过点F且与y轴平行,∴直线l的函数表达式为x=3,∵点M在直线l上,点N在抛物线上,∴设点M的坐标为(3,m),点N的坐标为(n,n2+2n﹣3),∵点A(﹣3,0),点C(5,0),∴AC=8,分情况讨论:①若线段AC是以点A、C,M、N为顶点的平行四边形的边,则需MN∥AC,且MN=AC=8.当点N在点M的左侧时,MN=3﹣n,∴3﹣n=8,解得n=﹣5,∴N点的坐标为(﹣5,12),当点N在点M的右侧时,MN=n﹣3,∴n﹣3=8,解得n=11,∴N点的坐标为(11,140),②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线,由“点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,取点F关于点B的对称点P,则P 点坐标为(﹣1,0)过P点作NP⊥x轴,交抛物线于点N,将x=﹣1代入y=x2+2x﹣3,得y=﹣4,过点N作直线NM交直线l于点M,在△BPN和△BFM中,∠NBP=∠MBF,BF=BP,∠BPN=∠BFM=90°,∴△BPN≌△BFM,∴NB=MB,∴四边形ANCM为平行四边形,∴坐标(﹣1,﹣4)的点N符合条件,∴当N的坐标为(﹣5,12),(11,140),(﹣1,﹣4)时,以点A、C、M、N为顶点的四边形为平行四边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

威海市二○一一年初中学业考试
数学
亲爱的同学:
你好!答题前,请仔细阅读以下说明:
1.本试卷共10页,分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷(第1—2页)为选择题,第Ⅱ卷(3—10页)为非选择题。

试卷满分120分,考试时间为120分钟。

2.请清点试卷,并将答题卡和第Ⅱ卷密封线的考生信息填写完整。

3.第Ⅰ卷的答案用2B铅笔涂在答题卡上,第Ⅱ卷的答案用蓝色或黑色钢笔、圆珠笔填写在试卷上,不要求保留精确度的题目,计算结果保留准确值。

希望你能愉快地度过这120分钟,祝你成功!
第Ⅰ卷(选择题,共36分)
一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四
个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选均不得分)
1.在实数0
2中,最小的是
A.-2 B.
C.0 D
2.今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟)。

176 180 184 180 170 176 172 164 186 180 该组数据的众数、中位数、平均数分别为
A.180,180,178 B.180,178,178
C.180,178,176.8 D.178,180,176.8
3.在□ABCD中,点E为AD的中点,连接BE,交AC于点F,
则AF:CF=
A.1:2 B.1:3
C.2:3 D.2:5
4.下列运算正确的是
A.a3•a2=a6B.(x3)3=x6
C.x5+x5=x10D.(-ab)5÷(-ab)2 =-a3b3
5.下列各点中,在函数
6
y
x
=-图象上的是
A.(-2,-4)B.(2,3)C.(-6,1)D.(-1
2
,3)
6.在△AB C中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△ED F全等
A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF
(第7题图)
7.二次函数y =x 2-2x -3的图象如图所示。

当y <0时,自变量x 的取值范围是
A .-1<x <3
B .x <-1
C .x >3
D .x <-3或x >3 8.计算1÷
()2111m
m m
+∙--的结果果 A .-m 2-2m -1 B .-m 2+2m -1 C .m 2-2m -1 D .m 2-1 9.关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是
A .0
B
.8
C .4±
D . 0或8
10.如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体
的小立方体的个数不可能是 A .3 B .4 C .5 D .6
11.如果不等式组()2131x x x m
--⎧⎪⎨⎪⎩><的解集是2x <,那么m 的取值范围是
A .m =2
B .m >2
C .m <2
D .m ≥2
12.如图,在正方形ABCD 中,AB =3㎝,动点M 自A 点出发沿AB 方向
以每秒1㎝的速度运动,同时动点N 自A 点出发沿折线AD -DC -CB 以每秒3㎝的速度运动,到达B 点时运动同时停止。

设△AMB 的面积为y (㎝2)。

运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是
(第6题图)
N 主视图
左视图
(第10题图)
威海市二○一一年初中学业考试
数 学
第Ⅱ卷(非选择题,共84分)
二、
填空题(本大题共6小题,每小题3分,共18分,只要求填出最后结果)
13.
计算
的结果是________。

14.正方形ABCD 在平面直角坐标系中的位置如图所示,已知A 点坐标(0,4),B 点坐标(-3,0),则C 点坐标________。

15.如图,⊙O 的直径A B 与弦CD 交于点E ,AE =5,BE =1,CD
则∠AED =________。

16.分解因式:16-8(x -y )+(x -
y )2=_______________________。

17.如图①,将一个量角器与一张等腰三角形(△ABC )纸片放置成轴对称图形。

∠ACB =
90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5㎝;将量角器沿DC 方向平移2㎝,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②。

则AB 的边长为________㎝。

(精确到0.1㎝)
18.如图,在直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点
(2,0),直线l 3⊥x 轴于点(n
,0)……直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1,l 2,l 3,……l n 分别交于点B 1,B 2,B 3,……B n 。

如果△OA 1B 1的面积记为S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,……四边形A n -1A n B n B n -1的面积记作S n ,那么S 2011=_______________________。

图①
图②
(第17题图)
A (第15题图)
三、解答题(本大题共7小题,共66分) 19.(7分)
解方程:
233
01
x x x +-=- 20.(8分)
我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心。

⑴如图①,△ABC ≌△DEF 。

△DEF 能否由△ABC 通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;
⑵如图②,△ABC ≌△MNK 。

△MNK 能否由△ABC 通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由。

(保留必要的作图痕迹)
21.(9分)
甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由。

A
B
C
D E
F
A
B C
N
M
K
图① 图②
22.(9分)
为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练。

某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟。

求自行车路段和长跑路段的长度。

23.(10分)
一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E = 45°,∠A =60°,AC =10,试求CD 的长。

24.如图,ABCD 是一张矩形纸片,AD =BC =1,AB =CD =5.在矩形ABCD 的边AB 上取一
点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK 。

⑴若∠1=70°,求∠MKN 的度数;
⑵△MNK 的面积能否小于
1
2
?若能,求出此时∠1的度数;若不能,试说明理由; ⑶如何折叠能够使△MNK 的面积最大?请你用备用图探究可能出现的情况,求最大值。

25.(12分)
A
B
A
B 备用图
如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。

点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行。

直线y=-x+m过点C,交y轴于D点。

⑴求抛物线的函数表达式;
⑵点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
⑶在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标。

相关文档
最新文档