(完整)五年级奥数:二元一次方程组的解法
二元一次方程组怎么解
二元一次方程组怎么解二元一次方程组是高中数学中的一种基础知识,也是解决实际问题的重要工具。
它由两个包含两个未知数的方程组成,通常可以用代数方法或图形方法求解。
在本文中,我们将讨论二元一次方程组的求解方法,以帮助读者更好地理解和应用这一概念。
1. 代数解法代数解法是求解二元一次方程组的传统方法。
它的基本思想是通过等式的转化将两个方程中的某一个未知数消去,从而得到只包含另一个未知数的方程,再通过解这个方程得到另一个未知数的值。
最后,再将这个值带入原来的方程中,求出另一个未知数的值。
下面以一个典型的例子来说明。
例1:求解方程组 2x + y = 7 x + y = 4解:观察这两个方程,我们可以发现它们含有相同的未知数y,因此我们可以通过消去y的方法来求解。
为此,我们将第二个方程的等式两边都减去y,得到如下方程:x = 4 - y现在,我们将这个x的值代入第一个方程,得到:2(4 - y) + y = 7化简这个方程,得到:8 - y + y = 7因此,y的值为1。
然后,我们将这个y的值代入第二个方程,得到:x + 1 = 4因此,x的值为3。
因此,这个方程组的解为(x,y)=(3,1)。
2. 图形解法图形解法是另一种求解二元一次方程组的方法,它的基本思想是将两个方程表示成直线的形式,然后通过解直线方程的交点来求解方程组。
具体来说,我们可以将两个方程表示成如下形式:y = -2x + 7 y = -x + 4利用直线的斜率和截距,我们可以画出这两条直线。
这两条直线的交点就是方程组的解。
下图是这两条直线的图像。
从图中可以看出,这两条直线在(3,1)这个点相交。
因此,这个方程组的解为(x,y)=(3,1)。
3. 矩阵解法矩阵解法是一种更为简便和通用的求解二元一次方程组的方法。
它的基本思想是将方程组表示成矩阵的形式,然后通过矩阵的运算求解。
具体来说,我们可以将方程组表示成如下矩阵形式:Ax = b其中,A是一个2×2的矩阵,x和b都是2×1的列向量,分别表示未知数和方程组的常数项。
二元一次方程组的解法
二元一次方程组的解法
数学一直注重学习的连贯性,如果小学的思维基础没打好,学习初中数学就会有些吃力。
有些同学就会问二元一次方程组的解法。
下面是由小编为大家整理的“二元一次方程组的解法”,仅供参考,欢迎大家阅读。
二元一次方程组的解法
代入消元法。
我们先把第一个方程看成只有一个未知数(另一个字母看成已知数),通过移项去括号等把它写成字母等于的形式。
然后我们把第二个方程里面的那个字母换成刚才我们得到的代数式,这样我们就得到了一个一元一次方程。
把这个一元一次方程解出来,得到其中一个未知数的值。
代入到方程组中其中一个方程,就得到了一个未知数的值,到这里,方程组就被我们解出来了。
加减消元法。
得到一个二元一次方程组,我们通过乘以一个数,想办法把两个方程中其中相对应的一个未知数的系数化为相同相反的数。
然后让这两个式子做差或和,便可以消去一个未知数,得到一个一元一次方程,以下步骤和代入消元法里面的一样。
拓展阅读:二元一次方程组的解有几个
一个二元一次方程表示一条直线,一般情况是相交的,是一个解,平行时候无解,重合时候有无数解。
二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。
两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。
每个方程可化简为ax+by=c的形式。
如果一个方程含有两个未知数,并且所含未知数的次数都为1,这样的整式方程叫做二元一次方程。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
利用数的整除特性结合代入排除的方法去求解。
小学奥数二元一次方程 (2)
小学奥数二元一次方程 (2)一、引入二元一次方程是数学中常见的一个概念,也是小学奥数中的重要内容之一。
本文将介绍二元一次方程的基本概念和解题方法。
二、二元一次方程的基本概念二元一次方程是指含有两个变量的一次方程。
一般来说,二元一次方程的一般形式为:ax + by = c其中,a、b、c都是已知的实数,而x、y则是未知数。
三、解二元一次方程的方法解二元一次方程有多种方法,以下介绍两种常用且简单的方法。
1. 消元法:首先,我们需要选择一个变量进行消元,使得方程中只剩下一个变量。
然后,我们可以通过代入的方式求解另一个变量。
最后,将求得的变量值代入原方程,就可以得到另一个变量的值。
2. 相减法:首先,我们将两个方程相减,得到一个只含有一个变量的方程。
然后,求解这个方程,得到一个变量的值。
最后,将求得的变量值代入原方程中,得到另一个变量的值。
四、实例解析下面以一个具体的例子来说明解二元一次方程的步骤:例题:2x + 3y = 10x - y = 1解题步骤:1. 使用消元法,将第二个方程两边乘以2,得到2x - 2y = 2。
2. 将第一步得到的方程和第一个方程相减,得到5y = 8。
3. 解得y = 8/5。
4. 将y的值代入第一个方程,得到2x + 3(8/5) = 10。
5. 解得x = 5/2。
五、总结二元一次方程是小学奥数中的重要内容之一。
通过本文的介绍,我们了解了二元一次方程的基本概念和解题方法,包括消元法和相减法。
通过实例解析,我们也可以清楚地看到解二元一次方程的具体步骤。
希望本文对小学奥数研究有所帮助。
二元一次方程的解法
二元一次方程的解法二元一次方程是指形如ax + by = c的方程,其中a、b、c为已知常数,而x、y为未知数。
解二元一次方程的方法有多种,下面将介绍两种常用的解法:代入法和消元法。
一、代入法解二元一次方程代入法是通过将一个变量(如x)用另一个变量(如y)的表达式代入到另一个方程中,从而将方程化简为只含一个变量的一元方程,进而求解。
例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)首先,我们可以从方程(1)中解出x的表达式,得到x = (8 - 3y) / 2,将其代入方程(2)中,得到4(8 - 3y) / 2 - 5y = 2。
接下来,通过解这个一元方程,可以得到y的值。
将y的值代入到x = (8 - 3y) / 2中,可以得到x的值。
通过这种代入法,我们可以解得二元一次方程组的解。
二、消元法解二元一次方程消元法是通过适当的加减运算来消去一个变量,从而将方程组化简为含一个变量的一元方程。
具体步骤如下:例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)我们可以通过倍乘或加减运算,将两个方程的系数乘以某个倍数,使得两个方程的系数相等或者互为相反数。
然后,将两个方程相加或相减,使得一个变量的系数相加或相减后消去,从而得到只含一个变量的一元方程。
在这个例子中,我们可以将方程(1)的系数乘以2,将方程(2)的系数乘以1,得到以下两个方程:4x + 6y = 16 (3)4x - 5y = 2 (4)然后,我们将方程(3)减去方程(4),可以消去x的项,得到11y = 14。
由此得到y的值。
接下来,将求得的y的值代入方程(1)或(2)中,可以解得x的值。
通过这种消元法,我们也可以解得二元一次方程组的解。
总结:二元一次方程的解法有多种,其中代入法和消元法是比较常用的方法。
通过代入法,将一个变量代入到另一个方程中,将方程化简为一元方程,然后求解。
二元一次方程组 解法
二元一次方程组解法
二元一次方程组是由两个含有两个未知数的线性方程组成的方程组,一般形式如下:
ax + by = c
dx + ey = f
其中a、b、c、d、e、f均为已知数,而x、y为未知数。
解二元一次方程组有以下两种方法:
1.代入法
用其中一个方程把x或y表示出来,代入另一个方程,解得另一个未
知数,再将两个未知数代入其中一个方程,检查是否符合条件。
2.消元法
这个方法我们也叫做高斯消元法或者高斯-约旦消元法。
主要步骤如下:
(1) 将方程组的系数矩阵写出来;
(2) 利用初等变换,将系数矩阵消元为上三角矩阵;
(3) 具体方法是以第一行元素为主元,对其他行逐一进行消元;
(4) 化为上三角矩阵后,用回代法求出方程组的解。
以上就是二元一次方程组的解法,希望对您有所帮助。
二元一次方程组公式解法
二元一次方程组公式解法一、二元一次方程组的定义。
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
把两个含有相同未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来,组成的方程组,叫做二元一次方程组。
一般形式为:a_1x + b_1y = c_1 a_2x + b_2y = c_2其中a_1、a_2、b_1、b_2、c_1、c_2为已知数,且a_1与b_1不同时为0,a_2与b_2不同时为0。
二、代入消元法。
1. 基本思路。
- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用含另一个未知数(例如x)的代数式表示出来,即将方程写成y = ax + b的形式。
- 然后将y = ax + b代入另一个方程中,消去y,得到一个关于x的一元一次方程。
- 解这个一元一次方程,求出x的值。
- 把求得的x值代入y = ax + b中,求出y的值,从而得到方程组的解。
2. 示例。
- 对于方程组2x + y=5 x - y = 1- 由方程x - y = 1可得y=x - 1。
- 将y=x - 1代入2x + y = 5,得到2x+(x - 1)=5。
- 展开括号得2x+x - 1 = 5,即3x=6,解得x = 2。
- 把x = 2代入y=x - 1,得y=2 - 1 = 1。
- 所以方程组的解为x = 2 y = 1三、加减消元法。
1. 基本思路。
- 当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。
- 当同一未知数的系数既不相等,也不互为相反数时,则可给方程两边乘以适当的数,使一个未知数的系数相等或互为相反数,然后再进行相减或相加消元。
2. 示例。
- 对于方程组3x+2y = 10 2x - 2y=2- 因为y的系数分别为2和 - 2,互为相反数,所以将两个方程相加,得到(3x + 2y)+(2x - 2y)=10 + 2。
二元一次方程的解法
二元一次方程的解法在数学中,二元一次方程是由两个未知数的一次方程组成的方程。
解二元一次方程需要使用代数的基本原理和运算法则。
本文将介绍解二元一次方程的几种常见方法,包括代入法、消元法和等式相减法。
1. 代入法代入法是解二元一次方程最常用的方法之一。
它的基本思想是将一个方程的一个未知数表示成另一个方程的未知数的表达式,然后代入到另一个方程中求解。
假设有如下二元一次方程组:方程1:ax + by = c方程2:dx + ey = f首先,将方程1或方程2中的一个未知数表示成另一个方程的未知数的表达式,例如假设将方程1中的x表示成方程2的未知数y的表达式,得到:x = (f - ey) / d将上式代入方程1中,得到:a * ((f - ey) / d) + by = c通过整理化简,可以得到一个只含有一个未知数的一次方程:(af - aey) / d + by = c将上式整理为标准形式,得到:(by + aey) / d = (cd - af) / d进一步整理,得到:(1 + ae/d) * y = (cd - af) / d最后,求解这个一次方程,即可得到y的值。
将y的值代入方程1或方程2中,即可求得x的值。
2. 消元法消元法是解二元一次方程的另一种常用方法。
它的基本思想是通过适当的变换,使得方程组中的一个未知数的系数相等或互为相反数,从而消去这个未知数,然后得到只含有一个未知数的方程,进而求解。
依然以方程1和方程2为例,我们可以通过变换,使得方程1和方程2的y的系数相等或互为相反数。
具体步骤如下:将方程1乘以e,将方程2乘以b,得到新的方程组:方程1:aex + bey = ce方程2:bdx + bey = bf然后,将方程2减去方程1,得到:(bdx - aex) + (bey - bey) = bf - ce化简上式,得到一个只含有一个未知数的方程:(bd - ae) * x = bf - ce最后,求解这个一次方程,即可得到x的值。
解二元一次方程组的方法
解二元一次方程组的方法在代数学中,我们经常会遇到解二元一次方程组的问题。
二元一次方程组是由两个未知数的一次方程组成的,通常形式为:ax + by = c。
dx + ey = f。
其中,a、b、c、d、e、f为已知数,而x、y为未知数。
解二元一次方程组的方法有很多种,接下来我们将介绍其中几种常用的方法。
方法一,代入法。
代入法是解二元一次方程组的最常用方法之一。
首先,我们可以利用其中一个方程将其中一个未知数表示成另一个未知数的函数,然后将其代入另一个方程中,从而得到一个只含有一个未知数的方程,进而解出这个未知数,再代回去求出另一个未知数。
举例来说,对于方程组。
2x + 3y = 7。
3x 4y = 5。
我们可以通过将第一个方程变形为x = (7 3y)/2,然后代入第二个方程,得到3((7 3y)/2) 4y = 5,进而解出y的值,再代回去求出x的值。
方法二,消元法。
消元法是另一种常用的解二元一次方程组的方法。
通过适当的加、减、乘、除等操作,将两个方程中的一个未知数的系数变成相等,然后相减消去这个未知数,从而得到一个只含有一个未知数的方程,进而解出这个未知数,再代回去求出另一个未知数。
举例来说,对于方程组。
2x + 3y = 7。
3x 4y = 5。
我们可以通过将第一个方程乘以3,第二个方程乘以2,然后相减消去y,得到一个只含有x的方程,进而解出x的值,再代回去求出y的值。
方法三,克莱姆法则。
克莱姆法则是一种利用行列式的方法来解二元一次方程组的方法。
对于二元一次方程组。
ax + by = e。
cx + dy = f。
如果ad bc ≠ 0,那么方程组有唯一解,且。
x = (ed bf)/(ad bc)。
y = (af ec)/(ad bc)。
通过计算行列式的值,我们可以直接得到未知数的值,从而解出方程组。
以上就是解二元一次方程组的几种常用方法,当然还有其他一些方法,比如图解法、几何法等。
不同的方法适用于不同的情况,我们可以根据具体的问题来选择合适的方法进行求解。
二元一次方程组怎么解
二元一次方程组怎么解
二元一次方程组作为常考题型之一,怎么解题相信是许多考生都比较想知道的事情,下面小编为你准备了“二元一次方程组怎么解”,仅供参考,祝大家阅读愉快!
二元一次方程组怎么解
方法/步骤
代入消元法。
我们先把第一个方程看成只有一个未知数(另一个字母看成已知数),通过移项去括号等把它写成字母等于的形式。
然后我们把第二个方程里面的那个字母换成刚才我们得到的代数式,这样我们就得到了一个一元一次方程。
把这个一元一次方程解出来,得到其中一个未知数的值。
代入到方程组中其中一个方程,就得到了一个未知数的值,到这里,方程组就被我们解出来了。
加减消元法。
得到一个二元一次方程组,我们通过乘以一个数,想办法把两个方程中其中相对应的一个未知数的系数化为相同相反的数。
然后让这两个式子做差或和,便可以消去一个未知数,得到一个一元一次方程,以下步骤和代入消元法里面的一样。
拓展阅读:二元一次方程组常考应用题型
行程问题:速度×时间=路程
工程问题:工作效率×工作时间=工作量
产品配套问题:加工总量成比例
航速问题:此类问题分为水中航速和风中航速两类
顺流(风):航速=静水(无风)中的速度+水(风)速
逆流(风):航速=静水(无风)中的速度--水(风)速
利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%。
二元一次方程组怎么解
二元一次方程组怎么解
二元一次方程组是由两个含有两个未知数的方程组成的,通常表示为ax+by=c和dx+ey=f。
要解决这个方程组,需要使用代数方法来消除其中一个未知数,然后求解另一个未知数。
最常用的方法是消元法,即将其中一个方程中的一个未知数表示成另一个未知数的函数,然后将其代入另一个方程中,得到只含有一个未知数的方程,最终求解出这个未知数。
然后再将求得的未知数代入原来的方程中,求解出另一个未知数。
需要注意的是,有时候解方程组会出现无解或无穷解的情况,这时需要进行特殊的处理。
- 1 -。
二元一次方程组及其解法
二元一次方程组及其解法
二元一次方程组是由两个含有两个未知数的等式组成的方程组,通常的一般式表示为:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f 都是已知数,x、y 都是未知数。
解法有以下几种:
1. 消元法:通过变换方程式将一个未知数消去,再代入另一个方程求解。
2. 代入法:选择其中一个方程,将其中一个未知数表示成另一个未知数的函数,代入另一个方程中求解。
3. 公式法:利用二元一次方程组的公式解法求解。
4. 矩阵法:用矩阵运算的方法求解方程组。
以上四种方法都可以求得二元一次方程组的解,一般解的形式为一个有序二元组 (x, y)。
第10讲---二元一次方程组的解法精选全文完整版
可编辑修改精选全文完整版第八讲 二元一次方程组的解法一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入法 2.加减法二、典例剖析专题一:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例3、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x⎪⎩⎪⎨⎧=+=+15251102y x y x ⎩⎨⎧=+=-1023724y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=专题二:有关二元一次方程组的解:例4、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.(2)二元一次方程3a +b =9在正整数范围内的解的个数是_________.(3)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =________(4)若方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值。
二元一次方程组的解法解析
考点名称:二元一次方程组的解法∙(一)二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。
∙∙(二)二元一次方程组解的情况:一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
求方程组的解的过程,叫做解方程组。
一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:1、有一组解。
如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。
如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3、无解。
如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。
可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。
当a/d=b/e=c/f 时,该方程组有无数组解。
当a/d=b/e≠c/f 时,该方程组无解。
∙∙(三)二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c>0)一、消元法:1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;②将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出x 或y 值;④将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组:x+y=5①{6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即y=59/7把y=59/7代入③,得x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。
应用题二元一次方程组的解法
应用题二元一次方程组的解法二元一次方程组是数学中常见的问题,用于解决两个未知数的关系。
它可以表示为以下形式:方程1:ax + by = c方程2:dx + ey = f其中,a、b、c、d、e、f是已知的数,x、y是要求解的未知数。
为了求解这个方程组,我们可以使用以下几种方法:1. 消元法:通过将两个方程相加或相减,消去其中一个未知数从而得到另一个未知数的值。
具体步骤如下:- 将其中一个方程乘以适当的常数,使得两个方程的某个系数相等(通常是系数a或d);- 将两个方程相加或相减,消去相同的系数所对应的未知数;- 解得消去后的方程,求解得到一个未知数的值;- 将求得的未知数代入其中一个原方程中,求解另一个未知数的值。
2. 代入法:通过将其中一个方程的一个未知数表示为另一个未知数的函数,然后代入另一个方程中求解未知数的值。
具体步骤如下:- 将其中一个方程表示为未知数的函数,如假设x = g(y);- 将得到的函数代入另一个方程中,得到只含有一个未知数的方程;- 解得代入后的方程,求解得到一个未知数的值;- 将求得的未知数代入原先的函数中,求解另一个未知数的值。
3. Cramer法则:Cramer法则利用矩阵理论求解二元一次方程组。
具体步骤如下: - 构建矩阵A,其中A的第一列为方程组中x的系数,第二列为y的系数;- 构建向量B,其中B为方程组的常数项组成的列向量;- 求解A的行列式D;- 将矩阵A中的第i列替换为B,得到新的矩阵Ai;- 求解Ai的行列式Di;- 未知数x的值等于Di除以D,未知数y的值等于Dy除以D。
以上是三种常用的解二元一次方程组的方法,通过这些方法可以准确地求得方程组的解。
在实际应用中,我们可以根据具体问题选择合适的方法来解决方程组,以满足问题的需求。
总结起来,二元一次方程组的解法包括消元法、代入法和Cramer法则,每种方法都有其独特的求解思路和步骤。
掌握这些方法,我们可以更好地解决实际问题中涉及到的二元一次方程组。
二元一次方程组解法详解
二元一次方程组解法详解一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式.6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有()①②③④mn+m=7 ⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2 B.-2 C.±2 D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,晨旭教育培训中心所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.晨旭教育培训中心又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x 的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b的值.题设的已知条件是两个方程组有相同的解。
解二元一次方程组的方法总结
解二元一次方程组的方法总结在数学中,二元一次方程组是由两个未知数的两个一次方程组成的方程组。
解二元一次方程组可以通过多种方法进行,本文将对常用的三种方法进行总结:代入法、消元法和Cramer法。
一、代入法代入法是解二元一次方程组中最基本的方法之一。
其基本思路是先解出其中一个方程中的一个未知数,然后将该未知数的值代入另一个方程中求解另一个未知数。
具体步骤如下:1. 选择一个方程,将其中一个未知数表示为另一个未知数的函数。
2. 将该表示式代入另一个方程中,得到一个只含有一个未知数的一次方程。
3. 解出该未知数的值。
4. 将得到的未知数的值代入步骤1中找到的表示式中,求解另一个未知数。
二、消元法消元法是解二元一次方程组中常用的一种方法。
其基本思路是通过适当的运算将方程组中的一个未知数的系数相消,从而转化为只含有一个未知数的方程。
具体步骤如下:1. 比较两个方程中未知数的系数,选择一个系数相等的未知数,使其相加或相减后系数为0。
2. 将两个方程中选中的未知数相加或相减,消去该未知数的项,得到只含有一个未知数的一次方程。
3. 解出该未知数的值。
4. 将得到的未知数的值代入其中一个原始方程中,求解另一个未知数。
三、Cramer法Cramer法是解二元一次方程组的另一种常用方法,它利用了行列式的性质进行求解。
该方法的主要思路是构建一个系数行列式,通过计算行列式的值来求解未知数。
具体步骤如下:1. 根据方程组的系数,构建一个增广矩阵。
2. 计算增广矩阵的系数行列式和各个未知数对应的余子式。
3. 将系数行列式除以未知数对应的余子式,得到各个未知数的值。
总结:解二元一次方程组的方法有代入法、消元法和Cramer法三种常用方法。
对于不同的情况,选择合适的方法可以更高效地求解方程组。
在实际应用中,针对具体问题的特点和要求选择合适的方法进行解题,可以提高解题的效率和准确性。
通过本文对这三种方法的总结,相信读者能够更好地掌握解二元一次方程组的技巧,提高解题能力。
(完整版)二元一次方程组的常见解法
二元一次方程组的常见解法二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.2x+5y=-21①例1、解方程组x+3y=8 ②解由②得:x=8-3y ③把③代入①得2(8-3y)+5y=-21解得:y=37把y=37代入③得:x=8-3×37=-103x=-103所以这个方程组的解是y=37二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.3x-4y=9①例2、解方程组9x-10y=3②解由①得3x=4y+9 ③把③代入②得3(4y+9)-10y=3解得y=-12把y=-12代入③得3x=4×(-12)+9解得x=-13x=-13所以方程组的解是y=-12三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.2x+3y=14 ①例3、解方程组4x-5y=6②解由①×2得4x+6y=28 ③③-②得:11y=22解得y=2把y=2代入②得4x-5×2=6解得x=4x=4所以方程组的解为y=2四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.3(x+2)+(y-1)=4 ①例4 解方程组3(x+2)+(1-y)=2 ②解①-②得(y-1)-(1-y)=4-2整理得2y=4解得y=2把y=2 代入①得3(x+2)+(2-1)=4整理得3x+7=4解得x=-1x=-1所以方程组的解为y=2解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.。
二元一次方程组的解法步骤
二元一次方程组的解法步骤二元一次方程组的解法步骤第 1 篇代入消元法(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;(5)把这个方程组的解写成x=c y=d的形式。
换元法解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。
该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。
加减消元法(1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;(5)把这个方程组的解写成x=c y=d的形式。
二元一次方程组的解法步骤第 2 篇教学目的1、使学生巩固等式与方程的概念。
2、使学生掌握等式的*质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。
教学分析重点:熟练掌握一元一次方程的解法。
难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。
突破:多练习,多比较,多思考。
教学过程一、复习1、什么是一元一次方程?一元一次方程的标准形式是什么?它的解是什么?2、等式的*质是什么?(要求说出应注意的两点)3、解一元一次方程的基本步骤是什么?以解方程-2x+=为例,说明解一元一次方程的基本步骤与注意点,并口头检验。
二、新授1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲二元一次方程组的解法
搜集整理:百汇教育数学组陈超【知识要点】
1.二元一次方程组的有关概念
(1)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
例如3x+4y=9。
(2)二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。
对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值。
因此,任何一个二元一次方程都有无数多个解。
由这些解组成的集合,叫做这个二元一次方程的解集。
(3)二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组。
一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
2.二元一次方程组的解法
(1)代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法。
(2)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法。
代入消元法将在《七年级数学(上册·上海科技出版社)》教材中学习到。
本次课,我们主要讲解加减消元法。
【典型例题】
用加减消元法解下列方程组:
例1、 x-5y = 0 ①
3x+5y =16 ②
解:由①+②得:x+3x=16
即4x=16
所以x=4
把x=4代入②得:3×4+5y=16
解得 y=0.8 所以原方程组的解为
x=4
y=0.8 例2、2x+2y=11 ①
2x+7y=36 ②
解:由②-①得:7y-2y=36-11
即5y=25
所以y=5
把y=5代入①得:2x+2×5=11
解得 x=0.5 所以原方程组的解为
x=0.5
y=5
{ {{ {
例3、 4x -2y =5 ① 4x +9y =16 ②
解:由②-①得:9y -(-2y )=16-5 即9y +2y =11 解得 y =1 把y =1代入①得:4x -2×1=5 解得 x =4
7
所以原方程组的解为 x =4
7
y =1
例4、 4x -6y =8 ① 4x -3y =17 ②
解:由②-①得:(-3y )-(-6y )=17-8 即-3y +6y =9 解得 y =3 把y =3代入①得:4x -6×3=8 解得 x =6.5 所以原方程组的解为 x =6.5 y =3
例5、 2x -3y =5 ① 3x +9y =12 ②
解:由①×3+②得:6x +3x =15+12 即9x =27 解得 x =3 把x =3代入②得:3×3+9y =12 解得 y =3
1 所以原方程组的解为 x =3 y =
3
1 例6、 3x -2y =8 ① 4x -3y =5 ②
解:由①×4-②×3得:
(-8y )-(-9y )=32-15 即-8y +9y =17 解得 y =17 把y =17代入②得:4x -3×17=5 解得 x =14 所以原方程组的解为 x =14 y =17
【技能测试】
(1)37x y x y -=⎧⎨
+=⎩ (2)⎩⎨
⎧=+=-8
3120
34y x y x
{
{{
{{
{
{
{
(3)⎩⎨
⎧=+=-1464534y x y x (4)⎩⎨
⎧=-=+1
235
4y x y x
(5)⎩⎨
⎧=+=+1
32645y x y x (6)⎩⎨
⎧=+=-17
327
23y x y x
【拓展提高】
(1)⎩⎨
⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=
18
433
2y x y x
(3)⎩⎨
⎧=--=--0232560
17154y x y x (4)⎪⎩⎪⎨
⎧=-=+2
3432
1332y x y x
(5)⎪⎩⎪⎨⎧=-+=+1
323
241y x x y (6)⎩⎨
⎧=+=+241
2123243
2321y x y x。