高中 圆与直线的典型大题

合集下载

直线与圆的方程试题——含答案

直线与圆的方程试题——含答案

高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y x C. 01=-+y x D. 052=--y x2.圆012222=+--+y x y x上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+3.圆0422=-+x y x在点)3,1(P 处的切线方程( )A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x4.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( )A .1-或3 B .1或3 C .2-或6 D .0或45.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y x C .03222=-++x y xD .0422=-+x y x6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22- C .12- D .12+7.两圆229x y +=和228690x y x y +-++=的位置关系是( )A .相离B .相交C .内切D .外切8.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y xB .0=-y x C .01=++y x D .0=+y x9.若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2 10.若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23-D .1或3- 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A.4)1()3(22=-++y x B. 4)3()1(22=-++y xC.4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是( )A .相交B .相交或相切C .相交或相切或相离D .与k 值有关二、填空题(每小题4分,共16分)13.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 。

直线与圆(典型例题和练习题)

直线与圆(典型例题和练习题)

直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。

直线与圆大题

直线与圆大题

直线与圆大题研读1.已知过点)1,0(A 且斜率为k 的直线l 与圆1)3()2(:22=-+-y x C 交于N M ,两点.(1)求k 的取值范围;(2)若12=⋅ON OM ,其中O 为坐标原点,求||MN .2.在以O 为原点的直角坐标系中,点)3,4(-A 为OAB △的直角顶点,已知||2||OA AB =,且点B 的纵坐标大于0.(1)求AB 的坐标;(2)求圆026:22=++-y y x x C 关于直线OB 对称的圆的方程.3.已知直线m x l =:(2-<m )与x 轴交于A 点,动圆M 与直线l 相切,并且与圆4:22=+y x O 外切,记动圆圆心的轨迹为曲线C .(1)求曲线C 的方程;(2)若过原点且倾斜角为3π的直线与曲线C 交于Q P ,两点,请问是否存在以PQ 为直径的圆经过点A ?若存在,求出m 的值;若不存在,说明理由.4.已知圆02422=+--+m y x y x 和直线032=-+y x 相交. (1)若相交所得弦长为554,求实数m 的值; (2)是否存在m ,使直线与圆交于Q P ,两点,且OQ OP ⊥(O 为坐标原点)?若存在,求出m 的值;若不存在,请说明理由.C 5.如图,在ABC Rt △中,︒=∠90BAC ,边AB 所在直线的方程为063=--y x ,点)1,1(-T 在边AC 所在的直线上,斜边BC 的中点为)0,2(M .(1)求边BC 所在直线的方程;(2)若动圆P 过点)0,2(-N ,且与ABC Rt △的外接圆相交所得公共弦长为4,求动圆P 的半径最小时圆P 的方程.6.有定点)4,6(P 及定直线x y l 4: ,Q 是l 上在第一象限内的点,PQ 交x 轴的正半轴于M 点,请问点Q 在说明位置时,OMQ △的面积最小,并求出最小值.7.过点)1,3(-P 的直线l 与x 轴交于)0,(a A (2<a 且0≠a ),与y 轴交),0(b B (0≠b ),O 为坐标原点,若AOB △的面积为2,求直线l 的方程.8.已知平面内一封闭曲线C 上的任意点M 与两个定点)0,0(O 、)3,0(P 的距离之比为2.(1)求封闭曲线C 的方程;(2)过曲线上的一点N 作圆1:22=+y x O 的两条切线,切点分别为B A ,,切线NA 、NB 分别交x 轴于E D ,两点.①若N 的左边为)5,3(,求||DE 的长度;②是否存在这样的点N ,使得线段DE 被曲线C 在点N 处的切线平分?若存在,求出点N 的坐标;若不存在,说明理由.9.已知一个圆的圆心C 在直线x y =上,与x 轴交于Q P ,两点,且CQ CP ⊥.又圆C 截直线02=+-y x 所得的弦长为62.(1)求圆C 的方程;(2)若圆C 上至少有三个不同的点到直线0:=+By Ax l 的距离为2,求直线l 的倾斜角θ的取值范围.10.已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于N M ,两点,且ON OM ⊥(O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.11.已知以点)2,1(-A 为圆心的圆与直线072:1=++y x l 相切,过点)0,2(-B 的动直线l 与圆A 相交于N M ,两点,Q 是MN 的中点,直线l 与1l 相交于点P .(1)求圆A 的方程;(2)当192=MN 时,求直线l 的方程;(3)||||BP BQ ⋅是否为定值?如果是,求出该定值;如果不是,请说明理由.12.已知过点)2,0(-P ,且斜率为k 的直线l 与圆022210:22=+--+y x y x C 交于B A 、两点,若PB PA 35=,求k 的值.13.在平面直角坐标系xOy 中,已知圆4)1()3(:221=-++y x C 和圆4)5()4(:222=-+-y x C .(1)若点M 在圆1C 上,点N 在圆2C 上,求||MN 的取值范围;(2)设P 为平面上的点,满足:存在过点P 的无数多对相互垂直的直线1l 和2l ,他们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.14.已知圆C 的方程为4)4(22=-+y x ,点O 是坐标原点.直线kx y l =:与圆交于N M ,两点.(1)求k 的取值范围;(2)设),(n m Q 是线段MN 上的点,且222||1||1||2ON OM OQ +=.请将n 表示成m 的函数.。

高考数学专题《直线与圆的位置关系》习题含答案解析

高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。

高中直线与圆练习题

高中直线与圆练习题

高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。

2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。

3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。

三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。

2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。

3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。

4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。

5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。

历年高考直线与圆真题以及解析

历年高考直线与圆真题以及解析
(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得 • =(1+k2) + +4=6,解可得k的值,验证是否满足△>0,即可得答案.
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即

高中数学直线与圆习题精讲精练

高中数学直线与圆习题精讲精练

圆与直线一、典型例题例1、已知定点P (6,4)与定直线 1:y=4x ,过P 点的直线 与 1交于第一象限Q 点,与x 轴正半轴交于点M ,求使△OQM 面积最小的直线 方程。

分析:直线 是过点P 的旋转直线,因此是选其斜率k 作为参数,还是选择点Q (还是M )作为参数是本题关键。

通过比较可以发现,选k 作为参数,运算量稍大,因此选用点参数。

设Q (x 0,4x 0),M (m ,0) ∵ Q ,P ,M 共线 ∴ k PQ =k PM ∴m 64x 6x 4400-=--解之得:1x x 5m 00-=∵ x 0>0,m>0 ∴ x 0-1>0 ∴ 1x x 10mx2x 4|OM |21S 020OMQ -===∆令x 0-1=t ,则t>0 )2t1t (10t)1t (10S 2++=+=≥40当且仅当t=1,x 0=11时,等号成立 此时Q (11,44),直线 :x+y-10=0评注:本题通过引入参数,建立了关于目标函数S △OQM 的函数关系式,再由基本不等式再此目标函数的最值。

要学会选择适当参数,在解析几何中,斜率k ,截距b ,角度θ,点的坐标都是常用参数,特别是点参数。

例2、已知△ABC 中,A (2,-1),B (4,3),C (3,-2),求:(1)BC 边上的高所在直线方程;(2)AB 边中垂线方程;(3)∠A 平分线所在直线方程。

分析: (1)∵ k BC =5∴ BC 边上的高AD 所在直线斜率k=51-∴ AD 所在直线方程y+1=51-(x-2)即x+5y+3=0(2)∵ AB 中点为(3,1),k AB =2∴ AB 中垂线方程为x+2y-5=0(3)设∠A 平分线为AE ,斜率为k ,则直线AC 到AE 的角等于AE 到AB 的角。

∵ k AC =-1,k AB =2 ∴k21k 2k11k +-=-+∴ k 2+6k-1=0∴ k=-3-10(舍),k=-3+10∴ AE 所在直线方程为(10-3)x-y-210+5=0评注:在求角A 平分线时,必须结合图形对斜率k 进行取舍。

高二数学直线与圆的位置关系试题

高二数学直线与圆的位置关系试题

高二数学直线与圆的位置关系试题1.直线x-y+m=0与圆x2+y2-2x-1=0有两个不同的交点的充要条件为().A.m<1B.-3<m<1C.-4<m<2D.0<m<1【答案】B【解析】联立直线与圆的方程得:,消去y得:2x2+(2m-2)x+m2-1=0,由题意得:△=(2m-2)2-8(m2-1)=-4(m+1)2+16>0,变形得:(m+3)(m-1)<0,解得:-3<m<1,故选B.【考点】直线与圆相交的性质;以及充分必要条件的判断.2.直线与圆的位置关系是A.相交B.相切C.相离D.与值有关【答案】D【解析】圆心为,所以圆心到直线的距离为,所以与值有关,故选D.【考点】直线与圆的位置关系.3.若直线与曲线有公共点,则b的取值范围是()A.B.C.D.【答案】C【解析】曲线表示半圆,如图所示,,当直线过时,;当直线与圆弧相切时,,因此使直线与曲线有公共点的b的取值范围是.【考点】直线与圆位置关系4.已知两点、,点为坐标平面内的动点,满足.(1)求动点的轨迹方程;(2)若点是动点的轨迹上的一点,是轴上的一动点,试讨论直线与圆的位置关系.【答案】(1)(2)当时,直线与圆相交;当时,直线与圆相切;当时,直线与圆相离.【解析】(1)直接法求轨迹:根据题意列出方程化简。

(2)将点代入求,求出只直线方程注意讨论其斜率存在与否。

求圆心到直线的距离,根据距离与半径的关系判断直线与圆的关系。

试题解析:(1)设,则,,. 2分由,得2, 4分化简得.所以动点的轨迹方程为. 5分(2)由点在轨迹上,则,解得,即. 6分当时,直线的方程为,此时直线与圆相离. 7分当时,直线的方程为,即, 8分圆心到直线的距离,令,解得;令,解得;令,解得.综上所述,当时,直线与圆相交;当时,直线与圆相切;当时,直线与圆相离. 14分【考点】1求轨迹方程;2直线与圆的位置关系。

5.已知圆.(1)若直线过点,且与圆相切,求直线的方程;(2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆的方程.【答案】(1)或;(2)或.【解析】(I)由直线l1过定点A(-1,0),故可以设出直线的点斜式方程,然后根据直线与圆相切,圆心到直线的距离等于半径,求出k值即可,但要注意先讨论斜率不存在的情况,以免漏解.(2)圆D的半径为4,圆心在直线l2:2x+y-2=0上,且与圆C内切,则设圆心D(a,2-2a),进而根据两圆内切,则圆心距等于半径差的绝对值,构造出关于a的方程,解方程即可得到答案.试题解析:(1)①若直线的斜率不存在,直线:,符合题意. 2分②若直线的斜率存在,设直线为,即.由题意得,, 4分解得,∴直线:. 7分∴直线的方程是或. 8分(2)依题意,设,由题意得,圆C的圆心圆C的半径,. 12分∴,解得,∴或. 14分∴圆的方程为或. 16分【考点】直线与圆的位置关系.6.圆与直线的交点的个数是_______【答案】2【解析】直线过定点,把点代入圆的方程得,所以点在圆的内部,所以直线过圆内一点,所以直线与圆有2个交点.【考点】直线过定点,直线与圆的位置关系7.若圆关于直线对称,则由点向圆所作的切线长的最小值是( )A.B.C.D.【答案】C【解析】已知圆的圆心坐标为,圆的半径为,若圆关于直线对称,那么有:,设切线长为,那么,当时,最小,最小值为,所以切线长的最小值是.【考点】直线与圆的位置关系.8.设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.【答案】或【解析】求圆的方程关键就是要找到三个条件,求出相应的,,.由①利用常用的半弦长、半径、弦心距三者构成的三角形可得,由②条件可得劣弧所对的圆心角为,所以可得,由③可得.通过解方程可求出,,.试题解析:设圆心为,半径为r,圆的方程为由条件①:,由条件②:,从而有:.由条件③:,解方程组可得:或,所以.故所求圆的方程是或.【考点】1.圆中的重要三角形.2.点到直线的距离.3.弧长与圆心角的关系.9.已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.(Ⅰ)求证:△OAB的面积为定值;(Ⅱ)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.【答案】(1)(2)【解析】解(1),.设圆的方程是令,得;令,得,即:的面积为定值.……5分(2)垂直平分线段.,直线的方程是.,解得:……7分当时,圆心的坐标为,,此时到直线的距离,圆与直线相交于两点.……10分当时,圆心的坐标为,,此时到直线的距离圆与直线不相交,不符合题意舍去.圆的方程为……10分【考点】三角形的面积,圆的方程点评:解决的关键是根据截距来得到面积的表示,以及借助于圆心和半径求解圆的方程,属于基础题。

高二数学直线与圆专题复习

高二数学直线与圆专题复习

高二数学直线与圆专题复习卷一、选择题1.已知圆22:210C x y y +--=上任一点(,)P x y ,其坐标均使不等式x y m ++≥0恒成立,则实数m 的取值范围是( )A.[1,)+∞B.(]-∞,1C.[3,)-+∞D. (]-∞,-32. 直线3y kx =+与圆22(3)(2)4x y -+-=相交于M N 、两点,若23MN ≥k 的取值范围是( ). A.3,04⎡⎤-⎢⎥⎣⎦ B.[)3,0,4⎛⎤-∞-⋃+∞ ⎥⎝⎦ C.33⎡⎢⎣⎦ D.2,03⎡⎤-⎢⎥⎣⎦3.已知圆的方程为22680x y x y +--=,设该圆过点(3,5)的最长弦和最短弦分别AC BD 和,则四边形ABCD 的面积为( ) A.1066 C.30664.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称, 则圆2C 的方程为( ).A.22(2)(2)1x y ++-=B.22(2)(2)1x y -++=C.22(2)(2)1x y +++=D.22(2)(2)1x y -+-=5.已知M (-1,0),N (1,0),在直线340x y m -+=上存在点P ,满足0PM PN ⋅=,则m 的取值范围是( ).A.(,5][5,)-∞-⋃+∞B. (,25][25,)-∞-⋃+∞C.[5,5]-D. [25,25]-6.已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在二、填空题7. 自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆224470x y x y +--+=相切,则光线l 与m 所在直线方程为__________.8 .设直线ax -y +3=0与圆22(1)(2)4x y -+-=相交于A ,B 两点,且弦AB 的长为a = .9. 已知直线:60l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 距离的最小值为__________.10. 已知圆M 与圆2220x y x +-=相外切,并且与直线0x +=相切于点(3,Q ,则圆M 的方程为__________.11. 如果圆()22()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围是 .12.设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是13.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 .14.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是15.与直线2x+y-1=0关于点(1,0)对称的直线的方程是16.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是17.已知{(,)|0}M x y y y ==≠,{(,)|}N x y y x b ==+,若M N ≠∅,则b 的取值范围是18.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是19.设圆222(3)(5)(0)x y r r -++=>上有且仅有两个点到直线4320x y --=的距离等于1,则圆半径r 的取值范围是 .20.已知直线1:sin 10l x y θ+-=,2:2sin 10l x y θ++=,若12//l l ,则θ= .三、解答题21.已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足PQ PA =.(1).求实数,a b 间满足的等量关系;(2).求线段PQ 长的最小值;(3).若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取值最小时,圆P 的方程.22.设圆满足:①截y 轴所得弦长为2;②被x3:1;③圆心到直线:20l x y -=的距离为,求该圆的方程.23.、已知直线l :kx -y -3k =0,圆M :x 2+y 2-8x -2y +9=0(1)求证:直线l 与圆M 必相交;(2)当圆M 截l 所得弦最短时,求k 的值,并求l 的直线方程。

直线与圆的典型问题

直线与圆的典型问题
当 r1 r2 d r1 r2 时,两圆相交;
当 r1 r2 d 时,两圆外切;
当 r1 r2 d 时,两圆外离;
当 r1 r2 d 时,两圆内切;
当 r1 r2 d 时,两圆内含.
(3)
弦长 l
具有的关系
r2
d2
l 2
2
二 典型例题
1.直线 3x-4y+6=0 与圆(x-2)2+(y-3)2=4 的位置关系是
13
132
+16,解得 c=10 或 c=-68.
89.自点 P(-6,7)发出的光线 l 射到 x 轴上的点 A 处,被 x 轴反
射,其反射光线所在直线与圆 x2+y2-8x-6y+21=0 相切于点 Q.
求光线 l 所在直线方程.
解:如图所示,作圆 x2+y2-8x-6y+21=0 关于 x 轴的对称圆 x2+y2-8x+6y+21=0,由几何光学原理,知直线 l 与圆 x2+y2-8x +6y+21=0 相切.
110.(本小题满分 12 分)已知圆 x2+y2=4 上一定点 A(2,0),B(1, 1)为圆内一点,P,Q 为圆上的动点.
(1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求线段 PQ 中点的轨迹方程.
解:(1)设 AP 中点为 M(x,y), 由中点坐标公式可知,P 点坐标(2x-2,2y). 因为 P 点在圆 x2+y2=4 上,所以(2x-2)2+(2y)2=4. 故线段 AP 中点的轨迹方程为(x-1)2+y2=1. (2)设 PQ 的中点为 N(x,y). 在 Rt△PBQ 中,|PN|=|BN|, 设 O 为坐标原点,连接 ON(图略), 则 ON⊥PQ, 所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2, 所以 x2+y2+(x-1)2+(y-1)2=4. 故线段 PQ 中点的轨迹方程为 x2+y2-x-y-1=0.

高中数学直线与圆位置关系练习题

高中数学直线与圆位置关系练习题

高中数学直线与圆位置关系练习题1.若直线2x+y+a=0与圆x2+y2+2x-4y=0相切,则a的值为( )A.± 5 B.±5C.3 D.±32.圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是( )A.相交B.外切C.相离D.内切3.(2020·敦化期末)与圆x2+y2+4x-4y+7=0和x2+y2-4x-10y+13=0都相切的直线共有( )A.1条B.2条C.3条D.4条4.在平面直角坐标系内,过点P(0,3)的直线与圆心为C的圆x2+y2-2x-3=0相交于A,B两点,则△ABC面积的最大值是( )A.2 B.4C. 3 D.2 35.[逻辑推理、直观想象]已知过原点的直线l与圆C:x2+y2-6x+5=0相交于不同的两点A,B,且线段AB的中点坐标为D(2,2),则弦长为( )A.2 B.3C.4 D.56.[多选题]若直线l:ax+y+2a=0被圆C:x2+(y-4)2=4截得的弦长为22,则a的值为( )A.-7 B.-1C.7 D.17.[多选题]已知圆C:(x-3)2+(y-3)2=72,若直线l:x+y-m=0垂直于圆C的一条直径,且经过这条直径的一个三等分点,则直线l的方程是( ) A.x+y-2=0 B.x+y-4=0C.x+y-8=0 D.x+y-10=08.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.9.已知AB为圆C:x2+y2-2y=0的直径,点P为直线y=x-1上任意一点,则|PA|2+|PB|2的最小值为________.10.已知直线l过点(1,1),过点P(-1,3)作直线m⊥l,垂足为M,则点M到点Q(2,4)距离的取值范围为________.11.过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程是________________.12.在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.13.已知圆C:x2+y2-8x-6y+F=0与圆O:x2+y2=4相外切,切点为A,过点P(4,1)的直线与圆C交于点M,N,线段MN的中点为Q.(1)求点Q的轨迹方程;(2)若|AQ|=|AP|,点P与点Q不重合,求直线MN的方程及△AMN的面积.14.已知圆C:x2+(y-a)2=4,点A(1,0).(1)当过点A的圆C的切线存在时,求实数a的取值范围;(2)设AM,AN为圆C的两条切线,M,N为切点,当|MN|=455时,求MN所在直线的方程.。

直线和圆习题大全

直线和圆习题大全

辅导题目之二1.已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最大值与最小值之差为 。

2.已知直线0323=-+y x 和圆422=+y x ,则此直线与已知圆的位置关系是__________。

3.圆222430x y x y +++-=上到直线10x y ++= )个.4.求直线l :022=--y x 被圆9)3(22=+-y x C :所截得的弦长为5.对于任意实数a ,点P )2,(a a -与圆C :122=+y x 的位置关系是 ( )6.两圆221:2220C x y x y +++-=,222:4210C x y x y +--+=的公切线有且仅有( )条;7.已知圆C 的方程为2282120x y x y +--+=,求过圆内一点(30),的最长弦和最短弦所在的直线方程,并求这个最长弦和最短弦的长度.8.若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,求实数m 的取值集合。

9.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 .10.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.11.求圆()()22114x y -+-=关于直线:220l x y --=对称的圆的方程。

12.设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于A 、B 两点,且弦AB 的长为32,则=a .13.求经过点(2,1)A -,和直线1=+y x 相切,且圆心在直线x y 2-=上的圆的方程.14.一动点到(4,0)A -的距离是到(2,0)B 的距离的2倍,则动点的轨迹方程( ).15.点(3,3)A -发出的光线l 射到x 轴上被x 轴反射,反射光线与圆22:4470C x y x y +--+=相切,则光线l 所在直线方程为____ __。

直线与圆的方程试题及答案大题

直线与圆的方程试题及答案大题

直线与圆的方程试题及答案大题一、选择题1.设直线过点A(1, 2),斜率为-2,则直线方程是()– A. y = 2x + 3– B. y = -2x + 3– C. 2y = x + 3– D. -2y = x + 3答案:B2.设点A(-1,3)和B(2,-4),则直线AB的斜率为()– A. -1– B. 1– C. 2– D. -2答案:D二、填空题1.过点A(2,1)且与直线y = 2x + 3平行的直线的方程是y = ___________。

答案:2x - 12.过点A(1,-2)且与直线2y = 4x - 3垂直的直线的方程是y = ___________。

答案:-0.5x - 13.过点A(-3,4),斜率为2的直线方程是 y = ___________。

答案:2x + 10三、解答题1.求过点A(2,3)和B(-1,5)的直线方程。

解:直线AB的斜率 m = (5 - 3)/ (-1 - 2) = 2 / -3 = -2/3直线方程的一般形式为y = mx + c,其中c为常数。

将坐标A(2,3)代入直线方程,得到3 = (-2/3) * 2 + c => 3 = -4/3 + c。

解得c = 3 + 4/3 = 13/3,所以直线方程为y = -2/3x + 13/3。

2.已知直线的斜率为-1/2,过点A(3,4),求直线的方程。

解:直线方程的斜率为-1/2,过点A(3,4),所以直线方程可以表示为y = (-1/2)x + c。

将点A(3,4)代入直线方程,得到4 = (-1/2) * 3 + c => 4 = -3/2 + c。

解得c = 4 +3/2 = 11/2,所以直线方程为y = (-1/2)x + 11/2。

四、应用题1.在直角坐标系中,过点A(2,3)和B(-1,5)的直线与y轴交于点C,求点C的坐标。

解:由题意可知,过点A(2,3)和B(-1,5)的直线与y轴交于点C,所以C的横坐标为0。

高中圆与直线的典型大题

高中圆与直线的典型大题

已知方程x2+y2-2x-4y+m=0。

(Ⅰ)若此方程表示圆,求m的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;(Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程。

解:(Ⅰ),D=-2,E=-4,F=m,=20-4m>0,解得:m<5。

(Ⅱ),将x=4-2y代入得,∴,,∵OM⊥ON,得出:,∴,∴。

(Ⅲ)设圆心为(a,b),,半径,∴圆的方程为。

法2.2. 已知圆C方程为x²+y²-2x-4y-20=0,直线l的方程为:(2m+1)x+(m+1)y-7m-4=0. 证明:无论m取何圆C恒有两个公共点。

2、求直线l被圆C截得的线段的最短长度,并求出此时m的值1、将直线方程化为:m(2x+y-7)+(x+y-4)=0,不论m取何值,直线总过定点,令2x+y-7=0,x+y-4=0解得x=3,y=1,所以直线过定点(3,1),将点(3,1)代入圆方程左边可知<0,所以点(3,1)在圆内所以直线与圆相交,直线与圆恒有两个公共点2、当直线与过A(3,1)点的直径垂直时,直线l被圆C截得的线段的最短,圆心C(1,2),AC的斜率= -1/2,所以L的斜率=2,所以 - (2m+1)/(m+1)=2,所以m= - 3/43、已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.(Ⅰ)证明:不论m为何值时,直线l和圆C恒有两个交点;(Ⅱ)判断直线l被圆C截得的弦何时最长、何时最短?并求截得的弦长最短时m的值以及最短长度.4.已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0.(Ⅰ)求圆C的圆心坐标和圆C的半径;(Ⅱ)求证:直线l过定点;(Ⅲ)判断直线l被圆C截得的弦何时最长,何时最短?并求截得的弦长最短时m的值,以及最短长度.(I)将圆的方程化为标准方程,可得圆C的圆心坐标和圆C的半径;(Ⅱ)分离参数可得(2x+y-7)m+(x+y-4)=0,再建立方程组,可得结论;(Ⅲ)直线l被圆C截得的弦最长时,圆心(1,2)在直线l上,圆C截得的弦为直径;当圆心C(1,2)与A(3,1)的连线与l垂直时,直线l被圆C截得的弦最短,由此可得结论.5. 求与圆x2+y2-2x=0外切,且与直线x+根号3y=0相切与点(3,-根号3)的圆的方程所求圆心(x,y),半径r圆x2+y2-2x=0圆心(1,0),半径1 圆心距等于半径和(x-1)^2+y^2=(1+r)^2到直线距离r|x+√3y|/2=r√[(x-1)^2+y^2]=|x+√3y|/2+1化简:x^2-2√3xy-y^2-8x-√3y-2=0或x^2-2√3xy-y^2+√3y-2=0。

高三数学《直线与圆》专题测试题含答案

高三数学《直线与圆》专题测试题含答案

高三数学《直线与圆》专题测试题含答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0 D .x -3y -4=03.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C.3D .24.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条5.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0 6.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0C .x +y +1=0 D .x +y =07.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.438.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=59.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]10.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .26B .4 C.6D .211.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离12.已知两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49第Ⅱ卷(非选择题 共90分)二、填空题:本大题共四小题,每小题5分。

高中圆与直线练习题及答案

高中圆与直线练习题及答案

一、选择题:1.直线x-3y+6=0的倾斜角是( ) A 600 B 1200 C 300 D 15002. 经过点A(-1,4),且在x 轴上的截距为3的直线方程是( )A x+y+3=0B x-y+3=0C x+y-3=0D x+y-5=03.直线(2m 2+m-3)x+(m 2-m)y=4m-1与直线2x-3y=5平行,则的值为( )A-23或 1 B1 C-89D-89或1 4.直线ax+(1-a)y=3与直线(a-1)x+(2a+3)y=2相互垂直,则a 的值为( )A -3B 1C 0或-23D 1或-35.圆(x-3)2+(y+4)2=2关于直线x+y=0对称的圆的方程是( )A. (x+3)2+(y-4)2=2 B. (x-4)2+(y+3)2=2C .(x+4)2+(y-3)2=2 D. (x-3)2+(y-4)2=26、若实数x 、y 满意3)2(22=++y x ,则xy的最大值为( ) A.3 B. 3- C.33 D. 33- 7.圆1)3()1(22=++-y x 的切线方程中有一个是 ( )A .x -y =0B .x +y =0C .x=0D .y =08.若直线210ax y ++=与直线20x y +-=相互垂直,那么a 的值等于( )A .1B .13- C .23- D .2-9.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为 ( )A.4± B.±C.2±D.10. 假如直线12,l l 的斜率分别为二次方程2410x x -+=的两个根,那么1l 与2l 的夹角为( )A .3πB .4πC .6πD .8π 11.已知{(,)|0}M x y y y ==≠,{(,)|}N x y y x b ==+,若MN ≠∅,则b ∈A.[-B.(- C.(- D.[-12.一束光线从点(1,1)A -动身,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是A .4 B.5C.1 D.二、填空题:13过点M (2,-3)且平行于A (1,2),B(-1,-5)两点连线的直线方程是14、直线l 在y 轴上截距为2,且与直线l `:x+3y-2=0垂直,则l 的方程是15.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为________.16圆224460x y x y +-++=截直线50x y --=所得的弦长为 _________17.已知圆M :(x +cos θ)2+(y -sin θ)2=1,直线l :y =kx ,下面四个命题:(A )对随意实数k 与θ,直线l 和圆M 相切;(B )对随意实数k 与θ,直线l 和圆M 有公共点;(C )对随意实数θ,必存在实数k ,使得直线l 与和圆M 相切;(D )对随意实数k ,必存在实数θ,使得直线l 与和圆M 相切.其中真命题的代号是______________(写出全部真命题的代号).18已知点M (a ,b )在直线1543=+y x 上,则22b a +的最小值为三、解答题: 19、平行于直线2x+5y-1=0的直线l 与坐标轴围成的三角形面积为5,求直线l 的方程。

高二数学圆与直线的典型练习题

高二数学圆与直线的典型练习题

高二数学圆与直线的典型练习题1. 已知直线L:2x + y – 5 = 0与圆C:x^2 + y^2 – 6x – 2y – 7 = 0,求它们的交点坐标。

解析:将直线L的方程代入圆C的方程,得到:(2x + y – 5)^2 + (x^2 + y^2 – 6x – 2y – 7) = 0化简得:5x^2 + 5xy – 15x + y^2 – 12y + 11 = 0再配方得:(x + y)^2 + 5(x + y) – (3x + 4y + 6) = 0设:m = x + y,n = 3x + 4y + 6代入上式:m^2 + 5m – n = 0此为一元二次方程,求解可得m和n的值得到x和y的值后,即可求得交点坐标。

2. 已知圆C1的圆心为A(3, –4),与直线L:3x – 4y + 5 = 0相切于点P,直线L的斜率为2,求直线AP的方程。

解析:直线L与圆C1相切于点P,说明PA⊥L,即斜率乘积为-1,即直线AP的斜率为-1/2。

已知点A(3, –4)和斜率-1/2,可得直线AP的方程为:y + 4 = (-1/2)(x – 3)3. 已知圆C的方程为x^2 + y^2 + 4x – 6y – 12 = 0,求该圆的圆心坐标及半径长度。

解析:将方程变换为标准形式,得到:(x + 2)^2 + (y – 3)^2 = 25圆心坐标为(-2, 3),半径长度为5。

4. 已知圆C的方程为(x – 2)^2 + (y + 3)^2 = 16,直线L的方程为2x – 3y + 5 = 0,求直线L与圆C的交点坐标。

解析:将直线L的方程代入圆C的方程,得到:(x – 2)^2 + (y + 3)^2 = 16化简得:4x^2 – 12xy + 4y^2 – 8x + 12y + 4 = 0再配方得:(2x – 3y + 2)^2 + 3(x – y + 2) – 16 = 0设:m = 2x – 3y + 2,n = x – y + 2代入上式:m^2 + 3n – 16 = 0此为一元二次方程,求解可得m和n的值得到x和y的值后,即可求得交点坐标。

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)一、两直线的位置关系1求直线斜率的基本方法(1) 定义法:已知直线的倾斜角为a,且a工90°,贝U斜率k = ta n a .y2 — y i⑵公式法:已知直线过两点P i(x i,y i) ,P2(X2,y2),且X i M X2,则斜率k = .X2 一X i2. 判断两直线平行的方法(1) 若不重合的直线11与12的斜率都存在,且分别为k i, k2,贝U k i= k2? 11//I 2.(2) 若不重合的直线I i与I 2的斜率都不存在,其倾斜角都为90°,则I i//l2.3. 判断两直线垂直的方法(1) 若直线I i与丨2的斜率都存在,且分别为k i, k2,贝U k i • k2=—i? I i±12.(2) 已知直线I i与12,若其中一条直线的斜率不存在,另一条直线的斜率为0,则I i 丄I 2.i. 已知两条直线I i:ax —by+ 4= 0和12:(a—i)x + y + b = 0,求满足下列条件的a, b的值.(1) I i 丄12 且I i 过点(—3,—i);(2) I i / I 2,且坐标原点到这两条直线的距离相等.[解]⑴••• Ii丄I2,a(a—i) —b = 0,①又丨i过点(一3, —i),—3a + b+4 = 0.②a= 2,解①②组成的方程组得.cb = 2.(2) I 2的斜率存在,I i / I 2 ,.直线I i的斜率存在.a--k i = k2,即二=i —a.③b又•••坐标原点到这两条直线的距离相等,I i // I 2, .11, 12在y轴上的截距互为相反数,即b = — ( 一 b ).④经检验此时的l 1与丨2不重合,故所求值为2a=- 或 3b = 2.注:已知两直线 11: A i X + By + C = 0 和 12: Ax + By + C 2= 0(1) 对于I 1//I 2的问题,先由AB — AB i = 0解出其中的字母值,然后代回原 方程检验这时的I l 和I 2是否重合,若重合,舍去.⑵ 对于丨1丄12的问题,由AiA +0解出字母的值即可.2. 直线ax + 2y — 1 = 0与直线2x — 3y — 1= 0垂直,则a 的值为()4A•- 3 B .- 3 C. 2D . 3解析:选D 由2a — 6= 0得a = 3.故选D.3. 已知直线 x + 2ay — 1 = 0与直线(a — 1)x + ay + 1 = 0平行,则a 的值为 ( )或0C. 0D . — 2解析:选A 当a = 0时,两直线的方程化为x = 1和x = 1,显然重合,不符 a 1 a 3合题意;当a ^O 时,^厂= ,解得a =-.故选A.1 2a 2、直线方程1 .直线方程的五种形式由③④联立,解得:=2,b = — 2a = _b = 2.a= 2,b = — 22.常见的直线系方程(1) 经过两条直线I仁A i X + By + C i= 0, 12 :Ax+ By + G= 0父点的直线系方程为A i x + B i y + C i+入(A2X + By + Q) = 0,其中入是待定系数.在这个方程中,无论入取什么实数,都不能得到Ax + By + C2= 0,因此它不能表示直线丨2.⑵平行直线系方程:与直线Ax+ By+ C= 0(A, B不同时为0)平行的直线系方程是Ax+ By+入=0(入工C).(3) 垂直直线系方程:与直线Ax+ By+ C= 0(A, B不同时为0)垂直的直线系方程是Bx—Ay+入=0.4. 过点A(3 , - 1)作直线I交x轴于点B,交直线I仁y二2x于点C,若| Bq 二2| AB,求直线I的方程.[解]当直线I的斜率不存在时,直线I : x = 3,••• B(3,0) , C(3,6).此时| Bq = 6, I AB = 1, |Bq 工2|AB ,•••直线I的斜率存在.设直线I的方程为y +1 = k(x-3),显然k M0且k工2.••• B3 +1 0 ,k ,-| Bq = 2| AB|,…| X B — X c | = 2| X A — X B | , 3k + 1 1 1•- 口 — k — 3= 2 k ,3k +1 1 2 3k +1 1 2 ■k^ — k — 3= k 或 T —2 — k — 3= — k , 3 1解得k =—㊁或k = 4.•••所求直线I 的方程为3X + 2y — 7 = 0或X — 4y — 7= 0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解: (1)直接法:直接选取适当的直线方程的形式,写出结果;⑵ 待定系数法:先以直线满足的某个条件为基础设出直线方程, 再由直线满足的另一个条件求出待定 系数,从而求得方程.5. 已知直线I 仁3X — 2y — 1 = 0和丨2: 3X — 2y — 13= 0,直线I 与I 1,12的距 离分别是d 1, d 2,若d 1 : d 2=2 : 1,求直线I 的方程.解:由直线丨1,I 2的方程知I 1//I 2,又由题意知,直线I 与丨1,丨2均平行(否 则d 1 = 0或d 2= 0,不符合题意).设直线I : 3x — 2y + m = 0( mr^ — 1且m^ — 13),由两平行直线间的距离公式,=—25 或 m = — 9.故所求直线I 的方程为3x — 2y — 25 = 0或3x — 2y — 9 = 0. 6. 已知直线I : 3x — y + 3= 0,求: (1)点P(4,5)关于I 的对称点;y = 2x , y + 1 = k x — 3得点C 的横坐标X c =3k + 1k — 2 .得d 1d 2=| n + 13|13又 d 1 : d 2=2 : 1,所以 | 1| = 2| m + 13|,解得 m| m + 1|⑵直线x—y — 2 = 0关于直线I对称的直线方程.解:设P(x,y)关于直线I : 3x—y+ 3= 0的对称点为P'(x',y').y — y••• k pp • ki 二―1 即x ^—x x 3二—1.① 又PP'的中点在直线3x — y + 3= 0上,—4x + 3y — 9 — ,—4x + 3y — 9 3x + 4y + 3—2= 0,化简得 7x + y + 22 = 0.三、圆的方程(1) 圆的标准方程:(x — a)2+ (y — b)2 = r 2 (2) 圆的一般方程:x 2 + y 2+ Dx + Ey + F = 0(3) 若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程 时可用相应的圆系方程加以求解:① 过两圆 C i : x 2+y 2+ Dx + E i y + F i = 0, G : x 2+y 2+ D 2x + &y + F ?= 0 交点的 圆系方程为 x 2+ y 2+ Dx + E i y + F i + 入(x 2+y 2+ Dx + Ey + F 2) = 0( X 为参数,入工 —1),该方程不包括圆G ;② 过圆C : x 2+ y 2+ Dx + Ey + F = 0与直线I : Ax + By + C = 0交点的圆系方程2 2 __________________为 x + y + Dx + Ey + F + X (Ax + By + C) = 0( X 为参数,X € R).7.在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为 A — 3,0),B(2,0) , C(0,— 4),经过这三个点的圆记为 M(1)求BC 边的中线AD 所在直线的一般式方程;⑵求圆M 的方程.••• 3X 22 +3 = 0.②由①②得=3x + 4y + 3(1)把x = 4, y =5代入③④得 =—2, y ' = 7,••• P(4,5)关于直线I 的对称点 P' 的坐标为(一2,7).⑵用③④分别代换x — y — 2= 0 中的x , y ,得关于I 的对称直线方程为[解]⑴法一:由B(2,0) , C(0,—4),知BC的中点D的坐标为(1 , —2).即中线AD 所在直线的一般式方程为x + 2y + 3= 0. 法二:由题意,得| AB = | Aq = 5, 则厶ABC 是等腰三角形, 所以ADL BC因为直线BC 的斜率k Bc = 2, 1所以直线AD 的斜率k AD = — 2 ,1由直线的点斜式方程,得y — 0= — 2(x + 3), 所以直线AD 的一般式方程为x + 2y + 3= 0.⑵ 设圆M 的方程为x 2 + y 2+ Dx + Ey + F = 0.将 A — 3,0) , B(2,0) , C(0 , — 4)三点的坐标分别代入方程,得5所以圆M 的方程是x + y + x + qy — 6= 0. 注:利用待定系数法求圆的方程(1) 若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件 列出关于a , b , r 的方程组,从而求出a , b , r 的值.(2) 若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据 已知条件列出关于D, E , F 的方程组,从而求出D, E , F 的值.8.以线段AB x+ y — 2 = 0(0< x < 2)为直径的圆的方程为()A. (x + 1)2+ (y + 1)2= 2B. (x — 1)2+ (y — 1)2= 2C. (x + 1)2+ (y + 1)2= 8D. (x — 1)2+ (y — 1)2= 8又A — 3,0),所以直线AD 的方程为y —0 x +3—2—0=~1+3,9 — 3D+ F = 0,4+ 2D+ F = 0,16— 4E + F =—1,5解得E = 2,F = —解析:选B直径的两端点分别为(0,2) ,(2,0),二圆心为(1,1),半径为2 故圆的方程为(x—1)2+ (y —1)2= 2.9. 已知圆C经过点A(2 , —3), B( —2,—5),且圆心在直线I : x—2y —3 =0上,求圆C的方程.解:设圆C的方程为(x —a)2+ (y—b)2= r2.2 一a + —3一b = r , a = —1,由题意,得一2— a 2+ —5— b 2= r2,解得b= —2,a —2b—3= 0,r2= 10.所以圆C的方程为(x+ 1)2+ (y + 2)2= 10.10. 求以圆C: x2+ y2—12x —2y —13 = 0 和圆Q: x2+ y2+ 12x + 16y—25= 0 的公共弦为直径的圆C的方程.解:联立两圆的方程得方程组2 2x + y —12x —2y—13= 0,2 2x + y + 12x + 16y —25 = 0,相减得公共弦所在直线的方程为4x + 3y —2= 0.4x+ 3y —2 = 0,再由2解得两圆交点坐标为(一1,2),(5,—6).2x + y —12x—2y —13 =1 •••所求圆以公共弦为直径,•••圆心C是公共弦的中点(2,—2),半径长为2厂5+ 厂2+ 一- 6—2一2= 5.2 2•••圆C的方程为(x —2) + (y + 2) = 25.四、直线与圆的位置关系1. 直线与圆位置关系的判断方法(1) 几何法:设圆心到直线的距离为d,圆的半径长为r.若dvr,则直线和圆相交;若d= r,则直线和圆相切;若d>r,则直线和圆相离.(2) 代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为△ . △= 0?直线与圆相切;△ >0?直线与圆相交;△ <0?直线与圆相离.2. 过圆外一点(X o,y o)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y —y o= k(x—X。

最新直线和圆的方程典型例题详细解析

最新直线和圆的方程典型例题详细解析

直线与圆一、选择题:1。

若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为 (A )-1 (B ) 1 (C ) 3 (D) -3.2。

设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A )4 (B )42 (C )8 (D )2【答案】C【解析】设和两坐标轴相切圆的方程为:222()()x m y m m -+-=,将(4,1)带入方程整理得:210170m m -+=,12=C C 22(10)4178.-⨯=二、填空题:3。

若直线与直线250x y -+=与直线260x my +-=互相垂直,则实数m =_______【答案】1【解析】:121212,,12k k k k m ==-∴⋅=-直线互相垂直,,即12()1,12m m⋅-=-∴= 4.已知圆22:12,C x y +=直线:4325.l x y +=(1)圆C 的圆心到直线l 的距离为 .(2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 .答案:5,166。

已知圆C 经过A (5,1),B(1,3)两点,圆心在x 轴上.则C 的方程为___________.答案: ()22210x y -+= 解析:直线AB 的斜率是k AB =311152-=--,中点坐标是(3,2).故直线AB 的中垂线方程()223y x -=-,由()223,0,y x y -=-⎧⎪⎨=⎪⎩得圆心坐标C (2,0),r=|223110+=圆的方程为()22210x y -+=。

10.过原点的直线与圆222440x y x y +--+=相交所得弦的长为2,则该直线的方程为【答案】20x y -=12.(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-⋅=,,其中实数满足,(I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.
已知方程x2+y2-2x-4y+m=0。

(Ⅰ)若此方程表示圆,求m的取值范围;
(Ⅱ)若(Ⅰ)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;
(Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程。

解:(Ⅰ),D=-2,E=-4,F=m,
=20-4m>0,解得:m<5。

(Ⅱ),
将x=4-2y代入得,∴,,
∵OM⊥ON,得出:,
∴,
∴。

(Ⅲ)设圆心为(a,b),,
半径,
∴圆的方程为。

法 2.
2. 已知圆C方程为x²+y²-2x-4y-20=0,直线l的方程为:(2m+1)x+(m+1)y-7m-4=0. 证明:无论m取何
圆C恒有两个公共点。

2、求直线l被圆C截得的线段的最短长度,并求出此时m的值
1、将直线方程化为:m(2x+y-7)+(x+y-4)=0,不论m取何值,直线总过定点,令2x+y-7=0,x+y-4=0
解得x=3,y=1,所以直线过定点(3,1),将点(3,1)代入圆方程左边可知<0,所以点(3,1)在圆内
所以直线与圆相交,直线与圆恒有两个公共点
2、当直线与过A(3,1)点的直径垂直时,直线l被圆C截得的线段的最短,圆心C(1,2),
AC的斜率= -1/2,所以L的斜率=2,所以- (2m+1)/(m+1)=2,所以m= - 3/4
3、已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.
(Ⅰ)证明:不论m为何值时,直线l和圆C恒有两个交点;
(Ⅱ)判断直线l被圆C截得的弦何时最长、何时最短?并求截得的弦长最短时m的值以及最短长度.
4.已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0.
(Ⅰ)求圆C的圆心坐标和圆C的半径;
(Ⅱ)求证:直线l过定点;
(Ⅲ)判断直线l被圆C截得的弦何时最长,何时最短?并求截得的弦长最短时m的值,以及最短长度.
(I)将圆的方程化为标准方程,可得圆C的圆心坐标和圆C的半径;
(Ⅱ)分离参数可得(2x+y-7)m+(x+y-4)=0,再建立方程组,可得结论;
(Ⅲ)直线l被圆C截得的弦最长时,圆心(1,2)在直线l上,圆C截得的弦为直径;当圆心C(1,2)与A(3,1)的连线与l垂直时,直线l被圆C截得的弦最短,由此可得结论.
5. 求与圆x2+y2-2x=0外切,且与直线x+根号3y=0相切与点(3,-根号3)的圆的方程
所求圆心(x,y),半径r
圆x2+y2-2x=0圆心(1,0),半径1 圆心距等于半径和
(x-1)^2+y^2=(1+r)^2
到直线距离r
|x+√3y|/2=r
√[(x-1)^2+y^2]=|x+√3y|/2+1 化简:
x^2-2√3xy-y^2-8x-√3y-2=0
或x^2-2√3xy-y^2+√3y-2=0。

相关文档
最新文档