三种中央空调系统风道水力计算方法
风管水力计算1.

风管水力计算
一、假定流速法 (1)绘制空调系统轴测图,并对各段风管进行编号、 标注长度和风量。 (2)确定风道内的合理流速。 (3)根据各风管的风量和选择的流速确定各管段的断面 尺寸,计算沿程阻力和局部阻力。 (4)与最不利环路并联的管路的阻力平衡计算。 (5)计算系统总阻力。 系统总阻力为最不利环路阻力加上空气处理设备的 阻力,并需考虑房间的正压要求。 (6)选择风机及其配用电机。
风管水力计算
一、假定流速法
适用条件:管壁粗糙 度K≈0 ,ρ=1.2kg/m3及 B=101.3kPa 。 否则,应予以修正。
风管水力计算
一、假定流速法 修正后的实际比摩阻R′m为:
粗糙度修正系数:
温度修正系数: 大气压力修正系数:
风管水力计算
一、假定流速法 【例题1】某表面光滑的砖砌风道(K=3mm),断面尺 寸500mm×400mm,风量为3600m3/h,求其比摩阻(不 计其他修正)。
《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)
6.6.1 通风、空调系统的风管,宜采用圆形、扁圆形 或长、短边之比不宜大于4 的矩形截面。风管的截面尺 寸宜按现行国家标准《通风与空调工程施工质量验收规 范)) GB 50243的有关规定执行。
风管水力计算
一、假定流速法
《通风与空调工程施工质量验收规范》 (GB50243-2002)
4.1.4 通风管道规格的验收,风管以外径或外边长为准, 风道以内径或内边长为准。通风管道的规格宜按照表 4.1.4-1 、表 4.1.4-2 的规定。圆形风管应优先采用基 本系列。非规则椭圆型风管参照矩型风管,并以长径平 面边长及短径尺寸为准。
风管水力计算
一、假定流速法
沿程阻力: 注:矩形风管的Rm可直接查有关的计算表,也可将矩形 风管折算成当量的圆风管,再查“通风管道单位长度摩 擦阻力线算图”来得到。工程上一般用流速当量直径或 流量当量直径来折算。
中央空调水流量简易计算方法

中央空调水流量简易计算方法冷冻水泵的选择通常选用每秒转速在30~150转的离心式清水泵, 水泵的流量应为冷水机组额定流量的1.1~1.2 倍(单台工作时取1.1 ,两台并联工作时取1.2 )。
水泵的扬程应为它承担的供回水管网最不利环路的总水压降的1.1~1.2 倍。
最不利环路的总水压降,包括冷水机组蒸发器的水压降A pl、该环路中并联的各台空调末端装置的水压损失最大一台的水压降△ p2、该环路中各种管件的水压降与沿程压降之和。
冷水机组蒸发器和空调末端装置的水压降,可根据设计工况从产品样本中查知;环路管件的局部损失及环路的沿程损失应经水力计算求出,在估算时,可大致取每100m管长的沿程损失为5mH2O这样,若最不利环路的总长(即供、回水管管长之和)为L,则冷水泵扬程H( mH2O可按下式估算。
Hmax =A p1 +A p2 +0.05L (1+ K)式中K为最不利环路中局部阻力当量长度总和与直管总长的比值。
当最不利环路较长时K取0.2〜0.3 ;最不利环路较短时K取0.4〜0.6。
冷却水泵的选择1 )冷却水泵的流量应为冷水机组冷却水量的1.1 倍。
2 )水泵的扬程就为冷水机组冷凝器水压降 A pl、冷却塔开式段高度Z、管路沿程损失及管件局部损失四项之和的 1.1〜1.2倍。
A pl和Z 可从有关产品样本中查得;沿程损失和局部损失应从水力计算求出,作估算时,管路中管件局部损失可取5mH2O沿程损失可取每100m管长约5 mH2O若冷却水系统来回管长为L,则冷却水泵所需扬程的估算值H( mH2O约为H = △ pl + Z + 5 + 0.05L3) 依据冷却水泵的流量和扬程,参考有关水泵性能参数选用冷却水泵。
水流量计算1 、. 冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)二[Q(kW)/ (4.5~5 ) C x1.163]X(1.15〜1.2)2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。
空调系统工程常用计算公式

空调系统工程常用计算公式
1.制冷量(制冷量)计算公式:
制冷量 = 重量(kg)× 比热容(J/kg℃)× 温度差(℃)
2.冷却水流量计算公式:
冷却水流量=制冷量(W)/(冷却水进口温度(℃)-冷却水出口温度(℃))×4.186×10^3
3.水系统中水泵的功率计算公式:
水泵功率(W)=流量(m^3/s)×重力加速度(m/s^2)×扬程(m)/
效率
4.冷却设备各组件功率计算公式:
压缩机功率(W)=制冷量(W)/性能系数
风冷螺杆机组的冷却水泵功率(W)=冷却水流量(m^3/s)×重力加
速度(m/s^2)×扬程(m)/效率
螺杆机组的冷却水泵功率(W)=冷却水流量(m^3/s)×重力加速度(m/s^2)×扬程(m)/效率
5.风量计算公式:
风量(m^3/h)=1/0.1225×10^3×缺氧量(m^3/h)×行进速度(m/s)
6.空气过滤器选择计算公式:
风量(m^3/h)=面积(m^2)×风速(m/s)
7.空气处理设备总吨位计算公式:
总吨位=冷却负荷(kW)×1.2/COP
8.制冷剂泄漏量计算公式:
泄漏量(kg)= 泄露率(kg/年)× 泄露年数
9.噪声水平计算公式:
声级差(dB(A))= 20 × log(10^(L1/10) + 10^(L2/10)+ 10^(L3/10)+ …)
10.制冷剂气体流量计算公式:
气体流量(kg/h)= 0.125(kg/h)/ m^3 × Vm(m^3)× ρ。
空调水系统水力计算方法与步骤

8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空通常按推荐的流速或比摩阻确定管径 计算最不利环路阻力损失 然后进行并联环路的阻力平衡 确定系统总阻力 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
当空调冷冻水系统为二次泵系统时,泵的选择: (1)一次泵
选泵时, 水泵的流 (2)二次泵 量与扬程 泵的流量按分区夏季最大计算冷负荷确定。 均要乘以 泵的扬程应能克服所管分区的二次最不利环路的总阻力。 安全系数
泵的流量等于冷水机组蒸发器的额定流量。 泵的扬程为克服一次环路的总阻力损失。 一次泵台数与冷水机组相同
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm
c t
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
沿程
8.5 空调水系统的水力计算
空调水系统水力计算方法与步骤

2. 空调冷冻水循环水泵的选择
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm
c
t
精选2021版课件
4
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
A
B
旁通管(平衡管)
精选2021版课件
7
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】解题步骤
✓ 1 计算冷冻水流量
✓ 2 选定最不利环路,结合表8-5、 8-6、 8-7、 8-8依据各管段的流
量,确定各管段的流速与管径,用线性插值法确定比摩阻。
✓ 3 查表8-9,8-10确定管段的局部阻力系数,计算各管段的局部阻
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空调冷冻水系统的水力计算方法与步骤:
✓ 通常按推荐的流速或比摩阻确定管径 ✓ 计算最不利环路阻力损失 ✓ 然后进行并联环路的阻力平衡 ✓ 确定系统总阻力 ✓ 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
水泵的流 量与扬程 均要乘以
✓ 泵的扬程应能克服所管分区的二次最不利环路的总安阻全力系。数
精选2021版课件
6
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计 算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组 表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次 水泵的流量和扬程。
中央空调设计常用计算公式

1、风管阻力计算:估算法:阻力△H=Rm×L(1+k)Rm—单位风管长度的摩擦力,Pa/m;L—风管总长度;K—局部阻力与摩擦阻力比值,局部构件少时,取值:K=1~2,多时取3~5。
经验取值:4 Pa/m计算。
2、风管风速计算:风速:V=Q/S3、水管管径计算:1.1标准层风机盘管水系统水力计算1.1.1基本公式本计算方法理论依据张萍编著的《中央空调实训教程》[1]。
1)沿程阻力△P e=ξe· v2·ρ/2 g mH2O (6.1)沿程阻力系数ξe=0.025·L/d(6.2)2)局部阻力水流动时遇弯头、三通及其他配件时,因摩擦及涡流耗能而产生的局部阻力为:△P m=ξ·ρ·v2/2 g mH2O (6.3)3)水管总阻力△P=△P e+△PmH2Oj(6.4)4)确定管径n d mm(6.5)式中:V j ——冷冻水流量,m 3/s ;v j ——流速,m/s 。
在水力计算时,初选管内流速和确定最后的流速时必须满足以下要求:表6.2 管内水的最大允许水流速表[1]空调系统的水系统的管材有镀锌钢管和无缝钢管。
当管径DN ≤100mm 时可以采用镀锌钢管,其规格用公称直径DN 表示;当管径DN >100mm 时采用无缝钢管,其规格用外径×壁厚表示,一般须作二次镀锌。
空调制冷量单位有kcal /h ,W ,btu /h ,匹 制冷量单位换算:1.1kcal /h(大卡/小时)=1.163W ,1W =0.8598kcal /h ;2.1btu /h(英热单位/小时)=0.2931W ,1W =3.412btu /h ; 3.1USRT(美国冷吨)=3.517kW ,1kW =0.28434USRT ;4.1kcal /h =3.968Btu /h ,1Btu /h =0.252kcal /h ;5.1USRT =3024kcal /h ,10000kcal /h =3.3069USRT ;6.1匹=2.5kW1. 1 kcal /h (大卡/小时) = 1.163W ,1 W = 0.8598 kcal /h ;2. 1 btu /h (英热单位/小时) = 0.2931W ,1 W =3.412 btu /h ; 3. 1 USRT (美国冷吨) = 3.517 kw ,1 kw = 0.28434 USRT ;4.1日本冷吨=3320千卡/小时(kcal/h )=3.861千瓦(kw ) 1英国冷吨=3373千卡/小时(kcal/h )=3.923千瓦(kw )5. 1 kcal /h = 3.968 btu /h ,1 btu /h = 0.252 kcal /h ;6. 1 USRT = 3024 kcal /h ,10000 kcal /h = 3.3069 USRT ;7. 1匹=0.735kw x cop00000说明:1. “匹”用于动力单位时,用hp(英制匹)或Ps(公制匹)表示,也称“马力”,1 hp (英制匹) =0.7457 kW,1 Ps (公制匹) =0.735 kW(用电功率);2. 中小型空调制冷机组的制冷量常用“匹”表示,大型空调制冷机组的制冷量常用“冷吨(美国冷吨)”表示。
空调水系统水力计算方法与步骤

空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm
c
t
精选2021版课件
4
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空调冷冻水系统的水力计算方法与步骤:
✓ 通常按推荐的流速或比摩阻确定管径 ✓ 计算最不利环路阻力损失 ✓ 然后进行并联环路的阻力平衡 ✓ 确定系统总阻力 ✓ 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
沿程
精选2021版课件
5
8.5 空调2. 空调冷冻水循环水泵的选择
当空调冷冻水系统为二次泵系统时,泵的选择:
(1)一次泵
✓ 泵的流量等于冷水机组蒸发器的额定流量。
✓ 泵的扬程为克服一次环路的总阻力损失。
✓ 一次泵台数与冷水机组相同
选泵时,
(2)二次泵
空调冷冻水和冷却水循环系统水力计算简便方法

空调冷冻水和冷却水循环系统水力计算简便方法Ξλρv 2放入大气.水系统管路水力计算是系统正确设计和优化的基础.糙度有关 ,即λ = f ( Re , K/ d)式中 : Re —雷诺数, Re = vd/ν =ρvd/μ;ν—水的运动粘滞系数 , m 2/ s ; 1 空调水循环管路水力计算的原理水管路将流量和管径不变的一段管路称为一个l ρv p y =λ = R (1可采用柯列勃洛克公式3和阿里特苏里公式中 :p y —计算管段沿程阻力损失 , Pa ;λ—沿程阻力系数 ,无因次量 ; 1 2 51 l —直管段长度 , m ;供吸压冷第 20卷第 3期 2004年 9月北京建筑工程学院学报Journal of B eijing Institu te of Civil Eng. and ArchitectureVol. 20 No. 3 Sep . 2004文章编号 :1004 - 6011 (2004) 03 - 0001 - 07空调冷冻水和冷却水循环系统水力计算简便方法许淑惠 , 罗文斌(城市建设工程系 ,北京 100044)摘要:根据空调水系统的计算原理,在不同管径下按不同流量把空调冷冻水和冷却水管路水力计算中的比摩阻绘制成计算表 ,应用该计算表能快速、准确、方便进行空调水系统管路水力计算;采用具体实例,说明空调水系统管路水力计算简便方法. 关键词:冷冻水;冷却水;水力计算中图分类号 : TU83 文献标识码 :A一个完整的中央空调系统有三大部分组成 , 即ρ—水密度 , kg/ m 3 ;冷热源、热与供冷管网、空调用户系统.空调水系 v —水速度 , m/ s ;统包括冷冻水系统和冷却水系统.冷冻水系统是把 R —单位长度沿程阻力损失,又称比摩阻, 冷热源产生的冷或热量通过管网输送到空调用户的 Pa/ m .冷水管采用钢管或镀锌管时 ,比摩阻一系统 ;冷却水系统是整个空调系统的重要组成部分 , 般为 100 Pa/ m ~ 400 Pa/ m ,最常用的为他以水作为冷却剂将冷凝器、收器、压缩机放出的 250 Pa/ m . 热量转移到冷却设备 (冷却塔、却水池等)中 ,最后 R = (2)d 2沿程阻力系数λ与流体的流态和管壁的相对粗空调水系统的管路水力计算是在已知水流量和推荐流速下,确定水管管径,计算水在管路中流动的沿程阻力损失和局部阻力损失 ,确定水泵的扬程和流量.μ—水的动力粘滞系数 , Pa ?s ; K —管壁的当量糙粒高度 , m ;空调冷冻水闭式系统管路 K = 0. 2 mm ,开式系统管路 K = 0. 5 mm ;空调冷却水系统管路 K = 0. 5 mm.空调水循环管路 ,管道设计中采用较低水流速 , 计算管段 ,计算管段沿程阻力损失 ,即流动状态一般处于紊流过渡区内 ,沿程阻力系数λ 2d 2进行计算 ,即= - 2 lg ( + ) (3) λ 3. 7 d Re λd —管道直径, m ;λ = 0. 11 ( K + 68 ) 0. 25 (4)d Re收稿日期 :2004 - 09 - 22基金项目 :建设部计划科技项目 (032111)作者简介 :许淑惠 (1966年—) ,女 ,工学硕士 ,副教授 ,热工流体教研室.112 沿程阻力损失计算表3 600ρπd 900ρπd 2式中 : q m —管段中的水质量流量 , kg/ h ;详见表 1和表 2.λ q m R = 6. 25×10(6)流不不 2北京建筑工程学院学报第 20卷在给定水状态参数及其流动状态的条件下,λ管道内的流速、量和管径的关系表达式为和ρ值均为已知 ,则式 (6)就表示为 R = f ( d , q m )的 4 q m q m 函数式.v = 2 = (5)利用公式 (4) , (5) , (6) ,计算出冷却水和冷冻水在不同水流量、不同管径、不同速度的沿程比摩阻 , 将式 (5)的流速 v 代入式 (2) ,整理成更方便的计算公式2- 8ρ d 5表 1 冷却水管不同流量、同管径、同流速的沿程比摩阻管径DN50/ mm 管径DN70/ mm 管径DN80/ mm 管径DN100/ mm 管径 DN125/ mm内径 53. 0/ mm 内径 68. 0/ mm 内径 80. 5/ mm 内径 106. 0/ mm 内径 131. 0/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 62 70. 2 0. 46 8. 05 92. 5 0. 62 16. 09 151. 0 0. 88 35. 20 169. 5 1. 11 56. 32 142. 6 1. 16 3. 82 78. 0 0. 48 8. 55 104. 3 0. 65 17. 10 170. 2 0. 93 36. 21 179. 2 1. 14 59. 34 158. 1 1. 22 4. 02 86. 2 0. 51 9. 05 116. 7 0. 69 18. 10 190. 6 0. 99 37. 21 189. 2 1. 17 62. 36 174. 5 1. 29 4. 53 108. 6 0. 57 9. 55 129. 8 0. 73 19. 11 212. 1 1. 04 38. 22 199. 5 1. 20 65. 37 191. 6 1. 35 5. 03 133. 6 0. 63 10. 06 143. 6 0. 77 20. 11 234. 7 1. 10 39. 22 210. 0 1. 24 68. 39 209. 5 1. 41 5. 53 161. 2 0.70 11. 06 173. 3 0. 85 21. 12 258. 5 1. 15 40. 23 220. 8 1. 27 71. 41 228. 3 1. 476. 03 191. 3 0. 76 12. 07 205. 8 0. 92 22. 13 283. 5 1. 21 42. 24 243. 2 1. 33 74. 42 247. 8 1. 53 6. 54 224. 0 0. 82 13. 07 241. 0 1. 00 23. 13 309. 6 1.26 44. 25 266. 7 1. 39 77. 44 268. 2 1. 60 7. 04 259. 3 0. 89 14. 08 279. 1 1. 08 24. 14 336. 8 1. 32 46. 26 291. 3 1. 46 80. 46 289. 3 1. 66 7. 54 297. 2 0. 95 15. 09 319. 9 1. 15 25.14 365. 2 1. 37 48. 28 317. 0 1. 52 83. 48 311. 2 1. 72 8. 05 337. 6 1. 01 16. 09 363. 5 1. 23 26. 15 394. 8 1. 43 50. 29 343. 7 1. 58 86.49 334. 0 1. 78 8. 55 380. 6 1. 08 17. 10 409. 9 1. 31 27. 15 425. 5 1. 48 53. 30 385. 9 1. 68 89. 51 357. 5 1. 85 9. 05 426. 2 1. 14 18.10 459. 1 1. 39 28. 16 457. 3 1. 54 56. 32 430. 5 1. 77 92. 53 381.9 1. 91 9. 55 474. 4 1. 20 19. 11 511. 1 1. 46 29. 17 490. 3 1. 59 59.34 477. 5 1. 87 96. 55 415. 6 1. 99 10. 06 525. 2 1. 27 20. 11 565.9 1. 54 30. 17 524. 5 1. 65 62. 36 433. 6 1. 96 100. 57 450. 7 2. 07管径DN150/ mm 管径DN200/ mm 管径DN250/ mm 管径DN300/ mm 管径 DN400/ mm 内径 156/ mm 内径 207/ mm 内径259/ mm 内径 309/ mm 内径 408/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 51 143. 7 1. 28 135. 77 75. 1 1. 12 241. 38 73. 0 1. 27 502.87 124. 7 1. 86 834. 76 79. 9 1. 77 92. 53 153. 5 1. 33 140. 80 80.7 1. 16 261. 49 85. 5 1. 38 522. 98 134. 8 1. 94 864. 93 85. 8 1. 84 96. 55 167. 0 1. 39 150. 86 92. 5 1. 25 281. 61 99. 1 1. 49 543. 10145. 3 2. 01 895. 10 91. 8 1. 90 100. 57 181. 1 1. 44 160. 92 105. 1 1. 33 301. 72 113. 6 1. 59 563. 21 156. 2 2. 09 925. 27 98. 1 1. 97 105. 60 199. 5 1. 52 170. 97 118. 6 1. 41 321. 83 129. 2 1. 70 583.32 167. 5 2. 16 955. 45 104. 5 2. 03 110. 63 218. 8 1. 59 181. 03 132. 8 1. 50 341. 95 145. 7 1. 80 603. 44 179. 2 2. 24 985. 62 111.2 2. 10 115. 66 239. 0 1. 66 191. 09 147. 9 1. 58 362. 06 163. 2 1.91 623. 55 191. 2 2. 31 1 015. 79 118. 1 2. 16 120. 69 260. 0 1. 73 201. 15 163. 7 1. 66 382. 18 181. 8 2. 02 643. 67 203. 7 2. 39 1 045.96 125. 1 2. 22 125. 72 282. 0 1. 80 221. 26 197. 8 1. 83 402. 29 201. 3 2. 12 663. 78 216. 6 2. 46 1 076. 13 132. 4 2. 29 130. 75 304.9 1. 88 241. 38 235. 2 1. 99 422. 41 221. 8 2. 23 683. 90 229. 8 2.53 1 106. 31 139. 9 2. 35 135. 77 328. 6 1. 95 261. 49 275. 7 2. 16 442. 52 243. 3 2. 33 704. 01 243. 5 2. 61 1 136. 48 147. 6 2. 42 140.80 353. 3 2. 02 281. 61 319. 6 2. 33 462. 64 265. 8 2. 44 724. 13 257. 5 2. 68 1 166. 65 155. 5 2. 48 150. 86 405. 2 2. 17 301. 72 366.6 2. 49 482. 75 289. 3 2. 55 744. 24 272. 0 2. 76 1 196. 82 163. 6 2. 54 160. 92 460.7 2. 31 321. 83 416.8 2. 66 502. 87 313. 8 2. 65 764. 36 286. 8 2. 83 1 226. 99 171. 9 2. 61 170. 97 519. 8 2. 45 341.95 470. 3 2. 82 522. 98 339. 3 2. 76 784. 47 302. 0 2. 91 1 257. 17 180. 4 2. 67注 :表中冷却水温度为34. 5℃( (32℃+ 37℃) / 2) ,密度 994. 3 kg/ m 3 ,运动粘滞系数0. 735×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 5 mm.不不第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法表 2 冷冻水管不同流量、同管径、同流速的沿程比摩阻3管径 DN15/ mm 内径 15. 8/ mm 管径 DN20/ mm内径 20. 3/ mm 管径 DN27/ mm内径 27. 0/ mm 管径 DN32/ mm内径 35. 8/ mm 管径 DN40/ mm内径 41. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 20 0. 22 0. 24 0. 26 0. 28 0. 30 0. 35 0. 4054. 8 62. 7 71. 2 80. 1 89. 5 99. 5 109. 9 120. 8 144. 1 169. 3 196. 5 225. 6 256. 7 342. 8 440. 90. 19 0. 20 0. 21 0. 23 0. 24 0. 26 0. 27 0. 29 0. 31 0. 34 0. 37 0. 40 0. 43 0. 50 0. 570. 26 0. 28 0. 30 0. 35 0. 40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 9044. 8 51. 3 58. 2 77. 2 98. 9 123. 0 149. 7 178. 9 210. 6 244. 8 281. 5 320. 7 362. 3 406. 5 453. 10. 20 0. 22 0. 24 0. 27 0. 31 0. 35 0. 39 0. 43 0. 47 0. 51 0. 55 0. 59 0. 63 0. 67 0. 710. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 90 1. 001. 20 1. 40 1. 60 1. 8037. 7 45. 7 54. 5 64. 0 74. 2 85. 1 96. 8 109. 1 122. 2 136. 0 165. 7 233. 7 313. 0 403. 6 505. 60. 22 0. 24 0. 27 0. 29 0. 32 0. 34 0. 36 0. 39 0. 41 0. 44 0. 490. 58 0. 68 0. 78 0. 871. 00 1. 20 1. 40 1. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 8041. 0 57. 5 76. 6 98. 3 122. 6 49. 5 179. 1 211. 2 245. 9 283. 2 323. 1 365. 6 410. 6 458. 3 508. 50. 28 0. 33 0. 39 0. 44 0. 50 0. 55 0. 61 0. 66 0. 72 0. 78 0. 830. 89 0. 94 1. 00 1. 051. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 804. 00 4. 505. 0049. 7 61. 8 75. 3 90. 0 106. 0 123. 3 141. 8 161. 6 182. 6 204.9 228. 5 253. 3 279. 4 350. 2 428. 80. 34 0. 38 0. 42 0. 46 0. 51 0. 55 0. 59 0. 63 0. 67 0. 72 0. 76 0. 80 0. 84 0. 95 1. 05管径 DN50/ mm内径 53. 0/ mm 管径 DN70/ mm内径 68. 0/ mm 管径 DN80/ mm内径 80. 5/ mm 管径 DN100/ mm内径 106. 0/ mm 管径 DN125/ mm内径 131. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 60 3. 804. 00 4. 505. 00 5. 506. 00 6. 507. 00 7. 508. 00 8. 509. 00 9. 50 10. 0062. 8 69. 5 76. 5 95. 6 116. 6 139. 8 165. 0 192. 2 221. 5 252.8 286. 1 321. 5 359. 0 398. 5 440. 00. 45 0. 48 0. 50 0. 57 0. 63 0. 69 0. 76 0. 82 0. 88 0. 95 1. 011. 07 1. 13 1. 20 1. 268. 00 8. 50 9. 00 9. 50 10. 00 11. 00 12. 00 13. 00 14. 00 15. 00 16. 00 17. 00 18. 00 19. 00 20. 0180. 9 90. 8 101. 2 112. 2 123. 7 148. 4 175. 3 204. 4 235. 7 269.3 305. 0 342. 9 383. 1 425. 5 470. 00. 61 0. 65 0. 69 0. 73 0. 77 0. 84 0. 92 1. 00 1. 07 1. 15 1. 221. 30 1. 38 1. 45 1. 5316. 00 17. 00 18. 00 19. 00 20. 01 21. 01 22. 01 23. 01 24. 01 25. 01 26. 01 27. 01 28. 01 29. 01 16. 00129. 0 144. 9 161. 7 179. 5 198. 1 217. 6 238. 1 259. 4 281. 7 304. 9 329. 0 354. 0 379. 9 406. 7 434. 40. 87 0. 93 0. 98 1. 04 1. 09 1. 15 1. 20 1. 26 1. 31 1. 37 1. 421. 47 1. 53 1. 58 1. 6435. 01 36. 01 37. 01 38. 01 39. 01 40. 01 42. 01 44. 01 46. 01 48. 01 50. 01 53. 01 56. 01 59. 01 62. 02143. 0 150. 9 159. 1 167. 5 176. 2 185. 0 203. 3 222. 5 242. 5 263. 4 285. 2 319. 4 355. 6 393. 7 433. 71. 10 1. 13 1. 17 1. 20 1. 23 1. 26 1. 32 1. 39 1. 45 1. 51 1. 58 1. 67 1. 76 1. 86 1. 9556. 01 59. 01 62. 02 65. 02 68. 02 71. 02 74. 02 77. 02 80. 02 83. 02 86. 02 89. 02 92. 02 96. 02 100. 03120. 0 132. 7 146. 1 160. 1 174. 7 190. 0 205. 9 222. 4 239. 6 257. 4 275. 8 294. 9 314. 6 341. 8 370. 21. 15 1. 22 1. 28 1. 34 1. 40 1. 46 1. 53 1. 59 1. 65 1. 71 1. 771. 84 1. 90 1. 982. 06管径 DN150/ mm内径 156/ mm 管径 DN200/ mm内径 207/ mm 管径 DN250/ mm内径 259/ mm 管径 DN300/ mm内径 309/ mm 管径 DN350/ mm内径 359/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 02 92. 02 96. 02 100. 03 105. 03 110. 03 115. 03 120. 03 125. 03 130. 03 135. 03 140. 04 150. 04 160. 04 170. 04 120. 3 128. 3 139. 3 150. 8 165. 8 181. 5 197. 9 215. 0 232. 8 251. 3 270. 5 290. 4 332. 3 377. 1 424. 71. 28 1. 32 1. 38 1. 44 1. 51 1. 58 1. 65 1. 72 1. 79 1. 87 1. 942. 01 2. 15 2. 30 2. 44135. 03 140. 04 150. 04 160. 04 170. 04 180. 05 190. 05 200.05 220. 06 240. 06 260. 07 280. 07 300. 08 320. 08 340. 0963. 3 67. 9 77. 6 87. 9 98. 9 110. 4 122. 7 135. 6 163. 2 193. 4 226. 2 261. 5 299. 4 339. 8 382. 81. 12 1. 16 1. 24 1. 32 1. 40 1. 49 1. 57 1. 65 1. 82 1. 982. 15 2. 31 2. 48 2. 64 2. 81240. 06 260. 07 280. 07 300. 08 320. 08 340. 09 360. 09 380.10 400. 10 420. 11 440. 11 460. 12 480. 12 500. 13 520. 1361. 1 71. 4 82. 4 94. 3 106. 9 120. 3 134. 5 149. 4 165. 2 181.7 199. 1 217. 2 236. 1 255. 8 276. 31. 27 1. 37 1. 48 1. 58 1. 69 1. 79 1. 902. 01 2. 11 2. 22 2. 32 2. 43 2. 53 2. 64 2. 74500. 13 520. 13 540. 14 560. 14 580. 15 600. 15 620. 16 640.16 660. 17 680. 17 700. 18 720. 18 740. 19 760. 19 780. 20102. 8 111. 0 119. 5 128. 3 137. 4 146. 8 156. 5 166. 6 176. 9 187. 6 198. 6 209. 9 221. 5 233. 4 245. 61. 85 1. 932. 00 2. 08 2. 15 2. 22 2. 30 2. 37 2. 45 2. 52 2. 59 2. 67 2. 74 2. 82 2. 89600. 15 620. 16 640. 16 660. 17 680. 17 700. 18 720. 18 740.19 760. 19 780. 20 800. 20 830. 21 860. 22 890. 22 920. 2367. 8 72. 2 76. 8 81. 6 86. 5 91. 5 96. 7 102. 0 107. 5 113. 1 118. 8 127. 7 136. 9 146. 4 156. 31. 65 1. 70 1. 76 1. 81 1. 87 1. 92 1. 982. 03 2. 09 2. 14 2. 20 2. 28 2. 36 2. 44 2. 53注 :表中冷冻水温度9. 5℃( (7℃+ 12℃) / 2) ,密度 999. 75 kg/ m 3 ,运动粘滞系数1. 329×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 2 mm.113 局部阻力损失ρv∑ζ 2 c t212 空调冷却水系统水力计算方法c t ′盘产管阀 ( ( 局产管阀 ( ( 4北京建筑工程学院学报第 20卷当流体通过管道的一些附件如阀门、弯头、三通、管等时 ,产生局部阻力损失 ,管段的局部阻力损失表示为2p j = (7) 式中 :p j —计算管段的总局部阻力损失 , Pa ;∑ζ—计算管段局部阻力系数之和 ,无因次.2 空调水系统水力计算方法空调冷冻水循环系统一般采用闭式系统,系统的供水温度通常为7℃,回水温度为12℃,温差为5℃,泵的流量按空调系统夏季最大计算冷负荷确定 ,即Φq m = (8)式中 : q m —系统环路总流量 , kg/ s ;Φ—系统环路的计算冷负荷 ,W ; t —冷冻水供回水温差,℃;c —冷冻水比热容 ,通常取c = 4. 187×103J / ( kg ?K) .若空调冷冻水循环系统采用一次泵循环管路 , 则水泵的扬程应能克服冷冻水系统最不利环路的用冷设备、冷设备、道、门附件等总阻力要求.即 p =∑py +p j +p m ) (9) 式中 : p —水泵扬程 , Pa ;∑py+p j+p m )—最不利环路各计算管段沿程、部和设备阻力损失之和 , Pa ; p y —各计算管段沿程阻力损失 , Pa ; p j —各计算管段总局部阻力损失 , Pa ;p m —各计算管段总设备阻力损失 , Pa.若空调冷冻水循环系统采用二次泵循环管路 , 则1)一次泵的选择a)泵的流量应等于冷水机组蒸发器的额定流量 ;b)泵的扬程为克服一次环路的阻力损失 ,其中包括一次环路的管道阻力和设备阻力 ;c)一次泵的数量与冷水机组台数相同.2)二次泵的选择a)泵的流量按分区夏季最大计算冷负荷确定 ; b)二次泵的扬程应能克服所管分区的二次最不利环路中用冷设备、管道、阀门附件等总阻力要求.无论采用一次泵冷冻水系统,还是采用二次泵冷冻水系统,选择水泵时 ,流量附加 10 %的余量 ,扬程也附加 10 %的余量 [2 ] .空调冷却水循环系统一般采用开式系统 ,水力计算是确定冷却水流量后 ,确定冷却水泵的扬程.冷却塔冷却水量可按下式计算 [3 ]Φq m = (10)式中 : q m —冷却塔冷却水量 , kg/ s ;Φ—冷却塔排走热量 , W ,压缩式制冷机 ,取制冷机负荷的 1. 3倍左右 ,吸收式制冷机 ,取制冷机负荷的 2. 5倍左右 ;t ′—冷却塔的进出水温差,℃;压缩式制冷机 ,取4℃~5℃;吸收式制冷机 ,取6℃~9 ℃;c —水的比热容 ,J / ( kg ?K) .冷却水泵所需扬程应能克服冷却水系统环路的用冷设备、冷设备、道、门附件等总阻力要求 , 即p =∑py +p j +p m ) +p 0 +ph (11)式中 : p —冷却水泵的扬程 , Pa ;∑p y+p j+pm )—冷却水循环管路总阻力损失之和 , Pa ;p y —冷却水各计算管段的沿程阻力损失 ; Pa ;p j —冷却水各计算管段的总局部阻力损失 , Pa ;p m —冷却水各计算管段中总设备阻力损失 ,Pa ;p 0—冷却塔喷嘴喷雾压力 , Pa ,约等于 49 kPa ;p h —冷却塔中水提升高度 (从冷却塔盛水213 管径的确定3 工程应用c t 4. 187×103×(12 - 7) 0 01 0 02 4 2 6 4 89 8 8 8 8 8 7 1 8 7 1 8 1 7第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法5池到喷嘴的高差)所需的压力 , Pa .空调水系统中管内水流速按表3中的推荐值选用,或按表4根据流量确定管径 [1 ] .表 3 管内水流速推荐值/ m/ s管径/ mm 15 20 25 32 40 50 65 80 闭式系统 0. 4~0. 5 0. 5~0. 6 0. 6~0. 7 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 1. 2~1. 6 开式系统 0. 3~0. 4 0. 4~0. 5 0. 5~0. 6 0. 6~0. 8 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 管径/ mm 100 125 150 200 250 300 350 400 闭式系统 1. 3~1. 8 1. 5~2. 0 1. 6~2. 2 1. 8~2. 5 1. 8~2. 6 1. 9~2. 9 1. 6~2. 5 1. 8~2. 6 开式系统 1. 2~1. 6 1. 4~1. 8 1. 5~2.0 1. 6~2. 3 1. 7~2. 4 1. 7~2. 4 1. 6~2. 1 1. 8~2. 3表 4 水系统的管径和单位长度阻力损失闭式水系统开式水系统钢管直径/ mm流量/ (m 3/ h) kPa/ 100m 流量/ (m 3/ h) kPa/ 100m15 ~0. 5 ~60 —— 20 0. 5~1. 0 10~60 ——25 ~2 10~60 ~1. 3 ~43 32 ~4 10~60 1. 3~2. 0 10~4040 ~6 10~60 ~4 10~40 50 ~11 10~60 ~8 —65 11~18 10~60 ~14 — 80 18~32 10~60 14~22 — 100 32~65 10~60 22~45 — 125 65~115 10~60 45~82 10~40 150 115~185 10~47 82~130 10~43 200 185~380 10~37 130~200 10~24 250 380~560 ~26 200~340 10~18300 560~820 ~23 340~470 ~15 350 820~950 ~18 470~610 ~13 400 950~1 250 ~17 610~750 ~12 450 250~1 590 ~15 750~1 000 ~12 500 590~2 000 ~13 000~1 230 ~11的环路.根据各管段的流量 ,由表 5确定各管段直径.由表 2可查出比摩阻 R ,查各管件的局部阻力系数表 ,确定各管段的总阻力损失见表5.如图 1所示的空调冷冻水二次泵循环系统 (一级循环略去) ,此系统计算冷负荷为 48. 8 kW ,冷冻水供水温度为7℃,回水温度为1 2℃,空调机组表冷器水侧阻力为 50 kPa ,各管段的长度见表 5 ,求各管段的管径及二次水泵的流量和扬程.计算系统所需的冷冻水流量 ,为Φ 48. 8×103q m = = ( ) kg/ s = 2. 33 kg/ s = 8. 39 m 3/ h此系统最不利环路为 1 - 2 - 3 - 4 - 5 - 6组成图 1 冷冻水系统图q V / (m / h) (ρv / 2 ) / Pa c t ′ 4. 187×103×(37 - 32)ρπd 2 994. 1×3. 14×0. 152 p j =∑ζ994. 1×1. 612出止闸 6北京建筑工程学院学报第 20卷此水系统为闭式水系统,水泵的扬程为最不利环路的总阻力损失,加上表冷器的阻力损失 ,即p =∑(py +p j +p m ) = 74. 48 kPa选用水泵,流量和扬程皆考虑10 %的余量,则选用水泵的参数为流量1. 1×8. 39 m 3/ h = 9. 23 m 3/ h ,扬程1. 1×7. 59 m = 8. 35 mH 2O.= 7. 59 mH 2O表 5 冷冻水管段水力计算表管段1- 22- 3 3- 4 4- 5 5- 6 管长l /m 10 5 10 5 10 流量38. 39 4. 196 4. 196 4. 196 8. 39 管径d / mm DN50 DN40 DN40 DN40 DN50 流速v / (m/ s) 1. 06 0. 88 0. 88 0. 88 1. 06 比摩阻R / ( Pa/ m) 313. 7 307. 2 307. 2 307. 2 313. 7 局部阻力系数∑ζ14 0. 4 5. 3 0. 1 3. 5 动压2 561. 66 387. 10 387. 10 387. 10 561. 66 设备阻力 p m / kPa0 0 0 50 0 管段总损失 p / kPa11. 00 1. 69 5. 12 51. 57 5. 10 最不利环路的总阻力损失为 74. 48/ kPa 2- 5104. 196DN400. 88307. 28. 4387. 105056. 32管段 2 - 5与管段 2 - 3 - 4 - 5并联 ,不平衡率为 x = p 2 - 3 - 4 - 5 -p 2 - 5p 2 - 3 - 4 - 5=58 . 38 - 56. 3258 . 38= 3. 53 % < 15 % ,满足要求.某建筑建筑面积为 4 000 m 2 ,选用冷水机组一台 ,制冷量为 455 KW.冷凝器侧水阻力为4. 9×104 Pa ,进、冷凝器的水温分别为32℃和37℃,水处理器的阻力为2. 0×104 Pa ,冷却水管总长 48 m ,冷却塔盛水池到喷嘴的高差为 2. 5 m ,确定各管段的管径和水泵的选择参数.冷却水循环管路 ,由于管径没有沿程变化 ,认为是一个计算管段 ,则计算管段的冷却水流量为Φ 1. 3×455×103q m = = ( ) kg/ s= 28. 25 k g/ s = 1. 02×105 kg/ h = 102. 3 m 3/ h 根据冷却水流量 102. 3 m 3/ h ,查表 4 ,选用管道公称直径 DN150 mm ,管道水流速为4 q m 4×28. 25v = = ( ) m/ s= 1. 61 m/ s查表 1得比摩阻 R = 187. 43 Pa/ m ,管道长度为 48 m ,沿程压力损失为p y = Rl = (187. 43×48) Pa = 9. 0×103 Pa 弯头、回阀、阀等管件等的局部阻力系数总和∑ζ = 12. 46 ,总局部阻力为ρv 2 2= (12. 46× ) Pa2= 1. 61×104 Pa设备总阻力损失包括冷凝器阻力损失和水处理器阻力损失 ,为p m = (4. 9×104 + 2×104) Pa= 6. 9×104 Pa冷却塔喷雾所需压力p 0 = 4. 9×104 Pa 冷却水提升高度为 2. 5m ,所需的提升压力为p h = 2. 5 m ×9 807 N/ m 3 = 2. 45×104 Pa 故冷却水泵的扬程为p =∑(py +p j +p m ) +p 0 +ph = (9. 0×103 + 1. 61×104 + 6. 9×104) Pa+ 4. 9×104 Pa + 2. 45×104 Pa = 16. 76×104 Pa = 17. 1 mH 2O选用水泵,流量和扬程皆考虑10 %的余量;则选用水泵的参数为流量1. 1×102. 3 m 3/ h = 112. 5 m 3/ h ,扬程1. 1×17. 1 m = 18.81 mH 2O.参考文献 :社 ,2003出版社 ,1993第3期许淑惠罗文斌:空调冷冻水和冷却水循环系统水力计算简便方法7Simple Hydraulic Calculation of the Air Conditioning Chilled Waterand Cooling Water SystemsXu Shuhui Luo Wenbin(Dept . of Urban Construction Engineering , Beijing100044) Abstract : :Base on the theory of hydrodynamic calculation of air conditioning water systems , the ratio frictional resistance locity. The table makes the calculation quick , accurate and convenient . The application of the table is illustrated by practical examples.Key words :chilled water ; cooling water ; hydrauliccalculation。
风道、冷冻水管道水力计算方法

★风道水力计算方法1.假定流速法其特点是先按技术经济要求选定风管流速,然后再根据风道内的风量确定风管断面尺寸和系统阻力。
假定流速法的计算步骤和方法如下。
①绘制空调系统轴侧图,并对各段风道进行编号、标注长度和风量管段长度一般按两个管件的中心线长度计算,不扣除管件本身的长度。
②确定风道内的合理流速在输送空气量一定是情况下,增大流速可使风管断面积减小,制作风管缩消耗的材料、建设费用等降低,但同时也会增加空气流经风管的流动阻力和气流噪声,增大空调系统的运行费用;减小风速则可降低输送空气的动力消耗,节省空调系统的运行费用,降低气流噪声,但却增加风管制作的材料及建设费用。
因此必须根据风管系③根据各风道的风量和选择的流速确定各管段的断面尺寸,计算沿程阻力和局部阻力。
根据初选的流速确定断面尺寸时,应按前面图6—1(表)和表6—1的通风管道统一规格选取,然后按照实际流速计算沿程阻力和局部阻力。
注意阻力计算应选择最不利环路(即阻力最大的环路)进行。
假定风速法风道水力计算应将计算过程简要举例说明后,列表计算。
计算表格式见下表。
联管路之间的不平衡率应不超过15%。
若超出上述规定,则应采取下面几种方法使其阻力平衡。
a.在风量不变的情况下,调整支管管径。
由于受风管的经济流速范围的限制,该法只能在一定范围内进行调整,若仍不满足平衡要求,则应辅以阀门调节。
b.在支管断面尺寸不变情况下,适当调整支管风量。
风管的增加不是无条件的,受多种因素的制约,因此该法也只能在一定范围内进行调整。
此外,应注意道调整支管风量后,会引起干管风量、阻力发生变化,同时风机的风量、风压也会相应增加。
c.阀门调节通过改变阀门开度,调整管道阻力,理论上最为简单;但实际运行时,应进行调试,但调试工作复杂,否则难以达到预期的流量分配。
总之,两种方法(方法a和方法b)在设计阶段即可完成并联管段阻力平衡,但只能在一定范围内调整管路阻力,如不满足平衡要求,则需辅以阀门调节。
空调水系统水力计算方法与步骤

八.五 空调水系统的水力计算
空调冷冻水系统的水力计算
一. 管径的确定
空调水系统的管内流速按下表九-六推荐值采用,或依据表九-七根据流量确定管 径.
八.五 空调水系统的水力计算
空调冷冻水系统的水力计算
八八
一. 管径的确定
八.五 空调水系统的水力计算
空调冷冻水系统的水力计算
二. 空调冷冻水循环水泵的选择
空调冷冻水系统的水力计算
二. 空调冷冻水循环水泵的选择
当空调冷冻水系统为二次泵系统时,泵的选择:
一 一次泵
✓ 泵的流量等于冷水机组蒸发器的额定流量.
✓ 泵的扬程为克服一次环路的总阻力损失.
✓ 一次泵台数与冷水机组相同
选泵时,水
二 二次泵
✓ 泵的流量按分区夏季最大计算冷负荷确定.
泵的流量 与扬程均 要乘以安
八.五 空调水系统的水力计算
空调冷冻水系统的水力计算
空调冷冻水系统的水力计算方法与步骤:
✓ 通常按推荐的流速或比摩阻确定管径 ✓ 计算最不利环路阻力损失 ✓ 然后进行并联环路的阻力平衡 ✓ 确定系统总阻力 ✓ 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循环 阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般也可 忽略不计.
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负荷 确定,即
qm c t
八.五 空调水系统的水力计算
空调冷冻水系统的水力计算
二. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统ห้องสมุดไป่ตู้不利环路的总阻力 包括用冷设备、产冷设备、 管道、阀门等阻力
沿程
八.五 空调水系统的水力计算
风系统水力计算

二、计算公式 a.管段压力损失 = 沿程阻力损失 + 局部阻力损失 即:ΔP = ΔPm + ΔPj。 b.沿程阻力损失 ΔPm = Δpm×L。 c.局部阻力损失 ΔPj =0.5×ζ×ρ×V^2。 d.摩擦阻力系数采用柯列勃洛克-怀特公式计算。
三、计算结果 1、风系统1(假定流速法) a.风系统1水力计算表
风系统1(分流)
风速(m/s)
比摩阻 (Pa/m)
局阻系数
7.64
1.19
0.76
1.11
0.03
27.78
5.90
0.73
0.34
1.38
0.06
9.00
4.17
0.38
1.46
1.38
0.06
7.74
3.47
0.29
1.04
1.11
0.03
3.89
3.26
0.27
0.83
1.11
0.03
0.25
117.52 9.24
设计软件: 鸿业暖通空调设计软件10.0.20160629 计算时间: 2018-04-28 15:38
计算书
损失,再按各环路间的压损差值进行调整,以达到平衡。 复得静压来克服该管段的阻力,根据这一原则确定风管的断面尺寸。 损失ΣPi-1时,则按这种方法来确定风道的断面尺寸及阻力损失。
总阻力 (Pa) 31.68 20.61 10.24 10.35 16.58 8.91 8.80 52.98 6.50 50.29 1.50 8.91 51.57 4.08 50.10 50.10 50.10 50.10
支管阻力 (Pa)
129.49 20.61 97.81 60.45 87.57 59.02 70.98 52.98 62.18 50.29 55.68 59.02 51.57 54.19 50.10 50.10 50.10 50.10
风路系统水力计算(精华)

风路系统水力计算1水力计算方法简述目前,风管常用得得水力计算方法有压损平均法、假定流速法、静压复得法等几种。
1.压损平均法(又称等摩阻法)就是以单位长度风管具有相等得摩擦压力损失为前提得,其特点就是,将已知总得作用压力按干管长度平均分配给每一管段,再根据每一管段得风量与分配到得作用压力,确定风管得尺寸,并结合各环路间压力损失得平衡进行调整,以保证各环路间得压力损失得差额小于设计规范得规定值。
这种方法对于系统所用得风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。
2.假定流速法就是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身得强度,并考虑运行费用等因素来进行设定。
根据风管得风量与选定得流速,确定风管得断面尺寸,进而计算压力损失,再按各环路得压力损失进行调整,以达到平衡。
各并联环路压力损失得相对差额,不宜超过15%。
当通过调整管径仍无法达到要求时,应设置调节装置。
3.静压复得法(略,具体详见《实用供热空调设计手册》之11、6、3)对于低速机械送(排)风系统与空调风系统得水力计算,大多采用假定流速法与压损平均法;对于高速送风系统或变风量空调系统风管得水力计算宜采用静压复得法。
工程上为了计算方便,在将管段得沿程(摩擦)阻力损失与局部阻力损失这两项进行叠加时,可归纳为下表得3种方法。
将与进行叠加时所采用得计算方法计算方法名称基本关系式备注单位管长压力损失法(比摩阻法) 管段得全压损失——管段全压损失,Pa;——单位管长沿程摩擦阻力,Pa/m用于通风、空调得送(回)风与排风系统得压力损失计算,就是最常用得方法当量长度法风管配件得当量长度管段得全压损失Pa常见用静压复得法计算高速风管或低速风管系统得压力损失。
提供各类常用风管配件得当量长度值当量局部阻力法(动压法)直管段得当量局部阻力系数管段得全压损失常见用于计算除尘风管系统得压力损失,计算表Pa 中给出长度l=1m时得与动压值2 通风、防排烟、空调系统风管内得空气流速2、1 通风与空调系统风管内得空气流速宜按表2-1采用风管内得空气流速(低速风管) 表2-1风管类别住宅(m/s)公共建筑(m/s) 干管支管从支管上接出得风管通风机入口通风机出口注:1表列值得分子为推荐流速,分母为最大流速。
空调管道水力计算

2.3.1.4 并联管路旳阻力平衡
为了确保各管路到达预期旳风量,使并联支管 旳计算阻力相等,称为并联管路阻力平衡。对
一般旳通风系统,两支管旳计算阻力差应不超 出15%;含尘风管应不超出10%。若过上述要 求,采用下述措施进行阻力平衡。
(1)调整支管管径
这种措施经过变化支管管径来调整支管阻力, 到达阻力平衡。调整后旳管径按下式计算:
上述公式表白,管网中任一管段旳有关参数变
化,都会引起整个管网特征曲线旳变化,从
而变化管网总流量和管段旳流量分配,这决
定了管网调整旳复杂性。进一步从理论上能
够证明,
管网设计时不作好阻力平衡,完全依托阀门
调整流量旳作法难以奏效,尤其是并联管路 较多旳管网。
取得管网特征曲线后即可结合动力设备(风 机)旳性能曲线匹配动力设备,详细匹配措 施在第7章简介。
Rm Kt Rm0
Pa/m
(2-3-8)
Kt KV 0.25
Kt—管壁粗糙度修正系数; K---管壁粗糙度,mm。 V---管内空气流速,m/s。
(2-3-9)
矩形风管摩阻按当量直径计算单位长度摩擦
阻力。分流速当量直径和流量当量直径两种。
1)流速当量直径
假设某一圆形风管中旳空气与矩形风管中旳 空气流速相等,而且两者旳单位长度摩阻力 也相等,则该圆管旳 直径就称为流速当量直 径,以DV表达。据此定义可推得为:
2.3.1.3 风管局部阻力计算
首先拟定局部阻力系数 和它相应旳特征速 度V ,然后代入(2-2-3)式计算局部阻力。
各种局部阻力系数 通常查设计手册等拟定。 各种设备旳局部阻力或局部阻力系数,由设 备生产厂提供。
各管段摩擦阻力和局部阻力之和即为该管段 旳阻力。各管段阻力计算完毕后,应进行并 联管路旳阻力平衡,以保证明际流量分配满 足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三种中央空调系统风道水力计算方法
如同学过流体力学的人都做过流体分析一样,做过中央空调系统的人都熟悉水力计算,也害怕水力计算。
水力计算基本上是中央空调设计计算里面最繁杂的计算之一。
很多设计过程中的中央空调风道水力计算,都是采用的经验公式或者估算值,下面制冷快报就为大家介绍几种中央空调风道系统水力计算的方法。
风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动力消耗。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复
得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1.假定流速法
假定流速法也称为比摩阻法。
先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2.压损平均法
压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法
静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。