概率复习题(含答案)
中考数学复习《概率》经典题型及测试题(含答案)
中考数学复习《概率》经典题型及测试题(含答案)命题点分类集训命题点1 事件的分类【命题规律】1.事件的分类主要考查事件的判断,确定事件分为必然事件(概率为1)和不可能事件(概率为0),随机事件发生概率介于 0和1 之间.2.考查形式:①下列事件是…事件的是;②下列说法正确的是;③…事件是….【命题预测】事件的分类是研究概率知识的基础,值得关注.1.在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是( )A . 不确定事件B . 不可能事件C . 可能性大的事件D . 必然事件1. D 【解析】在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,是一定发生的事件,因而是必然事件,故选D.2.下列事件中,是必然事件是( )A . 两条线段可以组成一个三角形B . 400人中有两个人的生日在同一天C . 早上的太阳从西方升起D . 打开电视机,它正在播放动画片2. B3.下列说法中,正确的是( )A . 不可能事件发生的概率为0B . 随机事件发生的概率为12C . 概率很小的事件不可能发生D . 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3. A正面朝上的次数不确定命题点2 一步概率计算【命题规律】1.主要考查概率计算公式P (A )=mn (m 表示满足事件A 的可能结果数,n 表示所有可能结果数)的应用,只需一步便可解决.2.解决此类问题,首先找准所有可能发生的结果数,再找准事件A 发生的可能结果数,最后应用概率公式直接运算,注意事件A 的可能结果数要不重不漏,避免出错.【命题趋势】一步概率计算结合一些简单的游戏设计进行计算,是常考的基础概率计算. 4.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( )A . 110B . 19C . 13D . 124. A 【解析】随机选取一个数字,共有10种等可能结果,能打开密码锁的结果只有一种,所以一次就能打开密码锁的概率是110.5.已知袋中有若干个球,其中只有2个红球,它们除颜色外其他都相同,若随机摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A . 2B . 4C . 6D . 85. D 【解析】由概率的意义可知:袋中球的总数=红球的个数÷摸到红球的概率,即袋中球的总个数是2÷14=8(个).6.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是________.6. 34 【解析】由题意知,C ,D ,F 三点可与A ,B 构成等腰三角形,E 点不可以,则概率为34.第6题图 第7题图7.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是________.7. 35 【解析】∵黑色地砖有2块,白色地砖有3块,且小球停在每块地砖上的可能性相同,∴小球停在白色地砖上的概率为35.8.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.8. 45 【解析】从五个图形中任取一个,则共有5种等可能的结果,取到既是轴对称图形又是中心对称图形的有4种,故其概率为45.命题点3 树状图或列表法计算概率【命题规律】1.这类题的考查与实际生活比较贴近,命题背景一般有:①摸球游戏(分两次摸球或从两个袋子中分别摸球);②掷骰子游戏(两次求点数之和等);③抽卡片游戏;④和其他知识相结合如物理电路图.2.试题解法有固定的模式:主要是利用画树状图或列表法将所有等可能结果不重不漏地列举出来,使所有等可能结果清晰呈现,进而根据题设条件选择满足要求的事件的可能结果,最后再运用概率公式求解即可.【命题趋势】用树状图或列表法计算概率主要考查两步以上概率计算的方法,是概率计算命题的一大趋势.9.一个盒子装有除颜色外其他均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A . 25B . 23C . 35D . 3109. C 【解析】画树状图分析如下:红1、红2、白1、白2、白3,由树状图可知,共有20种均等可能的结果,其中取到一红一白的结果有12种,所以P (一红一白)=1220=35.故选C. 10.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A . 12B . 14C . 310D . 1610. B 【解析】列表如下:第一次第二次 积1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 4 6 8 10 12 3 3 6 9 12 15 18 4 4 8 12 16 20 24 5 5 10 15 20 25 30 661218243036共有36种等可能情况,其中积为奇数的有9种,所以P (积为奇数)=936=14.11.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是________. 11. 15【解析】画树状图如解图:共有60种等可能结果,符合要求的结果是12种,故概率为1260=15.12.从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是________. 12. 16【解析】画树状图如下:第由树状图可知共有12种等可能的结果,其中k =mn 为正的有2种,当k =mn 是正数时,正比例函数y =kx 的图象经过第一、第三象限.∴P =212=16.13.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级. (1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果; (2)求选手A 晋级的概率.13. 解:(1)用树状图表示选手A 获得三位评委评定的各种可能的结果,如解图:由树形图可知,选手A 一共能获得8种等可能的结果,这些结果的可能性相等. (2)由(1)中树状图可知,符合晋级要求的结果4种, ∴P(A 晋级)=48=12.14.A 、B 两组卡片共5张,A 中三张分别写有数字2、4、6,B 中两张分别写有3、5.它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?14. 解:(1)P(抽到数字为2)=13.(2)游戏规则不公平,理由如下.画树状图表示所有可能结果,如解图:由图知共有6种等可能结果,其中两数之积为3的倍数的有4种. ∴P(甲获胜)=46=23,P(乙获胜)=26=13∴游戏规则不公平.15.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示) (2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.15. 解:(1)列表法如下:A B C D A AB AC AD B BA BC BD C CA CB CD DDADBDC或画树状图如下:(2)在A 中,22+32≠42;在B 中,32+42=52;在C 中,62+82=102;在D 中52+122=132,则A 中正整数不是勾股数,B ,C ,D 中的正整数是勾股数. ∴P(抽到的两张卡片上的数都是勾股数)=612=12.命题点4 统计与概率结合【命题规律】此类题将概率和统计结合,一般为2~3问,第1问通常考查统计知识,最后1问涉及列表或树状图法计算概率,有时还会涉及到游戏的公平性.【命题预测】统计与概率都是与日常生活结合紧密,联系实验生活,是全国命题趋势之一,值得关注. 16.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意、一般、满意、非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)求此次调查中接受调查的人数; (2)求此次调查中结果为非常满意的人数; (3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或画树状图的方法求出选择的市民均来自甲区的概率. 16. 解:(1)由图知,满意20人,占调查人数的40%.∴此次调查中接受调查的人数为:20÷40%=50(人). (2)∵非常满意的人数占调查人数的36%, ∴非常满意的人数为:50×36%=18(人). (3)画树状图如下:∴市民均来自甲区的概率为:212=16.中考冲刺集训一、选择题1.在英文单词“parallel”(平行)中任意选择一个字母“a”的概率为( )A . 12B . 38C . 14D . 182.下列说法正确的是( )A . 为了审核书稿中的错别字,选择抽样调查B . 为了了解春节联欢晚会的收视率,选择全面调查C . “射击运动员射击一次,命中靶心”是随机事件D . “经过有交通信号灯的路口,遇到红灯”是必然事件3.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是( )A . 16 B . 14 C . 13 D . 124.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5.随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( )A . 310B . 320C . 720D . 7105.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A . 613 B . 513 C . 413 D . 313二、填空题6.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记.掷一次骰子,向上的一面出现的点数是3的倍数的概率是________.7.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图,在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是________.8.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是________.9.已知四个点的坐标分别是(-1,1),(2,2),(23,32),(-5,-15),从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.三、解答题10.已知反比例函数y =kx 与一次函数y =x +2的图象交于点A(-3,m).(1)求反比例函数的解析式;(2)如果点M 的横、纵坐标都是不大于3的正整数,求点M 在反比例函数图象上的概率.11.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数. (1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.12.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.13.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如下尚不完整的统计图表.评估成绩n(分) 评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.答案与解析:1. C2. C3. C 【解析】任意抛掷一次,朝上的面的点数有6种等可能的结果,其中满足|x -4|=2的有2和6两种,所以所求概率为26=13.4. A 【解析】从这5张卡片中,随机抽取3张,不同的抽法有:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种,其中抽到的三个数字作为边长能构成三角形的有(2,3,4),(2,4,5),(3,4,5),共3种,则P (能构成三角形)=310.5. B 【解析】∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5种情况,如解图所示,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是513.第5题解图6. 13 【解析】抛一枚质地均匀的正方体骰子,向上的一面有1,2,3,4,5,6这6种均等的结果,其中是3的倍数只有3和6两个,∴P(3的倍数)=26=13.7. 12 【解析】棕色糖果占总数的百分比为1-(20%+15%+30%+15%)=20%.绿色糖果或棕色糖果占总数的百分比为30%+20%=50%,∴取出的糖果的颜色为绿色或棕色的概率=50%,即12.8. 49 【解析】本题主要考查了古典概型中的概率问题.做此类型题目注意放回和不放回的区别,列表或画树状图都可解决此类问题.本题列表如下:红黄 黄由上表可知:4种,所以两次摸出球都是黄球的概率为49.9. 12 【解析】先将各点分别代入反比例函数解析式中,即y =1-1=-1≠1,y =12≠2,y =123=32,y =1-5=-15,所以(23,32),(-5,-15)这两个点在反比例函数y =1x 的图象上,因此,所求的概率为24=12.10. 解:(1)把A(-3,m)代入y =x +2中,得m =-3+2=-1, ∴A(-3,-1),把A(-3,-1)代入y =kx 中,得k =3,∴反比例函数的解析式为y =3x .(2)由题意列表如下:由上可知,共有9与(3,1)两种结果, ∴点M 在反比例函数图象上的概率P =29.11. 解:(1)所有可能的两位数用列表法列举如下表:(2)7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.12. 解:(1)12.(2)画树状图如解图,第12题解图或列表如下:甲 乙4 5 6 7 4 (4,5) (4,6) (4,7) 5 (5,4) (5,6) (5,7) 6(6,4)(6,5)(6,7)7 (7,4) (7,5) (7,6)由树状图或列表法可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:甲 9 9 9 10 10 10 0 0 0 0 0 0 乙109910910(7分)比较甲、乙两人的“最终点数”,可得P (乙获胜)=512.13. 解:(1)由统计图表知,评定为C 等级的有15家,占总评估连锁店数的60%, 则m =15÷60%=25.(2)由题意知B 等级的频数为25-(2+15+6)=2, 则B 等级所在扇形的圆心角大小为 225×360°=28.8°=28°48′. (3)评估成绩不少于80分的为A 、B 两个等级的连锁店.A 等级有两家,分别用A 1、A 2表示;B 等级有两家,分别用B 1、B 2表示,画树状图如下:第13题解图由树状图可知,任选2家共有12种等可能的情况,其中至少有一家是A 等级的情况有10种. 所以,从评估成绩不少于80分的连锁店中任选2家,其中至少有一家是A 等级的概率是P =1012=56.。
概率论复习题答案
一、单项选择题1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 42 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B )A. 0B. 2C. D 13 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A )A. 0B. 2C. 1 D 44 已知P(A)= ,则)(A A P ⋃的值为( D )(A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A.A B =A ⋃B B. A ⋃B =ABC. A ⋃BC=(A ⋃B)(A ⋃C)D. (A ⋃B)(A ⋃B )=AB7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4)8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1)9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A.2x B. C. 2x D. x10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A.2x B. 1 C. 2x D. 011. 设离散型随机变量X 的分布律为 P{X=n}=!n e nλλ, n=0,1,2…… 则称随机变量X 服从( B )A. 参数为λ的指数分布B. 参数为λ的泊松分布C. 参数为λ的二项式分布D. 其它分布12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。
概率论与数理统计复习题--带答案
概率论与数理统计复习题--带答案;第一章一、填空题1.若事件A⊃B且P(A)=0.5, P(B) =0.2 , 则P(A-B)=(0.3 )。
2.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为(0.94 )。
3.设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC++)。
4.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为(0.496 )。
5.某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6.设A、B、C为三个事件,则事件A,B与C都不发生可表示为(ABC)。
7.设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为(AB AC BCI I);8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 );10.若事件A与事件B互不相容,且P(A)=0.5,P(B) =0.2 , 则P(BA-)=(0.5 )11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。
12.若事件A⊃B且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.3 );13.若事件A与事件B互不相容,且P(A)=0.5,P(B) =0.2 , 则P(B A)=(0.5 )14.A、B为两互斥事件,则A B=U(S )15.A、B、C表示三个事件,则A、B、C恰有一个发生可表示为(ABC ABC ABC++)16.若()0.4P AB A B=UP AB=0.1则(|)P B=,()P A=,()0.2( 0.2 )17.A、B为两互斥事件,则AB=(S )18.保险箱的号码锁定若由四位数字组成,则一次)。
《概率论与数理统计》复习题及答案
《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。
2.已知A,B互相对立,则A与B的关系是互相对立。
,B为随机事件,则P(AB)?。
P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。
,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。
36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。
7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。
8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。
339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。
5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。
12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。
319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。
15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。
??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。
217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。
概率复习题答案
概率复习题答案学⽣填写):姓名:学号:命题:审题:审批: ------------------------------------------------ 密 ---------------------------- 封 --------------------------- 线 -----------------------------------------------------------(答题不能超出密封装订线)200 ~200 学年第学期科⽬考试(查)试题A (B )卷使⽤班级(教师填写):⼀.选择题1.设事件A 表⽰“甲种产品畅销,⼄种产品滞销”,其对⽴事件为 D .(A )“甲种产品滞销,⼄种产品畅销”; (B )“甲、⼄两种产品均畅销”; (C ) “甲种产品滞销”; (D ) “甲种产品滞销或⼄种产品畅销” .2.设A B ?,则下⾯正确的等式是 B .(A ))(1)(A P AB P -=;(B ))()()(A P B P A B P -=-;(C ))()|(B P A B P =;(D ))()|(A P B A P =3.设随机变量X 的分布律为 5,4,3,2,1,15/)(===k k k X P 。
则)5.25.0(<值是 B .(A ) 6.0 ; (B ) 2.0 ;C ) 4.0 ; (D ) 8.0 .4.设随机变量,X Y 相互独⽴,)1,0(~N X ,)1,1(~N Y ,则 B .)(A 2/1)0(=≤+Y X P ; )(B 2/1)1(=≤+Y X P ; )(C 2/1)0(=≤-Y X P ; )(D 2/1)1(=≤-Y X P .5. 设随机变量X 的密度函数为)(x f ,如果 A ,则恒有1)(0≤≤x f .(A ))1,0(~N X ; (B )),0(~2σN X ; (C )),1(~2σ-N X ; (D )),(~2σµN X .6. 设),(Y X 的联合概率密度为<+=,)(0,)1(/1),(22他其y x y x f π则X 与Y 为 C 的随机变量.(A ) 独⽴同分布; (B ) 独⽴不同分布; (C ) 不独⽴同分布; (D ) 不独⽴不同分布.7. 设X 为随机变量,若1.1)(2=X E ,1.0)(=X D ,则⼀定有 B .(A )9.0)11(≥<<-X P ; (B )9.0)20(≥<8. 设A B ?,则下⾯正确的等式是 B 。
概率复习题-答案
<概率论>试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于.22.设是来自正态总体的样本,令则当时~。
23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A);(B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率中考复习题及答案
概率中考复习题及答案一、选择题1. 随机变量X服从正态分布N(2, 4),那么P(X > 2)的概率是:A. 0.5B. 0.3C. 0.7D. 0.8答案:A2. 从10个产品中随机抽取3个,其中至少有1个次品的概率是:A. 0.6B. 0.4C. 0.7D. 0.3答案:B3. 抛一枚硬币三次,出现两次正面朝上的概率是:A. 0.25B. 0.375C. 0.5D. 0.75答案:B二、填空题1. 如果随机变量X服从二项分布B(5, 0.4),那么P(X=3)的概率是________。
答案:0.40962. 某工厂生产的零件合格率为95%,则该工厂生产的100个零件中,不合格零件的期望个数是________。
答案:53. 从52张扑克牌中随机抽取一张,抽到红桃的概率是________。
答案:0.25三、计算题1. 已知随机变量X服从泊松分布,其参数λ=3,求P(X=2)。
答案:P(X=2) = (e^-3 * 3^2) / 2! = 0.18942. 某次考试,学生A、B、C三人中至少有一人及格的概率是0.9,A、B、C三人都及格的概率是0.5,求A、B、C三人中恰好有两人及格的概率。
答案:P(恰好两人及格) = 0.9 - 0.5 - 2 * 0.5 * (1 - 0.5) = 0.43. 一袋中有10个红球和20个蓝球,随机抽取3个球,求至少抽到一个红球的概率。
答案:P(至少一个红球) = 1 - P(三个都是蓝球) = 1 - (20/30)* (19/29) * (18/28) = 0.8667四、解答题1. 某工厂生产一批零件,合格率为90%,从这批零件中随机抽取50个,求至少有45个合格的概率。
答案:设X为合格零件数,则X服从二项分布B(50, 0.9),P(X≥45) = Σ[C(50, k) * 0.9^k * 0.1^(50-k)],其中k从45到50。
通过计算可得P(X≥45) ≈ 0.9512。
初中数学概率专题复习题及答案
初中数学概率专题复习题及答案1、宇宙飞船的速度比飞机的速度快是事件。
2、两直线平行,同旁内角相等,这个事件是事件。
3、过平面内三点作一条直线是事件。
4、在一个袋子中装有10个红球,2个黄球,每个球除颜色外都相同,搅匀后,摸到色的球可能性大。
5、有10张形状、大小都一样的卡片,分别写有1至10十个数,将它们反面朝上洗匀后,任意抽一张,抽得偶数的成功率为。
6、一只袋内装有2个红球,3个白球,5个黄球(这些球除颜色外没有其他区别),从中任意取出一球,那么取得红球的成功率是。
7、如图11-1所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片画一个正方形,将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)那么甲方赢;假设可以拼成一个蘑菇形(取出一张纸片画有半圆、一张纸片画有正方形)那么乙赢.你认为这个游戏公平吗?假设不公平,有利于谁?.8、如果把抢30改成抢40,其他规那么不变,甲先取,乙后取,那么对有利.9、小华从一副完整的中国象棋中摸出5枚炮是事件.10、任意掷一枚普通骰子,出现了的点数不大于6这是事件。
11、同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,以下事件中是不可能事件的是()A.点数之和为12B.点数之和小于8C.点数之和大于4小于8D.点数之和为1312、以下事件不可能发生的是()A.翻开电视机,CCTV-1正在播放新闻B.我们班的同学将来会有人中选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.假设实数,那么13、以下事件中,属于必然事件的是()A.明天我市下雨B.我走出校门,看到的第一辆汽车的牌照的末位数字是偶数C.抛一枚硬币,正面朝上D.一口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球14、某超级市场失窃,大量的商品在夜间被罪犯用汽车运走,三个嫌疑犯被警察局传讯,警察已经掌握了以下事实;(1)罪犯不在A、B、C三人之外;(2)C作案时总得有A作从犯;(3)B不会开车。
概率统计复习题答案
概率统计复习题答案1. 随机变量X服从标准正态分布,求P(X > 1.96)。
答案:根据标准正态分布表,P(X > 1.96) = 1 - P(X ≤ 1.96) = 1 - 0.975 = 0.025。
2. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,求X的期望E(X)和方差Var(X)。
答案:E(X) = np = 10 × 0.3 = 3,Var(X) = np(1-p) = 10 × 0.3 × 0.7 = 2.1。
3. 某工厂生产的零件寿命服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中λ > 0,求该零件寿命超过1000小时的概率。
答案:P(X > 1000) = ∫(1000, +∞) λe^(-λx) dx = e^(-λ×1000)。
4. 已知随机变量X和Y的联合概率密度函数为f(x, y),求X和Y的协方差Cov(X, Y)。
答案:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = ∫∫(x -E(X))(y - E(Y))f(x, y) dxdy。
5. 某地区连续三天的降雨量分别为X1, X2, X3,若X1, X2, X3相互独立且都服从正态分布N(μ, σ^2),求三天总降雨量X = X1 + X2 + X3的分布。
答案:X = X1 + X2 + X3,由于X1, X2, X3相互独立且都服从正态分布,根据正态分布的性质,X也服从正态分布,即X ~ N(3μ,3σ^2)。
6. 设随机变量X服从泊松分布,其参数为λ,求X的期望E(X)和方差Var(X)。
答案:对于泊松分布,其期望和方差都等于参数λ,即E(X) = λ,V ar(X) = λ。
7. 某工厂生产的零件合格率为0.95,求在100个零件中至少有90个合格的概率。
答案:设Y为100个零件中合格的零件数,则Y服从二项分布B(100, 0.95)。
(完整)概率复习题及答案
〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。
将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。
5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________________8。
设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。
若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。
用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15。
已知,则=16.设,且与相互独立,则17。
设的概率密度为,则=18。
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。
设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。
22.设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。
概率中考复习题及答案
概率中考复习题及答案概率论是数学中的一个重要分支,它在统计学、物理学、经济学等多个领域都有广泛的应用。
以下是一份概率中考复习题及答案,供同学们复习参考。
一、选择题1. 某事件A的概率为0.6,事件B的概率为0.4,若事件A和事件B 互斥,那么事件A和事件B至少发生一个的概率是多少?A. 0.2B. 0.6C. 0.8D. 0.4答案:C2. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 1C. 0.25D. 0.75答案:A3. 如果一个袋子里有3个红球和2个蓝球,随机取出一个球,这个球是红球的概率是多少?A. 1/2B. 3/5C. 2/5D. 1/3答案:B二、填空题4. 事件的必然性概率是______,不可能事件的概率是______。
答案:1;05. 如果事件A和事件B是相互独立事件,那么事件A和事件B同时发生的概率是P(A) × P(B)。
如果P(A) = 0.3,P(B) = 0.4,那么P(A∩B) = ______。
答案:0.12三、计算题6. 假设有一个骰子,每次掷出1点的概率是1/6。
如果连续掷两次骰子,求掷出两个1点的概率。
答案:两个1点的概率是(1/6) × (1/6) = 1/36。
7. 一个班级有30名学生,其中15名男生和15名女生。
如果随机选择两名学生,求选出的两名学生都是男生的概率。
答案:选出的两名学生都是男生的概率是(15/30) × (14/29) =7/48。
四、解答题8. 某工厂有100个产品,其中10个是次品。
如果随机抽取5个产品进行检查,求至少有1个是次品的概率。
答案:首先计算没有次品的概率,即从90个正品中抽取5个,然后用1减去这个概率得到至少有1个次品的概率。
计算如下:P(没有次品) = C(90,5) / C(100,5),P(至少有1个次品) = 1 - P(没有次品)。
9. 某城市在连续两天内下雨的概率都是0.3。
(完整版)概率论与数理统计复习题带答案讲解
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
《概率论》考试试题(含答案)
《概率论》考试试题(含答案) ................................................................................................... 1 解答与评分标准 . (3)《概率论》考试试题(含答案)一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为( ) (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为( )(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对 4.某一随机变量的分布函数为()3xxa be F x e +=+,则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B =_____.2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.五.(本题10分) 设二维随机变量(ξ,η)的联合分布是η=1 η=2 η=4 η=5ξ=0 0.05 0.12 0.15 0.07 ξ=1 0.03 0.10 0.08 0.11 ξ=2 0.070.010.110.10(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=)九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)解:1(18201834183118161824)18255ξ=++++=-------------------2分 已知10.95, 0.05αα-==,0.02521.96u u α==---------------------------5分10σ=,n=5,0.025210 1.96108.7755u u nασ⨯===-------------------8分所求真值μ的0.95的置信区间为[1816.23, 1833.77](单位:℃)-------10分解答与评分标准一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为ξη⋅0 1 2 4 5 8 10。
概率论复习题和答案
概率论复习题和答案# 概率论复习题和答案一、选择题1. 事件A和B是互斥的,如果P(A) = 0.3,P(B) = 0.4,那么P(A∪B)等于多少?A. 0.1B. 0.3C. 0.7D. 0.4答案:C. 0.72. 抛掷一枚均匀的硬币,求正面朝上的概率。
A. 0.5B. 0.25C. 0.75D. 1答案:A. 0.53. 随机变量X服从均值为μ,方差为σ²的正态分布,那么P(X > μ)是多少?A. 0.5B. 0.3C. 0.7D. 不能确定答案:A. 0.5二、填空题4. 如果事件A的概率是0.6,事件B的概率是0.5,且P(A∩B) = 0.2,那么P(A∪B)等于______。
答案:0.75. 假设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么X 的期望E(X)等于______。
答案:3三、简答题6. 什么是条件概率?请给出条件概率的定义和公式。
答案:条件概率是指在已知某个事件B已经发生的情况下,另一个事件A发生的相对概率。
条件概率的公式为:P(A|B) = P(A∩B) /P(B)。
7. 什么是大数定律?请简述其主要内容。
答案:大数定律是概率论中的一个重要定理,它描述了随机事件在大量重复实验中所表现出的稳定性。
主要内容是,当独立同分布的随机变量的个数趋于无穷大时,它们的算术平均值会趋近于它们的期望值。
四、计算题8. 某工厂生产的灯泡,其寿命超过1000小时的概率为0.7。
如果随机抽取5个灯泡,求至少有3个灯泡寿命超过1000小时的概率。
答案:首先计算恰好有3个、4个、5个灯泡寿命超过1000小时的概率,然后将这些概率相加。
使用二项分布公式计算,具体计算过程略。
9. 假设有一批零件,其合格率为90%。
如果从这批零件中随机抽取100个,求至少有85个是合格品的概率。
答案:使用正态近似的方法来计算,首先计算期望和标准差,然后使用标准正态分布表来查找对应的概率。
概率论考试题及答案
概率论考试题及答案在学习概率论的过程中,一场考试是检验学生掌握程度的重要方式。
下面将为大家介绍一些概率论考试题及其答案,希望能够帮助大家更好地复习和准备考试。
1. 选择题1.1 在一副标准扑克牌中,抽取一张牌,观察到它是黑桃的情况下,再次从该扑克牌中抽取一张牌,观察该牌是红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/3答案:D. 1/31.2 掷一枚骰子,观察到一个正整数出现的情况下,再次掷骰子,观察到另一个正整数出现的概率是多少?A. 1/12B. 1/6C. 1/36D. 1/18答案:B. 1/62. 计算题2.1 有一个有12个不同数字的骰子,抛出两次。
求两次得到的和是偶数的概率。
答案:一共有6 * 6 = 36 种可能的结果。
其中,和为偶数的情况有:(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), (5,3), (5,5), (6,2), (6,4), (6,6) 共计18种。
因此,所求概率为18/36 = 1/2。
2.2 一副扑克牌中,黑桃、红桃、梅花、方块各有13张,从中抽取五张牌,求至少有一张黑桃的概率。
答案:总共抽取5张牌,共有C(52,5)种取法。
不抽取黑桃的情况有C(39,5)种取法。
因此,至少有一张黑桃的情况有C(52,5) - C(39,5) 种取法。
所求概率为[C(52,5) - C(39,5)] / C(52,5)。
3. 应用题3.1 有甲、乙两个工人分别制作产品A和产品B,已知甲的合格率为85%,乙的合格率为90%。
如果随机抽查一件产品是合格的,求这件产品是乙制作的概率。
答案:假设事件A为产品合格,事件B为产品由乙制作。
根据题意,可得P(A|B) = 90%,P(A|B') = 85%,P(B) = 1/2,P(B') = 1/2。
(完整word版)概率论复习题及答案
概率论与数理统计复习题一.事件及其概率1. 设,,A B C 为三个事件,试写出下列事件的表达式:(1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。
解:(1) ABC A B C =⋃⋃(2) ABC A B C =⋃⋃ (3) A B C ⋃⋃ (4) BC AC AB ⋃⋃2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ⋃-。
解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ⋃=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。
3. 设,A B 互斥,()0.5P A =,()0.9P A B ⋃=,求(),()P B P A B -。
解:()()()0.4,()()0.5P B P A B P A P A B P A =⋃-=-==。
4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ⋃。
解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==⋃=+-= ()()()()0.2P AB P A B P A P AB =-=-=。
5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ⋃⋃。
解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ⋃⋃=-⋃⋃=-=-=。
6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率;(2) 取到一个黄球、一个白球的概率。
中考数学复习《概率》练习题(含答案)
中考数学复习《概率》练习题(含答案)一、选择题1.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵 爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距 离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形 区域(含边)的概率是A .12B .14C .15D .110 2.期中考试后,小明的讲义夹里放了8K 大小的试卷纸共12页,其中语文4页、数学2页、英语6页,他随机从讲义夹中抽出1页,是数学卷的概率是( ). A. 21 B. 31 C. 61 D. 121 3.如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是 ( )A.21B.61 C.31 D.514.如图,在12 网格的两个格点上任意摆放黑、白两个棋子,且两棋子不在同一条格线上.其中恰好如图示位置摆放的概率是( ▲ ).A .61B . 91C . 121D . 1815.从分别标有A 、B 、C 的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A ,一π 7228 020 图①图② 39(第4题图)根标有C 的概率是A .91B .92C .31D .94 6.一个布袋中有1个红球, 3个黄球,4个蓝球,它们除颜色外完全相同. 从袋中随机取出一个球,取到黄球的概率是( )A. 18B. 38C. 13D. 12二、填空题1.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____.2.在一个不透明的布袋中,黄色、白色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球 的频率稳定在60%,则布袋中白色球的个数很可能 是 个.3.不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的, 这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是____.4.从1-9这九个自然数中任取一个,是2的倍数的概率是 ﹡ .5.在一个不透明的盒子中装有8个白球,x 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 23,则x = ▲ . 6.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是 .7..将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这个事件是事件 (填“必然”或“不可能”或“随机”).8. “五·一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示.若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为 ▲ .答案: 选择题1、C2、C3、D4、C5、B6、B填空题1、【答案】 16252、【答案】43、答案:124、 答案:945、答案:46、答案:5/127、答案:必然8、答案:21第8题 西湖 动漫节 宋城。
高二概率复习题及答案
高二概率复习题及答案一、选择题1. 某工厂生产的零件,次品率为0.05,正品率为0.95。
从这批零件中随机抽取一个,求它是次品的概率。
A. 0.05B. 0.95C. 0.10D. 0.202. 抛一枚硬币,求正面朝上的概率。
A. 0.5B. 1C. 0.25D. 0.753. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到蓝球的概率。
A. 3/8B. 5/8C. 1/2D. 1/3二、填空题4. 某班级有50名学生,其中男生30人,女生20人。
从班级中随机抽取一名学生,求抽到女生的概率为________。
5. 一个骰子有6个面,每个面上的点数分别为1到6。
投掷一次骰子,求点数为偶数的概率为________。
三、解答题6. 某学校有500名学生,其中100名学生参加了数学竞赛。
如果随机抽取一名学生,求该学生参加数学竞赛的概率。
7. 一个袋子里有10个球,其中红球3个,白球4个,黑球3个。
如果从袋子里随机抽取两个球,求至少有一个红球的概率。
四、应用题8. 某地区有两家医院,A医院和B医院。
A医院的治愈率为80%,B医院的治愈率为70%。
如果随机选择一家医院进行治疗,求患者治愈的概率。
9. 某公司有100名员工,其中5名员工有吸烟习惯。
公司决定随机抽取5名员工进行健康检查,求至少有1名员工吸烟的概率。
五、综合题10. 一个班级有40名学生,其中20名男生和20名女生。
如果随机抽取4名学生组成一个小组,求至少有1名男生的概率。
答案:1. A2. A3. A4. 20/50 = 2/55. 3/6 = 1/26. 100/500 = 1/57. 1 - (7/10 * 6/9) = 1 - 7/15 = 8/158. 0.8 * 1/2 + 0.7 * 1/2 = 0.4 + 0.35 = 0.759. 1 - (95/100 * 94/99 * 93/98 * 92/97) ≈ 0.7710. 1 - (20/40 * 19/39 * 18/38 * 17/37) ≈ 0.97【注】以上题目和答案仅供参考,具体题目和答案可能因教材和教学大纲的不同而有所变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第一学期《概率统计》(公共课)复习题1. P5 例1.1 设A,B,C为3个事件,用A,B,C的运算式表示下列事件:(1)A发生而B与C不发生:A BC或A—B—C或A—( B ∪ C ).(2)A,B都发生而C不发生:AB C或AB—C .(3)A,B,C至少有一个事件发生:A ∪ B ∪ C .(4)A,B,C至少有两个事件发生:AB∪BC∪CA .(5)A,B,C恰好有两个事件发生:AB C ∪A BC∪A B C.(6)A,B,C恰好有一个事件发生:A BC ∪A B C ∪AB C.(7)A,B至少有一个事件发生:(A∪B)C.(8)A,B,C都不发生:ABC或A B C2. P10 古典概率公式:P(A) = k/n = A所包含的样本点数 / Ω中样本点总数P12 例1.8 有n个人,每个人都以同样的概率1/ N被分配在N(n < N)间房中的任一间中,求恰好有n个房间,其中各住一人的概率解:每个人都有N种分法,这是可重复排列问题,n个人共有N n 种不同分法,种选法。
对于其中每一种选法,因为没有指定是哪几间房,所以首先选出n间房,C nNn!/ N n每间房各住一人共有n!种分法,故所求概率为p = C nN3. P15 条件概率的定义:设A,B为两个时间,且P(B)>0,则称P(AB)/P(B)为事件B已发生条件下事件A发生的条件概率,记为P(A|B),即P(A|B)= P(AB)/P(B).P16 例1.13 某科动物出生以后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的动物活到25岁以上的概率。
解:设A表示“活到20岁以上”的事件,B表示“活到25岁以上”的事件,则有 P(A)=0.7,P(B)=0.56,且B包含于A .得:P(B|A)=P(AB)/P(A)=P(B)/P(A)=0.56/0.7=0.84. P14 几何概型公式:用A表示“掷点落在区域A内”的事件,那么事件A的概率可用下列公式计算:P(A)=m(A)/m(Ω),称它为几何概率。
P29 习题22 (1)从(0,1)中随机地取两个数,求:两个数之和小于65的概率;解:设两数为x,y,则0<x,y<1. x + y <65.11441725510.68125p=-==5.P30 习题25 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?解:设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P (A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B AP ABP A BP B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702%(2)()()()()()()()()()P A P B AP ABP A BP B P A P B A P A P B A==+0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.6. P36 二项分布的分布律:P{X=k}=C knp k(1- p)n-k,k=0,1,…,n,则称X服从参数为n,p的二项分布,记为X~b(n,p).7. P40 泊松分布的分布律:若随机变量X的分布律为P{X=k}=λke-λ/k!,k=0,1,…,其中λ>0是常数,则称X服从参数为λ的泊松分布,记为X~P(λ).lim x →1-8. P44 连续型随机变量的概率特点:P{a ≤X <b}=P{a <X ≤b}=P{a ≤X ≤b}=P{a <X <b}.P48 指数分布:若随机变量X 的密度函数为: λe -λx ,x >0,f(x)=0, x ≤0,其中λ>0为常数,则称X 服从参数为λ的指数分布,记作X~E(λ).9. P44 2.9 设连续型随机变量X 的分布函数为 0, x <0, F(x)= Ax 2, 0≤x <1, 1, x ≥1.试求:(1)系数A ;(2)X 落在区间(0.3,0.7)内的概率;(3)X 的密度函数。
解:(1)由于X 是连续型随机变量,故F(x)是连续函数,因此有1=F(1)= F(x)= Ax 2 =A ,即A=1,于是有 0, x <0, 0≤x <1, x ≥1.(2)P{0.3<X <2-(0.3)2=0.4. 2x ,0≤x <1, (3)X 的密度函数为 f(x)=F ’(x)=0, 其他.10.P49 标准正态分布的密度曲线图形(略)P52 标准正态分布的上α分位点的定义和求法:设X~N(0,1),若z α满足条件 P{X >z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点。
例如,由查表可得z 0.05=1,z 0.001=3.16.故1.645与3.16分别是标准正态分布的上0.05分位点与上0.001分位点.(上图白色部分的才是α)?P59习题27 求标准正态分布的上α分位点:(1)α=0.01,求z α;(2)α=0.003,求z α,z α/2. 解:查表可得:(1)z α=2.33;(2)z α=2.75,z α/2=2.9611. P58 习题16(1) 设某种仪器内装有3只同样的电子管,电子管使用寿命X 的密度函数为:100/x 2, x ≥100,f(x)= 0, x <100. 求:(1)在开始150h 内没有电子管损坏的概率.解:15021001001(150)d .3P X x x ≤==⎰ 33128[(150)](327p P X =>==习题24 设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P{X ≤2},P{X >3}; (3) 求分布密度f (x ).解:?(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2)2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩?12. P59 习题 31设随机变量X~U (0,1),试求:(1) Y=e X的分布函数及密度函数;(2) Z=2lnX 的分布函数及密度函数.解:(1) (01)1P X <<= 故 (1e e)1X P Y <=<=当1y ≤时()()0Y F y P Y y =≤=当1<y<e 时()(e )(ln )XY F y P y P X y =≤=≤ln 0d ln y x y ==⎰当y ≥e 时()(e )1X Y F y P y =≤=即分布函数:0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为:11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他(2) 由P (0<X<1)=1知:(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z>0时,()()(2l n )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z zP X P X -=≤-=≥/21/2ed 1e z z x --==-⎰即分布函数为:-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩013. P60 习题36 已知F (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<.21,1,210,21,0,0x x x x则F (x )是( )随机变量的分布函数.(A ) 连续型; (B )离散型; (C ) 非连续亦非离散型. 解:因为F (x )在(∞,+∞)上单调不减右连续,且lim ()0x F x →-∞=lim ()1x F x →+∞=,所以F (x )是一个分布函数。
但是F (x )在x=0处不连续,也不是阶梯状曲线,故F (x )是非连续亦非离散型随机变量的分布函数。
选(C )?习题42 设随机变量X 的分布函数为F(x) =⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<.3,1,31,8.0,11,4.0,1,0x x x x求X 的概率分布.解:由离散型随机变量X 分布律与分布函数之间的关系,可知X 的概率?习题44 若随机变量X 在(1,6)上服从均匀分布,则方程y 2+Xy+1=0有实根的概率是多少?解:1,16()50,x f x ⎧<<⎪=⎨⎪⎩其他所以 24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=14. P74 离散型随机变量独立性的定义:P{X=x i ,Y=y i }=P{X=x i }P{Y=y i }.连续型随机变量独立性的定义:f(x ,y)=fx(x)fy(y).[f(x ,y)为(X,Y)的概率密度函数]15. P85 习题13设二维随机变量(X ,Y )的联合分布律为(2) X 与Y 是否相互独立? 解:(1)X 和Y 的边缘分布如下表:(2) 因{2}{0.4}0.20.8P X P Y ===⨯ 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.16. P86 习题19(1)设随机变量(X ,Y )的分布律为(1) 求P{X=2|Y=2},P{Y=3|X=0};解:{2,2}{2|2}{2}P X Y P X Y P Y ======50{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑{3,0}{3|0}{0}P Y X P Y X P X ======30{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑17. P111 习题7 设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X 2Y ),D (2X 3Y ).解:(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯= (2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯=18. P125 习题5有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?解:设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ1(2.5)10.99380.0062.=-Φ=-=2 1 2 2 2 n 19. P131 χ2(n )分布的定义:设X1,X2,…,Xn 是来自总体N (0,1)的样本,则量χ2=X +X +…+X 所服从的分布称为自由度为n 的χ2分布,记为χ2~χ2(n ). 密度曲线图(略)上α分位点的定义:对于给定的正数α,0<α<1,满足条件 P{χ2>χ2α(n)}= α的点χ2α(n)为χ2(n)分布的上α分位点.20. P132 t 分布的定义:设X~N (0,1),Y~χ2(n),并且X ,Y 独立,则称随机变量 t=X/√Y/n 服从自由度为n 的t 分布,记为t~t(n). 密度曲线图(略)上α分位点的定义及性质:对于给定的正数α,0<α<1,满足条件 P{t >t α(n)}=α的点t α(n)为t(n)分布的上α分位点; 性质:T 1-α(n)=-T α(n)≈Z α.P133 F 分布的定义:设U~χ2(n 1),V~χ2(n 2),且U ,V 独立,则称随机变量F=(U/n 1)/(V/n 2)服从自由度为(n 1,n 2)的F 分布,记为F~F(n 1,n 2). 密度曲线图(略)上α分位点的定义及性质:对于给定的正数α,0<α<1,满足条件 P{F >F α(n 1,n 2)}=α的点F α(n 1,n 2)为F(n 1,n 2)分布的上α分位点; 性质:F 1-α(n 1,n 2)=1/F α(n 2,n 1).21. P136 习题2 从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大?解:~(0,1)Z N =(2.2 6.2)P X P Z <<=<<2(0.410.95,=Φ-=则Φ,故即n >24.01,所以n 至少应取2522. P152 习题 5 随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.解:(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计. (2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i=1,2, (8)显然L=L(θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L=L(θ)最大,所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E(18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.习题8 某车间生产的螺钉,其直径X~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 解:n=6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝题型:填空题(10道20分),选择题(5道15分),判断题(5道15分),计算题(5道50分)。