利用牛顿迭代法求解非线性代数方程组

合集下载

非线性方程组的求解方法及其应用

非线性方程组的求解方法及其应用

非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。

与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。

本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。

1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。

该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。

牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。

具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。

值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。

因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。

2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。

信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。

具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。

在这里我们假设$B_k$为正定矩阵。

显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。

因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。

非线性方程组求根的牛顿迭代法

非线性方程组求根的牛顿迭代法

二元非线性方程组求根的牛顿迭代法摘要:本文根据一元函数的Taybr 公式和求解一元非线性方程的牛顿迭代法之间的关系,利用多元函数的Taybr 公式推导出了二元非线性方程组的牛顿迭代法;在此基础上,通过MA TLAB 仿真计算一个方程组的根来说明该方法是可行的。

关键词:牛顿迭代法;一元函数;二元函数; Taybr 公式; Matlab 0 引言非线性方程()0f x =的数值解法有逐步搜索法、区间二分法、迭代法、牛顿迭代法等, 那么, 对于对于非线性方程组(,)0(,)0f x y g x y =⎧⎨=⎩,其牛顿迭代法的迭代方程是什么? 本文根据一元函数的Taybr 公式和一元非线性方程牛顿迭代法之间的关系,利用多元函数的Taybr 公式推导出了二元非线性方程组的牛顿迭代法,在此基础上利用推导出的二元非线性方程组求根的牛顿迭代法通过matlab 仿真计算出一个方程组的根,检验了所得方法的有效性。

1 基本定理、结论定理1 (一元函数的Taybr 公式)如果函数()f x 在含有0x 的某个开区间(,)a b 内具有直(1)n +阶的导数,则对任一(,)x a b ∈ ,有()20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中()n R x = ()(1)10()()1!n n f x x n ξ++-+,这里ξ是0x 与x 之间的某个值。

定理2 (二元函数的Taybr 公式)设(,)z f x y =在点00(,)x y 的某一邻域内连续且有直到(1)n +阶的连续偏导数,00(,)x k y k ++为此邻域内任一点,则有2000000001(,)(,)(,)(,)...2!f x k y k f x y h k f x y h k f x y x y x y αααααααα⎛⎫⎛⎫++=++++++ ⎪ ⎪⎝⎭⎝⎭1000011(,)(,)!(1)!n n h k f x y h k f x k y k n x y n x y ααααθθαααα+⎛⎫⎛⎫++++++ ⎪ ⎪+⎝⎭⎝⎭,(01)θ<<. 其中00(,)mh k f x y x y αααα⎛⎫+ ⎪⎝⎭表示00(,)0m mp p m pm x y p m p p f C h k x y --=∂∂∂∑定理3:一元非线性方程求根的牛顿牛顿法设已知方程f ( x) = 0有近似根k x (假定f ′(k x ) ≠0,将函数f ( x)在点kx 处展开,有f ( x)≈ f (k x ) + f ′(k x ) ( x -k x ) ,于是方程f ( x) = 0可近似的表示为f (k x ) + f ′(k x ) ( x -k x ) = 0这是个线性方程,记其根为k x + 1 ,则k x + 1的计算 公式为1()()k k k k f x x x f x +=-'( k = 0, 1, …) 2 二元函数的牛顿迭代法设z = f ( x, y)在点00(,)x y 的某一邻域内连续且有直到2阶的连续偏导数,00(,)x h y k ++为此邻域内任一点,则有000000(,)(,)(,)(,)x x y y f x h y k f x y h f x y kf x y xy==⎛⎫∂∂++≈++ ⎪∂∂⎝⎭于是方程f ( x, y) = 0可近似的表示为(,)(,)(,)0k kk k x x y y f x y h f x y kf x y x y==⎛⎫∂∂++= ⎪∂∂⎝⎭即(,)()(,)()(,)0k k k k k k k k k k f x y x x f x y y y f x y +-+-=同理设z = g ( x, y )在点00(,)x y 的某一邻域内连续且有直到2阶的连续偏导数, 00(,)x h y k ++为此邻域内任一点,则同样有000000(,)(,)(,)(,)x x y y g x h y k g x y h g x y kg x y xy==⎛⎫∂∂++≈++ ⎪∂∂⎝⎭其中00,h x x k y y =-=-于是方程g ( x, y) = 0可近似的表示为,()(,)(,)0k kk k x x y y g x y h g x y kg x y xx==⎛∂∂⎫++= ⎪∂∂⎝⎭即()(,)(),()(,)0k k k x k k k y k k g x y x x g x y y y g x y +-+-=于是得到方程组,,,,,,()()()()()0()()()()()0k k k y k k k y k k k kk y k k k y k k f x y x x f x y y y f x y g x y x x g x y y y g x y +-+-=⎧⎪⎨+-+-=⎪⎩ 求解这个方程组:当,,,,()()()()0x k k y k k x k k x k k g x y f x y f x y g x y +-≠时 x =,,,,,,,,()()()()+()()()()k k y k k k k y k k k x k k y k k x k k y k k f x y g x y g x y f x y x g x y f x y f x y g x y +-+-y =,,,,,,,,()()()()+()()()()k k x k k k k x k k k x k k y k k x k k y k k g x y f x y f x y g x y y g x y f x y f x y g x y +-+-从而:,,,,,,,,,,,,,,,,()()()()+()()()()()()()()+()()()()k k y k k k k y k k k x k k y k k x k k y k k k k x k k k k x k k kx k k y k k x k k y k k f x y g x y g x y f x y x x g x y f x y f x y g x y g x y f x y f x y g x y y y g x y f x y f x y g x y +-⎧=⎪+-⎪⎨+-⎪=⎪+-⎩记符号,(),,,,()()()()k k x x x y k k x k k k k x k k gf fg g x y f x y f x y g x y -=- ,(),,,,()()()()k k y y x y k k y k k k k y k k fg gf f x y g x y g x y f x y -=- ,(),,,,()()()()k k x y x yx y x k k y k k x k k y k k g f f g g x y f x y f x y g x y -=-又可改写为,,,,()()()()k k k k k k k k y y x y k x y x y x y x x x y k x y x y x y fg gf x x g f f g fg gf y y g f f g ⎧-⎪=+⎪-⎪⎨-⎪=+⎪-⎪⎩迭代公式为:,,,,()1()()1()k k k k k k k k y y x y k k x y x y x y x x x y k k x y x y x y fg gf x x g f f g fg gf y y g f f g ++⎧-⎪=+⎪-⎪⎨-⎪=+⎪-⎪⎩通过迭代公式可迭代出当k = 1, 2, …时,,()k k x y 的值,当1,1()(0k k x y δδ++≤>为给定的误差控制项)时, 原方程组的根即为,()k k x y 。

数值分析8牛顿迭代法解非线性方程组

数值分析8牛顿迭代法解非线性方程组

) (x x
) (x x
(0)
)
f1 x
f2 x
(y y
(y y
(0)
)
f1 y
f2 y
0
0
f2( x
(0)
,y
(0)
(0)
)
(0)
)
G X
f1 x G f 2 x f1 y f 2 y
u 11 u 12 u 22
1 m 21 A m n1
1 m n ,n 1
1
u 11
u 12 u 22

u1 n u n 1,n u nn
1
d2
dn
1
l 21 1

l n1 ln2 1
a1n a 2n a nn
d2 ln2d 2
dn
l 21 1

yj x 0
2
j
( j = 1,2,··· ) ··,n ··
2
三对角方程组
2 h2 1 1 2h
2
y j1 ( 2 h ) y j y j1 x j h
1 2 2h y1 x1 y2 x2 h 2 y n1 x n1 y x n n
a kk a nk
工作量: n(n – 1)(n + 4)/3
12/18
例 . LDLT分解
1 A 2 1

牛顿下山法求非线性方程组解

牛顿下山法求非线性方程组解

《MATLAB 程序设计实践》课程考核1、编程实现以下科学计算算法,并举一例应用之。

(参考书籍《精通MALAB科学计算》,王正林等著,电子工业出版社,2009年)“牛顿下山法求非线性方程组解”解:算法说明:牛顿下山法的迭代公式:())()(11n n n n x F x F w x x -+-=w 的取值范围为10≤w ,为了保证收敛,还要求w 的取值使得:())(1n n x F x F +可以用作次减半法来确定w 。

为了减少计算量,还可以用差商来代替偏导数。

在MA TLAB 中编程实现的非线形方程组的牛顿下山法的函数:mulDNewton 。

功能:用牛顿下山法求非线形方程组的一个解。

调用格式:[]),0(,eps x mulDNewton n r = 其中, x0为初始迭代向量Eps 为迭代精度;r 为求出的解向量n 为迭代步数。

牛顿下山法的MATLAB 代码如下:function [r,n]=mulDNewton(x0,eps) %牛顿下山法求非线形方程组的一个解 %初始迭代向量:x0 %迭代精度:eps %解向量: r %迭代步数:n if nargin==1 eps=1.0e-4;%输入的自变量的数目为1个时,精度定为eps=1.0e-4 endr=x0-myf(x0)/dmyf(x0); %当n=1时,取w=1 n=1; tol=1;%初始n 和tol 的值 while tol>eps x0=r; ttol=1; %初始ttol 的值 w=1;%初始w 的值,w 就是下山因子alpha F1=norm(myf(x0)); while ttol>=0r=x0-w*myf(x0)/dmyf(x0); ttol=norm(myf(r))-F1; w=w/2; endtol=norm(r-x0); n=n+1; if (n>100000)disp('迭代步数太多,可能不收敛!'); return ; end end举例说明:牛顿下山法求下面方程组⎩⎨⎧=--=-+0sin 1.0cos 5.00)cos(1.0sin 5.02211211x x x x x x x 的根,其初始迭代值取(0,0)。

高斯牛顿迭代法解方程组

高斯牛顿迭代法解方程组

高斯牛顿迭代法解方程组高斯牛顿迭代法是一种常用的数值计算方法,用于解决非线性方程组。

本文将介绍高斯牛顿迭代法的基本原理、步骤和应用场景。

一、高斯牛顿迭代法的原理高斯牛顿迭代法是利用泰勒展开式对非线性方程组进行近似线性化处理,然后通过迭代逼近的方法求解方程组的解。

其基本思想是通过线性化的近似,将非线性方程组转化为一个线性方程组,然后利用线性方程组的解逐步逼近非线性方程组的解。

二、高斯牛顿迭代法的步骤1. 初始化:给定初值向量x0和迭代误差精度ε。

2. 迭代计算:根据当前的估计解xk,计算出近似的雅可比矩阵Jk 和残差向量rk。

3. 判断终止条件:若rk的范数小于等于设定的误差精度ε,则停止迭代,输出近似解xk;否则,进行下一步迭代。

4. 更新迭代:根据当前的估计解xk和雅可比矩阵Jk,计算更新量Δxk。

5. 更新解向量:更新当前的估计解xk+1 = xk + Δxk。

6. 回到步骤2,继续迭代计算,直到满足终止条件。

三、高斯牛顿迭代法的应用场景高斯牛顿迭代法广泛应用于科学和工程领域的各种问题求解,特别适用于非线性最小二乘问题的求解。

以下是一些常见的应用场景:1. 数据拟合:在实际问题中,常常需要根据一组观测数据拟合出一个数学模型。

高斯牛顿迭代法可以通过最小化观测数据与模型之间的误差,来确定最优的模型参数。

2. 图像处理:高斯牛顿迭代法可以用于图像处理中的图像恢复、图像去噪、图像分割等问题的求解。

例如,在图像恢复中,可以利用高斯牛顿迭代法求解出最佳的恢复图像。

3. 机器学习:高斯牛顿迭代法可以用于机器学习中的参数估计和模型训练。

例如,在逻辑回归中,可以使用高斯牛顿迭代法来求解最优的模型参数。

4. 无线通信:高斯牛顿迭代法在无线通信系统中的信道估计、自适应调制等问题的求解中得到广泛应用。

通过迭代计算信道的状态信息,可以提高通信系统的性能。

高斯牛顿迭代法是一种强大的数值计算方法,可以有效地求解非线性方程组。

计算方法 12 牛顿迭代法-非线性方程

计算方法 12 牛顿迭代法-非线性方程
ek 1 2 =ek a xk ek 1 1 lim 2 =k e 2 a k

a xk 1

2
ek 1 从迭代法则得知: lim p 0时,该迭代式在 x* 的 k e k 附近 p 阶收敛的。
因此,xk 1 体收敛于 1 a xk 在 (0, ) 上以 2 阶速度整 2 xk a。
西南科技大学 制造科学与工程学院
计算方法(2016/2017 第一学期)
8
例题
例:给出计算 a 的牛顿迭代公式,并计算 3 。
计算方法(2016/2017 第一学期)
西南科技大学
制造科学与工程学院
9
例题
解:设方程 f ( x) x 2 a 0 ,则 f ( x ) 2 x , 代入牛顿迭代公式可得 2 xk a 1 k f ( xk ) xk xka xk 1 xk 1 xk xk xk 0 f ( xk ) 1.50000000000000 2 xk 2 xk 1.75000000000000 0.25 当 a=3 1 时,迭代公式为
所示。
1 1.66667 6
西南科技大学 制造科学与工程学院
计算方法(2016/2017 第一学期)
12
例题
例:用牛顿迭代法计算 1/1.2345。
计算方法(2016/2017 第一学期)
西南科技大学
制造科学与工程学院
13
例题
1 1 解:将 x 转化为 f ( x ) a 0 ,a 1.2345 a x
收敛于 a ,且收敛速度是 2 阶的。
计算方法(2016/2017 第一学期)
西南科技大学

数值分析 数值分析 Newton迭代法求解非线性方程实验

数值分析  数值分析  Newton迭代法求解非线性方程实验
intf("%Lf\n",u[k][j]);
}//计算出u[i][j]并输出.
第二部分 for(i=k+1;i<n;i++)
{s=0.0;
for(r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][k];}
l[i][k]=(a[i][k]-s)/u[k][k];
printf("%Lf\n",l[i][k]);
{s=0.0;
for(r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][k];}
l[i][k]=(a[i][k]-s)/u[k][k];
printf("l[%d][%d]%Lf\n",i,k,l[i][k]);}
}
}
六、实验结果
七、上机实验体会
在这个试验中同样叶出现了很多问题,对L,U的求解输出中,输出的位置的不同,结果也就会出差错.经过多次调整,结果总算输出了.
通过此次试验,我理解了多重循环的运用,并了解了古人的聪明智慧,]讲将复杂问题简单化,现在的大学生们,应该学习他们的创新及钻研精神。
for(k=0;k<n;k++)
{for(j=k;j<n;j++)
{s=0.0;
for (r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][j];}
u[k][j]=a[k][j]-s;
printf("u[%d][%d]=%Lf\n",k,j,u[k][j]); }
for(i=k+1;i<n;i++)

Newton迭代法求解非线性方程

Newton迭代法求解非线性方程

Newton迭代法求解非线性方程Newton迭代法求解非线性方程一、 Newton 迭代法概述构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。

因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。

牛顿(Newton)法就是一种将非线性方程线化的一种方法。

设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即:)x x )(x ('f )x (f )x (f k k k -+≈ (1-1)于是我们得到如下近似方程:0)x x )(x ('f )x (f k k k =-+ (1-2)设0)('≠k x f ,则方程的解为:x ?=x k +f (x k )f (x k )?(1-3)取x ~作为原方程的新近似根1+k x ,即令: )x ('f )x (f x x k k k 1k -=+, k=0,1,2,…(1-4)上式称为牛顿迭代格式。

用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。

牛顿法具有明显的几何意义。

方程:)x x )(x ('f )x (f y k k k -+= (1-5)是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。

迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。

正因为如此,牛顿法也称为切线法。

牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。

一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x时才能保证收敛。

若要保证初值在较大范围内收敛,则需对)x (f 加一些条件。

如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式:)x ('f )x (f x x k k k 1k λ-=+,=,2,1,0k (1-6)上式中,10<λ<,称为下山因子。

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。

然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。

本文将介绍几种非线性方程的求解方法。

一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。

该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。

牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。

牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。

二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。

与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。

割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。

三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。

该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。

二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。

二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。

四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。

它和二分法类似,都是通过缩小根所在的区间来逼近根。

不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。

改进的牛顿迭代法求解非线性方程

改进的牛顿迭代法求解非线性方程

改进的牛顿迭代法求解非线性方程史思总 西南科技大学摘要:将非线性方程线性化,以线性方程的解逐步逼近非线性方程的解,是牛顿迭代法的基本思想。

牛顿法具有收敛快、稳定性好、精度高等优点,是目前求解非线性方程的有效方法之一。

牛顿法每次迭代时都需要计算函数值和导数值,计算量较大,当导数值提供有困难时,牛顿法将不再适用于求解非线性方程组。

针对这种情况,提出了一种改进牛顿法——弦截法。

为避免求导,弦截法采用差商近似导数,以差商方式解决求导问题。

实践证明,弦切法优于大部分迭代法,仅次于牛顿法。

关键词:牛顿法、弦截法、非线性方程、差商一、牛顿法的迭代公式设)(x f 在其零点*x 附近一阶连续可微,且0)(≠'x f ,当0x 充分接近*x 时,由Taylor 公式有:))(()()(000x x x f x f x f -'+≈ (1)以方程0))(()(000=-'+x x x f x f (2)近似方程0)(=x f ,其解)()(0001x f x f x x '-= (3) 可作为方程的近似解,重复上述过程,得迭代公式),1,0(,)()(1 ='-=+n x f x f x x n n n n (4) 该方法称为牛顿迭代法。

牛顿法是一种不动点迭代法,其迭代函数为()()()f x x x f x ϕ=-' (5) 从几何上看,牛顿法是以曲线的切线与x 轴的交点作为曲线与x 轴的交点的近似。

故牛顿法也是一种切线法。

二、牛顿法的改进——弦截法为了避免牛顿法中计算导数,弦截法中采用差商代替导数。

避免了某些情况下由于不能求取导数值而迭代失效。

2.1差商的定义设有函数012(),,,,...f x x x x 为一系列互不相等的点,称()()()i j i j f x f x i j x x -≠-为()f x 关于,i j x x 的一阶差商(也称均差),记为[,]i j f x x ,即()()[,]i j i j i j f x f x f x x x x -=- (6)2.2弦截法在牛顿迭代公式(3)中,用差商()()i j i j f x f x x x --代替导数'()n f x 得到迭代公式111()()()(1,2,...)n n n n n n n f x f x x x x x n x x -+--=--=- (7) 按式(7)计算方程的近似解称为弦截法。

高等代数中的非线性方程组 求解方法与案例

高等代数中的非线性方程组 求解方法与案例

高等代数中的非线性方程组求解方法与案例高等代数中的非线性方程组求解方法与案例一、引言非线性方程组在数学和科学工程领域中具有重要的理论和实际应用价值。

本文将介绍一些常用的非线性方程组求解方法,并通过案例来展示这些方法的应用。

二、牛顿法牛顿法是一种经典的非线性方程组求解方法。

该方法利用函数的导数信息进行迭代,通过不断逼近方程组的解。

其迭代公式如下:假设方程组为 F(x) = 0,初始解为 x_0,则迭代公式为:x_{n+1} = x_n - J_F(x_n)^{-1} * F(x_n)其中,J_F(x_n) 表示 F(x_n) 的雅可比矩阵。

三、割线法割线法是一种迭代求解非线性方程组的方法。

该方法使用方程组中两个初始解点之间的割线来逼近方程组的解。

其迭代公式如下:假设方程组为 F(x) = 0,初始解为 x_0 和 x_1,则迭代公式为:x_{n+1} = x_n - \frac{F(x_n) * (x_n - x_{n-1})}{F(x_n) - F(x_{n-1})}四、二分法二分法是一种简单且可靠的非线性方程组求解方法。

该方法利用方程组在区间两端点函数值异号的性质,在区间内部寻找解。

其迭代公式如下:假设方程组为 F(x) = 0,在区间 [a, b] 内满足 F(a) * F(b) < 0,迭代公式为:x_{n+1} = \frac{a_n + b_n}{2}五、案例分析假设有如下非线性方程组:x^2 + y^2 = 10x + y = 5我们将使用上述介绍的三种方法来求解该方程组。

1. 牛顿法求解:首先,我们需要计算方程组的雅可比矩阵:J_F(x, y) = [[2x, 2y],[1, 1]]给定初始解 x_0 = (1, 4),按照牛顿法的迭代公式进行迭代计算,直到满足收敛条件。

2. 割线法求解:给定初始解 x_0 = (1, 4) 和 x_1 = (2, 3),按照割线法的迭代公式进行迭代计算,直到满足收敛条件。

牛顿-拉夫逊法求解非线性方程

牛顿-拉夫逊法求解非线性方程

牛顿-拉夫逊法潮流计算一、基本原理设有单变量非线性方程()0(1129)f x=-求解此方程时,先给出解的近似值(0)x,它与真解的误差为(0)x∆,则满足方程(11-29),即(0)(0)()0f x x+∆=将上式左边的函数在(0)x附近展成泰勒级数,便得(0)2 (0)(0)(0)(0)(0)(0)(0)()(0)()()()()()2!()()(1130)!nnxf x x f x f x x f xxf xn∆'''+∆=+∆++∆++-式中,(0)()(0)(),,()nf x f x'分别为函数()f x在(0)x处的一阶导数,…,n阶导数。

如果差值(0)x∆很小,(0)x∆的二次及以上的各项均可略去,式(11-30)便简化成(0)(0)(0)(0)(0)()()()0f x x f x f x x'+∆=+∆=这是对于亦是的修正量(0)x∆的线性方程式,亦称修正方程式。

解此方程可得修正量(0)(0)(0)()()f xxf x∆=-'用所求得的(0)x∆去修正近似解,便得(0)(1)(0)(0)(0)(0)()()f xx x x xf x=+∆=-'修正后的近似解(1)x同真解仍然有误差。

为了进一步逼近真解,这样的迭代计算可以反复进行下去,迭代计算的通式是()(1)()()()(1131)()k k k k f x xxf x +=--'迭代过程的收敛判据为()1|()|(1132)k f x ε<-或 ()2||(1133)k x ε∆<-式中,1ε和2ε为预先给定的小正数。

这种解法的几何意义可以从图11-26得到说明。

函数()y f x =为图中的曲线。

()0f x =的解相当于曲线与x 轴的交点。

如果第k 次迭代中得到,则过点()()()[,()]k k k x y f x =作一切线,此切线同x 轴的交点便确定了下一个近似解(1)k x +。

用牛顿法解非线性方程组

用牛顿法解非线性方程组
>> myNewton(x0)
迭代五次的结果为:
x1 =
0.5000
-0.0000
-0.5236
非线性方程组的解为:
x0 =
0.5000
-0.0000
-0.5236
A=inv(dFx);
k=0;
%===============================
% Newon迭代法核心程序
while norm(Fx)>1e-10
x1=x0-A*Fx; % 核心迭代公式
k=k+1;
if k==5
disp('迭代五次的结果为:') ;
x1
elseif k>=100
disp('迭代次数过多,不收敛!');
用牛顿法解非线性方程组牛顿法解非线性方程组非线性方程组数值解法非线性方程组的解法非线性方程组迭代解法非线性方程组解法牛顿迭代法解方程组matlab解非线性方程组解非线性方程组fsolve解非线性方程组
四、(上机题)分别用Newton法和Broyden法求解下面非线性方程组
(要求:用Matlab编程,并附上源代码及迭代五次的结果,初值可取 )
f3=exp(-x*y)+20*z+1/3*(10*pi-3);
F=[f1;f2;f3];
%===============================
Fx = subs(F,{x,y,z},x0);
dF = Jacobian(F); % 求雅克比矩阵
dFx = subs(dF,{x,y,z},x0);
第四题:
Newton法:myNewton..m
function[t]=myNewton(x0) % x0为初始值向量

高斯牛顿迭代法解方程组

高斯牛顿迭代法解方程组

高斯牛顿迭代法解方程组高斯牛顿迭代法是一种经典的求解非线性方程组的数值方法,它通过迭代逼近的方式,找到方程组的近似解。

这种方法在科学和工程领域中得到广泛应用,能够解决许多实际问题。

高斯牛顿迭代法的基本思想是利用泰勒级数展开,将非线性方程组转化为线性方程组的近似求解问题。

具体来说,对于给定的非线性方程组,首先需要选择一个初始解,然后通过迭代求解的方式逐步逼近真实解。

在每一步迭代中,通过线性化的方式,将非线性方程组转化为一个线性方程组,然后求解这个线性方程组,得到一个近似的解。

接着,利用这个近似解来更新初始解,继续进行下一步的迭代,直到满足停止准则为止。

高斯牛顿迭代法的具体步骤如下:1. 选择一个初始解向量x^(0);2. 计算方程组的雅可比矩阵J(x);3. 计算方程组的残差向量r(x);4. 解线性方程组J(x)Δx = -r(x),得到一个增量向量Δx;5. 更新解向量:x^(k+1) = x^(k) + Δx;6. 判断停止准则是否满足,如果满足则停止迭代,否则返回第2步。

高斯牛顿迭代法的收敛性与初始解的选择有关,通常需要根据具体问题进行调整。

此外,对于非线性方程组,迭代过程中可能会遇到发散或者收敛速度较慢的问题,这时可以采用加速技术或者使用其他迭代方法来改进求解的效果。

高斯牛顿迭代法在实际应用中有着广泛的应用。

例如,在机器学习领域中,通过高斯牛顿迭代法可以求解逻辑回归问题;在计算机视觉领域中,该方法可以用于图像处理和模式识别;在物理学和工程学中,可以用于求解复杂的非线性方程组,如力学力学问题和电路分析问题等。

高斯牛顿迭代法是一种强大的求解非线性方程组的数值方法,它通过迭代逼近的方式,找到方程组的近似解。

这种方法在科学和工程领域中得到广泛应用,能够解决许多实际问题。

通过合理选择初始解和适当的停止准则,可以提高迭代的收敛性和计算效率。

同时,对于特定的问题,还可以结合其他数值方法或者加速技术,进一步提高求解的精度和效率。

利用牛顿迭代法求解非线性代数方程组

利用牛顿迭代法求解非线性代数方程组

利用牛顿迭代法求解非线性代数方程组一、 问题描述在实际应用的很多领域中,都涉及到非线性方程组的求解问题。

由于方程的非线性,给我们解题带来一定困难。

牛顿迭代法是求解非线性方程组的有效方法。

下面具体对牛顿迭代法的算法进行讨论,并通过实例理解牛顿迭代法。

二、 算法基本思想牛顿迭代法求解非线性代数方程组的主要思想是将非线性函数线性化。

下面我们具体讨论线性化过程:令:()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000,,2121 n n x x x x x f x f x f x F (3-1) 则非线性方程组(3-2)()()()0,,,0,,,0,,,21212211===n n n n x x x f x x x f x x x f(3-2) 可写为向量形式()0=x F (3-3)?()0=x F 成为向量函数。

设()()()()k n k k x x x ,,,21是方程组(3-2)的一组近似解,把它的左端在()()()()k n k k x x x ,,,21处用多元函数的泰勒展式展开,然后取线性部分,便得方程组(3-2)得近似方程组()()()()()()()()()()()()()()()()()()()()()()()()()()()0,,,,,,0,,,,,,0,,,,,,1212112122121211211=∆∂∂+=∆∂∂+=∆∂∂+∑∑∑===k j nj k nk k n k nk k n k j nj k nk k k nk k k j nj k nk k k nk k x x x x x f x x x f x x x x x f x x x f x x x x x f x x x f(3-4)这是关于()()()n i x x x k i i k i ,,2,1 =-=∆的线性方程组,如果它的系数矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂n n n n n n x f x f x f x f x f xf x f x f x f212221212111(3-5) 非奇异,则可解得()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∆∆∆-n n n n n n n k n k k f f f x f x f x fx f x f x f x f x f x f x x x21121222121211121 (3-6) 矩阵(3-5)称为向量函数()x F 的Jacobi 矩阵,记作()x F '。

利用牛顿迭代法求解非线性方程组

利用牛顿迭代法求解非线性方程组

利⽤⽜顿迭代法求解⾮线性⽅程组最近⼀个哥们,是⽤⽜顿迭代法求解⼀个四变量⽅程组的最优解问题,从⽹上找了代码去改进,但是总会有点不如意的地⽅,迭代的次数过多,但是却没有提⾼精度,真是令⼈揪⼼!经分析,发现是这个⽅程组中存在很多局部的极值点,是⽤⽜顿迭代法不能不免进⼊局部极值的问题,更程序的初始值有关!发现⾃⼰好久没有是⽤Matlab了,顺便从⽹上查了查代码,⾃⼰来修改⼀下!先普及⼀下⽜顿迭代法:(来⾃百度百科)⽜顿(Newton's method)⼜称为⽜顿-拉夫逊(拉弗森)⽅法(Newton-Raphson method),它是在17世纪提出的⼀种在域和域上近似求解⽅程的⽅法。

多数⽅程不存在求根公式,因此求精确根⾮常困难,甚⾄不可能,从⽽寻找⽅程的近似根就显得特别重要。

⽅法使⽤函数f(x)的的前⾯⼏项来寻找⽅程f(x) = 0的根。

⽜顿迭代法是求⽅程根的重要⽅法之⼀,其最⼤优点是在⽅程f(x) = 0的单根附近具有平⽅收敛,⽽且该法还可以⽤来求⽅程的重根、复根,此时线性收敛,但是可通过⼀些⽅法变成超线性收敛。

另外该⽅法⼴泛⽤于计算机编程中。

设r是f(x)=0的根。

选取x0作为r的初始近似值,过点(x0,f(x0))做曲线的切线,求出该切线与x轴的交点,并求出该点的横坐标,称作x1是r 的⼀次近似。

如此就可以推导出⽜顿迭代公式。

已经证明,如果是的,并且待求的零点是孤⽴的,那么在零点周围存在⼀个区域,只要初始值位于这个邻近区域内,那么⽜顿法必定收敛。

并且,如果不为0, 那么⽜顿法将具有平⽅收敛的性能. 粗略的说,这意味着每迭代⼀次,⽜顿法结果的有效数字将增加⼀倍。

在⽹上查了⼀些代码,都是能指定某⼏个函数进⾏求导的,⽽且要是改变函数的个数,却⼜要对原始程序⼤动⼲⼽。

真的是揪⼼。

找到了这个程序,貌似在Matlab上不能很好的运⾏,对于数据的返回值为空没有做处理,后来⼜找了⼀个⽹易朋友的博客,将他的代码拿过来跑跑,还可以,但是对于不同的函数⽅程组,以及变量个数就不同了,真的是揪⼼,这个就是程序设计和编码的问题了!⾃⼰就拿来改了改,可以⽀持多⽅程组和多变量了!下⾯附上我的代码!求⼤家指导![python]1. function [r,n]=mulNewton(x0,funcMat,var,eps)2. % x0为两个变量的起始值,funcMat是两个⽅程,var为两个⽅程的两个变量,eps控制精度3. % ⽜顿迭代法解⼆元⾮线性⽅程组4. if nargin==05. x0 = [0.2,0.6];6. funcMat=[sym('(15*x1+10*x2)-((40-30*x1-10*x2)^2*(15-15*x1))*5e-4')...7. sym('(15*x1+10*x2)-((40-30*x1-10*x2)*(10-10*x2))*4e-2')];8. var=[sym('x1') sym('x2')];9. eps=1.0e-4;10. end11.12. n_Var = size(var,2);%变量的个数13. n_Func = size(funcMat,2);%函数的个数14. n_X = size(x0,2);%变量的个数15.16. if n_X ~= n_Var && n_X ~= n_Func17. fprintf('Expression Error!\n');18. exit(0);19. end20.21. r=x0-myf(x0, funcMat, var)*inv(dmyf(x0, funcMat, var));22. n=0;23. tol=1;24. while tol>=eps25. x0=r;26. r=x0-myf(x0, funcMat, var)*inv(dmyf(x0, funcMat, var));27. tol=norm(r-x0);28. n=n+1;29. if(n>100000)30. disp('迭代步数太多,⽅程可能不收敛');31. return;32. end33. end34. end % end mulNewton[python]1. function f=myf(x,funcMat, varMat)2. % 输⼊参数x为两个数值,func为1*2符号变量矩阵,var为1*2符号变量矩阵中的变量3. % 返回值为1*2矩阵,内容为数值4.5. n_X = size(x,2);%变量的个数6. f_Val = zeros(1,n_X);7. for i=1:n_X8. tmp_Var = cell(1,n_X);9. tmp_X = cell(1,n_X);10. for j=1:n_X11. tmp_Var{j} = varMat(1,j);12. tmp_X{j} = x(1,j);13. end14. f_Val(i) = subs(funcMat(1, i), tmp_Var, tmp_X);15. end16. f=f_Val;17. end % end myf[python]1. function df_val=dmyf(x, funcMat, varMat)2. % 返回值为2*2矩阵,内容为数值3. %df=[df1/x1, df1/x2;4. % df2/x1. df2/x2];5. n_X = size(x,2);%变量的个数6. df =cell(n_X, n_X);7. for i=1:n_X8. for j=1:n_X9. df{i,j} = diff(funcMat(1, i), varMat(1, j));10. end11. end12.13. df_val=zeros(n_X, n_X);14.15. for i=1:n_X16. for j=1:n_X17. tmp_Var = cell(1,n_X);18. tmp_X = cell(1,n_X);19. for k=1:n_X20. tmp_Var{k} = varMat(1,k);21. tmp_X{k} = x(1,k);22. end23. df_val(i,j) = subs(df{i,j}, tmp_Var, tmp_X);24. end25. end26. end % end dmyf。

Newton迭代法-数值分析非线性方程组数值解法

Newton迭代法-数值分析非线性方程组数值解法

实验七、Newton 迭代法一、实验目的了解非线性方程与方程组的数值解法;深入理解Newton 迭代法,并用C++实现计算结果。

二、计算公式()())2(),1,0(1 ='-=+n x f x f x x n n n n它对应的迭代方程为显然是f(x)=0的同解方程,故其迭代函数为在 f(x)=0的根x*的某个邻域内,在x*的邻域R 内,对任意初值,应用公式(2)来解方程三、程序代码#include<stdio.h>#include<math.h>#include<conio.h>double f(double x);doubleft(double x);main(){double X0,X1,tol;int n;int count=0;printf("请输入初始值:\n");将f(x)在点x n 作Taylor 展开:)()(')()()(!2)()()(')()(2n n n n n n n n x x x f x f x f x x x f x x x f x f x f -+≈+-''+-+= ——Taylor 展开线性化f(x)=0近似于f(x n )+ f ′(x n )(x-x n )=0 (1)从(1)解出x,记为x n+1 ,则 )()(x f x f x x '-=)()()(x f x f x x '-=ϕ)0)((≠'x f )(δα≤-x R 0)(≈x f 1)()()()(2<≤'∙''=ϕ'L x f x f x f x 0xscanf("%lf",&X0);printf("请输入精度:\n");scanf("%lf",&tol);printf("请输入最大循环次数\n");scanf("%d",&n);X1=X0-f(X0)/ft(X0);while(fabs(X1-X0)>=tol)/*在没有达到精度要求情况下就循环*/ {X0=X1;X1=X0-f(X0)/ft(X0);count++;/*循环次数计数*//*如果循环次数到用户输入的最大循环次数就退出,可以适当修改*/ if(count==n){break;}}printf("方程的根为:%f\n",X1);getch();}/*************************函数功能:用于求f(x)的值**************************/double f(double x){double y;y=x*x*x+2*x*x+10*x-20;return y;}/*************************函数功能:用于求f(x)的导数值**************************/doubleft(double x){double y;y=3*x*x+4*x+10;return y;}四、例题用Newton 迭代法求下面方程的一个正根,计算结果精确到7位小数.02010223=-++x x x []得取初值,2,020∈=x。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法
非线性方程是一种不满足线性关系的方程,它们的解不易通过代数方法直接求解。

需要通过迭代法来逼近非线性方程的解。

迭代法是一种通过不断逼近的方法,寻找非线性方程的近似解的方法。

在本文中,我们将介绍三种新的迭代法,这些方法可以更有效地求解非线性方程。

1. 牛顿迭代法
牛顿迭代法是求解非线性方程的一种经典方法,它通过不断迭代来逼近方程的解。

该方法的基本思想是从方程的一个初始值开始,通过一定的迭代公式不断逼近方程的解。

具体的迭代公式为:
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]
x_n表示第n次迭代的近似解,f(x)表示原非线性方程,f'(x)表示f(x)的导数。

牛顿迭代法的收敛速度非常快,但是需要计算方程的导数,对于复杂的非线性方程来说,计算导数较为困难。

2. 割线法
割线法的收敛速度较快,但是需要两个初始值,并且每次迭代都需要计算函数值,因此每次迭代的计算量较大。

3. 弦截法
\[x_{n+1} = x_n - \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} - \frac{f(x_n) \cdot (x_n - x_{n-1})^2}{f(x_n) - f(x_{n-1})}\]
弦截法通过引入截距值来加快收敛速度,虽然每次迭代的计算量较大,但是收敛速度也较快。

以上介绍了三种新的迭代法,它们可以更有效地求解非线性方程。

在实际应用中,可以根据具体问题的特点选取合适的迭代方法来求解非线性方程,从而得到更为准确和高效的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xi k 1
xi k
xi k i 1,2, , n
(3-7 )
则式( 3-6 )可写为
xk
F' xk
1
F
xk
(3-8 )

xk 1
xkHale Waihona Puke F' xk1
F
xk
(3-9 )
称式( 3-9 )为求解非线性方程组( 3-2 )的牛顿迭代法,而线性方程
组( 3-4 )称为牛顿方程组。
三、 算法描述
(1) 在真实根 x 附近选取一个近似根 x1;
x
(4 2
)
1.6615
所以取迭代次数为 3,且可取(1.2343 ,1.6615 )为非线性方程组(4-1 )
的近似解。
五、心得体会:
通过学习,我们认识到牛顿迭代法是求解非线性代数方程组的一
种简单而有效的方法。 我们通过将非线性代数方程组的系数矩阵求导
来使方程组线性化, 从而求得方程组的近似解。 牛顿迭代法的优点是
(3-3 )
F x 0 成为向量函数。

x1k
,
x
k 2
,
,
x
k n
是方程组( 3-2 )的一组近似解,把它的左端

x1k
,
x
k 2
,
, xnk 处用多元函数的泰勒展式展开,然后取线性部
分,便得方程组( 3-2 )得近似方程组
f1 x1k , x2k , , xnk f 2 x1k , x2k , , xnk
收敛速度快,但每次都要求导,求逆,计算量大。
在这段学习的过程中,感谢王老师给予我们耐心而清晰的讲解,
使我们掌握了一些数值分析的基本方法, 学有收获。 我感到这些数学
方法在我们今后的实际工作和学习中有非常重要的作用。 因此,再次
感谢老师给予的帮助!
(6)再通过 x3 求出 f(x 3),…一直求下去,直到接近真正的根。当两
次求出的根之差 |xn+1-xn| ≤就ε认为 xn+1 足够接近于真实根。
牛顿迭代公式是:
xn 1 xn
f (xn) f ' (xn )
程序流程图 :
运行 NT 程序 → 求非线性方程组的雅克比矩阵 → 代入牛顿迭代公
式 → 输出解
f1
f1
f1
x1
x2
xn
f2
f2
f2
x1 x2
xn
(3-5 )
fn
fn
fn
x1 x2
xn
非奇异,则可解得
f1
f1
x1k
x1 x2
x2k
f2
f2
x1 x2
xnk
fn
fn
x1 x2
1
f1
xn
f1
f2 xn
f2
fn
fn
xn
( 3-6 )
矩阵( 3-5 )称为向量函数 F x 的 Jacobi 矩阵,记作 F ' x 。又记
f n x1k , x2k , , xnk
n f1 x1k , x2k ,
j1
x
, xnk
x
k j
0
n f 2 x1k , x2k ,
j1
x
, xnk
x
k j
0
(3-4 )
n f n x1 k , x2k , , xnk
j1
x
x
k j
0
这是关于 xi k xi xi k i 1,2, ,n 的线性方程组,如果它的系数矩阵
四、 举例
例:是用牛顿迭代法求解下列方程组:
2 x13 x22 1 0
x1
x
3 2
x2
4
0
初始值为
(
x1(0
)
,
x( 0) 2
)
(1.6,1.5) 。
(4-1)
运行 Newton程序得:
x1(2) 1.2366
x
(2 2
)
1.6593
x1(3) 1.2343 x2(3) 1.6615
x1(4) 1.2343
数线性化。下面我们具体讨论线性化过程:
令:
f1 x
x1
0
Fx
f 2 x , x x2 , 0 0
fn x
xn
0
则非线性方程组( 3-2 )
(3-1 )
f1 x1 , x2 , , xn 0 f 2 x1 , x2 , , xn 0
f n x1 , x2 , , xn 0
可写为向量形式
(3-2 )
Fx 0
( 2) 通过 x1 求出 f(x 1)。
(3)过 f(x 1)作 f(x) 的切线,交 x 轴于 x2。假设 x1 ,x2 很接近,可
以用公式求出 x2。由于 f ' ( x1 )
f ( x1 ) 故 x2
x1 x2
x1
f ( x1 ) f ' (x1)
( 4)通过 x2 求出 f(x 2); (5)再过 f(x 2)作 f(x) 的切线交 x 轴于 x3;
利用牛顿迭代法求解非线性代数方程组
一、 问题描述
在实际应用的很多领域中,都涉及到非线性方程组的求解问
题。由于方程的非线性,给我们解题带来一定困难。牛顿迭代法
是求解非线性方程组的有效方法。下面具体对牛顿迭代法的算法
进行讨论,并通过实例理解牛顿迭代法。
二、 算法基本思想
牛顿迭代法求解非线性代数方程组的主要思想是将非线性函
相关文档
最新文档