三年级奥数:盈亏问题详解2013

合集下载

三年级奥数盈亏问题

三年级奥数盈亏问题

盈亏问题知识结构盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.例题精讲【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题【难度】1星【题型】解答【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块).【答案】9人,搬43块【巩固】把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有人。

【考点】盈亏问题【难度】1星【题型】填空【关键词】2004年,第2届,希望杯,4年级,1试【解析】盈亏问题:(12+2)÷(3-2)=14人【答案】14人【例 2】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【考点】盈亏问题【难度】1星【题型】解答【解析】本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7把变成买5把,少买了752+=(元),即140元可以买2-=(把),而钱的差额为:11030140把小提琴,可见小提琴的单价是每把70元,王老师一共带了707110380⨯-=(元).【答案】小提琴单价70元,共带380元【巩固】小明的妈妈去买苹果,想买3千克,付钱时发现还少3元,结果买了2千克,又剩下7元,小明妈妈一共带了钱.【考点】盈亏问题【难度】1星【题型】填空【关键词】2010年,学而思杯,1年级【解析】由题意可知,1千克苹果是7310++=(元)钱.+=元,妈妈一共带了1010727【答案】27元【例 3】猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?【考点】盈亏问题【难度】2星【题型】解答【解析】每张餐布周围多坐一只小猪就是坐5只小猪,余出4个空位子就是少4只小猪,所以原问题可以转化为:如果每张餐布周围坐4只小猪,则多出6只没处坐;如果每张餐布周围坐5只,还少4只,求有多少只小猪多少张餐布?所以餐布数是:(6+4)÷1=10(张),有小猪:10×4+6=46(只). 【答案】10张餐布,46只小猪【巩固】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【考点】盈亏问题【难度】2星【题型】解答【解析】由已知条件每间5人少14个床位每间7人多4个床位比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(75)2-=人,一共要多出+=个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已(144)18知条件可求出住宿生人数.(414)(75)=9+÷-(间) ,591459⨯-=(人)⨯+=(人),或79459【答案】9间教室,59人【例 4】小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。

三年级奥数:盈亏问题

三年级奥数:盈亏问题

小学三年级奥数:盈亏问题三年级的老师给小朋友分糖果,如果每位同学分4颗,发现多了3颗,如果每位同学分5颗,发现少了2颗。

问有多少个小朋友?有多少颗糖?解答:(3+2)÷(5-4)=5÷1=5(位)…人数4×5+3=20+3=23(颗)……糖或5×5-2=25-2=23(颗)【小结】盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(2)(盈+亏)÷(两次每人分配数的差)=人数。

三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。

已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。

如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选?解答:在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。

说明一共统计了17+16+11=44张选票,还有52-44=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投给丙的,那么甲就必须得到4张才能确保比乙多。

因此,甲最少再得到4票就能够保证当选了。

有黑白两种棋子共300枚,按每堆3枚分成100堆。

其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。

那么在全部棋子中,白子共有多少枚?解答:只有1枚白子的共27堆,说明了在分成3枚一份中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有三枚黑子的有42-27=15堆;所以三枚白子的是15堆:还剩一黑二白的是100-27-15-15=43堆:白子共有:43×2+15×3=158(枚)。

商店有水彩笔和铅笔一共163支,如果水彩笔拿走19支后,水彩笔的支数就正好是铅笔的5倍.原有水彩笔和铅笔各多少支?解答:原有水彩笔139支,铅笔24支。

分析:水彩笔拿走19支后,正好是铅笔数量的5倍.此时水彩笔和铅笔的总数也应减少19支,列式成163-19=144 (支),且正好是铅笔支数的1+5=6 倍.铅笔有:144÷6=24(支),水彩笔有:24×5+19=139 (支).植树问题一块长方形地,长为60米,宽为30米,要在四边上植树,株距6米,四个角上各有一棵,共植树多少棵?解答:共植树30棵。

小学奥数盈亏问题解题思路详解(附盈亏问题公式)

小学奥数盈亏问题解题思路详解(附盈亏问题公式)

盈亏问题解题思路详解(附盈亏问题公式)解题思路:盈亏问题的解法要点是先求两次分配中分配者每份所得物品数量的差,再求两次分配中的总差额,用前一个差去除后一个差,就得到分配者的人数,进而再求得物品数。

解题规律:总差额÷每人差额=人数。

一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数,再求总数量。

每次分的数量*份数+盈=总数量或。

每次分的数量*份数-亏=总数量。

物品数可由其中一种分法的份数和盈亏数求出。

其它(高级):盈亏临界点——交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。

盈亏临界点计算的基本模型设以P代表利润,V代表销量,SP代表单价、VC代表单位变动成本,FC代表固定成本,BE代表盈亏临界点,根据利润计算公式可求得盈亏临界点的基本模型为:盈亏临界点的计算,可以采用实物和金额两种计算形式:1.按实物单位计算:其中,单位产设某产品单位售价为10元,单位变动成本为6元,相关固定成本为8000元,则盈亏临界点的销售量(实物单位)=8000÷(10-6)=2000(件)。

品贡献毛益=单位产品销售收入-单位变动成本2.按金额综合计算:盈亏临界点的销售量(用金额表现)=固定成本÷贡献毛益率其中,贡献毛益率=贡献毛益/销售收入附盈亏问题公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差/大分-小分)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差/大分-小分)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差/大分-小分)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差/大分-小分)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差/大分-小分)=人数。

奥数盈亏问题详解

奥数盈亏问题详解

盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块).【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【解析】“多8元”与“多4元”两者相差844-=-=(元),每个人要多出871(元),因此就知道,共有414⨯-=(元).÷=(人),蛋糕价钱是84824【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【解析】老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是927-=(个),由盈亏问题公式得,-=(个),两次分配之差是11101有小猴子:717⨯+=(个)桃子.÷=(只),老猴子有710979【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【解析】由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案分配结果相差:701060-=(本),这是因为两次分配中每人所发的本数相差:752-=(本),相差60本的学生有:60230⨯+=(本)(或30710220⨯+=).÷=(人).练习本有:30570220【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.【详解】当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下201010-=个,所以大猴比小猴多10只.【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?【解析】“差9本”和“差2本”两者相差927-=(本),每个人要多发1091-=(本),因此就知道,共有老师717⨯-=(本).÷=(人),书有710961【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【解析】由题意知:两次的分配结果相差:241212-=(块),这是因为第一次与第二次分配中每人相差:963÷=-=(块),多少人相差12块呢?1234(人),糖果数是:641212⨯-=(块)(或942412⨯-=).【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【解析】本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7把变成买5把,少买了752-=(把),而钱的差额为:11030140+=(元),即140元可以买2把小提琴,可见小提琴的单价是每把70元,王老师一共带了707110380⨯-=(元).【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【解析】本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差10020120+=(元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费-=(元).202505000⨯=(元).这样比实际多得50004400600就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了⨯-÷+=()()(个).202504400100205【例 3】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【解析】由已知条件每间5人少14个床位每间7人多4个床位比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(75)2-=人,一共要多出(144)18+=个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已知条件可求出住宿生人数.解:(414)(75)=9+÷-(间)⨯-=(人)591459⨯+=(人),或79459【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【解析】如果30间都是小宿舍,那么只能住430120⨯=(人),而实际上住了168人.大宿舍比小宿舍每间多住642-=(人),所以大宿舍有168120224()(间).(这是一个鸡兔同笼,放在这里做对比)-÷=【巩固】智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).板块二、条件关系转换型盈亏问题【例 4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101-=(条),由盈亏问题公式得,有小猫:818⨯+=(条)鱼.÷=(只),猫妈妈有810888【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:431-=(个),由盈亏问题公式得,参与分玩具的同学有:919⨯=(个).÷=(人),有小玩具9327【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422-=(个),由盈亏问题公式得,朝阳小学有:66233⨯=(个).÷=(个)班,买来足球33266【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541-=(粒),由盈亏问题公式得,参与分糖的同学有:919÷=(人),有糖果9545⨯=(粒).【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

小学三年级奥数必考知识点:盈亏问题

小学三年级奥数必考知识点:盈亏问题

小学三年级奥数必考知识点:盈亏问题小学三年级奥数必考知识点:盈亏问题专题简析:把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。

已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。

盈亏问题的基本解法是:份数=(盈+亏)÷两次分配数的差,物品数可由其中一种分法的份和盈亏数求出。

解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。

例题1 小明的妈妈买回一篮梨,分给全家。

如果每人分5个,就多出10个;如果每人分6个,就少2个。

小明全家有多少人?这篮梨有多少个?思路导航:根据题目中的条件,我们可知:第一种分法:每人分5个,多10个;第二种分法:每人分6个,少2个。

这说明全家人数为:10+2=12人,也就是说:不足的个数+多余的个数=全家的人数这篮梨的个数是:5×12+10=70个;练习一1,幼儿园阿姨把一袋糖分给小朋友们,如果每人分10粒糖,则多了8粒糖;如果每人分11粒糖,则少了16粒糖。

一共有多少个小朋友?这袋糖有多少粒?2,有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。

树周长是多少米?绳子长多少米?3,一些同学去划船,如果每条船坐5人,则多出3个位置;如果每条船坐4人,则有3个人没有位置。

一共有多少条船?一共有多少个同学?例题2 幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。

幼儿园有几个班?这批玩具有多少个?思路导航:根据题目中的条件,我们可知:第一种分法:每班分8个,多2个;第二种分法:每班分10个,少12个。

从上面的条件中,我们可看出:第二种分法比第一种分法每班多分10-8=2个,所以,所需的玩具总个数从多2个变成了少12个,也就是说在多2个的基础上再加12个,才能保证每班分10个;第二种分法所需的玩具个数比第一种多12+2=14个,那是因为每班多分了2个。

小学三年级奥数教学课件之盈亏问题

小学三年级奥数教学课件之盈亏问题

实例演示:小明的零花钱
收入
小明每周获得的零花钱金额
支出
小明每周的花费和开销
盈亏结果
小明是否盈利或亏损
盈利和亏损的比较
1
亏损
2
如何最小化亏损?
3
盈利
什么时候盈利最大化?
比较
盈利和亏损的差异和影响
盈利率的计算方法
学生将学习如何计算盈利率,并了解盈利率的重要性和应用场景。
实例演示:小红的售卖冰淇淋
成本
小红制作一份冰淇淋的成本
售价
小红卖出一份冰淇淋的价格
盈利率
小红的售卖冰淇淋的盈利率是多 少?
亏损率的计算方法
学生将学习如何计算亏损率,并了解亏损率在商业中的应用。
实例演示:小李的卖西瓜行动
1 进价
小李每个西瓜的进价
3 亏损率
小李卖西瓜的亏损率是多少?
2 售价
小李每个西瓜的售价
利润的计算方法
学生将学习如何计算利润,并理解利润在经济学中的重要性。
实例演示:小张的拍卖收益来自1 出价小张的拍卖出价
2 成交价
小张的拍卖物品的成交价 格
3 利润
小张的拍卖收益是多少?
小学三年级奥数教学课件 之盈亏问题
这个课件将帮助小学三年级学生理解盈亏的概念和重要性,学习计算盈亏的 方法,以及解决盈亏问题的实际应用和技巧。
盈亏概念介绍
什么是盈亏?为什么了解盈亏很重要?我们将从基本概念出发,帮助学生理解盈亏的本质。
盈亏的计算方法
学生将学习如何计算盈亏,包括利润、亏损、盈利率等关键指标的计算方法。

三年级奥数第23讲——盈亏问题

三年级奥数第23讲——盈亏问题
2、妈妈买来一些苹果分给全家人,如果每人分6 个,则多了12个;如果每人分7个,则多了6个。 全家有几人?妈妈共买回多少个苹果?
王举牌一例反题三13
3、某学校有一些学生住校,每间宿舍住8人,则 空出床位24张;如果每间宿舍住10人,则空出床 位2张。学校共有几间宿舍?住宿学生有几人?
王王牌牌例例题题14
王举牌一例反题三15
1、学校给新生分配宿舍,如果每间住8人,则少2 间房;如果每间住10人,则多出2间房。共有几间 房?新生有多少人?
王举牌一例反题三15
2、同学们去划船,如果每条船坐5人,则少2条船; 如果每船坐7人,则多出2条船。共有几条船?有 多少个同学?
王举牌一例反题三15
3、小明从家到学校,如果每分钟走40米,则要迟 到2分钟;如果每分钟走50米,则早到4分钟。小 明家到学校有多远?
2、数学兴趣小组的同学做数学题,如果每人做6道, 则少4道;如果每人做8道,则少16道。有几个学生? 多少道数学题?
王举牌一例反题三14
3、学校排练节目,如果每行排8人,则有一行少2人;如果每 行排9人,则有一行少7人。一共要排几行?一共有多少人?
王王牌牌例例题题15
三(1)班学生去公园划船,如果每条船坐4人, 则少一条船;如果每条船坐6人,则多出4条船。 公园里有多少条船?三(1)班有多少学生?
王举牌一例反题三11
• 1、幼儿园阿姨把一袋糖分给小朋友们,如果每人分10 粒糖,则多了8粒糖;如果每人分11粒糖,则少了16粒 糖。一共有多少个小朋友?这袋糖有多少粒?
王举牌一例反题三11
• 2、有一根绳子绕树4圈,余2米;如果绕树5圈, 则差6米。树周长是多少米?绳子长多少米?
王举牌一例反题三11
对应求解

三年级奥数之盈亏问题讲义

三年级奥数之盈亏问题讲义

奥数盈亏问题把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

一般解法:(盈数+亏数)除以两次分配只能够每份的差=所分对象数,物品数可由其中一种分法的份数和盈亏数求出。

已知两个分配方案,一次分配有余,一次分配不足,求参加分配的人数及被分配的总量。

这样的问题通常叫做盈亏问题。

例1 一些小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。

问:有多少个小朋友?分多少粒糖?分析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。

比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。

相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。

每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为4×15+9=69(粒)。

解:(9+6)÷(5-4)=15(人),4×15+9=69(粒)。

答:有15个小朋友,分69粒糖。

例2 一些小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。

问:有多少个小朋友?多少粒糖果?分析:本题与例1基本相同,例1中两次分配数之差是5-4=1(粒),本题中两次分配数之差是5-3=2(粒)。

例1中,两种分配方案的盈数与亏数之和为9+6=15(粒),本题中,两种分配方案的盈数与亏数之和为2+6=8(粒)。

仿照例1的解法即可。

解:(6+2)÷(4-2)=4(人),3×4+2=14(粒)。

答:有4个小朋友,14粒糖果。

由例1、例2看出,所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。

小学三年级奥数第23讲 盈亏问题(含答案分析)

小学三年级奥数第23讲 盈亏问题(含答案分析)
练 习 二
1,小明带了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元。苹果每千克多少元?小明带了多少钱?答案
解:设苹果每千克x元,那么
3x+2=6x-4
3x=6
x=2
3x+2=8
答:苹果每千克2元,小玲带了8元钱.
故答案为:
2;8.
本题考查了列方程解决求两个未知数的应用问题,方程的意义和方程的解的意义,用方程表示数量关系,列方程解决实际问题等知识点,是对方程的灵活运用,根据题意列出方程是解答此类题目的关键,最后正确计算出结果就可以了.
盈亏问题的基本解法是:
份数=(盈+亏)÷两次分配数的差,物品数可由其中一种分法的份和盈亏数求出。
解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。
例题1小明的妈妈买回一篮梨,分给全家。如果每人分5个,就多出10个;如果每人分6个,就少2个。小明全家有多少人?这篮梨有多少个?
二、精讲精练
例1:小明的妈妈买回一篮梨,分给全家。如果每人分5个,就多出10个;如果每人分6个,就少2个。小明全家有多少人?这篮梨有多少个?
练 习 一
1、幼儿园阿姨把一袋糖分给小朋友们,如果每人分10粒糖,则多了8粒糖;如果每人分11粒糖,则少了16粒糖。一共有多少个小朋友?这袋糖有多少粒?
2、有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。树周长是多少米?绳子长多少米?
解:
(12-6)÷(7-6)
=6÷1
=6(人)
7×6+6
=2+6
=48(个)
答:全家有6人,妈妈共买回48个苹果.
故答案为:6人;48个.
通过比较已知条件,找出两个相关的差数,一是总差额,二是每份的差额,将这两个差相除,就可以求出总份数,然后再求物品数;基本关系式为:总差额÷每份的差额=总份数.

(精品文档)三年级奥数之盈亏问题讲义

(精品文档)三年级奥数之盈亏问题讲义

奥数盈亏问题把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

一般解法:(盈数+亏数)除以两次分配只能够每份的差=所分对象数,物品数可由其中一种分法的份数和盈亏数求出。

已知两个分配方案,一次分配有余,一次分配不足,求参加分配的人数及被分配的总量。

这样的问题通常叫做盈亏问题。

例1 一些小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。

问:有多少个小朋友?分多少粒糖?分析:由题目条件可以知道,小朋友的人数与糖的粒数是不变的。

比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。

相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒)。

每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为4×15+9=69(粒)。

解:(9+6)÷(5-4)=15(人),4×15+9=69(粒)。

答:有15个小朋友,分69粒糖。

例2 一些小朋友分糖果,若每人分3粒则剩2粒;若每人分5粒则少6粒。

问:有多少个小朋友?多少粒糖果?分析:本题与例1基本相同,例1中两次分配数之差是5-4=1(粒),本题中两次分配数之差是5-3=2(粒)。

例1中,两种分配方案的盈数与亏数之和为9+6=15(粒),本题中,两种分配方案的盈数与亏数之和为2+6=8(粒)。

仿照例1的解法即可。

解:(6+2)÷(4-2)=4(人),3×4+2=14(粒)。

答:有4个小朋友,14粒糖果。

由例1、例2看出,所谓盈亏问题,就是把一定数量的东西分给一定数量的人,由两种分配方案产生不同的盈亏数,反过来求出分配的总人数与被分配东西的总数量。

三年级奥数--盈亏问题例题及标准答案

三年级奥数--盈亏问题例题及标准答案

三年级奥数--盈亏问题例题及答案————————————————————————————————作者:————————————————————————————————日期:2三年级奥数盈亏问题例题及答案板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?.【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【巩固】某学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?板块二、条件关系转换型盈亏问题【例 2】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101÷=(只),猫妈妈有810888⨯+=(条)鱼.-=(条),由盈亏问题公式得,有小猫:818【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:⨯=(个).÷=(人),有小玩具9327 -=(个),由盈亏问题公式得,参与分玩具的同学有:919431【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422-=(个),由盈亏问题公式得,朝阳小学有:66233⨯=(个).÷=(个)班,买来足球33266【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541-=(粒),由盈亏问题公式得,参与分糖的同学有:919⨯=(粒).÷=(人),有糖果9545【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 3】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例 4】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

(完整版)三年级奥数-盈亏问题

(完整版)三年级奥数-盈亏问题

第4讲盈亏问题教学目标本讲主要学习三种类型的盈亏问题:1. 理解掌握条件转型盈亏问题:2. 理解掌握关系互换性盈亏问题;3. 理解掌握其他类型的盈亏问题,本节课要求老师首先上学生理解盈亏问题其本公式的含义,在通过例题让学生掌握解答应困问题的其本技巧,培养学生的思维分析能力。

经典精讲盈亏问题,故名思意有剩下就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产程这种盈亏现象。

盈亏问题的关键是专注两次分配时盈亏总量的变化。

我们把盈亏问题分为三类:“一盈一亏”、“两盈”“两亏”。

1.“盈亏”型例如:学而思学校四年级基础班的同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【分析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种没人分4粒就多9粒,,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原理在于两种方案分配数不同,两次分配数之差为15115÷=(位),糖果的粒数为:415969⨯+=(粒)。

2.“盈盈”型例如:老猴子给小猴子分桃,每只小猴10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?分析:老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏综合是9-2=7(个),两次分配之差是11-10-1(个)有盈亏问题公式得,有小猴子:717÷=(只),老猴子有710979⨯+=(个)桃子。

3.“亏亏”型例如:学而思学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差9本,第二次就只差2本了呢?因为两次分配数量不一样,第一次分配时每人少发一本,也就是共有717÷=(人)书有710961⨯-=(本)。

根据以上具体题目的分析,可以得出盈亏问题的基本关系式:(盈+亏) ÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数条件转化型的盈亏问题这种类型的题目不能直接计算,要将其中的一个条件转化,使之成为普通盈亏问题。

三年级上奥数第13讲 盈亏问题(一)

三年级上奥数第13讲 盈亏问题(一)

三秋第13讲盈亏问题(一)一、教学目标在日常生活中我们常常碰到这样分配的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够(亏);每人少一些,物品就有余(盈)。

这就是盈亏问题。

盈亏问题中的公式:参与分配对象的总数=两次分配的总差 每次分配的差二、例题精选【例1】老师拿来很多张剪纸,分给5个同学,每人分到的一样多,还剩下22张,后来又来了两个同学,分给他们同样多的剪纸后,就只剩下6张了.请问:老师一共拿来了多少张剪纸?【巩固1】小龙准备了一些棒棒糖分给班里的同学,如果分给6个同学,那么最后会多20根;如果分给8个同学,那么最后会多12根.那么小高一共准备了__________根棒棒糖.【例2】裁缝做衣服,他已经做好一些西服,现在要往上面缝扣子,如果每件西服缝3个扣子,还会剩下26个扣子;如果每件缝5个,就只剩下4个扣子了.请问:裁缝一共有多少个扣子?他已经做了几件西服?【巩固2】雁雁把一些香蕉分给猴子们.如果每只猴子分5根香蕉,还剩下30根香蕉;如果每只猴子分8根香蕉,还剩下3根香蕉.那么共有__________只猴子.【例3】小张准备了一些钱买CD,如果每张CD的价格是30元,买完后还能剩下10元钱,结果CD的实际价格是40元一张,所以他还需回家再取50元才正好够.请问:小张原来准备了多少钱?【巩固3】队长给战士们发子弹.如果发给每名战士4颗子弹,还剩下30颗子弹;如果发给每名战士10颗子弹,就会缺24颗子弹.那么一共有__________名战士.【例4】同学们早餐吃面包,每袋面包有10片,开始来了9个同学,老师给每人发了同样多片面包之后,还剩下半袋.后来又来了5个同学,老师发现还要再买两袋面包才够给新来的同学每人发同样多的面包.问:老师开始准备了几袋面包?【巩固4】小高准备了一些棒棒糖分给班里的同学,每盒12根,如果给每个同学9根棒棒糖,那么最后少1盒;如果给每个同学6根棒棒糖,那么最后还剩下1盒.那么小高一共准备了__________盒棒棒糖.【例5】护士给几名大夫准备手术刀,开始准备给每人4把,结果缺3把,后来每名大夫都要求再加3把,这样就会缺15把,那么一共有多少名大夫,多少把刀?【例6】幼儿园将一筐苹果分给小朋友,如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个,已知大班比小班多3个小朋友,这一筐苹果共有多少个?三、回家作业【作业1】有一些志愿者到山上种一批树。

三年级上奥数精品讲义盈亏问题

三年级上奥数精品讲义盈亏问题

秋游(盈亏问题)知识图谱秋游知识精讲一.基本盈亏问题1.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.2.解决盈亏问题的主要方法是“前后比较”.有些问题需要对条件进行一定转化后再进行计算.3.盈亏问题主要包括三类:(1)盈盈问题:前后两次剩余物品数量之差是解决问题的关键.()-÷=大盈小盈两次分得之差人数或单位数.(2)盈亏问题:一次剩余,一次缺少,相差的量是“盈”与“亏”的和.()+÷=盈亏两次分得之差人数或单位数.(3)亏亏问题:()大亏小亏两次分得之差人数或单位数.-÷=二.盈亏条件转化1.做盈亏问题时,需要分析什么是被分配的对象.遇到单位不一致时,把单位都按被分配的对象统一.2.如果分配时有特殊对象,可以先想办法把所有人的分配情况统一.当有个别“人”分配到的数量与其他“人”不同时,通过增加或减少个别“人”的分配数量,是他们与别“人”分得的数量相同.3.盈亏条件隐藏的问题:需要将条件转化为基本盈亏条件,在转化时一定要注意题中的条件究竟是“盈”还是“亏”.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的观察推理能力.本讲内容是在基本应用题的基础上,进一步学习盈亏问题.从生活中常见的问题出发,让学生理解盈亏的含义,学习常见盈亏问题的解决方法.后续课程还会继续学习复杂盈亏问题.课堂引入例题1、终于等到了天气晴朗的周四,同学们期待的秋游,马上就要出发了~到达目的地——奥林匹克森林公园南园,一番游玩之后,在老师的组织下,开始了大家最喜爱的野餐活动.老师给同学们带来了一些水果和零食,把水果分给大家,每人分到3个水果,将剩下12个水果,如果再给大家每人多1个,就会差13个.聪明的你,知道到底有多少人吗?老师总共带了多少水果?例题2、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵.问:参加栽树的有多少名同学?原有树苗多少棵?基本盈亏例题1、(1)老师把一堆苹果分给小朋友,给每人分到的同样多.如果分给9个人,那么还剩下21个苹果;如果再来3个人,就只剩下12个苹果.这堆苹果一共有多少个?(2)裁缝做衣服,他已经做好了一些西服,现在要往上面缝扣子.如果每件西服缝3个扣子,还会剩下26个扣子;如果每件缝5个扣子,就只剩下4个扣子了.请问:裁缝一共有多少个扣子?他已经做好了几件西服?“分给9个人,剩下21个,再来3人,剩下12个”也就是说来的3个人分走了9个?例题2、(1)把一些桃子分给猴子们,每只猴子分到的一样多.如果分给5只猴子,那么还剩下12个桃子;如果再来2只猴子,就会缺4个桃子.每只猴子分到多少个桃子?(2)柯小南准备了一些棒棒糖分给班里的同学,如果给每个同学5根棒棒糖,那么最后缺少27根;如果给每个同学3根棒棒糖,那么最后剩下9根.请问:柯小南一共准备了多少根棒棒糖?(3)艾小莎准备拿一些钱买CD光盘,如果每张CD光盘的价格是30元,买完后还能剩下10元钱.结果CD的实际价格是40元一张,所以她还需回家再取50元才正好够.请问:艾小莎原来准备了多少钱?刚刚分配是都有剩余,现在一次有剩余,一次会不够,怎么解决呢?例题3、(1)护士给几名大夫准备手术刀,开始准备给每人4把,结果缺3把;后来每名大夫都要求再加3把,这样就会缺15把.那么一共有多少名大夫,多少把刀?(2)同学们去划船,如果每条船坐5人,就会缺少17个人才能坐满;如果每条船坐7人,就会缺少27个人才能坐满.那么一共有多少个同学?根据上面两题的经验,这题应该是“亏亏问题”.例题4、少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完.问:一共要挖几个坑?第二次分配似乎跟之前遇到的不一样哦~是不是需要改变一下呢?随练1、饲养员给猴子分桃.如果给每只猴子3个桃子,就会差5个桃子,如果每只猴子再多给1个桃子,就会差17个桃子.那么现在共有________个桃子.随练2、唐小虎把一些香蕉分给猴子们.如果每只猴子分5根香蕉,还剩下30根香蕉;如果每只猴子分8根香蕉,还剩下3根香蕉.那么共有________只猴子.随练3、唐小果要把一些玫瑰花插到花瓶里.如果每瓶插入7朵玫瑰花,就会多2朵;如果每瓶插入4朵,就会多20朵.那么,唐小果共有________个花瓶.简单盈亏条件的转化例题1、猪妈妈带着小猪们去野餐,如果每张餐布边上坐6只小猪,最后一张餐布边上就只坐2只小猪;如果每张餐布边上坐5只小猪,还有4只小猪没地方坐.那么共有多少只小猪?第一次分配,到底是盈还是亏呢?例题2、过年了,猴王给小猴们分糖.如果给每只小猴5块糖,就会剩下20块糖;如果给每只小猴8块糖,就会有8只小猴拿不到糖.请问:猴王一共准备了多少块糖?“8只小猴拿不到糖”就是指_____________.例题3、同学们早餐吃面包,每袋面包有10片.开始来了9个同学,老师给每人发了同样多片面包之后,还剩下半袋.后来又来了5个同学,老师发现还要再买两袋面包,才够给新来的同学每人发同样多的面包.问:老师开始准备了几袋面包?面包到底是片还是袋?例题4、鞭炮厂买回几盒火药制作礼花,每盒有10包火药.如果每个礼花用4包火药,就会少1盒;如果每个礼花用6包火药,就会少5盒.那么,鞭炮厂共买了________盒火药.这个就跟上题是一个意思啦~你会了吗?例题5、唐小果给小伙伴们分气球.如果每个小伙伴分4个气球,刚好分完所有气球;如果每个小伙伴分8个气球,就有4个小伙伴没有气球.那么,唐小果共有________个小伙伴.例题6、农民锄草,其中5人各锄4亩,余下的各锄3亩,这样分配最后余下26亩.如果其中3人每人各锄3亩,余下的人各锄5亩,最后余下3亩.锄草面积是多少亩?随练1、老师给同学们分苹果.如果每个同学分4个苹果,那么有6个苹果没人吃;如果每个同学分7个苹果,那么有3个人没苹果吃.那么,老师共有________个苹果.随练2、艾小莎准备了一些棒棒糖分给同学,每盒棒棒糖有10根.开始雁雁给25个同学每人分了同样多根棒棒糖,还剩下半盒.后来又来了5个同学,艾小莎发现还要再买1盒棒棒糖,才能正好给新来的同学每人分同样多的棒棒糖,那么艾小莎开始准备了________盒棒棒糖.易错纠改例题1、一次擦玻璃,如果有两人擦4块,其他人擦5块,则有12块没人擦;如果每人擦6块,则刚好擦完.那么共有多少人?多少块玻璃?第一次分配,是不是可以写成每人擦4块玻璃呢?如果按照每人擦4块玻璃,那最后剩下几块呢?这个好像求不出来呀……你能帮唐小虎和艾小莎计算一下吗?拓展1、老师给班里同学发棒棒糖,如果给每个同学多发4个,老师剩下的棒棒糖就变少60个,那么班里共有__________个同学.2、老师给同学们发作业本,每人发了同样多的作业本后,还剩下20本.后来给新来的2个同学也发了同样数目的作业本,就只剩下12本了.每个人发了__________本,剩下的作业本还能再发给__________个同学.3、老师给班里同学发积分卡.如果每个同学发5张积分卡,就会少4张积分卡;如果每个同学发7张积分卡,就会少24张积分卡.那么老师共准备了__________张积分卡.4、队长给战士们发子弹.如果发给每名战士4颗子弹,还剩下30颗子弹;如果发给每名战士10颗子弹,就会缺24颗子弹.那么一共有__________名战士.5、机关为新来的大学毕业生分配工作.每个部门安排3人,则多出13人;每个部门安排5人,则有1个部门没有毕业生.则部门有____________个,新来的大学毕业生有____________人.6、养殖场将一批鸡蛋装入包装盒,每盒装30枚,恰好全部装完.后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒.这批鸡蛋有__________枚.7、学校租车春游,若每辆车坐21个学生,将有5个空位;若每辆车坐25个学生,便空出一辆车,学校共租了__________辆车.8、老师给同学们分西瓜.如果5个人吃1个西瓜,那么有4个人没西瓜吃;如果7个人吃1个西瓜,那么有2个瓜没人吃.那么,共有__________个同学.9、分析并口述题目的做题思路及方法.花店老板准备把一些玫瑰花放到花瓶里面.如果每瓶放入6朵玫瑰,那么剩下的玫瑰花正好还能装3瓶,如果每瓶中多放入2朵玫瑰,正好就会有3个瓶子是空的.一共有玫瑰花多少朵?。

三年级奥数 第23讲 盈亏问题

三年级奥数  第23讲 盈亏问题

第23讲盈亏问题一、专题简析:把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。

已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。

盈亏问题的基本解法是:份数=(盈+亏)÷两次分配数的差,物品数可由其中一种分法的份和盈亏数求出。

解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。

二、精讲精练例1:小明的妈妈买回一篮梨,分给全家。

如果每人分5个,就多出10个;如果每人分6个,就少2个。

小明全家有多少人?这篮梨有多少个?练习一1、幼儿园阿姨把一袋糖分给小朋友们,如果每人分10粒糖,则多了8粒糖;如果每人分11粒糖,则少了16粒糖。

一共有多少个小朋友?这袋糖有多少粒?2、有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。

树周长是多少米?绳子长多少米?例2:幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。

幼儿园有几个班?这批玩具有多少个?练习二1、小明带了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元。

苹果每千克多少元?小明带了多少钱?2、一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵。

这个小组有几人?一共有多少棵树苗?例3:老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本。

优秀少先队员有几人?买来多少本练习本?练习三1、把一袋糖分给小朋友们,如果每人分4粒,则多了12粒;如果每人分6粒,则多了2粒。

有小朋友几人?有多少粒糖?2、妈妈买来一些苹果分给全家人,如果每人分6个,则多了12个;如果每人分7个,则多了6个。

全家有几人?妈妈共买回多少个苹果?例4:学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18棵。

学生有几人?这批树苗有多少棵?练习四1、自然课上,老师发给学生一些树叶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档