3简明材料力学习题解答第三章 2

合集下载

第三章材料的力学行为习题参考答案

第三章材料的力学行为习题参考答案

第三章材料的力学行为习题参考答案第三章材料的力学行为一、解释下列名词1、加工硬化2、回复3、再结晶4、热加工5、冷加工答:1、加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。

2、回复:加热温度较低时,变形金属中的一些点缺陷和位错,在某些晶内发生迁移变化的过程。

3、再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外形开始变化。

从破碎拉长的晶粒变成新的等轴晶粒。

和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。

4、热加工:将金属加热到再结晶温度以上一定温度进行压力加工。

5、冷加工:在再结晶温度以下进行的压力加工。

二、填空题1、塑性变形的方式主要有滑移和孪生,而大多数情况下是滑移。

2、滑移常沿晶体中原子密度最大的晶面及晶向发生。

3、在体心立方晶格中, 原子密度最大的晶面是{110},有 6 个,原子密度最大的晶向是<111>,有2个;在面心立方晶格中, 原子密度最大的晶面是{111},有4 个,原子密度最大的晶向是<110>,有3个。

两者比较,具有面心立方晶格的金属塑性较好,其原因是滑移系和滑移方向多。

4、多晶体金属的塑性变形由于受到晶界和晶粒位向的影响,与单晶体金属相比,塑性变形抗力增大。

5、金属在塑性变形时,随变形量的增加,变形抗力迅速增大,即强度、硬度升高,塑性、韧性下降,产生所谓加工硬化现象。

这种现象可通过再结晶加以消除。

6、变形金属在加热时,会发生回复、再结晶和晶粒长大三个阶段的变化。

7、冷绕成形的钢质弹簧,成形后应进行回复退火,温度约为250~300℃。

8、回复退火也称去应力退火。

9、冷拉拔钢丝, 如变形量大, 拉拔工序间应穿插再结晶退火,目的是消除加工硬化。

10、热加工与冷加工的划分应以再结晶温度为界线。

在再结晶温度以下的塑性变形称为冷加工;在再结晶温度以上的塑性变形称为热加工。

三、简答题1、产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:⑴随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力ζ与切应力η。

解:应力p与斜截面m-m的法线的夹角α=10°,故ζ=p cosα=120×cos10°=118.2MPaη=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为ζmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学简明教程(景荣春)课后答案第三章

材料力学简明教程(景荣春)课后答案第三章
图示为 1 阶梯形圆轴,其中 AE 段为空心圆截面,外径 D = 140 mm ,内径 d = 80 mm; BC 段为实心圆截面,直径 d1 = 100 mm。受力如图所示,外力偶矩分别为 3-9
E 。 2(1 + μ )
3-5 圆轴扭转时如何确定危险截面、危险点及强度条件? 答 等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面 在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。强度条件为
τ max =
Tmax ≤ [τ ] Wp
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
ϕ = ∫ dϕ = ∫
l l
T (x ) dx GI p ( x )
上式适用于等截面圆轴和截面变化不大的圆锥截面轴。对等截面圆轴,若在长 l 的两横截面 间的扭矩 T 为常量,则
ϕ=
圆轴扭转的刚度条件为
Tl GI p
⎟ ≤ [θ ] θ max = ⎜ ⎜ GI ⎟ ⎝ p ⎠ max
⎛ T ⎞
对于等截面圆轴为 或
50 ⎛ ⎞ 8 × 1.5 × 10 3 × 50 × 10 −3 ⎜ 4 × + 2 ⎟ 8 FD(4c + 2) 8 ⎝ ⎠ = 458 MPa = 解 (1) τ max = 3 50 ( ) πd 4c − 3 ⎛ ⎞ π × 8 3 × 10 −9 × ⎜ 4 × − 3 ⎟ 8 ⎝ ⎠ τ max − [τ ] 8 = × 100% = 1.78% < 5% [τ ] 450

材料力学第三章答案

材料力学第三章答案

材料力学第三章答案材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。

现有四种答案,正确的是( a )a ②③对b①③对c①②对d 全对7.扭转切应力公式?mnp?i?适用于(d)杆件。

pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。

9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。

三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解:me1与me2的作用位置互换后,最大扭矩变小。

3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。

ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。

材料力学第3章 (2)

材料力学第3章 (2)

2 2
FN 2 3F A2 4 b 2d 3 80 103 N 4 0.08m 2 0.016m 0.01m 125Mpa<[]
铆钉和板的强度都符合要求。
10
材料力学
出版社 科技分社
小结 (1) 连接件的破坏形式主要有剪切和挤压破坏。
7
材料力学
出版社 科技分社
例题 图示两块钢板用四个直径相同的钢铆钉连接一起。 已知载荷F = 80 KN,板宽b =80 mm,板厚 =10 mm,铆 钉 d =16 mm,许用切应力[] =100 MPa,铆钉和钢板许用 挤压应力[jy] = 300MPa,钢板的许用拉应力 [] =160Mpa 。试校核该钢板连接处的强度。
等直圆杆在扭转时,杆内各点均处于纯剪切应力状 态。最大切应力发生在最大扭矩所在横截面,即危 险截面的周边上任一点处,其强度条件是横截面最 大工作切应力不超过材料的许用切应力 。即
Tmax max Wp
根据该式可对空心或实心圆截面的轴进 行强度计算,即强度校核、选择截面或 计算许可荷载三种类型的问题。
T2 M 2 M 3 9.56kN m
材料力学
出版社 科技分社
AD段:沿3-3截面将轴截开 ,取右边分析,假设为正 值扭矩,则由平衡方程
M
x
0
T3 M 4 0
T3 M 4 6.37kN m

(3)作扭矩图。 根据以上计算结果 即可做出扭矩图。
Tmax 9.56kN m
材料力学
出版社 科技分社
(2)计算各段轴上的扭矩。 BC段:沿1-1截面将轴截开,取左边分析,假设 为正值扭矩,则由平衡方程得
M

简明材料力学习题解答第三章

简明材料力学习题解答第三章

3-1.用截面法求图示各杆在截面 1-1、2-2、3-3上的扭矩。

并于截面上有矢量表示扭矩,指岀扭矩的符2kN.m3.4.发电量为1500 kW 的水轮机主轴如图示。

D=550 mm , d=300 mm ,正常转速 n=250 r/min 。

材料的许用剪应力[T =500 MPa 解:(1)计算外力偶矩(2) 计算扭矩(3) 计算抗扭截面系数 (4) 强度校核 强度足够。

注:强度校核类问题,最后必需给岀结论。

^ ;3-5.图示轴AB 的转速n=120 r/min ,从轮输入功率]P=44.1 kW ,功率的一半通过锥形齿轮传送给轴C ,另一半由水平轴 H 输岀。

已知 。

1=60 cm , D 2=24 cm , d 1=10 cm , d 2=8 cm , d 3=6 cm , [ T =20 MPa 。

试对各轴进行强度校核。

解:⑻用截面法求1-1截面上的扭矩用截面法求 32kN.m画扭矩图(b)(1) 用截面法求 1-1截面上的扭矩|1 5kN.mT i用截面法求 2-2截面上的扭矩 ------- '1 用截面法求 3-3截面上的扭矩T 2画扭矩图3.3.直径 D=50 mm的最大切应力。

解:(1)圆轴的极惯性矩点的切应力(2)圆轴的抗扭截面系数截面上的最大切应力注:截面上的切应力成线性分布,所以也可以用比例关系求最大切应力。

的圆轴受扭矩=2.15 kNm:求距轴心 上10 mm 处的切应力,并求横截面上 muni x 试校核水轮机主轴的强度。

D 一2kN.m 22kN.m 1 4kN.m12 2kN.m .12-2截面上的扭矩_Aj 5kN.m3kN.m(b)-x2kN.m2kN.m4kN.m3kN.m 2kN.m2xN.m发电机轴水轮机轴实心轴和空心轴由牙嵌式离合器连接在一起,如图所示。

已知轴的转速为n=100 r/min ,传递的功率P=7.5 kW ,材料的许用剪应力[T =40 MPa 。

材料力学第三章习题答案

材料力学第三章习题答案
材料力学第二版单辉祖编著高等教育出版社
第三章 轴向拉压变形
题号 页码 3-2 .........................................................................................................................................................1 3-4 .........................................................................................................................................................2 3-5 .........................................................................................................................................................2 3-7 .........................................................................................................................................................3 3-8 .........................................................................................................................................................5 3-10 .......................................................................................................................................................6 3-11 .......................................................................................................................................................7 3-13 .......................................................................................................................................................8 3-15 .....................................................................................................................................................10 3-16 .....................................................................................................................................................10 3-18 .....................................................................................................................................................11 3-19 .....................................................................................................................................................13 3-20 .....................................................................................................................................................14 3-24 .....................................................................................................................................................15 3-25 .....................................................................................................................................................16 3-27 .....................................................................................................................................................17 3-28 .....................................................................................................................................................18 3-29 .....................................................................................................................................................20 3-30 .....................................................................................................................................................21 3-32 .....................................................................................................................................................22

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第3章 力系的平衡

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第3章 力系的平衡

工程力学(工程静力学与材料力学)习题与解答第3章 力系的平衡3-1 试求图示两外伸梁的约束反力FRA 、FRB ,其中(a )M = 60kN ·m ,FP = 20 kN ;(b )FP = 10 kN ,FP1 = 20 kN ,q = 20kN/m ,d = 0.8m 。

知识点:固定铰支座、辊轴支座、平面力系、平衡方程 难易程度:一般 解答:图(a-1) 0=∑x F ,FAx = 00=∑A M ,05.34R P =⨯+⨯--B F F M 05.342060R =⨯+⨯--B F FRB = 40 kN (↑)=∑y F ,0P R =-+F F F B Ay20-=Ay F kN (↓)图(b-1),M = FPd 0=∑A M ,03221P R P =⋅-⋅++⋅d F d F d F dqd B即 032211P R P =-++F F F qd B 02032108.02021R =⨯-++⨯⨯B FFRB = 21 kN (↑)=∑y F ,FRA = 15 kN (↑)3-2 直角折杆所受载荷,约束及尺寸均如图示。

试求A 处全部约束力。

A MB Ay F B R F CAx F PF(a) M A B B R F A R F P 1F C qdBD(b)(a )(b ) 习题3-1图FMB习题3-3图sF W A F ABF BF AN F(a)知识点:固定端约束、平面力系、平衡方程 难易程度:一般 解答: 图(a ): 0=∑x F ,0=Ax F=∑y F ,=Ay F (↑)0=∑A M ,0=-+Fd M M AM Fd M A -=3-3 图示拖车重W = 20kN ,汽车对它的牵引力FS = 10 kN 。

试求拖车匀速直线行驶时,车轮A 、B 对地面的正压力。

知识点:固定端约束、平面力系、平衡方程 难易程度:一般解答: 图(a ):0)(=∑F A M 08.214.1NB S =⨯+⨯-⨯-F F W6.13NB =F kN=∑y F ,4.6NA =F kN3-4 图示起重机ABC 具有铅垂转动轴AB ,起重机重W = 3.5kN ,重心在D 。

材料力学课后习题答案

材料力学课后习题答案

材料力学课后习题答案材料力学课后习题答案欢迎大家来到聘才网小编搜集整理了材料力学课后习题答案供大家查阅希望大家喜欢1、解释下列名词1弹性比功:金属材料吸收弹性变形功的能力一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示2.滞弹性:金属材料在弹性范围内快速加载或卸载后随时间延长产生附加弹性应变的现象称为滞弹性也就是应变落后于应力的现象3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性4.包申格效应:金属材料经过预先加载产生少量塑性变形卸载后再同向加载规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力7.解理台阶:当解理裂纹与螺型位错相遇时便形成1个高度为b 的台阶8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样是解理台阶的1种标志9.解理面:是金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂因与大理石断裂类似故称此种晶体学平面为解理面10.穿晶断裂:穿晶断裂的裂纹穿过晶内可以是韧性断裂也可以是脆性断裂沿晶断裂:裂纹沿晶界扩展多数是脆性断裂11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时冲击吸收功明显下降断裂方式由原来的韧性断裂变为脆性断裂这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的多数工程材料弹性变形时可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相外在因素:温度、应变速率和应力状态2、试述韧性断裂与脆性断裂的区别为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂这种断裂有1个缓慢的撕裂过程在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂断裂前基本上不发生塑性变形没有明显征兆因而危害性很大3、剪切断裂与解理断裂都是穿晶断裂为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离一般是韧性断裂而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂解理断裂通常是脆性断裂4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有些?答:宏观断口呈杯锥形由纤维区、放射区和剪切唇3个区域组成即所谓的断口特征三要素上述断口三区域的形态、大小和相对位置因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化5、论述格雷菲斯裂纹理论分析问题的思路推导格雷菲斯方程并指出该理论的局限性答:只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况第二章金属在其他静载荷下的力学性能一、解释下列名词:(1)应力状态软性系数材料或工件所承受的最大切应力τmax和最大正12应力σmax比值即:max(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体往往存在截面的急剧变化如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等这种截面变化的部分可视为“缺口”由于缺口的存在在载荷作用下缺口截面上的应力状态将发生变化产生所谓的缺口效应(3)缺口敏感度缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值称为缺口敏感度即:(4)布氏硬度用钢球或硬质合金球作为压头采用单位面积所承受的试验力计算而得的硬度(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头以测量压痕深度所表示的硬度(6)维氏硬度以两相对面夹角为136的金刚石四棱锥作压头采用单位面积所承受的试验力计算而得的硬度(7)努氏硬度采用2个对面角不等的四棱锥金刚石压头由试验力除以压痕投影面积得到的硬度(8)肖氏硬度采动载荷试验法根据重锤回跳高度表证的金属硬度(9)里氏硬度采动载荷试验法根据重锤回跳速度表证的金属硬度二、说明下列力学性能指标的意义(1)σbc材料的抗压强度(2)σbb材料的抗弯强度(3)τs材料的扭转屈服点(4)τb材料的抗扭强度(5)σbn材料的抗拉强度(6)NSR材料的缺口敏感度(7)HBW压头为硬质合金球的材料的布氏硬度(8)HRA材料的洛氏硬度(9)HRB材料的洛氏硬度(10)HRC材料的洛氏硬度(11)HV材料的维氏硬度在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态在板中心部位处于两向拉伸平面应力状态厚板:在缺口根部处于两向拉应力状态缺口内侧处三向拉伸平面应变状态无论脆性材料或塑性材料都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向降低了机件的使用安全性为了评定不同金属材料的缺口变脆倾向必须采用缺口试样进行静载力学性能试验八.今有如下零件和材料需要测定硬度试说明选择何种硬度实验方法为宜(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金(1)渗碳层的硬度分布HK或显微HV(2)淬火钢HRC(3)灰铸铁HB(4)鉴别钢中的隐晶马氏体和残余奥氏体显微HV或者HK(5)仪表小黄铜齿轮HV(6)龙门刨床导轨HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层HV(8)高速钢刀具HRC(9)退火态低碳钢HB(10)硬质合金HRA第三章金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力【P57】冲击韧度::U形缺口冲击吸收功AKU除以冲击试样缺口底部截面积所得之商称为冲击韧度αku=Aku/S(J/cm2),反应了材料抵抗冲击载荷的能力,用aKU表示P57注释/P67冲击吸收功:缺口试样冲击弯曲试验中摆锤冲断试样失去的位能为mgH1mgH2此即为试样变形和断裂所消耗的功称为冲击吸收功以AK表示单位为JP57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金特别是工程上常用的中、低强度结构钢(铁素体珠光体钢)在试验温度低于某一温度tk时会由韧性状态变为脆性状态冲击吸收功明显下降断裂机理由微孔聚集型变为穿晶解理型断口特征由纤维状变为结晶状这就是低温脆性韧性温度储备:材料使用温度和韧脆转变温度的差值保证材料的低温服役行为二、(1)AK:冲击吸收功含义见上面冲击吸收功不能真正代表材料的韧脆程度但由于它们对材料内部组织变化十分敏感而且冲击弯曲试验方法简便易行被广泛采用AKV(CVN):V型缺口试样冲击吸收功.AKU:U型缺口冲击吸收功.(2)FATT50:通常取结晶区面积占整个断口面积50%时的温度为tk 并记为50%FATT或FATT50%t50(或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.(3)NDT:以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度(4)FTE:以低阶能和高阶能平均值对应的温度定义tk记为FTE(5)FTP:以高阶能对应的温度为tk记为FTP四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料它们的屈服强度会随温度的降低急剧增加而断裂强度随温度的降低而变化不大当温度降低到某一温度时屈服强度增大到高于断裂强度时在这个温度以下材料的屈服强度比断裂强度大因此材料在受力时还未发生屈服便断裂了材料显示脆性从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关当温度降低时位错运动阻力增大原子热激活能力下降因此材料屈服强度增加影响材料低温脆性的因素有(P63P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高材料脆性断裂趋势明显塑性差2.化学成分:能够使材料硬度强度提高的杂质或者合金元素都会引起材料塑性和韧性变差材料脆性提高3.显微组织:①晶粒大小细化晶粒可以同时提高材料的强度和塑韧性因为晶界是裂纹扩展的阻力晶粒细小晶界总面积增加晶界处塞积的位错数减少有利于降低应力集中;同时晶界上杂质浓度减少避免产生沿晶脆性断裂②金相组织:较低强度水平时强度相等而组织不同的钢冲击吸收功和韧脆转变温度以马氏体高温回火最佳贝氏体回火组织次之片状珠光体组织最差钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响当其尺寸增大时均使材料韧性下降韧脆转变温度升高五.试述焊接船舶比铆接船舶容易发生脆性破坏的原因焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷增加裂纹敏感度增加材料的脆性容易发生脆性断裂七.试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度而另外一些材料则没有?宏观上体心立方中、低强度结构钢随温度的降低冲击功急剧下降具有明显的韧脆转变温度而高强度结构钢在很宽的温度范围内冲击功都很低没有明显的韧脆转变温度面心立方金属及其合金一般没有韧脆转变现象微观上体心立方金属中位错运动的阻力对温度变化非常敏感位错运动阻力随温度下降而增加在低温下该材料处于脆性状态而面心立方金属因位错宽度比较大对温度不敏感故一般不显示低温脆性体心立方金属的低温脆性还可能与迟屈服现象有关对低碳钢施加一高速到高于屈服强度时材料并不立即产生屈服而需要经过一段孕育期(称为迟屈时间)才开始塑性变形这种现象称为迟屈服现象由于材料在孕育期中只产生弹性变形没有塑性变形消耗能量所以有利于裂纹扩展往往表现为脆性破坏第四章金属的断裂韧度2.名词解释低应力脆断:高强度、超高强度钢的机件中低强度钢的大型、重型机件在屈服应力以下发生的断裂张开型(?型)裂纹:拉应力垂直作用于裂纹扩展面裂纹沿作用力方向张开沿裂纹面扩展的裂纹应力场强度因子K?:在裂纹尖端区域各点的应力分量除了决定于位置外尚与强度因子K?有关对于某一确定的点其应力分量由K?确定K?越大则应力场各点应力分量也越大这样K?即可表示应力场的强弱程度称K?为应力场强度因子“I”表示I型裂纹小范围屈服:塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小1个数量级以上)这就称为小范围屈服有效屈服应力:裂纹在发生屈服时的应力有效裂纹长度:因裂纹尖端应力的分布特性裂尖前沿产生有塑性屈服区屈服区内松弛的应力将叠加至屈服区之外从而使屈服区之外的应力增加其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响经修正后的裂纹长度即为有效裂纹长度:a+ry裂纹扩展K判据:裂纹在受力时只要满足KI?KIC就会发生脆性断裂.反之即使存在裂纹若KI?KIC也不会断裂新P71:旧832、说明下列断裂韧度指标的意义及其相互关系K?C和KC答:临界或失稳状态的K?记作K?C或KCK?C为平面应变下的断裂韧度表示在平面应变条件下材料抵抗裂纹失稳扩展的能力KC为平面应力断裂韧度表示在平面应力条件下材料抵抗裂纹失稳扩展的能力它们都是?型裂纹的材料裂纹韧性指标但KC值与试样厚度有关当试样厚度增加使裂纹39材料力学性能课后习题答案材料力学课后习题答案尖端达到平面应变状态时断裂韧度趋于一稳定的最低值即为K?C 它与试样厚度无关而是真正的材料常数3、试述低应力脆断的原因及防止方法答:低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹从而使机件在低于屈服应力的情况发生断裂预防措施:将断裂判据用于机件的设计上在给定裂纹尺寸的情况下确定机件允许的最大工作应力或者当机件的工作应力确定后根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?答:由41可知裂纹前端的应力是1个变化复杂的多向应力如用它直接建立裂纹扩展的应力判据显得十分复杂和困难;而且当r→0时不论外加平均应力如何小裂纹尖端各应力分量均趋于无限大构件就失去了承载能力也就是说只要构件一有裂纹就会破坏这显然与实际情况不符这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的因此无法用应力判据处理这一问题因此只能用其它判据来解决这一问题5、试述应力场强度因子的意义及典型裂纹K?的表达式答:几种裂纹的K?表达式无限大板穿透裂纹:Ka;有限宽板穿透裂纹:aaK??1.2?a;有限宽板单边直裂纹:Kaf();Kaf()当b?a时bb 受弯单边裂纹梁:K??6Maf();无限大物体内部有椭圆片裂纹远处受3/2(b?a)b2均匀拉伸:Kaa2(sin??2cos2?)1/4;无限大物体表面有半椭圆裂纹远c1.1?a?处均受拉伸:A点的K??7、试述裂纹尖端塑性区产生的原因及其影响因素答:机件上由于存在裂纹在裂纹尖端处产生应力集中当σy趋于材料的屈服应力时在裂纹尖端处便开始屈服产生塑性变形从而形成塑性区影响塑性区大小的因素有:裂纹在厚板中所处的位置板中心处于平面应变状态塑性区较小;板表面处于平面应力状态塑性区较大但是无论平面应力或平面应变塑性区宽度总是与(KIC/σs)2成正比13、断裂韧度KIC与强度、塑性之间的关系:总的来说断裂韧度随强度的升高而降低15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响外因:1、温度;2、应变速率16.有1大型板件材料的σ0.2=1200MPaKIc=115MPa*m1/2探伤发现有20mm长的横向穿透裂纹若在平均轴向拉应力900MPa下工作试计算KI及塑性区宽度R0并判断该件是否安全?解:由题意知穿透裂纹受到的应力为σ=900MPa根据σ/σ0.2的值确定裂纹断裂韧度KIC是否休要修正因为σ/σ0.2=900/1200=0.75>0.7所以裂纹断裂韧度KIC需要修正对于无限板的中心穿透裂纹修正后的KI为:a9000.01?KI168.1322)?0?0.177(0.75)(.177(?/?s)1?KI?塑性区宽度为:??R0比较K1与KIc:22s?因为K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:K1>KIc裂纹会失稳扩展,所以该件不安全17.有一轴件平行轴向工作应力150MPa使用中发现横向疲劳脆性正断断口分析表明有25mm深度的表面半椭圆疲劳区根据裂纹a/c可以确定υ=1测试材料的σ0.2=720MPa试估算材料的断裂韧度KIC为多少?解:因为σ/σ0.2=150/720=0.208<0.7所以裂纹断裂韧度KIC不需要修正对于无限板的中心穿透裂纹修正后的KI为:KIC=Yσcac1/2对于表面半椭圆裂纹Y=1.1/υ=1.13?150?25?10所以KIC=Yσcac1/2=1.1=46.229(MPa*m1/2) 第五章金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmaxσmin)p95/p108平均应力σm:σm=1/2(σmax+σmin)p95/p107应力比r:r=σmin/σmaxp95/p108疲劳源:是疲劳裂纹萌生的策源地一般在机件表面常和缺口裂纹刀痕蚀坑相连P96疲劳贝纹线:是疲劳区的最大特征一般认为它是由载荷变动引起的是裂纹前沿线留下的弧状台阶痕迹P97/p110疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样称为疲劳条带(疲劳辉纹疲劳条纹)p113/p132 驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除当对式样重新循环加载时则循环滑移带又会在原处再现这种永留或再现的循环滑移带称为驻留滑移带P111ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关而且与当时的裂纹尺寸有关ΔK是由应力范围Δσ和a复合为应力强度因子范围ΔK=KmaxKmin=Yσmax√aYσmin√a=YΔσ√a.p105/p120 da/dN:疲劳裂纹扩展速率即每循环一次裂纹扩展的距离P105 疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后其疲劳极限或疲劳寿命减小就造成了过载损伤P102/p1172.揭示下列疲劳性能指标的意义疲劳强度σ1σp,τ1,σ1N,P99,100,103/p114σ1:对称应力循环作用下的弯曲疲劳极限;σp:对称拉压疲劳极限;τ1:对称扭转疲劳极限;σ1N:缺口试样在对称应力循环作用下的疲劳极限疲劳缺口敏感度qfP103/p118金属材料在交变载荷作用下的缺口敏感性常用疲劳缺口敏感度来评定Qf=(Kf1)/(kt1).其中Kt为理论应力集中系数且大于一Kf为疲劳缺口系数Kf=(σ1)/(σ1N)过载损伤界P102,103/p117由实验测定测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次得到不同试验点连接各点便得到过载损伤界疲劳门槛值ΔKthP105/p120在疲劳裂纹扩展速率曲线的Ⅰ区当ΔK≤ΔKth时da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时da/dN>0,疲劳裂纹才开始扩展因此ΔKth是疲劳裂纹不扩展的ΔK临界值称为疲劳裂纹扩展门槛值4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT旧书P109~111)答:典型疲劳断口具有3个形貌不同的区域疲劳源、疲劳区及瞬断区(1)疲劳源是疲劳裂纹萌生的策源地疲劳源区的光亮度最大因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压故显示光亮平滑另疲劳源的贝纹线细小(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域是判断疲劳断裂的重要特征证据特征是:断口比较光滑并分布有贝纹线断口光滑是疲劳源区域的延续但其程度随裂纹向前扩展逐渐减弱贝纹线是由载荷变动引起的如机器运转时的开动与停歇偶然过载引起的载荷变动使裂纹前沿线留下了弧状台阶痕迹(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域其断口比疲劳区粗糙脆性材料为结晶状断口韧性材料为纤维状断口6.试述疲劳图的意义、建立及用途(新书P101~102旧书P115~117)答:定义:疲劳图是各种循环疲劳极限的集合图也是疲劳曲线的另1种表达形式意义:很多机件或构件是在不对称循环载荷下工作的因此还需要知道材料的不对称循环疲劳极限以适应这类机件的设计和选材的需要通常是用工程作图法由疲劳图求得各种不对称循环的疲劳极限1、?a?m疲劳图建立:这种图的纵坐标以?a表示横坐标以?m表示然后以不同应力比r条件下将?max表示的疲劳极限?r分解为?a和?m并在该坐标系中作ABC曲线即1?a(?max??min)1?r为?a??m疲劳图其几何关系为:tanm(?max??min)1?r2(用途):我们知道应力比r将其代入试中就可以求得tan?和?而后从坐标原点O引直线令其与横坐标的夹角等于?值该直线与曲线ABC 相交的交点B便是所求的点其纵、横坐标之和即为相应r的疲劳极限?rB?rB??aB??mB2、?max(?min)??m疲劳图建立:这种图的纵坐标以?max或?min表示横坐标以?m表示然后将不同应力比r下的疲劳极限分别以?max(?min)和?m表示于上述坐标系中就形成这种疲劳图几何关系为:tanmax2?max2m?max??min1?r (用途):我们只要知道应力比r,就可代入上试求得tan?和?而后从坐标原点O引一直线OH令其与横坐标的夹角等于?该直线与曲线AHC 相交的交点H的纵坐标即为疲劳极限8.试述影响疲劳裂纹扩展速率的主要因素(新书P107~109旧书P123~125)dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出:dN(1?r)Kc??K残余压应力因会减小r,使因会增大r使da降低和?Kth升高对疲劳寿命有利;而残余拉应力dNda升高和?Kth降低对疲劳寿命不利dN2、过载峰的影响:偶然过载进入过载损伤区内使材料受到损伤并降低疲劳寿命但若过载适当有时反而是有益的da3、材料组织的影响:①晶粒大小:晶粒越粗大其?Kth值越高越低对dN疲劳寿命越有利②组织:钢的含碳量越低铁素体含量越多时其?Kth值就越高当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时可以提da高钢的?Kth降低③喷丸处理:喷丸强化也能提高?KthdN9.试述疲劳微观断口的主要特征答:断口特征是具有略呈弯曲并相互平行的沟槽花样称疲劳条带(疲劳条纹、疲劳辉纹)疲劳条带是疲劳断口最典型的微观特征滑移系多的面心立方金属其疲劳条带明显;滑移系少或组织复杂的金属其疲劳条带短窄而紊乱疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合图(b)受拉应力时裂纹张开在裂纹尖端沿最大切应力方向产生滑移图(c),裂纹张开至最大塑性变形区扩大裂纹尖端张开呈半圆形裂纹停止扩展由于塑性变形裂纹尖端的应力集中减小裂纹停止扩展的过程称为“塑性钝化”图(d)当应力变为压缩应力时滑移方向也改变了裂纹尖端被压弯成“耳状”切口图(e)到压缩应力为最大值时裂纹完全闭合裂纹尖端又由钝变锐形成一对尖角12.试述金属表面强化对疲劳强度的影响答:表面强化处理可在机件表面产生有利的残余压应力同时还能提高机件表面的强度和硬度这两方面的作用都能提高疲劳强度表面强化方法通常有表面喷丸、滚压、表面淬火及表面化学热处理等(1)表面喷丸及滚压喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束又在塑变层内产生残余压应力表面滚压和喷丸的作用相似只是其压应力层深度较大很适于大工件;而且表面粗糙度低强化效果更好(2)表面热处理及化学热处理他们除能使机件获得表硬心韧的综合力学性能外还可以利用表面。

物理学简明教程(马文蔚等著)第三章课后练习题答案详解

物理学简明教程(马文蔚等著)第三章课后练习题答案详解

物理学简明教程(马文蔚等著)第三章课后练习题答案详解物理学简明教程(马文蔚等著)第三章课后练习题答案详解3 -1有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A) 只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).3-2关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A) 只有(2)是正确的 (B) (1)、(2)是正确的(C)(2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).3-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A) 角速度从小到大,角加速度不变(B) 角速度从小到大,角加速度从小到大(C) 角速度从小到大,角加速度从大到小(D) 角速度不变,角加速度为零分析与解如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).3 -4 一汽车发动机曲轴的转速在12 s 内由1.2×103 r·min-1均匀的增加到2.7×103 r·min-1.(1) 求曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?分析这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转动.解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义tωαd d =,在匀变速转动中角加速度为()200s rad 1.13π2-?=-=-=tn n t ωωα (2) 发动机曲轴转过的角度为()0020π221n n t ωωt αt ωθ-=-=+= 在12 s 内曲轴转过的圈数为3902π20=+==t n n θN 圈3 -5 一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103 kg·m -3,求飞轮对轴的转动惯量.分析根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到.解根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得2424122221121m kg 136.021π161 2212212?=??? ??+=??+??? ???=+=ad ld ρd m d m J J J3 -6 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×03N·m ,涡轮的转动惯量为25.0kg·m 2 .当轮的转速由2.80×103 r·min -1 增大到1.12×104 r·min -1时,所经历的时间t 为多少?分析由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解.解1 在匀变速转动中,角加速度t ωωα0-=,由转动定律αJ M =,可得飞轮所经历的时间()s 8.10200=-=-=n n M J πJ M ωωt 解2 飞轮在恒外力矩作用下,根据角动量定理,有()00d ωωJ t M t-=? 则()s 8.10π200=-=-=n n MJ J M ωωt3-7 电风扇接通电源后一般经5s 后到达额定转速10min r 300-?=n ,而关闭电源后经16 s 后风扇停止转动,已知电风扇的转动惯量为2m kg 5.0?,设启动时电磁力矩M 和转动时的阻力矩f M 均为常数,求启动时的电磁力矩M .分析由题意知M 和f M 均为常数,故启动时电风扇在M 和f M 共同作用下,作匀加速转动,直至到达额定转速,关闭电源后,电风扇仅在f M 的作用下作匀减速转动.运用匀变速转动的运动学规律和转动定律既可求解.解设启动时和关闭电源后,电风扇转动时的角加速度分别为1α和2α,则启动过程αJ M M =-f110t αω=关闭电源后2f αJ M =-0220=+t αω 联解以上各式并将60200n πω=以及0n 、1t 、2t 、J 值代入,得 m N 12.4?=M3 -8 一质量为m′、半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转动,若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少?破裂后圆盘的角动量为多大?分析盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.解 (1) 碎块抛出时的初速度为R ω=0v由于碎块竖直上抛运动,它所能到达的高度为g R ωg h 222220==v(2) 圆盘在裂开的过程中,其角动量守恒,故有L L L '-=0 式中ωR m L 221'=为圆盘未碎时的角动量;ωmR L 2='为碎块被视为质点时,碎块对轴的角动量;L 为破裂后盘的角动量.则ωR m m L 221??-'=3-9 一位溜冰者伸开双臂来以1.01s r -?绕身体中心轴转动,此时的转动惯量为1.33 2m kg ?,她收起双臂来增加转速,如收起双臂后的转动惯量变为0.48 2m kg ?.求(1)她收起双臂后的转速;(2)她收起双臂前后绕身体中心轴的转动动能各为多少?分析各种物体(含刚体和变形体)在运动过程中,只要对空间某定点或定轴的外力矩之和为零,则物体对同一点或轴的角动量就守恒,在本题中当溜冰者绕身体中心轴转动时,人体重力和地面支持力均与该轴重合,故无外力矩作用,满足角动量守恒.此时改变身体形状(即改变对轴的转动惯量)就可改变转速,这是在体育运动中经常要利用的物理规律.解(1)由分析知,有ωωJ J =00则 1-00s r 77.2?==ωωJJ (2)收起双臂前 J 26.2212001k ==ωJ E收起双臂后 J 72.6212k2==ωJ E此时由于人体内力做功,有 1k 2k E E >的上端点,开始时棒自由悬挂.以100 N 的力打击它的下端点,打击时间为0.02 s .(1) 若打击前棒是静止的,求打击时其角动量的变化;(2) 棒的最大偏转角.分析该题属于常见的刚体转动问题,可分为两个过程来讨论:(1) 瞬间的打击过程.在瞬间外力的打击下,棒受到外力矩的角冲量,根据角动量定理,棒的角动量将发生变化,则获得一定的角速度.(2) 棒的转动过程.由于棒和地球所组成的系统,除重力(保守内力)外无其他外力做功,因此系统的机械能守恒,根据机械能守恒定律,可求得棒的偏转角度.解 (1) 由刚体的角动量定理得120s m kg 0.2d -??====?t ΔFl t M ωJ L Δ(2) 取棒和地球为一系统,并选O 处为重力势能零点.在转动过程中,系统的机械能守恒,即()θmgl ωJ cos 1212120-= 由式(1)、(2)可得棒的偏转角度为8388Δ31arccos o 222'=-=gl m t F θ棒的一端的水平轴转动.如将此棒放在水平位置,然后任其落下,求:(1) 当棒转过60°时的角加速度和角速度;(2) 下落到竖直位置时的动能;(3) 下落到竖直位置时的角速度.分析转动定律M =Jα是一瞬时关系式,为求棒在不同位置的角加速度,只需确定棒所在位置的力矩就可求得.由于重力矩()θl mg θM cos 2=是变力矩,角加速度也是变化的,因此,在求角速度时,就必须根据角加速度用积分的方法来计算(也可根据转动中的动能定理,通过计算变力矩的功来求).至于棒下落到竖直位置时的动能和角速度,可采用系统的机械能守恒定律来解,这是因为棒与地球所组成的系统中,只有重力作功(转轴处的支持力不作功),因此,系统的机械能守恒.解 (1) 棒绕端点的转动惯量231ml J=由转动定律M =Jα可得棒在θ 位置时的角加速度为()l θg J θM α2cos 3==当θ =60°时,棒转动的角加速度2s 418-=.α 由于θωωt ωαd d d d ==,根据初始条件对式(1)积分,有=o 6000d d θαωωω 则角速度为1600s 98.7sin 3o-==l θg ω(2) 根据机械能守恒,棒下落至竖直位置时的动能为J 98.021==mgl E K (3) 由于该动能也就是转动动能,即221ωJ E K =,所以,棒落至竖直位置时的角速度为1s 57.832-==='lg J E ωK。

材料力学习题解答[第三章]

材料力学习题解答[第三章]

3-1求图中所示杆各个横截面上的应力,已知横截面面积A=400mm 2。

解a):MPaMPa1004001040050400102033231=⨯==-=⨯-=σσσ 题3-1a)图 解b):MPa MPaMPa2540010105050400102032231=⨯=-=-=⨯-=右左σσσ MPa MPa 125400105025333=⨯==右左σσ 题3-1b)图3-2图中为变截面杆,如果横截面面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2,求杆内各横截面上的应力。

解a ):MPaMPa MPa10040010407.663001020502001010333231=⨯=-=⨯-==⨯=σσσ题3-2a)图解b):MPaMPa 7540010303.333001010033321-=⨯-==⨯==σσσ题3-2b)图30kN3-3 图示杆系结构中,各杆横截面面积相等,即A=30cm 2,载荷F=200kN 。

试求各杆横截面上的应力。

解:(1)约束反力:kNF F kN F F kN F F AXAY Dy 2001504315043======(2)各杆轴力)(250150200)(150)(200)(1502222压压拉拉kN F F F kN F F kN F F kN F F NCD NAC NAC D NCD AX NAC AY NAB =+=+======= 题3-3图(3)各杆的正应力)(3.8330010250,)(5030010150)(7.6630010200,)(50300101503333压压拉拉MPa MPa MPa MPa AC CDAC AB -=⨯-=-=⨯-==⨯==⨯=σσσσ 3-4钢杆CD 直径为20mm ,用来拉住刚性梁AB 。

已知F=10kN ,求钢杆横截面上的正应力。

解:)(7.112204104.3544.3545cos 1)5.11(232拉MPa d F kNF F NCD CD oNCD =⨯⨯===⨯+=ππσ 题3-4图3-5图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

《大学物理简明教程》第三章课后习题答案

《大学物理简明教程》第三章课后习题答案

v0
(2v 2 / 3v0 )dv =
因为速率分布函数 f = f (v) 的极大值不存在,所以分子的最概然速率也不存在。 3.11 氧气在温度为 27 o C 、压强为 1 个大气压时,分子的方均根速率为 485m/s,那么在 温度 27 o C 、压强为 0.5 个大气压时,分子的方均根速率是多少? 分子的最可几速率为 是多少? 分子的平均速率是多少? 解:由 v =
A + Q′ = Q
可得
Q ′ = Q − A = 2.1 × 10 5 − 4.2 × 10 5 = −2.1 × 10 5 ( J )
(2)由理想气体状态方程 pV = νRT ,得 V = νRT / p 。所以氮气的质量密度
ρ=
pM mol 1.013 × 10 5 × 28 × 10 −3 m νM mol νM mol = = = = = 1.14(kg / m 3 ) V V νRT / p RT 8.31 × 300
(3)氮气分子质量为
0
0

(2)N 个自由电子的平均速率为
v = ∫ vf (v)dv = ∫
0

3.10 有 N 个分子,设其速率分布曲线如图 3-31,求: (1)其速率分布函数; (2)速率大于 v 0 和小于 2 v 0 的分子数; (3)分子的平均速率; (4)分子的方均根速率和分子的最概然速率。 解: (1)由数学知识和分布函数归一化条件易得,速率分布函数为
2v0
0
Nf (v)dv =N
(3)分子的平均速率为
2 )dv + ∫ v = ∫ vf (v)dv = ∫ (2v 2 / 3v0 0 0 ∞
v0
2 v0
v0

材料力学第三章答案

材料力学第三章答案

材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。

现有四种答案,正确的是( a )a ②③对 b①③对 c①②对d 全对 7.扭转切应力公式?mnp?i?适用于( d)杆件。

pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。

9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。

三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩 me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若 me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解: me1与me2的作用位置互换后,最大扭矩变小。

3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。

ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。

材基第三章习题集及标准答案

材基第三章习题集及标准答案

第三章 作业与习题的解答一、作业:2、纯铁的空位形成能为105 kJ/mol 。

将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。

(e 31.8=6.8X1013)6、如图2-56,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。

(1)分析该位错环各段位错的结构类型。

(2)求各段位错线所受的力的大小及方向。

(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?解:(2)位错线受力方向如图,位于位错线所在平面,且于位错垂直。

(3)右手法则(P95):(注意:大拇指向下,P90图3.8中位错环ABCD 的箭头应是向内,即是位错环压缩)向外扩展(环扩大)。

如果上下分切应力方向转动180度,则位错环压缩。

A B CDττ(4) P103-104: 2sin 2d ϑτdT s b =θRd s =d ; 2/sin 2θϑd d= ∴ τττkGb b kGb b T R ===2 注:k 取0.5时,为P104中式3.19得出的结果。

7、在面心立方晶体中,把两个平行且同号的单位螺型位错从相距100nm 推进到3nm 时需要用多少功(已知晶体点阵常数a=0.3nm,G=7﹡1010Pa )? (3100210032ln 22ππGb dr w r Gb ==⎰; 1.8X10-9J )8、在简单立方晶体的(100)面上有一个b=a[001]的螺位错。

如果它(a)被(001)面上b=a[010]的刃位错交割。

(b)被(001)面上b=a[100]的螺位错交割,试问在这两种情形下每个位错上会形成割阶还是弯折?((a ):见P98图3.21, NN ′在(100)面内,为扭折,刃型位错;(b)图3.22,NN ′垂直(100)面,为割阶,刃型位错)9、一个]101[2-=a b 的螺位错在(111)面上运动。

材基第三章习题及答案

材基第三章习题及答案

第三章 作业与习题的解答一、作业:2、纯铁的空位形成能为105 kJ/mol 。

将纯铁加热到850℃后激冷至室温(20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。

(e 31.8=6.8X1013)6、如图2-56,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。

(1)分析该位错环各段位错的结构类型。

(2)求各段位错线所受的力的大小及方向。

(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?解:(2)位错线受力方向如图,位于位错线所在平面,且于位错垂直。

(3)右手法则(P95):(注意:大拇指向下,P90图3.8中位错环ABCD 的箭头应是向内,即是位错环压缩)向外扩展(环扩大)。

如果上下分切应力方向转动180度,则位错环压缩。

A B CDττ(4) P103-104: 2sin 2d ϑτdT s b =θRd s =d ; 2/sin 2θϑd d= ∴ τττkGb b kGb b T R ===2 注:k 取0.5时,为P104中式3.19得出的结果。

7、在面心立方晶体中,把两个平行且同号的单位螺型位错从相距100nm 推进到3nm 时需要用多少功(已知晶体点阵常数a=0.3nm,G=7﹡1010Pa )? (3100210032ln 22ππGb dr w r Gb ==⎰; 1.8X10-9J )8、在简单立方晶体的(100)面上有一个b=a[001]的螺位错。

如果它(a)被(001)面上b=a[010]的刃位错交割。

(b)被(001)面上b=a[100]的螺位错交割,试问在这两种情形下每个位错上会形成割阶还是弯折?((a ):见P98图3.21, NN ′在(100)面内,为扭折,刃型位错;(b)图3.22,NN ′垂直(100)面,为割阶,刃型位错)9、一个]101[2-=a b 的螺位错在(111)面上运动。

简明材料力学习题解答第三章

简明材料力学习题解答第三章

3-1、 用截面法求图示各杆在截面1-1、2-2、3-3上得扭矩。

并于截面上有矢量表示扭矩,指出扭矩得符号。

作出各杆扭矩图。

解: (a)(1)(2) (3)画扭矩图 (b)(1) 用截面法求1-1(2) 用截面法求2-2(3) 用截面法求3-3 (4) 画扭矩图3、3、 直径D =50 mm 10 mm 处得切应力,解: (1) 圆轴得极惯性矩点得切应力(2) 圆轴得抗扭截面系数截面上得最大切应力注:截面上得切应力成线性分布,所以也可以用比例关系求最大切应力。

3、4、 发电量为1500 kW 得水轮机主轴如图示。

D =550 mm,d =300 mm,正常转速n =250 r/min 。

材料得许用剪应力[τ解:(1) 计算外力偶矩(2) 计算扭矩xxx、m(3) 计算抗扭截面系数(4) 强度校核强度足够。

注:强度校核类问题,最后必需给出结论。

3-5、 图示轴AB 得转速n =120 r/min,从B 轮输入功率P =44、1 kW,功率得一半通过锥形齿轮传送给轴C ,另一半由水平轴H 输出。

已知D 1=60 cm,D 2=24 cm,d 1=10 cm,d 2=8 cm,d 3=6 cm,[τ]=20 MPa 。

试对各轴进行强度校核。

解:(1)(2)(3)(4)强度校核强度足够。

3-6、 图示阶梯形圆轴直径分别为d 1=40 mm,d 2=70 mm,轴上装有三个带轮。

已知由轮3输入得功率为P 3=30 kW,轮1输出得功率为P 1=13 kW,轴作匀速转动,转速n =200 r/min,材料得许用剪应力[τ]=60 MPa,G=80 GPa,许用扭转角[θ]=2 o /m 。

试校核轴得强度与刚度。

解:(1) 计算外力偶矩(2) 计算扭矩 (3) 计算抗扭截面系数 (4) 强度校核强度足够。

(5) 计算截面极惯性矩(6) 刚度校核12max198123max 2972180620.7180 1.77/[]801025.12101801432.41800.435/[]801023.5610o o op o oop T m GI T m GI θθππθθππ--=⨯=⨯=⨯⨯⨯=⨯=⨯=⨯⨯⨯p p刚度足够。

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力.一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后.随时间延长产生附加弹性应变的现象称为滞弹性.也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形.卸载后再同向加载.规定残余伸长应力增加;反向加载.规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时.便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下.当外加正应力达到一定数值后.以极快速率沿一定晶体学平面产生的穿晶断裂.因与大理石断裂类似.故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内.可以是韧性断裂.也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展.多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时.冲击吸收功明显下降.断裂方式由原来的韧性断裂变为脆性断裂.这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P153、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小.但是不改变金属原子的本性和晶格类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-1. 用截面法求图示各杆在截面1-1、2-2、3-3上的扭矩。

并于截面上有矢量表示扭矩,指出扭矩的符号。

作出各杆扭矩图。

解: (a)(1) 用截面法求1-1截面上的扭矩110 202 .xmT T kN m=-+=∴=∑(2) 用截面法求2-2截面上的扭矩220 202 .xmT T kN m=--=∴=-∑(3) 画扭矩图(b)(1) 用截面法求1-1截面上的扭矩110 53204 .xmT T kN m=--+-=∴=-∑(2) 用截面法求2-2截面上的扭矩(a)xxxxx220 3201 .xmT T kN m=-+-=∴=∑(3) 用截面法求3-3截面上的扭矩330 202 .xmT T kN m=--=∴=-∑(4) 画扭矩图3.3. 直径D =50 mm 的圆轴受扭矩T =2.15 kN.m 的作用。

试求距轴心10 mm 处的切应力,并求横截面上的最大切应力。

解: (1) 圆轴的极惯性矩4474320.05 6.1410 3232P D I m π-⨯===⨯点的切应力372.15100.0135.0 6.1410p T MPa I ρτ-⨯⨯===⨯(2) 圆轴的抗扭截面系数7536.1410 2.45610 /20.05/2pt I W m D --⨯===⨯截面上的最大切应力3max52.151087.5 2.45610t T MPa W τ-⨯===⨯ 注:截面上的切应力成线性分布,所以也可以用比例关系求最大切应力。

max /20.05/235.087.5 0.01D MPa ττρ=⨯=⨯= 3.4. 发电量为1500 kW 的水轮机主轴如图示。

D =550 mm ,d =300 mm ,正常转速n =250 r/min 。

材料的许用剪应力[τ]=500 MPa 。

试校核水轮机主轴的强度。

x解:(1) 计算外力偶矩15009549954957.29 .250P m kN m n ==⨯= (2) 计算扭矩57.29 .T m kN m ==(3) 计算抗扭截面系数4433()29.810 16t W D d m Dπ-=-=⨯(4) 强度校核3357.291019.2[]29.810t T MPa W τσ-⨯===⨯强度足够。

注:强度校核类问题,最后必需给出结论。

3-5. 图示轴AB 的转速n =120 r/min ,从B 轮输入功率P =44.1 kW ,功率的一半通过锥形齿轮传送给轴C ,另一半由水平轴H 输出。

已知D 1=60 cm ,D 2=24 cm ,d 1=10 cm ,d 2=8 cm ,d 3=6 cm ,[τ]=20 MPa 。

试对各轴进行强度校核。

解:(1)计算外力偶矩1244.1954995493509 .12011755 .244.12295499549701.9 .6012024H C P m N m n m m N m P m N mD n D ==⨯======⨯⨯(2)计算内力扭矩3509 . 1755701.9.AB H H C C T m N m T m Nm T m N m======(3)计算抗扭截面系数3363133632336330.119610 16160.0810010 16160.0642.410 1616tAB tH tC W d m W d m W d m ππππππ---==⨯=⨯==⨯=⨯==⨯=⨯ (4)强度校核max 6max 6max 6350917.9[]19610175517.55[]10010701.916.55[]42.410AB AB tAB H H tH C C tC tCT MPa W T MPa W T MPa W ττττττ---===⨯===⨯===⨯ 强度足够。

3-6. 图示阶梯形圆轴直径分别为d 1=40 mm ,d 2=70 mm ,轴上装有三个带轮。

已知由轮3输入的功率为P 3=30 kW ,轮1输出的功率为P 1=13 kW ,轴作匀速转动,转速n =200 r/min ,材料的许用剪应力[τ]=60 MPa ,G=80 GPa ,许用扭转角[θ]=2 o /m 。

试校核轴的强度和刚度。

解:(1) 计算外力偶矩11331395499549620.720030954995491432.4200P m Nm n P m Nmn ==⨯===⨯=(2) 计算扭矩121233620.7 . 1432.4 .T m N m T m N m =-=-=-=-(3) 计算抗扭截面系数3363113363220.0412.561016160.0767.31101616t t W d m W d m ππππ--==⨯=⨯==⨯=⨯(4) 强度校核[][]12max16123max 262620.749.4212.56101432.421.2867.3110t t T MPa W T MPa W ττττ--===≤⨯===≤⨯强度足够。

(5) 计算截面极惯性矩6841116732220.0412.561025.1210 220.0767.311023.5610 22p t p t d I W m d I W m ----=⨯=⨯⨯=⨯=⨯=⨯⨯=⨯(6) 刚度校核12max198123max 2972180620.7180 1.77/[]801025.12101801432.41800.435/[]801023.5610o oo p o oop T m GI T m GI θθππθθππ--=⨯=⨯=⨯⨯⨯=⨯=⨯=⨯⨯⨯刚度足够。

注:本题中扭矩的符号为负,而在强度和刚度计算中,扭矩用其数值代入。

3.9. 实心轴和空心轴由牙嵌式离合器连接在一起,如图所示。

已知轴的转速为n =100r/min ,传递的功率P =7.5 kW ,材料的许用剪应力[τ]=40 MPa 。

试选择实心轴直径d 1和内外径比值为1/2的空心轴外径D 2。

解:(1) 计算外力偶矩7.595499549716.2.100P m N m n ==⨯= (2) 计算内力-扭矩716.2.T m N m ==(3) 计算抗扭截面系数3113422161(1) 162t t W d W D ππαα==-=(4) 设计截面311342216[]45 (1)16[]46 T d d mm TD D mm πτπατ≥===-≥===注:也可以用比例关系求直径D 2。

12246 d D mm D ====3.11. 图示传动轴的转速为n =500 r/min ,主动轮1输入功率P 1=368 kW ,从动轮2、3分别输出功率P 2=147 kW ,P 3=221 kW 。

已知[τ]=70 MPa ,[θ]=1 o /m ,G =80 GPa 。

(1) 确定AB 段的直径d 1和BC 段的直径d 2;(2) 若AB 和BC 两段选用同一直径,试确定其数值。

(3) 主动轮和从动轮的位置如可以重新安排,试问怎样安置才比较合理?解:(1) 计算外力偶矩112233368954995497028 .500147954995492807.500221954995494221 .500P m N m n P m N m n P m N mn ==⨯===⨯===⨯=(2) 计算内力-扭矩1212337028 .4221.T m N m T m N m=-=-=-=-(3) 计算AB 段的直径d 1和BC 段的直径d 2 根据强度条件设计31211116[]80 t T W d d mm πτ=≥≥==32322216[]67 t T W d d mm πτ=≥≥==根据刚度条件设计41211118032[]84.6 p T I d G d mmπθπ=≥⨯∴≥==42322218032[]74.5 p T I d G d mm πθπ=≥⨯∴≥==综合强度和刚度条件,取mm d mm d 5.74 6.8421==(4) 若AB 和BC 两段选用同一直径,则取mm d d 6.84 21==(5) 将A 轮和B 轮对调位置,则T12=2807N.m ,最大扭矩减小,轴的扭转强度提高了,所以主动轮放在中间更合理。

3.13. 设圆轴横截面上的扭矩为T ,试求四分之一截面上内力系的合力的大小、方向及作用点。

解:(1) 取微元dA ,上面的切应力是τρ,则微力为τρdA :4432 32T T T dA d d d I d ρρρρρϕρτππ====(2) 将四分之一截面上的力系向O点简化222400222400324sin sin3324cos cos33dxAdyAOT TQ dA d dd dT TQ dA d dd dRdπρπρτϕϕϕρρππτϕϕϕρρπππ========⎰⎰⎰⎰⎰⎰⎰⎰322400324dOAT TM dA d ddπρτρϕρρπ===⎰⎰⎰⎰(3) R o与x轴之间的夹角4πQQarctgαxy==(4) 将R o和M o进一步简化为一合力R,即将R o向左方平移一段距离d:2163dπRMdoo==3.14. 图示圆截面杆的左端固定,沿轴线作用集度为t的均布力偶矩。

试导出计算截面B的扭转角的公式。

解:(1) 用截面法求x截面上的扭矩:()()T x t l x=-(2) dx微段的扭转角()()p pT x t l xd dx dxGI GIϕ-==(3) 截面B 的扭转角()22lBA ppt l x tl dx GI GI ϕ-==⎰3.15. 将钻头简化成直径为20mm 的圆截面杆,在头部受均布阻抗扭矩t 的作用,许用剪应力为[τ]=70 MPa ,G =80 GPa 。

(1)求许可的m ;(2)求上、下两端的相对扭转角。

解:(1) 画扭矩图由扭矩图知max 0.1T m t ==(2) 确定许可载荷:336max [][]0.027010110 .1616t m T W d N m ππττ=≤==⨯⨯⨯=(3) 求上、下两端的相对扭转角:()()0.20.100249100.1/20.20.250.251100.022 1.260.02801032p pp p pomtx dx dxGI GI m m m GI GI GI rad ϕπ=+⨯=+=⨯===⨯⨯⨯⎰⎰3.17. AB 和CD 两轴的B 、C 两端以凸缘相连接,A 、D 两端则都是固定端。

由于两个凸缘的螺钉孔的中心线未能完全生命形成一个角度为的误差。

当两个凸缘由螺钉联接后,试度求两轴的装配扭矩。

解:(1) 整体受力分析,列平衡方程:tT0D A m m -=这是一次静不定问题。

相关文档
最新文档