人教版中考模拟试题(四)数学试题

合集下载

2022年人教版中考模拟考试《数学卷》含答案解析

2022年人教版中考模拟考试《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的,请把正确选项的代号写在答题卷的答题框中,不选、选错或多选的(不论是否写在括号内)一律得0分.1.四个有理数﹣2,5,0,﹣4,其中最小的是( ) A. ﹣2B. 5C. 0D. ﹣42.以下运算正确的是( ) A. 235a b ab += B. ()222m m m m -+= C. 3412x x x ⋅=D. ()2239x x =3.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A. B. C. D.4.纳米(nm )是种非常小的长度单位,1nm=910-m ,如果某冠状病毒的直径为110nm ,那么用科学记数法表示该冠状病毒的直径为( ) A. 71.110m -⨯B. 81.110m -⨯C. 911010m -⨯D. 111.110m ⨯5.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2度数是( )A. 64°B. 65 °C. 66°D. 67°6.为执行”均衡教育”政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A. 2500(1+2x)=12000 B. 2500+2500(1+x)+2500(1+2x)=12000 C. 2500(1+x)2=1200D. 2500+2500(1+x)+2500(1+x)2=120007.下表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟) 成绩(个/分钟) 140 160 169 170 177 180 人数 111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( ) A. 方差是135B. 平均数是170C. 中位数是173.5D. 众数是1778.关于x 的一元二次方程24500x ax --=,下列结论一定正确的是( ) A. 该方程没有实数根 B. 该方程有两个不相等的实数根 C. 该方程有两个相等的实数根D. 无法确定9.甲、乙两人在一条长为600m 笔直道路上均匀地跑步,速度分别为4/m s 和6/m s ,起跑前乙在起点,甲在乙前面50m 处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( )A. B. C. D.10.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A. 0B. 4C. 8D. 16二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:39x x -=_________.12.不等式组2335122x x x -≥⎧⎪⎨+>-⎪⎩的解集是_____.13.如图,在Rt ABC ∆中,90ACB ∠=︒,3BC =,2AB =,以点A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD 的周长是_____________(结果保留).14.对于实数a ,b ,定义新运算” “:ab= ()()22a ab a b b ab a b ⎧-≤⎪⎨->⎪⎩;若关于x 方程()()211x x t +⊗-=恰好有两个不相等的实根,则t 的值为_________________.三、(本大题共2小题,每小题8分,满分16分)15.计算:1018()4cos45(3)2π-+---.16.如图所示,在边长为1个单位长度的小正方形组成的网格中,ABC 的顶点A ,B ,C 在格点(网格线的交点)上.(1)将ABC 绕点B 逆时针旋转90︒,得到11A BC ,画出11A BC ;(2)以点A 为位似中心放大ABC ,得到22AB C △,使22AB C △与ABC 的位似比为2:1,请你在网格内画出22AB C △.四、(本大题共2小题,每小题8分,满分16分)17.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?18.如图,正方形ABCD 内部有若干个点,则用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠):(1)填写下表: 正方形ABCD 内点个数1234...n分割成三角形的个数46__________..._____(2)原正方形能否被分割成2021个三角形?若能,求此时正方形ABCD 内部有多少个点?若不能,请说明理由.五、(本大题共2小题,每小题10分,满分20分)19.很多交通事故是由于超速行驶导致的,为集中治理超速现象,高速交警在距离高速路40米的地方设置了一个测速观察点,现测得测速点的西北方向有一辆小型轿车从B 处沿西向正东方向行驶,2秒钟后到达测速点北偏东60︒的方向上的C 处,如图.(1)求该小型轿车在测速过程中的平均行驶速度约是多少千米/时(精确到1千米/时)? (参考数据:2 1.43 1.7≈≈,)(2)我国交通法规定:小轿车在高速路行驶,时速超过限定速度10%以上不到50%的处200元罚款,扣3分;时速超过限定速度50%以上不到70%的处1500元罚款,扣12分;时速超过限定时速70%以上的处1500元罚款,扣12分.若该高速路段限速120千米/时,你认为该小轿车驾驶员会受到怎样的处罚.20.如图,反比例函数1ky x=和一次函数2y mx n =+相交于点()1,3A ,()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA ,试问在x 轴上是否存在点P ,使得OAP ∆为以OA 为腰的等腰三角形,若存在,直接写出满足题意的点P 的坐标;若不存在,说明理由.六、(本题满分12分)21.张老师把微信运动里”好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表: 组别 步数分组 频率 A x <6000 0.1 B 6000≤x <7000 0.5 C 7000≤x <8000 m D x ≥8000 n 合计1根据信息解答下列问题:(1)填空:m = ,n = ;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在 组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.七、(本题满分12分)22.某市政府为了扶贫,鼓励当地农民养殖小龙虾,如图:张叔叔顺着圩梗AN 、AM (AN =32m ,AM =10m ,∠MAN =45°),用8m 长的渔网搭建了一个养殖水域(即四边形ABCD ),圩梗边不需要渔网,AB ∥CD ,∠C =90°.设BC =xm ,四边形ABCD 面积为S (m 2). (1)求出S 关于x 的函数表达式及x 的取值范围;(2)x 为何值时,围成的养殖水域面积最大?最大面积是多少?八、(本题满分14分)23.如图,在ABC ∆中,AB<AC ,点D 、F 分别为BC 、AC 的中点,E 点在边AC 上,连接DE ,过点B 作DE 的垂线交AC 于点G ,垂足为点H ,且CDE ∆与四边形ABDE 的周长相等,设AC=b ,AB=c . (1)求线段CE 的长度; (2)求证:DF=EF ; (3)若BDH EGH S S ∆∆=,求b c的值.答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的,请把正确选项的代号写在答题卷的答题框中,不选、选错或多选的(不论是否写在括号内)一律得0分.1.四个有理数﹣2,5,0,﹣4,其中最小的是( ) A. ﹣2 B. 5 C. 0 D. ﹣4【答案】D 【解析】 【分析】将各数按照从小到大顺序排列,找出最小的数即可. 【详解】根据题意得:﹣4<﹣2<0<5,则最小的数是﹣4. 故选:D .【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.2.以下运算正确的是( ) A. 235a b ab += B. ()222m m m m -+= C. 3412x x x ⋅= D. ()2239x x =【答案】D 【解析】 【分析】根据合并同类项法则,同底数幂的乘法法则以及积的乘方法则,逐一判断选项,即可得到答案. 【详解】A. 2,3a b 不是同类项,不能合并,故本选项错误, B. ()2222m m m m -+=,故本选项错误, C. 347x x x ⋅=,故本选项错误, D. ()2239x x =,故本选项正确, 故选D .【点睛】本题主要考查合并同类项法则,同底数幂的乘法法则以及积的乘方法则,熟练掌握上述运算法则,是解题的关键.3.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A. B. C. D.【答案】B 【解析】 【分析】直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.【详解】根据题意,从上面看原图形可得到在水平面上有一个由两个小正方形和两个小长方形组成的长方形. 故选B .【点睛】此题考查简单组合体的三视图,解题关键在于掌握俯视图是从上往下看得到的平面图形. 4.纳米(nm )是种非常小的长度单位,1nm=910-m ,如果某冠状病毒的直径为110nm ,那么用科学记数法表示该冠状病毒的直径为( ) A. 71.110m -⨯ B. 81.110m -⨯C. 911010m -⨯D. 111.110m ⨯【答案】A 【解析】 【分析】先进行单位换算,再根据科学记数法的定义,写成科学记数法,即可. 【详解】110nm =110×910-m =71.110m -⨯. 故选A .【点睛】本题主要考查科学记数法的定义,掌握科学记数法的形式:10n a ⨯(110a ≤<,n 为整数)是解题的关键.5.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2的度数是( )A. 64°B. 65°C. 66°D. 67°【答案】C【解析】【分析】根据平行线的性质和角平分线的定义求解.【详解】∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣48°=132°,∵EG平分∠BEF,∴∠BEG=132°÷2=66°,∴∠2=∠BEG=66°.故选C.【点睛】此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等,以及角平分线的定义.6.为执行”均衡教育”政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是( )A. 2500(1+2x)=12000B. 2500+2500(1+x)+2500(1+2x)=12000C. 2500(1+x)2=1200D. 2500+2500(1+x)+2500(1+x)2=12000【答案】D【解析】【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.【详解】设每年投入教育经费的年平均增长百分率为x,由题意得, 2500+2500(1+x)+2500(1+x)2=12000故选D.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于根据题意列出方程.7.下表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( ) A. 方差是135 B. 平均数是170C. 中位数是173.5D. 众数是177【答案】A 【解析】 【分析】根据平均数、方差、中位数和众数的定义,分别进行求解,进而即可得到答案. 【详解】这组数据的平均数=(140+160+169+170×2+177×3+180×2)÷10=170; 这组数据的方差=110[(140−170)2+(160−170)2+(169−170)2+2×(170−170)2+3×(177−170)2+2×(180−170)2]=134.8; ∵共有10个数,∴中位数是第5个和6个数的平均数, ∴中位数是:(170+177)÷2=173.5; ∵177出现了三次,出现的次数最多, ∴众数是177; ∴说法错误的是A . 故选A .【点睛】本题主要考查平均数、方差、中位数和众数的定义,熟练掌握上述定义和计算公式,是解题的关键.8.关于x 的一元二次方程24500x ax --=,下列结论一定正确的是( ) A. 该方程没有实数根 B. 该方程有两个不相等的实数根 C. 该方程有两个相等的实数根 D. 无法确定【答案】B 【解析】 【分析】根据一元二次方程根的判别式,即可得到答案. 【详解】∵关于x 的一元二次方程24500x ax --=,∴∆=22()44(50)8000a a --⨯⨯-=+>,∴该方程有两个不相等的实数根.故选B .【点睛】本题主要考查一元二次方程根的判别式,掌握一元二次方程根的判别式的值与根关系,是解题的关键.9.甲、乙两人在一条长为600m 的笔直道路上均匀地跑步,速度分别为4/m s 和6/m s ,起跑前乙在起点,甲在乙前面50m 处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( ) A. B. C. D.【答案】C【解析】【分析】甲在乙前面50m 处,若两人同时起跑,在经过25秒,乙追上甲,则相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,则相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m 处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A 、 B 错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D 错误; 相遇以后两人之间的最大距离是:2×(100−25)=150米.故选C .【点睛】本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.10.1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55P 的个数是( )A. 0B. 4C. 8D. 16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=5【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD 1522,∴15222=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴222210555EC CM+=+=∴在BC边上,只有一个点P满足PE+PF=5同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55∴满足PE+PF=55P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:39x x -=_________.【答案】()()33x x x +-【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】39x x -=()29x x -=()()33x x x +-, 故答案为:()()33x x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.不等式组2335122x x x -≥⎧⎪⎨+>-⎪⎩的解集是_____. 【答案】71x -<≤-【解析】【分析】根据一元一次不等式组的解法求解即可.【详解】解:由不等式23x -≥可得1x ≤- ; 由不等式35122x x +>-可得7x >-; 故不等式组的解集是71x -<≤-故答案为:71x -<≤-.【点睛】本题主要考查了一元一次不等式组,掌握一元一次不等式组的解法是解题的关键.13.如图,在Rt ABC ∆中,90ACB ∠=︒,3BC =,2AB =,以点A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD 的周长是_____________(结果保留).【答案】3π+2 【解析】【分析】根据勾股定理求出AC 的长,再确定∠A 的度数,然后利用弧长公式求得弧长,加上两个半径,即可求得扇形CAD 的周长.【详解】∵在Rt ABC ∆中,90ACB ∠=︒,3BC =2AB =,∴221AB BC -=,∴∠B=30°,∠A=60°, ∴CD 的长=608011π⨯=3π, ∴扇形CAD 的周长=3π+2, 故答案为:3π+2. 【点睛】本题主要考查直角三角形的性质,勾股定理以及弧长公式,掌握弧长公式是解题的关键.14.对于实数a ,b ,定义新运算” “:ab= ()()22a ab a b b ab a b ⎧-≤⎪⎨->⎪⎩;若关于x 的方程()()211x x t +⊗-=恰好有两个不相等的实根,则t 的值为_________________.【答案】2.25或0【解析】【分析】令y=()()211x x +⊗-,并画出函数的图象,根据函数图象的交点个数就是对应的方程根的个数,即可得到直线y=t 与函数y 的图象的位置关系,进而即可求解.【详解】∵当()()211x x +≤-时,即:2x -≤时,()()()()()2221121211252x x x x x x x +⊗-=+-+-=++,当()()211x x +>-时,即:2x >-时,()()()()()2221112112x x x x x x x +⊗-=--+-=--+, ∴令y=()()211x x +⊗-=()()22222252x x x x x x ⎧≤-⎪⎨--+>-++⎪⎩, 画出函数图象,从图象上观察当关于x 的方程()()211x x t +⊗-=恰好有两个不相等的实根时,函数y 的图象与直线y=t 有两个不同的交点,即直线y=t 过抛物线y=22x x --+的顶点或直线y=t 与x 轴重合. ∴t=2.25或t=0.故答案是:2.25或0.【点睛】本题主要考查函数图象的交点与方程的根的关系,掌握二次函数的图象和性质,学会画二次函数的图象,理解函数图象的交点个数就是对应的方程根的个数,是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.1018()4cos45(3)2π---.【答案】1【解析】分析:代入45°角余弦函数值,结合”零指数幂的意义”、”负整数指数幂的意义”和”二次根式的相关运算法则”计算即可.详解: 原式2222412=-⨯-,222221=+--,1=.故答案为1.点睛:熟记”45°角的余弦函数值”、”零指数幂的意义:01?(0)a a =≠“及”负整数指数幂的意义:1p p a a-=(0a p ≠,为正整数)”是正确解答本题的关键. 16.如图所示,在边长为1个单位长度的小正方形组成的网格中,ABC 的顶点A ,B ,C 在格点(网格线的交点)上.(1)将ABC 绕点B 逆时针旋转90︒,得到11A BC ,画出11A BC ;(2)以点A 为位似中心放大ABC ,得到22AB C △,使22AB C △与ABC 的位似比为2:1,请你在网格内画出22AB C △.【答案】(1)见详解;(2)见详解【解析】【分析】(1)分别作出点A 、C 绕点B 逆时针旋转90°所得的对应点,再顺次连接,即可;(2)分别作出点B 、C 变换后的对应点,再顺次连接,即可.【详解】(1)如图所示, 11A BC 即为所求;(2)如图所示,22AB C △即为所求.【点睛】本题主要考查图形的旋转变换以及位似变换,掌握旋转变换和位似变换的定义和性质,是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?【答案】客房8间,房客63人【解析】【分析】设该店有间客房,以人数相等为等量关系列出方程即可.【详解】设该店有间客房,则+=-x x7799x=解得8x+=⨯+=7778763答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.18.如图,正方形ABCD内部有若干个点,则用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:正方形ABCD内 1 2 3 4 ...n(2)原正方形能否被分割成2021个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.【答案】(1)8,10,2n+2;(2)原正方形不能被分割成2021个三角形,理由见详解.【解析】分析】(1)由图形中三角形的个数,观察发现,每多一个点,三角形的个数增加2,然后据此规律填表即可;(2)根据(1)中规律,列式求解,如果n是整数,则能分割,如果不是整数,则不能分割.【详解】(1)有1个点时,内部分割成4个三角形;有2个点时,内部分割成4+2=6个三角形;有3个点时,内部分割成4+2×2=8个三角形;有4个点时,内部分割成4+2×3=10个三角形;…以此类推,有n个点时,内部分割成4+2×(n−1)=(2n+2)个三角形,填表如下:故答案是:8,10,2n+2;(2)不能,理由如下:理由如下:由(1)知2n+2=2021,解得:n=1009.5,不是整数,不符合题意,∴原正方形不能被分割成2021个三角形.【点睛】本题主要考查几何图形规律探索,找出图形变化的规律,用代数式来表示规律,是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.很多交通事故是由于超速行驶导致的,为集中治理超速现象,高速交警在距离高速路40米的地方设置了一个测速观察点,现测得测速点的西北方向有一辆小型轿车从B 处沿西向正东方向行驶,2秒钟后到达测速点北偏东60︒的方向上的C 处,如图.(1)求该小型轿车在测速过程中的平均行驶速度约是多少千米/时(精确到1千米/时)?(参考数据:2 1.43 1.7≈≈,)(2)我国交通法规定:小轿车在高速路行驶,时速超过限定速度10%以上不到50%的处200元罚款,扣3分;时速超过限定速度50%以上不到70%的处1500元罚款,扣12分;时速超过限定时速70%以上的处1500元罚款,扣12分.若该高速路段限速120千米/时,你认为该小轿车驾驶员会受到怎样的处罚.【答案】(1)197千米/时;(2)小轿车的驾驶员会受到1500元罚款,扣12分的处罚.【解析】【分析】(1)过点A 作AD ⊥BC 于点D ,则AD=40m ,通过解直角三角形,求出BD ,CD 的长,从而求出BC 的长,进而即可求出速度;(2)求出小轿车的超速范围,即可得到结论.【详解】(1)过点A 作AD ⊥BC 于点D ,则AD=40m ,∵∠BAD=45°,∴∠ABD=45°,∴BD=AD=40m ,∵∠DAC=60°,∴CD=AD ×tan60°3,∴3≈109.28m ,∴小轿车速度=109.2810019723600≈(千米/小时), 答:该小型轿车在测速过程中的平均行驶速度约是197千米/时;(2)(197-120)÷120≈0.64=64%,∵50%<64%<70%,∴小轿车的驾驶员会受到1500元罚款,扣12分的处罚.【点睛】本题主要考查解直角三角形的实际应用,掌握三角函数的定义,是解题的关键.20.如图,反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A ,()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA ,试问在x 轴上是否存在点P ,使得OAP ∆为以OA 为腰的等腰三角形,若存在,直接写出满足题意的点P 的坐标;若不存在,说明理由.【答案】(1)13y x=,22y x =+;(2)(2,0) 或10,0)或10,0). 【解析】【分析】 (1)根据图象上点的坐标特征,以及待定系数法,即可得到答案;(2)设P(t ,0),根据两点间的距离公式,分别表示出OA ,AP ,OP 的长,结合OA=AP 或OA=OP ,列出方程,即可得到答案.【详解】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A ,()3,B a -, ∴k=1×3=3, ∴13y x=, ∴-3a=3,解得:a=-1,∴B(-3,-1),∴331m n m n +=⎧⎨-+=-⎩,解得:12m n =⎧⎨=⎩, ∴22y x =+;(2)设P(t ,0),∵()1,3A ,∴=OP=t ,∵OAP ∆为以OA 为腰的等腰三角形,∴OA=AP 或OA=OP ,当OA=AP 时,22(1)9t -+=,解得:1220t t ==,(不符合题意,舍去),∴P(2,0);当OA=OP 时,t ,解得:t=±,∴,0)或,0),综上所述:存在点P ,使OAP ∆为以OA 为腰的等腰三角形,点P 坐标为:(2,0) 或,0)或,0).【点睛】本题主要考查反比例函数与一次函数的综合,涉及待定系数法,图象上点的坐标特征以及等腰三角形的性质,掌握两点间的距离公式以及方程思想,分类讨论思想是解题的关键.六、(本题满分12分)21.张老师把微信运动里”好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:B 6000≤x<7000 0.5C 7000≤x<8000 mD x≥8000n合计 1根据信息解答下列问题:(1)填空:m=,n=;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.【答案】(1)0.3;0.1;条形统计图如图见解析;(2)B;(3)P(甲、乙被同时点赞)=16.【解析】【分析】(1)用A组的频数除以它的频率得到调查的总人数,再分别用C组、D组的频数除以总人数得到m、n的值,然后画条形统计图;(2)利用中位数的定义进行判断;(3)画树状图展示12种等可能的结果数,找出甲、乙被同时点赞的结果数,然后根据概率公式求解.【详解】(1)2÷0.1=20,m=620=0.3,n=220=0.1;故答案为0.3;0.1; 条形统计图如图(2)这20名朋友一天行走步数的中位数落在B组;故答案为B;(3)画树状图如下:共有12种等可能的结果数,其中甲、乙被同时点赞的结果数为2,∴P(甲、乙被同时点赞)=212=16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、(本题满分12分)22.某市政府为了扶贫,鼓励当地农民养殖小龙虾,如图:张叔叔顺着圩梗AN、AM(AN=32m,AM=10m,∠MAN=45°),用8m长的渔网搭建了一个养殖水域(即四边形ABCD),圩梗边不需要渔网,AB∥CD,∠C =90°.设BC=xm,四边形ABCD面积为S(m2).(1)求出S关于x的函数表达式及x的取值范围;(2)x为何值时,围成的养殖水域面积最大?最大面积是多少?【答案】(1)S=﹣12x2+8x,0<x≤3;(2)当x=3时时,围成的养殖水域面积最大,最大面积是3922m.【解析】【分析】(1)过D作DE⊥AB于E,根据矩形的性质得到DE=x,求得AE=x,根据三角形和矩形的面积公式即可得到结论;(2)根据二次函数的性质,即可得到结论.【详解】(1)过D 作DE ⊥AB 于E ,∵BC =xm ,∴DE =xm ,∵∠A =45°,∴AE =xm ,∴S =S △AED +S 矩形DEBC =12x 2+(8﹣x )•x =﹣12x 2+8x , ∵AB =AE +EB =x +(8﹣x )=8m ,∴B 点为定点,∴DE 最大为3m ,∴0<x ≤3;(2)∵S =﹣12x 2+8x =﹣12(x ﹣8)2+32, ∴当x <8时,S 随x 的增大而增大,∵0<x ≤3,∴当x =3时,S 取得最大值,S 最大=﹣12×(3﹣8)2+32=392, 答:当x =3m 时,围成的养殖水域面积最大,最大面积是3922m .【点睛】本题主要考查二次函数的实际应用,掌握二次函数的增减性,是解题的关键.八、(本题满分14分)23.如图,在ABC ∆中,AB<AC ,点D 、F 分别为BC 、AC 的中点,E 点在边AC 上,连接DE ,过点B 作DE 的垂线交AC 于点G ,垂足为点H ,且CDE ∆与四边形ABDE 的周长相等,设AC=b ,AB=c .(1)求线段CE 的长度;(2)求证:DF=EF ;(3)若BDH EGH S S ∆∆=,求bc 的值.【答案】(1)2b c +;(2)见详解;(3)53【解析】【分析】 (1)根据题意得:AE+AB=CE ,结合AB+AC=b+c ,进而即可求解;(2)根据中位线的性质和定义得DF =12c ,CF=12b ,结合CE=2bc +,可得EF 的长,进而即可得到结论; (3)连接BE 、DG ,设BG ,DF 交于点M ,易得BE ∥DG ,从而得△ABE ∽△FDG ,进而得FG=14(b−c),再证∠EGH=∠ABG ,从而得AB=AG=c ,结合CF=FG+CG ,得到关于b ,c 的等式,即可得到结论.【详解】(1)∵CDE ∆与四边形ABDE 的周长相等,点D 为BC 的中点,∴AE+AB=CE ,∵AE+AB+CE=AB+AC=b+c ,∴CE=2AE AB CE ++=2b c +; (2)∵点D 、F 分别为BC 、AC 的中点,∵DF 是△CAB 的中位线,∴DF=12AB=12c ,AF=CF=12AC=12b , ∵CE=2b c +, ∴EF=CE-CF=2b c +−12b =12c , ∴DF=EF;(3)连接BE 、DG ,设BG ,DF 交于点M ,∵S △BDH =S △EGH ,∴S △BDG =S △DEG ,∴BE ∥DG ,∴∠EBC=∠GDC ,∵DF 是△CAB 的中位线,∴DF ∥AB ,∴∠ABC=∠FDC ,∠A=∠DFC ,∴∠ABC-∠EBC=∠FDC-∠GDC ,即:∠ABE=∠FDG ,∴△ABE ∽△FDG , ∴21AB AE DF FG ==, ∵AE=AC-CE=b-2b c +=12(b−c) ∴FG=12AE=12×12(b−c)=14(b−c), ∵DF=EF ,∴∠FED=∠FDE ,∵BG ⊥DE ,∴∠FED+∠EGH=∠FDE+∠DMH=90°,∴∠EGH=∠DMH ,又∵∠DMH=∠FMG ,∴∠EGH=∠FMG ,又∵∠FMG=∠ABG ,∴∠EGH=∠ABG ,∴AB=AG=c ,∴CG=b−c ,∴CF=12b=FG+CG=14(b−c)+(b−c), ∴3b=5c ,∴b c =53. 点睛】本题主要考查三角形的中位线的性质定理,等腰三角形的性质定理以及相似三角形的判定和性质定理,添加合适的辅助线,构造相似三角形,是解题的关键.。

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。

2022年人教版中考全真模拟考试《数学试题》含答案解析

2022年人教版中考全真模拟考试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(满分30分,每小题3分)1.下列各数中,最小有理数是( )A. ﹣9B. ﹣22C. 0D. |﹣5|2.用科学记数法表示:0.000000109 ( )A. 1.09×10﹣7B. 0.109×10﹣7C. 0.109×10﹣6D. 1.09×10﹣6 3.下列计算正确的是( )A. a 2•a 3=a 6B. 3a 2﹣a 2=2C. a 6÷a 2=a 3D. (﹣2a )2=4a 2 4.关于的方程2240x mx -+=有两个相等的实数根,则的值为( )A 2 B. -2 C. 0 D. ±25.一组数据1,2,2,3,5,将这组数据中的每一个数都加上(0)a a ≠,得到一组新数据1a +,2a +,2a +,3a +,5a +,这两组数据的以下统计量相等的是( )A 平均数 B. 众数 C. 中位数 D. 方差6.若分式2x x 1+□x x 1+的运算结果为x(x≠0),则在”口”中添加的运算符号为( ) A. + B. ﹣ C. +或÷ D. ﹣或×7.如图A 是某公园的进口,B ,C ,D 是三个不同的出口,小明从A 处进入公园,那么从B ,C ,D 三个出口中恰好在C 出口出来的概率为( )A. 14B. 13C. 12D. 238.分别从正面、左面、上面三个方向看同一个几何体,得到如图①所示的平面图形,那么这个几何体是( )A. B. C. D.9.如图,在平面直角坐标系中,以原点O 为圆心作弧,分别与x 轴和y 轴的正半轴交于点A 和点B ,再分别以A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点P (m ﹣1,2n ),则实数m 与n 之间的关系是( )A. m ﹣2n =1B. m +2n =1C. 2n ﹣m =1D. n ﹣2m =110.如图,等边ABC 的顶点()1,1A ,()3,1B ,规定把ABC “先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边ABC 的顶点的坐标为( )A. ()31-B. ()31-C. ()31-D. ()2017,31-- 二.填空题(满分15分,每小题3分)11.计算:4﹣(﹣13)0=_____.12.把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=24°,则∠2=_____.13.若点A(2,y1),B(﹣1,y2)都在直线y=﹣2x+1上,则y1与y2的大小关系是_____.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为___(结果保留根号).15.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=43,点D是BC的中点,点E是边AB 上一动点,沿DE所在直线把△BDE翻折到△B'DE的位置,B'D交AB于点F.若△AB'F为直角三角形,则AE的长为_____.三.解答题16.先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组202113xx-<⎧⎪+⎨≥⎪⎩的整数解.17.为了解学生最喜爱的球类运动,某初中在全校2000名学生中抽取部分学生进行调查,要求学生只能从”A(篮球)、B(羽毛球)、C(足球)、D(乒乓球)”中选择一种.(1)小明直接在八年级学生中随机调查了一些同学.他的抽样是否合理?请说明理由.(2)小王从各年级随机抽取了部分同学进行调查,整理数据,绘制出下列两幅不完整的统计图.请根据图中所提供的信息,回答下列问题:①请将条形统计图补充完整;②估计该初中最喜爱乒乓球的学生人数约为人.18.某次台风来袭时,一棵笔直大树树干AB(假定树干AB垂直于水平地面)被刮倾斜7°(即∠BAB′=7°)后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,AD=5米,求这棵大树AB的高度.(结果保留根号)(参考数据:sin37≈0.6,cos37=0.8,tan37≈0.75)19.如图1,已知⊙O外一点P向⊙O作切线PA,点A切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD PB⊥,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD AO=时①求P∠的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.20.在平面直角坐标系xOy中,直线y=x+2与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=P A时.直接写出点P的坐标.21.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.类型价格A型B型进价(元/盏) 40 65标价(元/盏) 60 100(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?22.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.23.如图,已知抛物线y=﹣x2+bx+c与直线AB相交于A(﹣3,0),B(0,3)两点,与x轴的另一个交点为C.抛物线对称轴为直线l,顶点为D,对称轴与x轴的交点为E.(1)求抛物线的解析式;(2)在直线AB下方的抛物线部分是否存在一点H,使得S△ABH=S四边形AOBD?若存在,请求出相应的点H的坐标;若不存在,请说明理由;(3)点F(0,1),连接BC,平移直线BC交y轴于点P,交DE与Q,若∠FQP=135°,求PQ的解析式.答案与解析一.选择题(满分30分,每小题3分)1.下列各数中,最小的有理数是( )A. B. ﹣22 C. 0 D. |﹣5| 【答案】B【解析】分析】先将各数化简,再利用有理数大小的比较方法:正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小比较得出答案即可.详解】解:∵3=-,﹣22=﹣4,|﹣5|=5,∴220|5|-<<-,∴最小的有理数是﹣22.故选:B .【点评】此题主要考查了有理数的大小比较,掌握比较的方法是解决问题的关键.2.用科学记数法表示:0.000000109是( )A. 1.09×10﹣7B. 0.109×10﹣7C. 0.109×10﹣6D. 1.09×10﹣6【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】用科学记数法表示:0.000000109是1.09×10﹣7.故选:A . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是( )A. a 2•a 3=a 6B. 3a 2﹣a 2=2C. a 6÷a 2=a 3D. (﹣2a )2=4a 2【答案】D【解析】【分析】根据同底数幂的乘法、合并同类项法则、同底数幂的除法、积的乘方的运算法则逐一进行判断即可.【详解】A. a 2·a 3=a 5,故A 选项错误;B. 3a 2-a 2=2a 2,故B 选项错误;C. a 6÷a 2=a 4,故C 选项错误;D. ()2224a a -=,正确,故选D.【点睛】本题考查了同底数幂的乘除法、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键. 4.关于的方程2240x mx -+=有两个相等的实数根,则的值为( )A. 2B. -2C. 0D. ±2 【答案】D【解析】【分析】利用判别式的意义得到△=(-2m )2-4×4=0,然后解关于m 的方程即可.【详解】∵方程2240x mx -+=有两个相等的实数根,∴△=(-2m )2-4×4=0,解得m=±2;故答案为:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 5.一组数据1,2,2,3,5,将这组数据中的每一个数都加上(0)a a ≠,得到一组新数据1a +,2a +,2a +,3a +,5a +,这两组数据的以下统计量相等的是( )A 平均数B. 众数C. 中位数D. 方差【答案】D【解析】【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:将一组数据中的每一个数都加上a 得到一组新的数据,那么这组数据的波动幅度保持不变,即方差不变,而平均数和众数、中位数均改变.故选:D .【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.6.若分式2xx1+□xx1+的运算结果为x(x≠0),则在”口”中添加的运算符号为( )A. +B. ﹣C. +或÷D. ﹣或×【答案】C【解析】【分析】分别尝试各种符号,可得出结论.【详解】解:因为,211x xxx x+=++,211x xxx x÷=++所以,在”口”中添加的运算符号为+或÷故选:C.【点睛】本题考核知识点:分式的运算,解题关键点:熟记分式运算法则.7.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为( )A. 14B.13C.12D.23【答案】B【解析】【分析】根据概率公式求出该事件的概率即可.【详解】解:根据题意共有3种等情况数,其中”A口进C口出”有一种情况,从”A口进C口出”的概率为1 3故选:B.【点睛】本题考查的是基本的概率计算,熟悉相关概率计算是解题的关键.8.分别从正面、左面、上面三个方向看同一个几何体,得到如图①所示的平面图形,那么这个几何体是( )A.B.C.D.【答案】B【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选B.【点睛】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.9.如图,在平面直角坐标系中,以原点O为圆心作弧,分别与x轴和y轴的正半轴交于点A和点B,再分别以A、B为圆心,以大于12AB的长为半径作弧,两弧交于点P(m﹣1,2n),则实数m与n之间的关系是( )A. m ﹣2n =1B. m +2n =1C. 2n ﹣m =1D. n ﹣2m =1【答案】A【解析】【分析】 根据题意可得出点P 在∠AOB 的角平分线上,再由∠AOB=90°可知m-1=2n ,据此可得出结论.【详解】解:∵由题意可得出点P 在∠AOB 的角平分线上,∠AOB =90°,∴m ﹣1=2n ,即m ﹣2n =1.故选:A .【点睛】本题考查的是尺规作图-作角的平分线,以及角平分线的性质,点的坐标,熟知角平分线的作法是解答此题的关键.10.如图,等边ABC 的顶点()1,1A ,()3,1B ,规定把ABC “先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边ABC 的顶点的坐标为( )A. ()31-B. ()31-C. ()31-D. ()2017,31-- 【答案】D【解析】【分析】 先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+32312⨯=+,横坐标为2 ∴C(2,31+)由题意可得:第1次变换后点C 的坐标变为(2-1,31--),即(1,31--),第2次变换后点C 的坐标变为(2-2,31+),即(0,31+)第3次变换后点C 的坐标变为(2-3,31--),即(-1,31--)第n 次变换后点C 坐标变为(2-n ,31--)(n 为奇数)或(2-n ,31+)(n 为偶数),∴连续经过2019次变换后,等边ABC 的顶点的坐标为(-2017,31--),故选:D【点睛】本题考查了利用翻折变换和平移的特点求解点的坐标,在求解过程中找到规律是关键. 二.填空题(满分15分,每小题3分)11.计算:4﹣(﹣13)0=_____. 【答案】1【解析】【分析】分别根据算术平方根的定义和0指数幂的意义计算每一项,再合并即可.【详解】解:原式=2﹣1=1.故答案为:1.【点睛】本题考查了算术平方根的定义和0指数幂的意义,属于基础题型,熟练掌握基本知识是关键. 12.把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=24°,则∠2=_____.【答案】69°【解析】【分析】由等腰直角三角形的性质得出∠A=∠C=45°,由三角形的外角性质得出∠AGB=69°,再由平行线的性质即可得出∠2的度数.【详解】∵△ABC 是含有45°角的直角三角板,∴∠A =∠C =45°,∵∠1=24°,∴∠AGB =∠C +∠1=69°,∵EF ∥BD ,∴∠2=∠AGB =69°;故答案为:69°.【点睛】本题主要考查了等腰直角三角形性质、平行线的性质以及三角形的外角性质,关键是掌握两直线平行,同位角相等.13.若点A(2,y 1),B(﹣1,y 2)都在直线y=﹣2x+1上,则y 1与y 2的大小关系是_____.【答案】y 1<y 2.【解析】【分析】由所给直线解析式的比例系数为负数可得y 将随x 的增大而减小.【详解】∵直线y =−2x +1的比例系数为−2,∴y 随x 的增大而减小,∵2>−1,∴12y y <,故答案为12y y <.【点睛】本题考查的知识点是一次函数图像上点的坐标特点与一次函数的性质,解题关键是熟知一次函数图像上各点的坐标一定适合此函数的解析式.14.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,E 为BC 边上的一点,以A 为圆心,AE 为半径的圆弧交AB 于点D ,交AC 的延长于点F ,若图中两个阴影部分的面积相等,则AF 的长为___(结果保留根号).【答案】2ππ 【解析】 【分析】 若两个阴影部分的面积相等,那么△ABC 和扇形ADF 的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF 的长度.【详解】解:∵图中两个阴影部分的面积相等,∴S 扇形ADF =S △ABC ,即:245AF 1AC BC 3602π⋅⋅=⋅⋅. 又∵AC=BC=1,∴AF 2=4π. ∴AF=2ππ.故答案为:2ππ.【点睛】此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC 和扇形ADF 的面积相等,是解决此题的关键,难度一般.15.如图,在Rt △ABC 中,∠C =90°,∠B =30°,AC =4,BC =43,点D 是BC 的中点,点E 是边AB 上一动点,沿DE 所在直线把△BDE 翻折到△B 'DE 的位置,B 'D 交AB 于点F .若△AB 'F 为直角三角形,则AE 的长为_____.【答案】6或285. 【解析】【分析】当∠AFB ′=90°时,证明△BDF ∽△BAC ,得到BF BDBC AB==,求得BF =3,设BE =DE =x ,在Rt △EDF 中,DE =2EF ,x =2( 3﹣x ),解得x =2,得到AE =8﹣2=6;当∠AB ′F =90°时,作EH ⊥AB ′交AB ′的延长线于H ,设AE =x ,证明Rt △ADC ≌Rt △ADB ′(HL ),求得∠EB ′H =60°,利用EH 2+AH 2=AE 2,得到8﹣x )]2+[4+12(8﹣x )]2=x 2, 解得x =285. 【详解】解:①如图1中,当∠AFB ′=90°时,在Rt △ABC 中,∵∠B =30°,AC =4,∴AB =2AC =8,∵BD =CD ,∴BD =CD =12BC = 由折叠的性质得:∠BFD =90°,B 'E =BE ,∴∠BDF =60°,∴∠EDB =∠EDF =30°,∴∠B =∠EDB =30°,∴BE =DE =B 'E ,∵∠C =∠BFD =90°,∠DBF =∠ABC =90°,∴△BDF ∽△BAC ,∴BF BDBC AB==, 解得:BF =3,设BE =DE =x ,在Rt △EDF 中,DE =2EF ,∴x =2( 3﹣x ),解得:x =2,∴AE =8﹣2=6;②如图2中,当∠AB ′F =90°时,作EH ⊥AB ′交AB ′的延长线于H ,设AE =x ,∵AD =AD ,CD =DB ′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=12B′E=12(8﹣x),EH=3B′H=32(8﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴[32(8﹣x)]2+[4+12(8﹣x)]2=x2,解得:x=285,综上所述,满足条件的AE的值为6或28 5.故答案为:6或28 5.【点睛】此题考查折叠的性质,直角三角形30度角的性质,相似三角形的判定及性质,全等三角形的判定及性质,勾股定理,利用分类讨论是思想解答问题.三.解答题16.先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组202113xx-<⎧⎪+⎨≥⎪⎩的整数解.【答案】-7x2-x+52,112-【解析】【分析】先根据整式的混合运算顺序和运算法则化简原式,再解不等式组求得其整数解,代入计算可得.【详解】解:解不等式组-20,2x11,3x<⎧⎪+⎨≥⎪⎩得1≤x<2,其整数解为1.∵-3x2-[x(2x+1)+(4x3-5x)÷2x]=-3x2-2x2-x-2x2+5 2=-7x2-x+5 2 .∴当x=1时,原式=-7×12-1+52=-112.【点睛】本题主要考查整式的化简求值和解一元一次不等式,解题的关键是掌握整式混合运算顺序和运算法则.17.为了解学生最喜爱的球类运动,某初中在全校2000名学生中抽取部分学生进行调查,要求学生只能从”A(篮球)、B(羽毛球)、C(足球)、D(乒乓球)”中选择一种.(1)小明直接在八年级学生中随机调查了一些同学.他的抽样是否合理?请说明理由.(2)小王从各年级随机抽取了部分同学进行调查,整理数据,绘制出下列两幅不完整的统计图.请根据图中所提供的信息,回答下列问题:①请将条形统计图补充完整;②估计该初中最喜爱乒乓球的学生人数约为人.【答案】(1)不合理;(2)详见解析;200.【解析】【分析】(1)全校每个同学被抽到的机会不相同,抽样缺乏代表性;(2)①根据题意先算出被抽查的总人数,再分别计算出C,D的人数即可;②根据该初中最喜爱乒乓球的学生人数等于总人数乘以其所占的比例即可得出结论.【详解】解:(1)不合理.全校每个同学被抽到的机会不相同,抽样缺乏代表性;(2)①∵被调查的学生人数为24÷15%=160,∴C种类人数为160×30%=48人,D种类人数为160﹣(24+72+48)=16,补全图形如下:②估计该初中最喜爱乒乓球的学生人数约为2000×=200人,故答案为200. 【点睛】本题考查了扇形统计图与条形统计图,解题的关键是熟练的掌握扇形统计图与条形统计图的相关知识点.18.某次台风来袭时,一棵笔直大树树干AB (假定树干AB 垂直于水平地面)被刮倾斜7°(即∠BAB ′=7°)后折断倒在地上,树的顶部恰好接触到地面D 处,测得∠CDA =37°,AD =5米,求这棵大树AB 的高度.(结果保留根号)(参考数据:sin37≈0.6,cos37=0.8,tan37≈0.75)【答案】(3)米.【解析】【分析】过点A 作AE ⊥CD 于点E ,解Rt △AED ,求出DE 及AE 的长度,再解Rt △AEC ,得出CE 及AC 的长,进而可得出结论.【详解】解:过点A 作AE ⊥CD 于点E ,则∠AEC =∠AED =90.∵在Rt △AED 中,∠ADC =37,∴cos37=0.85DE DE AD ==,∵sin37=0.65AE AE AD ==, ∴AE =3,在Rt △AEC 中,∵∠CAE =90﹣∠ACE =90﹣60=30,∴CE =33AE =3, ∴AC =2CE =23,∴AB =AC +CE +ED =23+3+4=33+4(米).答:这棵大树AB 原来的高度是(33+4)米.【点睛】本题主要考查了解直角三角形的应用,掌握解直角三角形是解题的关键.19.如图1,已知⊙O 外一点P 向⊙O 作切线PA ,点A 为切点,连接PO 并延长交⊙O 于点B ,连接AO 并延长交⊙O 于点C ,过点C 作CD PB ⊥,分别交PB 于点E ,交⊙O 于点D ,连接AD .(1)求证:△APO ~△DCA ;(2)如图2,当AD AO =时①求P ∠的度数;②连接AB ,在⊙O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQ CQ的值;若不存在,【答案】(1)见解析;(2)①30P ∠=︒;②存在,PQ CQ =. 【解析】【分析】(1)由切线性质和直径AC 可得PAO CDA 90∠∠==︒,由PB AD 可得POD CAD ∠∠=,即可得:APO DCA ~;(2)①连接OD ,由AD OA OD ==可得△OAD 是等边三角形,由此可得POA 60∠=︒,P 30∠=︒; ②作BQ AC ⊥交⊙O 于Q ,可证ABQP 为菱形,求PQ CQ 可转化为求AB BC. 【详解】(1)∵PA 切⊙O 于点A ,AC 是⊙O 的直径,∴PAO CDA 90∠∠==︒,∵CD PB ⊥,∴CEP 90∠=︒,∴CEP CDA ∠∠=,∴PB AD ,∴POA CAO ∠∠=,∴APO DCA ~,(2)如图2,连接OD ,①∵AD AO = ,OD AO =,∴△OAD 是等边三角形,∴OAD 60∠=︒,∵PB AD ,∴POA OAD 60∠∠==︒,∵PAO 90∠=︒,∴P 90POA 906030∠∠=︒-=︒-︒=︒,②存在.如图2,过点B 作BQ AC ⊥交⊙O 于Q ,连接PQ ,BC ,CQ ,由①得:POA 60∠=︒,PAO 90∠=︒,∴BOC POA 60∠∠==︒,∵OB OC =,∴ACB 60∠=︒,∴BQC BAC 30∠∠==︒,∵BQ AC ⊥,∴CQ BC =,∵BC OB OA ==,∴()CBQ OBA AAS ≌∴BQ AB =∵OBA OPA 30∠∠==︒∴AB AP =,∴BQ AP =,∵PA AC ⊥,∴BQ AP //,∴四边形ABQP 是平行四边形,∵AB AP =,∴四边形ABQP 是菱形,∴PQ AB =, ∴PQ AB tan ACB tan603CQ BC∠===︒=,【点睛】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.20.在平面直角坐标系xOy 中,直线y =x +2与双曲线k y x=相交于点A (m ,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=P A时.直接写出点P的坐标.【答案】(1)y=3x;(2)见解析;(3) P(0,6)或P(2,0)【解析】【分析】(1)利用待定系数法即可求出反比例函数的表达式;(2)利用描点法画出函数图象即可;(3)当点P在y轴上,过点A作AE⊥PO,可求出P的坐标(0,6);当点P在x轴上,过点A作AF⊥PO,则OF=1,可得P的坐标(2,0).【详解】解:(1)∵直线y=x+2与双曲线kyx=相交于点A(m,3).∴3=m+2,∴m=1.∴A(1,3)把A(1,3)代入k yx =∴k=3×1=3,∴3 y=x.(2)直线和双曲线的示意图如图所示:(3)当点P在y轴上,过点A作AE⊥PO,则OE=3,∵OA=P A,AE⊥PO,∴PE=OE=3,∴OP=6,∴点P的坐标为(0,6)若点P在x轴上,过点A作AF⊥PO,则OF=1∵OA=P A,AF⊥PO,∴OF=PF=1,∴OP=2∴点P坐标为(2,0)综上所述,P(0,6)或P(2,0)【点睛】本题主要考查画一次函数、反比例函数的图像,及一次函数与反比例函数的综合,综合性大.21.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?【答案】(1)A型台灯购进30盏,B型台灯购进20盏(2)要使销售这批台灯的总利润不少于1400元,至少需购进B种台灯27盏【解析】【分析】(1)根据题意可得等量关系:A、B两种新型节能台灯共50盏,A种新型节能台灯的台数×40+B种新型节能台灯的台数×65=2500元;设A型台灯购进x盏,B型台灯购进y盏,列方程组即可求得;(2)根据题意可知,总利润=A种新型节能台灯的售价﹣A种新型节能台灯的进价+B种新型节能台灯的售价﹣B种新型节能台灯的进价;根据总利润不少于1400元,设购进B种台灯m盏,列不等式即可求得.【详解】(1)设A型台灯购进x盏,B型台灯购进y盏,根据题意,得50 40652500 x yx y+=⎧⎨+=⎩,解得:3020 xy=⎧⎨=⎩,答:A型台灯购进30盏,B型台灯购进20盏;(2)设购进B种台灯m盏,根据题意,得利润(100﹣65)•m+(60﹣40)•(50﹣m)≥1400,解得,m≥803,∵m是整数,∴m≥27,答:要使销售这批台灯的总利润不少于1400元,至少需购进B种台灯27盏.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系以及不等关系是解题的关键.22.如图,在正方形ABCD 中,M 、N 分别是射线CB 和射线DC 上的动点,且始终∠MAN =45°.(1)如图1,当点M 、N 分别在线段BC 、DC 上时,请直接写出线段BM 、MN 、DN 之间的数量关系;(2)如图2,当点M 、N 分别在CB 、DC 的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M 、N 分别在CB 、DC 的延长线上时,若CN =CD =6,设BD 与AM 的延长线交于点P ,交AN 于Q ,直接写出AQ 、AP 的长.【答案】(1)BM+DN =MN ;(2)(1)中的结论不成立,DN ﹣BM =MN .理由见解析;(3)AP =AM+PM =310【解析】【分析】(1)在MB 的延长线上,截取BE=DN ,连接AE ,则可证明△ABE ≌△ADN ,得到AE=AN ,进一步证明△AEM ≌△ANM ,得出ME=MN ,得出BM+DN=MN ;(2)在DC 上截取DF=BM ,连接AF ,可先证明△ABM ≌△ADF ,得出AM=AF ,进一步证明△MAN ≌△FAN ,可得到MN=NF ,从而可得到DN-BM=MN ;(3)由已知得出DN=12,由勾股定理得出AN =22+AD DN 22612+=65 ,由平行线得出△ABQ ∽△NDQ ,得出BQ DQ =AQ NQ =AB DN =612=12,∴AQ AN =13,求出AQ=25 ;由(2)得出DN-BM=MN .设BM=x ,则MN=12-x ,CM=6+x ,在Rt △CMN 中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM 22AB BM +PBM ∽△PDA ,得出PM PA =BM DA =13,,求出PM= PM =12AM 10, 得出AP =AM+PM =10【详解】(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,AB ADABE D BE DN=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,AE ANEAM NAI AI All=⎧⎪∠=∠⎨⎪=⎩,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM =90°=∠D ,在△ABM 和△ADF 中,AB AD ABM D BM DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠BAM =∠DAF ,∴∠BAM+∠BAF =∠BAF+∠DAF =∠BAD =90°,即∠MAF =∠BAD =90°,∵∠MAN =45°,∴∠MAN =∠FAN =45°,在△MAN 和△FAN 中,AM AF MAN FAN AN AN =⎧⎪∠=∠⎨⎪=⎩,∴△MAN ≌△FAN (SAS ),∴MN =NF ,∴MN =DN ﹣DF =DN ﹣BM ,∴DN ﹣BM =MN .(3)∵四边形ABCD 是正方形,∴AB =BC =AD =CD =6,AD ∥BC ,AB ∥CD ,∠ABC =∠ADC =∠BCD =90°,∴∠ABM =∠MCN =90°,∵CN =CD =6,∴DN =12,∴AN 22+AD DN 22612+5,∵AB ∥CD ,∴△ABQ ∽△NDQ ,∴BQDQ=AQNQ=ABDN=612=12,∴AQAN=13,∴AQ=12AN=;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM,∵BC∥AD,∴△PBM∽△PDA,∴PMPA=BMDA=26=13,∴PM=12AM∴AP=AM+PM=.【点睛】本题是四边形的综合题目,考查了正方形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.23.如图,已知抛物线y=﹣x2+bx+c与直线AB相交于A(﹣3,0),B(0,3)两点,与x轴的另一个交点为C.抛物线对称轴为直线l,顶点为D,对称轴与x轴的交点为E.(1)求抛物线的解析式;(2)在直线AB下方的抛物线部分是否存在一点H,使得S△ABH=S四边形AOBD?若存在,请求出相应的点H的坐标;若不存在,请说明理由;(3)点F(0,1),连接BC,平移直线BC交y轴于点P,交DE与Q,若∠FQP=135°,求PQ的解析式.【答案】(1)y =﹣x 2﹣2x +3;(2)存在;点H 的坐标为(3292--,7292--)或(3292-+,7292-+);(3)y =﹣3x ﹣4. 【解析】【分析】(1)将点A 、B 的坐标代入函数表达式,即可求解;(2)S △ABH =12×AB×GH=322GRsin45°=32GR=152,求出GR=5,即可求解; (3)∠FQP=135°,则∠GQF=45°,则GF=GQ=1,故点Q 与点E 重合,即点Q (-1,0),即可求解.【详解】解:(1)将点A 、B 的坐标代入函数表达式得:0933b c c =--+⎧⎨=⎩,解得:23b c =-⎧⎨=⎩, 故函数的表达式为:y =﹣x 2﹣2x +3…①;(2)将点A (﹣3,0)、B (0,3)的坐标代入一次函数表达式并解得:直线AB 的表达式为:y =x +3,y =﹣x 2﹣2x +3()214x -++ ,D (﹣1,4)设对称轴交直线于点K ,则点、则点K 的坐标为(﹣1,2),DK=4-2=2S四边形AOBD=S△ABO+S△ABD=12×3×3+12×3×2=152;过点H作直线n∥AB,过点H作HG⊥AB于点G,过点G作GR∥y轴交直线n于点R,则∠HGR=∠HRG=45°,AB=32,S△ABH=S四边形AOBD=15 2S△ABH=12×AB×GH=322GR sin45°=32GR=152,GR=5,将AB向下平移5个单位得到直线n的表达式为:y=x﹣2…②,联立①②并解得:x=3292-±,故点H的坐标为(3292--,7292--)或(3292-+,7292-+);(3)如图所示,过点F作FR⊥PQ于点R,∵∠FQP=135°,则∠FQR=45°,则FR=RQ,设点Q(﹣1,m),直线BC表达式中的k值为:﹣3,则设直线PQ的表达式为:y=﹣3x+b,将点Q的坐标代入上式并解得:直线PQ的表达式为:y=﹣3x+(m﹣3)…③,同理直线RF的表达式为:y=13x+1…④,联立③④并解得:x=31210m-,故点R(31210m-,610m+),∵FR=RQ,即(31210m-)2+(610m+﹣m)2=(31210m-)2+(610m+﹣1)2,解得:m=﹣1,将m=﹣1代入③得:直线PQ的表达式为:y=﹣3x﹣4.【点评】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图形的面积计算等,其中(2),用直线平移的方法,用平行线间的距离作为三角形的高,是解这种类型题目较为简易的方法.。

2022年人教版中考考前模拟检测《数学试题》含答案解析

2022年人教版中考考前模拟检测《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共8小题)1.港珠澳大桥被英国《卫报》誉为”新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为( )A. 45.510⨯ B. 45510⨯ C. 55.510⨯ D. 60.5510⨯2.下列有关医疗和倡导卫生的图标中,是轴对称图形的是( )A. B.C. D.3.将一副三角板和一个直尺按如图所示的位置摆放,则∠1的度数为( )A. 60°B. 65°C. 75°D. 85°4.在数轴上,点A表示数a,将点A向右平移4个单位长度得到点B,点B表示数b.若|a|=|b|,则a的值为( )A. ﹣3B. ﹣2C. ﹣1D. 15.箱子内装有除颜色外均相同28个白球及2个红球,小芬打算从箱子内摸球,以毎次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是( )A. 12B.114C.115D.1276.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接P A;(2)作P A的垂直平分线MN,分别交直线l,P A于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是( ) A. △OPQ≌△OAB B. PQ∥ABC. AP=12BQ D. 若PQ=P A,则∠APQ=60°7.用三个不等式a>b,c>d,a+c>b+d中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A. 0B. 1C. 2D. 38.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A. ①③B. ②④C. ②③D. ①④二.填空题(共8小题)9.若26x -有意义,则的取值范围是_______10.如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50º,则此时观察楼顶的仰角度数是_____.11.在如图所示的几何体中,主视图、左视图和俯视图完全相同的几何体是_____.(写出所有正确答案的序号)12.化简分式22231⎛⎫--÷⎪+--⎝⎭x y x y x y x y的结果为_____. 13.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是_____.14.已知点A (2,﹣3)关于x 轴对称点A '在反比例函数y =kx的图象上,则实数k 的值为_____. 15.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是打乱顺序的统计步骤: ①从扇形图中分析出最受学生欢迎的种类; ②去图书馆收集学生借阅图书的记录; ③绘制扇形图来表示各个种类所占的百分比;④整理借阅图书记录并绘制频数分布表,正确统计步骤的顺序是_____.16.如图,在正方形ABCD 中,AB =4,E 、F 是对角线AC 上的两个动点,且EF =2,P 是正方形四边上的任意一点.若△PEF 是等边三角形,则符合条件的P 点共有_____个,此时AE 的长为_____.三.解答题(共12小题)17.计算:15tan 3020(3)︒--+--18.解方程组:2313x y x y +=⎧⎨-=⎩.19.已知:关于x 的方程x 2+(m ﹣2)x ﹣2m =0. (1)求证:方程总有实数根;(2)若方程有一根小于2,求m 的取值范围. 20.如图,AM ∥BC ,且AC 平分∠BAM .(1)用尺规作∠ABC 的平分线BD 交AM 于点D ,连接CD .(只保留作图痕迹,不写作法) (2)求证:四边形ABCD 是菱形.21.小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了 份A 套餐, 份B 套餐, 份C 套餐(均用含x 或y 的代数式表示); (2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有 种点餐方案.22.如图,在▱ABCD 中,∠B =45°,点C 恰好在以AB 为直径的⊙O 上. (1)求证:CD 是⊙O 的切线;(2)连接BD ,若AB =8,求BD 的长.23.2019年11月,胡润研究院携手知识产权与科创云平台汇桔,联合发布《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》,白皮书公布了2019中国人工智能企业知识产权竞争力百强榜,对500余家中国人工智能主流企业进行定量评估(满分100分),前三名分别为:华为、腾讯、百度.对得分由高到低的前41家企业的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.得分的频数分布直方图:(数据分成8组:60≤x<65,65≤x<70,70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100,)b.知识产权竞争力得分在70≤x<75这一组的是:70.3,71.6,72.1,72.5,74.1.c.41家企业注册所在城市分布图(不完整)如图:(结果保留一位小数)d.汉王科技股份有限公司的知识产权竞争力得分是70.3.(以上数据来源于《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》)根据以上信息,回答下列问题:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第;(2)百度在人工智能领域取得诸多成果,尤其在智能家居、自动驾驶与服务于企业的智能云领域,百度都已进行前瞻布局,请你估计百度在本次排行榜中的得分大概是;(3)在41家企业注册所在城市分布图中,m=,请用阴影标出代表上海的区域;(4)下列推断合理的是.(只填序号)①前41家企业的知识产权竞争力得分的中位数应在65≤x<70这一组中,众数在65≤x<70这一组的可能性最大;②前41家企业分布于我国8个城市.人工智能产业的发展聚集于经济、科技、教育相对发达的城市,一线城市中,北京的优势尤其突出,贡献榜单过半的企业,充分体现北京在人工智能领域的产业集群优势.24.如图,D是直径AB上一定点,E,F分别是AD,BD的中点,P是AB上一动点,连接P A,PE,PF.已知AB=6cm,设A,P两点间的距离为xcm,P,E两点间的距离为y1cm,P,F两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0.97 1.27 2.66 3.43 422 5.02y2/cm 3.97 3.93 3.80 3.58 3.25 2.76 202(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△PEF为等腰三角形时,AP的长度约为cm.25.已知:在平面直角坐标系xOy中,函数y=nx(n≠0,x>0)的图象过点A(3,2),与直线l:y=kx+b交于点C,直线l与y轴交于点B(0,﹣1).(1)求n、b的值;(2)横、纵坐标都是整数的点叫做整点.记函数y=nx(n≠0,x>0)的图象在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.①当直线l过点(2,0)时,直接写出区域W内的整点个数,并写出区域W内的整点的坐标;②若区域W内的整点不少于5个,结合函数图象,求k的取值范围.26.在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(0,﹣4)和B(﹣2,2).(1)求c的值,并用含a的式子表示b;(2)当﹣2<x<0时,若二次函数满足y随x的增大而减小,求a的取值范围;(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,若抛物线与线段CD只有一个公共点,求a的取值范围.27.已知,如图,△ABC是等边三角形.(1)如图1,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.①求∠AED的度数;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果).(2)如图2,将线段AC绕点A顺时针旋转90°,得到AD,连接BD,∠BAC的平分线交DB的延长线于点E,连接CE.①依题意补全图2;②用等式表示线段AE、CE、BD之间数量关系,并证明.28.已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).①与直线y=3x﹣5相离的点是;②若直线y=3x+b与△ABC相离,求b的取值范围;(2)设直线y=3x+3、直线y=﹣3x+3及直线y=﹣2围成的图形为W,⊙T的半径为1,圆心T的坐标为(t,0),直接写出⊙T与图形W相离的t的取值范围.答案与解析一.选择题(共8小题)1.港珠澳大桥被英国《卫报》誉为”新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为( ) A. 45.510⨯ B. 45510⨯C. 55.510⨯D. 60.5510⨯【答案】A 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:数字55000用科学记数法表示为45.510⨯. 故选A .【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.下列有关医疗和倡导卫生的图标中,是轴对称图形的是( )A. B.C. D.【答案】D 【解析】 【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故此选项不合题意; B 、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、轴对称图形,故此选项符合题意.故选:D.【点睛】本题考查轴对称图形的识别,熟练掌握轴对称图形的特点是解题的关键.3.将一副三角板和一个直尺按如图所示的位置摆放,则∠1的度数为( )A. 60°B. 65°C. 75°D. 85°【答案】C【解析】【分析】首先计算∠4的度数,再根据平行线的性质可得∠1=∠4,进而可得答案.【详解】解:∵∠2=60°,∠3=45°,∴∠4=180°﹣60°﹣45°=75°,∵a∥b,∴∠1=∠4=75°,故选:C.【点睛】本题考查平角的概念和平行线的性质,两直线平行同位角相等.4.在数轴上,点A表示数a,将点A向右平移4个单位长度得到点B,点B表示数b.若|a|=|b|,则a的值为( )A. ﹣3B. ﹣2C. ﹣1D. 1【答案】B【解析】【分析】由题意可得b=a+4,可得|a|=|a+4|,即可求解.【详解】解:∵点A表示数a,将点A向右平移4个单位长度得到点B,∴b=a+4,∵|a|=|b|,∴|a|=|a+4|,∴a=a+4或a=﹣a﹣4,当a=a+4时,无解,当a=﹣a﹣4时,a=﹣2,故选:B.【点睛】本题考查了数轴,绝对值,掌握去绝对值的方法是本题的关键.5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以毎次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是( )A. 12B.114C.115D.127【答案】C【解析】【分析】直接利用概率公式计算.【详解】解:因为毎次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率=2282=115.故选:C.【点睛】本题考查概率公式的应用,对于放回试验,每次摸到红球的概率是相等的.6.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接P A;(2)作P A的垂直平分线MN,分别交直线l,P A于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是( )A △OPQ≌△OAB B. PQ∥ABC. AP=12BQ D. 若PQ=P A,则∠APQ=60°【答案】C【解析】【分析】连接AQ,BP,如图,利用基本作图得到BQ垂直平分P A,OB=OQ,则可根据”SAS”判断△OAB≌△OPQ,根据全等三角形的性质得∠ABO=∠PQO,于是可判断PQ∥AB;由BQ垂直平分P A得到QP=QA,若PQ =P A,则可判断△P AQ为等边三角形,于是得到∠APQ=60°,从而可对各选项进行判断.【详解】解:连接AQ,BP,如图,由作法得BQ垂直平分P A,OB=OQ,∴∠POQ=∠AOB=90°,OP=OA,∴△OAB≌△OPQ(SAS);∴∠ABO=∠PQO,∴PQ∥AB;∵BQ垂直平分P A,∴QP=QA,若PQ=P A,则PQ=QA=P A,此时△P AQ为等边三角形,则∠APQ=60°.故选:C.【点睛】本题考查基本作图、全等三角形的性质和判定、等边三角形的判定和平行线的判定,牢记性质和判定是解题的关键.7.用三个不等式a>b,c>d,a+c>b+d中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】根据题意得出三个命题,由不等式的性质再判断真假即可.【详解】解:根据题意可知:一共有三种命题组合方式:①如果a>b,c>d,那么a+c>b+d.是真命题.②如果a>b,a+c>d+d,那么c>d.是假命题.③如果c>d,a+c>b+d,那么a>b.是假命题.故选:B.【点睛】本题考查命题的判定和不等式的性质,在等式的两边同时加上或者减去同一个数,不等号的方向不变.8.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A. ①③B. ②④C. ②③D. ①④【答案】A【解析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.【详解】解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不越多越好,集训时间过长,可能造成劳累,导致成绩下滑,故正确; 对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A.【点睛】本题考查条形统计图、折线统计图、平均数的概念,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共8小题)9.若26x-有意义,则的取值范围是_______x【答案】3【解析】【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.x-有意义,【详解】解:代数式26∴-,260xx.解得:3x.故答案为3【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.10.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50º,则此时观察楼顶的仰角度数是_____.【答案】40º【解析】过A点作AC⊥OC于C,根据直角三角形的性质可求∠OAC,再根据仰角的定义即可求解.【详解】解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.∴此时观察楼顶的仰角度数是40°.故答案为40°.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,仰角是向上看的视线与水平线的夹角,解决本题关键是作出辅助线,构造直角三角形求∠OAC的度数.11.在如图所示的几何体中,主视图、左视图和俯视图完全相同的几何体是_____.(写出所有正确答案的序号)【答案】①③【解析】【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.【详解】解:①正方体的三视图分别为正方形,正方形,正方形;②圆柱的三视图分别为四边形、四边形、圆;③球的主视图、左视图、俯视图分别为三个全等的圆;∴主视图、左视图和俯视图完全相同的几何体是①③.故答案为:①③.【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.12.化简分式22231⎛⎫--÷⎪+--⎝⎭x y x y x y x y 的结果为_____. 【答案】1【解析】【分析】 先计算括号内异分母分式的减法、同时将除法转化为乘法,再约分即可得出答案.【详解】解:原式=[22()()x y x y x y -+-﹣()()3x y x y x y -+-]•(x ﹣y ) =()()x y x y x y ++-•(x ﹣y ) =1,故答案为:1.【点睛】本题考查了分式的混合运算,解题的关键是掌握运算法则.13.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是_____.【答案】3【解析】【分析】根据矩形的性质得出∠A =∠B =90°,AB =DC =4,AD ∥BC ,根据矩形的判定得出四边形ABFQ 是矩形,求出AB =FQ =DC =4,求出EQ =FQ =4,即可得出答案.【详解】解:过F 作FQ ⊥AD 于Q ,则∠FQE =90°,∵四边形ABCD 是长方形,∴∠A =∠B =90°,AB =DC =4,AD ∥BC ,∴四边形ABFQ 是矩形,∴AB =FQ =DC =4,∵AD ∥BC ,∴∠QEF =∠BFE =45°,∴EQ=FQ=4,∴AE=CF=12(10﹣4)=3,故答案为:3.【点睛】本题考查矩形的性质和判定,能灵活运用定理进行推理是解题的关键.14.已知点A(2,﹣3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为_____.【答案】6 【解析】【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(2,3),然后把A′的坐标代入y=kx中即可得到k的值.【详解】解:点A(2,﹣3)关于x轴的对称点A'的坐标为(2,3),把A′(2,3)代入y=kx得k=2×3=6.故答案为:6.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是打乱顺序的统计步骤:①从扇形图中分析出最受学生欢迎的种类;②去图书馆收集学生借阅图书的记录;③绘制扇形图来表示各个种类所占的百分比;④整理借阅图书记录并绘制频数分布表,正确统计步骤的顺序是_____.【答案】②④③①【解析】【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】解:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录;④整理借阅图书记录并绘制频数分布表;③绘制扇形图来表示各个种类所占的百分比;①从扇形图中分析出最受学生欢迎的种类;故答案为:②④③①.【点睛】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.16.如图,在正方形ABCD 中,AB =4,E 、F 是对角线AC 上的两个动点,且EF =2,P 是正方形四边上的任意一点.若△PEF 是等边三角形,则符合条件的P 点共有_____个,此时AE 的长为_____.【答案】 (1). 4 (2). 4231--或31-【解析】【分析】当点P 在AD 上时,过点PH ⊥EF 于H ,由等边三角形的性质可求PH =3,由正方形的性质可求∠DAC =45°,AC =2AB =42,可得AH =PH ,可求AE =3﹣1,同理可求点P 在AB ,CD ,BC 上时,AE 的值,即可求解.【详解】解:如图,当点P 在AD 上时,过点PH ⊥EF 于H ,∵△PEF 是等边三角形,PH ⊥EF ,∴∠PEF =60°,PE =PF =EF =2,EH =FH =1,∴PH 3∵四边形ABCD 是正方形,AB =4,∴∠DAC =45°,AC 2AB =2,∵PH ⊥AC ,∴∠APH =∠P AH =45°,∴AH=PH∴AE1,同理可得:当点P在AB上时,AE1,当点P在CD或BC上时,AE=﹣2﹣1)=1,故答案为:4,11.【点睛】考查了正方形的性质,等边三角形的判定和性质,解题关键是灵活运用其性质.三.解答题(共12小题)17.计算:1tan30︒-+【答案】【解析】【分析】直接利用二次根式的性质和绝对值的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.33-=故答案为:【点睛】本题考查了特殊角的三角函数值、二次根式运算、绝对值的性质等,熟练掌握基本公式是解决此题的关键.18.解方程组:2313x yx y+=⎧⎨-=⎩.【答案】21xy=⎧⎨=-⎩【解析】【分析】由②得x=3+y③,把③代入①得到一个关于y的一元一次方程,求出y,把y的值代入③求出x即可.【详解】由题意可知:2313x yx y+=⎧⎨-=⎩①②由②得:x=3+y③,把③代入①得2(3+y)+3y=1,解得 y =﹣1.把y =﹣1代入③得 x =2.∴原方程组的解是21x y =⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,常见的方法有代入消元法和加减消元法,熟练掌握这两个方法是解决二元一次方程组的关键.19.已知:关于x 的方程x 2+(m ﹣2)x ﹣2m =0.(1)求证:方程总有实数根;(2)若方程有一根小于2,求m 的取值范围.【答案】(1)见解析;(2)m >﹣2.【解析】【分析】(1)先求出方程的根的判别式,再判断出根的判别式不小于0,即可得出结论;(2)先利用因式分解法求出方程的两根,由一根小于2建立不等式求解,即可得出结论.【详解】(1)关于x 的方程2(2)20x m x m +--=的根的判别式为2(2)41(2)m m ∆=--⨯⋅- 整理得:2(2)m ∆=+∵2(2)0m +≥∴0∆≥故关于x 的方程2(2)20x m x m +--=总有实数根;(2)2(2)20x m x m +--=因式分解得:(2)()0x x m -+=解得122,x x m ==-∵方程有一根小于2∴2m -<解得2m >-故m 的取值范围为2m >-.【点睛】本题考查了一元二次方程的根的判别式、一元二次方程的解法,掌握一元二次方程的根的判别式与解法是解题关键.20.如图,AM∥BC,且AC平分∠BAM.(1)用尺规作∠ABC的平分线BD交AM于点D,连接CD.(只保留作图痕迹,不写作法)(2)求证:四边形ABCD是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)利用尺规作图的方式(本质为三角形全等)作出∠ABC的角平分线即可;(2)先证明AB=BC,AB=AD,则AD=BC,则可判断四边形ABCD是平行四边形,然后加上邻边相等可判断四边形ABCD是菱形.【详解】解:(1)如下图所示,DB、CD为所作;(2)证明:∵AC平分∠BAM,∴∠BAC=∠DAC,∵AM∥BC,∴∠DAC=∠BCA.∴∠BAC=∠BCA.∴AB=BC,同理可证:AB=AD.∴AD=BC.又∵AD∥BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形.【点睛】本题考查了尺规作图中角平分线的作法,其本质是利用三角形全等的知识来作图;另外本题考查了菱形的判定方法,熟练掌握菱形判定方法是解决此题的关键.21.小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x杯饮料,y份凉拌菜.(1)他们点了份A套餐,份B套餐,份C套餐(均用含x或y的代数式表示);(2)若x=6,且A、B、C套餐均至少点了1份,则最多有种点餐方案.【答案】(1)(10﹣y),(10﹣x),(x+y﹣10);(2)5【解析】【分析】(1)由三种套餐包含的东西,可用含x或y的代数式表示出他们点了三种套餐的份数;(2)由x=6及A、B、C套餐均至少点了1份,即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再结合y为整数即可得出结论.【详解】解:(1)∵B,C套餐都包含一份盖饭和一份凉拌菜,∴他们点了(10﹣y)份A套餐;∵A,C套餐都包含一份盖饭和一杯饮料,∴他们点了(10﹣x)份B套餐;∴他们点了10﹣(10﹣y)﹣(10﹣x)=(x+y﹣10)份C套餐.故答案为:(10﹣y);(10﹣x);(x+y﹣10).(2)依题意,得:101 6101-≥⎧⎨+-≥⎩yy,解得:5≤y≤9.又∵y为整数,∴y=5,6,7,8,9,∴最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.22.如图,在▱ABCD中,∠B=45°,点C恰好在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)连接BD,若AB=8,求BD的长..【答案】(1)见解析;(2)BD410【解析】【分析】(1)连接OC,欲证明CD是⊙O的切线,只要证明CD⊥OC即可.(2)连接AC,BD交于点E.求出BE,再根据BD=2BE可得结论.【详解】(1)证明:连接OC,如下图所示:∵OB=OC,∠B=45°,∴∠BCO=∠B=45°.∴∠BOC=90°,∵四边形ABCD是平行四边形,∴AB∥DC.∴∠OCD=∠BOC=90°,∴OC⊥CD,∴CD是⊙O的切线.(2)连接AC,BD交于点E,如下图所示:∵AB是直径,AB=8,∴∠ACB=90°.BC=AC=42∵四边形ABCD是平行四边形,∴1222==CE AC,∴2240210=+==BE BC CE,∴BD2BE410==.故答案为:410【点睛】本题考查切线的判定和性质,平行四边形的性质,解直角三角形,圆周角定理等知识,解题的关键是学会添加常用辅助线,根据直角三角形解决问题,属于中考常考题型.23.2019年11月,胡润研究院携手知识产权与科创云平台汇桔,联合发布《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》,白皮书公布了2019中国人工智能企业知识产权竞争力百强榜,对500余家中国人工智能主流企业进行定量评估(满分100分),前三名分别为:华为、腾讯、百度.对得分由高到低的前41家企业的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.得分的频数分布直方图:(数据分成8组:60≤x<65,65≤x<70,70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100,)b.知识产权竞争力得分在70≤x<75这一组的是:70.3,71.6,72.1,72.5,74.1.c.41家企业注册所在城市分布图(不完整)如图:(结果保留一位小数)d.汉王科技股份有限公司的知识产权竞争力得分是70.3.(以上数据来源于《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》)根据以上信息,回答下列问题:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第;(2)百度在人工智能领域取得诸多成果,尤其在智能家居、自动驾驶与服务于企业的智能云领域,百度都已进行前瞻布局,请你估计百度在本次排行榜中的得分大概是;(3)在41家企业注册所在城市分布图中,m=,请用阴影标出代表上海的区域;(4)下列推断合理的是.(只填序号)①前41家企业的知识产权竞争力得分的中位数应在65≤x<70这一组中,众数在65≤x<70这一组的可能性最大;②前41家企业分布于我国8个城市.人工智能产业的发展聚集于经济、科技、教育相对发达的城市,一线城市中,北京的优势尤其突出,贡献榜单过半的企业,充分体现北京在人工智能领域的产业集群优势.【答案】(1)16;(2)94;(3)5;(4)①②.【解析】【分析】(1)根据条形统计图中的信息即可得到结论;(2)根据条形统计图中的信息即可得到结论;(3)根据扇形统计图中的信息列式计算即可;(4)根据统计图中的信息判断即可.【详解】解:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第16名;(2)估计百度在本次排行榜中的得分大概是94分;(3)∵41家企业注册在在北京的有41×53.7%≈22家,∴在41家企业注册所在城市分布图中,m=41﹣7﹣22﹣2﹣2﹣1﹣1﹣1=5;如下图中阴影部分标代表上海的区域:(4)推断合理的是①②,。

人教版中考全真模拟测试《数学试卷》含答案解析

人教版中考全真模拟测试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.计算1|2|2--+的结果是() A. 112-B. 0C. 112D. 1222.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A 58.5810⨯B. 60.85810⨯C. 58.5810-⨯D. 385810⨯3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.4.在下列图形中,既是轴对称图形,又是中心对称图形的是() A. 等边三角形B. 直角三角形C. 正五边形D. 矩形5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分一组D. 打开电视,正在播放动画片 6.下列运算中正确的是() A. 623a a a ÷=B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形B. 六边形C. 七边形D. 八边形8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A 0a b +>B. 0a c +>C. 0b c +>D. 0ac <9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<二、填空题11.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 13222则这些队员投中次数众数为___________.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0ky k x=≠的图像上,当ABC ∆的面积最小时,的值__________.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.18.先化简,再求值:11221x x x x ⎛⎫÷-+ ⎪++⎝⎭,其中2x =.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE ADAC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________; (2)若点,,在同一直线上,求tan ABA '∠的值.21.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元. 公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表: 消耗墨盒数 22 23 24 25 打印机台数 1441(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值. 23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,CD =求O 半径的长.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -. (1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x = ①求,所满足的数量关系式; ②当OP=OA 时,求线段PN 的长度.答案与解析一.选择题1.计算1|2|2--+的结果是() A. 112- B. 0C. 112D. 122【答案】D 【解析】 【分析】先化简绝对值和负整数指数幂,然后再计算. 【详解】解:111|2|2=2+=222--+ 故选:D .【点睛】本题考查负整数指数幂的的计算,掌握计算法则正确计算是解题关键.2.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A. 58.5810⨯ B. 60.85810⨯C. 58.5810-⨯D. 385810⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于858000有6位,所以可以确定n=6-1=5. 【详解】解:858000=8.58×105. 故选:A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.【答案】C 【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;4.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 直角三角形C. 正五边形D. 矩形【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得.【详解】解:A.等边三角形轴对称图形,不是中心对称图形,不符合题意;B.直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C.正五边形是轴对称图形,不是中心对称图形,不符合题意;D.矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D.【点睛】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分在一组D. 打开电视,正在播放动画片【答案】C【解析】A.点数之和不一定是6;B.还可能是背面朝上;C.是必然事件;D.不一定,也可能会是其它节目. 故选C.6.下列运算中正确的是() A. 623a a a ÷= B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=【答案】B 【解析】 【分析】根据同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方法则进行计算,逐个判断即可. 【详解】解:A. 624a a a ÷=,故此选项不符合题意; B. 23a a a ⋅=,正确;C. 2222a a a -=,故此选项不符合题意;D. ()22439a a -=,故此选项不符合题意;故选:B .【点睛】本题考查同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方,掌握运算法则正确计算是解题关键.7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形 B. 六边形C. 七边形D. 八边形【答案】C 【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A. 0a b +>B. 0a c +>C. 0b c +>D. 0ac <【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】解:a b =,原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 【答案】B 【解析】 【分析】根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的27x +和5x,进而得出等式. 【详解】设甲乙经过x 日相逢,可列方程:2175x x++=. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两人所走路程所占百分比解题关键. 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<【答案】D 【解析】利用a是关于x的一元二次方程(x-m)(x-n)+1=0的根得到(a-m)(a-n)=-1<0,进而判断出m<a<n,同理判断出m<b<n,即可得出结论.【详解】解:∵a是关于x的一元二次方程(x-m)(x-n)+1=0的根,∴(a-m)(a-n)+1=0,∴(a-m)(a-n)=-1<0,∵m<n,∴m<a<n,同理:m<b<n,∵a<b,∴m<a<b<n.故选:D.【点睛】此题主要考查了一元二次方程的解的定义,不等式的性质,判断出(a-m)(a-n)<0是解本题的关键.二、填空题11.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .【答案】110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数为___________.【答案】5【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中5是出现次数最多的,故众数是5;故答案为:5.【点睛】本题考查了众数的定义,能够熟记众数的定义是解答本题的关键,难度不大.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.【答案】16【解析】【分析】由平行四边形的性质得出BO=DO ,AO=CO=12AC=4,由含30°角直角三角形的性质得出OB ,即可得出结果.【详解】解:∵▱ABCD 的对角线AC 与BD 相交于点O ,∴BO=DO ,AO=CO=12AC=4, ∵∠BOC=120°,∴∠AOB=180°-∠BOC=180°-120°=60°,∵AB ⊥AC ,∴∠BAO=90°,∠ABO=30°,∴OB=2AO=2×4=8, ∴BD=2OB=2×8=16, 故答案为:16.【点睛】本题考查了平行四边形的性质、平角、含30°角的直角三角形的性质等知识;熟练掌握平行四边形的性质是解题的关键.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.【答案】40°【解析】【分析】设∠A=3k ,∠ABC=5k ,∠BCD=6k ,根据圆内接四边形的性质得到k=20°,求得∠A=60°,∠ABC=5k=100°,∠D=80°,根据三角形的内角和即可得到结论.【详解】解:∵∠A :∠ABC :∠BCD=3:5:6,设∠A=3k ,∠ABC=5k ,∠BCD=6k ,∵∠A+∠BCD=180°,∴3k+6k=180°,∴k=20°,∴∠A=60°,∠ABC=5k=100°,∴∠D=80°,∴∠P=180°-∠A-∠D=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质,三角形的内角和,熟练掌握圆内接四边形的性质是解题的关键. 15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0k y k x=≠的图像上,当ABC ∆的面积最小时,的值__________.【答案】-3【解析】【分析】当等边三角形ABC 的边长最小时,△ABC 的面积最小,点A ,B 分别在反比例函数y=1x图象的两个分支上,则当A 、B 在直线y=x 上时最短,即此时△ABC 的面积最小,根据反比例函数图象的对称性可得OA=OB ,设OA=x ,则AC=2x ,x ,根据等边三角形三线合一可证明△AOE ∽△OCF ,根据相似三角形面积比等于相似比的平方可得结论.【详解】解:根据题意当A 、B 在直线y=x 上时,△ABC 的面积最小,函数y=1x图象关于原点对称, ∴OA=OB ,连接OC ,过A 作AE ⊥y 轴于E ,过C 作CF ⊥y 轴于F ,∵△ABC 等边三角形,∴AO ⊥OC ,∴∠AOC=90°,∠ACO=30°,∴∠AOE+∠COF=90°,设OA=x ,则AC=2x ,,∵AE ⊥y 轴,CF ⊥y 轴,∴∠AEO=∠OFC=∠AOE+∠OAE=90°,∴∠COF=∠OAE ,∴△AOE ∽△OCF ,∴221()3AOE OCF S OA S OC ===, ∵顶点A 在函数y=1x 图象的分支上, ∴S △AOE =12, ∴S △OCF =32, ∵点C 在反比例函数y=k x (k≠0)图象上, ∴k=-3,故答案为-3.【点睛】本题考查了综合运用反比例函数图象上点的坐标特征,反比例函数图象关于原点对称,相似三角形的判定与性质及等边三角形等知识点,难度不大,属于中档题.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来. 【答案】31x -≤<,数轴见解析.【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:127112x x -≤⎧⎪⎨+<⎪⎩①② 解不等式①,得3x ≥-解不等式②,得1x <不等式组的解集在数轴上表示为:∴不等式组的解集为:31x -≤<.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.【答案】证明见解析【解析】【分析】根据菱形的性质得出AD=CD,进而利用全等三角形的判定和性质解答即可.【详解】解:∵四边ABCD是菱形,∴AD=CD,∵AE=CF,∴AD-AE=CD-CF,即DE=DF,∵∠D=∠D,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE.【点睛】此题考查菱形的性质,关键是根据全等三角形的判定和性质解答.18.先化简,再求值:11221xxx x⎛⎫÷-+⎪++⎝⎭,其中2x=.【答案】12x;2.【解析】【分析】分式的混合运算,先做括号里面的,然后再做除法进行化简,然后将x的值代入计算即可.【详解】解:11221 xxx x⎛⎫÷-+⎪++⎝⎭=(1)(1)1 2211 x x xx x x+-⎡⎤÷+⎢⎥+++⎣⎦=211() 2211 x xx x x-÷++++=212(1)x x x x ++ =12x当2x =时,原式=12=422. 【点睛】本题考查分式的混合运算及二次根式的化简,掌握运算法则正确计算是解题关键.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE AD AC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.【答案】(1)作图见解析;(2)2【解析】【分析】(1)在AB 的右侧作∠ADE=∠B ,则DE ∥BC ,故AE AD AC AB=; (2)依据∠A=∠A ,∠ADE=∠B ,即可得到△ADE ∽△ABC ,再根据相似三角形的性质,即可得出DE 的长.【详解】解:(1)如图,点E 就是所求作的点.(2)∵∠A=∠A ,∠ADE=∠B ,∴△ADE ∽△ABC ,∴2()ADEABC S DE S BC = ,即21()69DE =. 解得:DE=2.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________;(2)若点,,在同一直线上,求tan ABA '∠的值.【答案】(15π;(251-. 【解析】【分析】(1)由题意可知点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长,然后用勾股定理求得BD 的长,再利用弧长公式求解即可;(2)由AB=m ,根据平行线的性质列出比例式求出m 的值,根据正切的定义求出tan ∠BA′C ,根据∠ABA′=∠BA′C 解答即可.【详解】解:(1)由题意可知,点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长, ∴连接'BD B D ,,当m=1时,AB=1,在矩形ABCD 中,AD=BC=2∴在Rt △ABD 中,225BD AB AD =+= ∴此时点所经过的路径的长为9055=1802ππ 5π. (2)由题意AB=m ,则CD=m ,A′C=m+2,∵AD∥BC,∴'''C D A DBC A C=,即222mm=+,解得,151m=,251m=-(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C=51'2512BCA C==-+,∴tan∠51 -,【点睛】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.21.某印刷厂打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表:消耗墨盒数22 23 24 25打印机台数 1 4 4 1(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?【答案】(1)910;(2)每台应统一配23盒墨更合算【解析】【分析】(1)直接利用概率公式求解即可;(2)分别求出购买23盒墨,24盒墨的费用即可判断.【详解】解:(1)因为10台打印机正常工作五年消耗的墨盒数不大24的台数为1+4+4=9,所以10台打印机正常工作五年消耗的墨盒数不大24的频率为910, 故可估计10台打印机正常工作五年消耗的墨盒数不大24的概率为910;(2)每台应统一配23盒墨更合算,理由如下:10台打印机五年消耗的墨盒数的平均数为:110414212323.510x ⨯+⨯+⨯+⨯=+= (盒), 若每台统一配买盒墨,则这台打印机所需费用为:23×150×10+(23.5-23)×220×10=35600(元); 若每台统一配买盒墨,则这台打印机所需费用为:24×150×10=36000(元). 因35600<36000,所以每台应统一配23盒墨更合算.【点睛】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【答案】(1)y=-10x 2+320x-2200;(2)销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【解析】【分析】(1)根据总利润=单件利润×销售量列出函数解析式即可;(2)把y=-10x 2+320x-2200化为y=-10(x-16)2+360,根据二次函数的性质即可得到结论.【详解】解:(1)y=(x-10)[100-10(x-12)=(x-10)(100-10x+120)=-10x 2+320x-2200;(2)y=-10x 2+320x-2200=-10(x-16)2+360,∴12≤x≤15时,∵a=-10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,∴当x=15时,y 取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点睛】本题考查的是二次函数的应用、掌握二次函数的性质是解题的关键.23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,45CD =求O 半径的长.【答案】(1)证明见解析;(2)5【解析】【分析】(1)连接CE ,依据题意和圆周角定理求得△ABC 是等腰直角三角形,然后根据圆周角定理和等腰三角形三线合一的性质求解即可;(2)连接DO 并延长,交CE 于点M ,交O 于点G ,利用三角形外角的性质求得2=EAC ACD AOD ∠=∠∠,从而判定DG ∥AE ,得到90DMC AEC ∠=∠=,从而根据垂径定理可得EM=CM ,根据三角形中位线定理可求132OM AE ==,然后设圆的半径为x ,根据勾股定理列方程求解即可. 【详解】解:连接CE∵BC 与O 相切∴∠ACB=90°∵45ABC ∠=︒∴45ABC CAB ∠=∠=︒∴CA=CB又∵以AC 为直径的O 交边AB 于点,∴∠CEA=90° ∴根据等腰三角形三线合一的性质可知,CE 是底边AB 的中线∴AE=BE(2)连接DO 并延长,交CE 于点M ,交O 于点G 由(1)可知,∠CEA=90°∵2=EAC ACD AOD ∠=∠∠∴DG ∥AE∴90DMC AEC ∠=∠=∴EM=CM∴在△AEC 中,132OM AE == 设圆的半径为x ,在Rt △OMC 中,2223CM x =-在Rt △DMC 中,222(45)(3)CM x =-+∴22223(45)(3)x x -=-+,解得5x =或8x =-(负值舍去)∴O 半径的长为5.【点睛】本题考查切线的性质,圆周角定理,垂径定理的应用,题目难度不大,但有一定的综合性,正确添加辅助线利用勾股定理列方程求解圆的半径是解题关键.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -.(1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x =①求,所满足的数量关系式;②当OP=OA 时,求线段PN 的长度.【答案】(1)(12,0);(2)①3p a =;②. 【解析】【分析】(1)利用待定系数法,将()1,0A -,点()0,P p -,2a p =代入函数解析式,求得b p =,从而求得函数解析式及对称轴,然后根据数轴上的对称性求得点B 的坐标;(2)①由抛物线的对称轴求得12b a-=,求得2b a =-,然后将点()1,0A -,点()0,P p -代入函数解析式求得p 与a 的数量关系;②由OP=OA 时,分情况讨论当P (0,1)或(0,-1),求得p 的值,从而确定二次函数和一次函数解析式,然后求其交点坐标,利用勾股定理求PN 的长度. 【详解】解:(1)将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩当2a p =时,可得20p b p --=,解得:b p =∴此时抛物线解析式为:22y px px p =+-,抛物线对称轴为1224p x p =-=-⨯ 设B 点坐标为(x ,0) ,则此时1124x -+=-,解得:12x = ∴B 点坐标为(12,0) (2)①将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩有题意可知:12b a-=,则2b a =- ∴(2)0a a p ---=,解得3p a =②当OP=OA 时,P (0,1)或(0,-1)当P (0,1)时,-p=1,即p=-1,则3=-1a ,解得13a =- ∴此时抛物线解析式为:212133y x x =-++ 又∵直线y x m =-+与抛物线交于P N ,两点∴一次函数解析式为:1y x =-+ 由此2121331y x x y x ⎧=-++⎪⎨⎪=-+⎩,解得01x y =⎧⎨=⎩或5-4x y =⎧⎨=⎩ ∴此时P (0,1)),N (5,-4)∴=当P (0,-1)时,-p=-1,即p=1,则3=1a ,解得13a = ∴此时抛物线解析式为:212133y x x =-- 又∵直线y x m =-+与抛物线交于P N ,两点 ∴一次函数解析式为:1y x =-- 由此2121331y x x y x ⎧=--⎪⎨⎪=--⎩,解得01x y =⎧⎨=-⎩或10x y ⎧⎨⎩=-= ∴此时P (0,-1)),N (-1,0)∴=∴综上所述,PN的长度为.【点睛】本题考查二次函数与一次函数的综合,掌握函数的图像性质,利用数形结合思想解题是关键.。

2022年人教版中考考前模拟考试《数学试题》含答案解析

2022年人教版中考考前模拟考试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.2020-的相反数等于( )A. 2020-B. 12020C. 12020-D. 20202.非洲猪瘟病毒的直径达0.0000002米,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学计数法表示为( )A. 7210-⨯B. 6210-⨯C. 80.210-⨯D. 7210-⨯ 3.如图,已知a ∥b ,直角三角板的直角顶点在直线a 上,若∠1=30°,则∠2等于( )A. 30°B. 40°C. 50°D. 60° 4.方程2﹣12x -=12x -的解为( ) A. x =2 B. x =4 C. x =6 D. 无解5.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A. 俯视图不变,左视图不变B. 主视图改变,左视图改变C. 俯视图不变,主视图不变D. 主视图改变,俯视图改变6.一元二次方程(x+3)(x ﹣3)=2x ﹣5的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根7.在某校”班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的( )A 众数 B. 方差 C. 平均数 D. 中位数8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣49.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A. 40°B. 50°C. 60°D. 70°10.如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…若点A(32,0),B(0,2),则点B2018的坐标为( )A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2) 二.填空题364+2-2=______.12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为_____________________. 13.鸡蛋孵化后,小鸡为雌与雄的概率相同.如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为_______.14.如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若OA =3,则阴影都分的面积为___________.15.如图,▱ABCD 中,AB ∥x 轴,AB =6.点A 坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点G 是AD 与y 轴的交点,点P 是CD 边上不与点C ,D 重合的一个动点,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,点P 的坐标为______.三.解答题16.先化简、再求值:(222x x x -+﹣2144x x x -++)÷4x x -,其中x 3﹣2. 17.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,过点C 作CE ⊥DB 交DB 的延长线于点E ,直线AB 与CE 交于点F .(1)求证:CF 为⊙O 的切线;(2)填空:①若AB =4,当OB =BF 时,BE =______;②当∠CAB 度数为______时,四边形ACFD 是菱形.18.张老师抽取了九年级部分男生掷实心球成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x <6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,规定x≥6.25为合格,x≥9.25为优秀.并绘制出扇形统计图和频数分布直方图(不完整).(1)抽取的这部分男生有______人,请补全频数分布直方图;(2)抽取的这部分男生成绩的中位数落在_____组?扇形统计图中D组对应的圆心角是多少度?(3)如果九年级有男生400人,请你估计他们掷实心球的成绩达到合格的有多少人?19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,c os50°≈0.64,tan50°≈1.20).20.为了落实党的”精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?21.如图,一次函数y=-x+3的图象与反比例函数y=kx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.22. 定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为”智慧三角形”.理解:⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为”智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为”智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为”智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.23.如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y25=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是;(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.①当n275时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围.答案与解析一.选择题1.2020-的相反数等于( )A. 2020-B. 12020C. 12020-D. 2020【答案】D【解析】【分析】根据相反数的定义,即可得到答案.【详解】2020-的相反数等于2020.故选D .【点睛】本题主要考查相反数的定义,掌握相反数的定义,是解题的关键.2.非洲猪瘟病毒的直径达0.0000002米,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学计数法表示为( )A. 7210-⨯B. 6210-⨯C. 80.210-⨯D. 7210-⨯ 【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】0.0000002的小数点向右移动7位得到2,所以0.0000002用科学记数法表示为2×10-7, 故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图,已知a ∥b ,直角三角板的直角顶点在直线a 上,若∠1=30°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】D【解析】∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°.∵a∥b,∴∠2=∠3=60°.故选D.4.方程2﹣12x-=12x-的解为()A. x=2B. x=4C. x=6D. 无解【答案】D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2(x﹣2)﹣1=﹣1,去括号得:2x﹣4﹣1=﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解,故选:D.【点睛】本题主要考查解分式方程,熟练掌握计算法则是解题关键.5.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A. 俯视图不变,左视图不变B. 主视图改变,左视图改变C. 俯视图不变,主视图不变D. 主视图改变,俯视图改变【答案】A【解析】【分析】结合几何体的形状,结合三视图可得出俯视图和左视图没有发生变化.【详解】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,主视图发生了改变,故选A.【点睛】本题考查了简单组合体三视图,根据题意正确掌握三视图的观察角度是解题关键.6.一元二次方程(x+3)(x﹣3)=2x﹣5的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】先化为一般形式,再求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.【详解】解:(x+3)(x﹣3)=2x﹣5,x2﹣2x﹣4=0,这里a=1,b=﹣2,c=﹣4,∵b2﹣4ac=(﹣2)2﹣4×1×(﹣4)=20>0,∴有两个不相等的实数根.故选:A.【点睛】本题主要考查根的判别式,解题关键是熟练掌握计算法则.7.在某校”班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的( )A. 众数B. 方差C. 平均数D. 中位数【答案】D【解析】【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有11个人,且他们分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.【点睛】本题主要考查统计量的选择,熟悉平均数、中位数、众数、方差的意义是此类问题的关键.8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4【答案】D【解析】试题分析:抛物线y=x2+2x﹣3与x轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项B,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项C,y的最小值是﹣4,该选项错误;选项D,y的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.9.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A. 40°B. 50°C. 60°D. 70°【答案】A【解析】【分析】首先根据作图过程得到MN垂直平分AB,然后利用中垂线性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C的度数.【详解】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∠C=40故选A.【点睛】本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.10.如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…若点A(32,0),B(0,2),则点B2018的坐标为( )A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2) 【答案】D【解析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2, ∴Rt △AOB 中,AB52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.二.填空题+2-2=______.【答案】4.25【解析】【分析】首先计算乘方、开方,然后计算加法,求出算式的值是多少即可.﹣2=4+0.25=4.25.故答案为:4.25.【点睛】本题主要考查整式的混合运算,熟练掌握计算法则是解题关键.12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为_____________________. 【答案】19x <【解析】分别求出各不等式的解集,再求出其公共解集即可. 【详解】解:23142x x +>⎧⎪⎨-≤⎪⎩①②, 由①得,x >1,由②得,x≤9.故不等式组的解集为:19x <.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.鸡蛋孵化后,小鸡为雌与雄的概率相同.如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为_______.【答案】14. 【解析】【详解】解:画树状图如下:共有4种等可能的结果数,其中两只小鸡中都为雄鸡占1种,所以孵出的两只小鸡中都为雄鸡的概率=14. 故答案为:14. 14.如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若OA =3,则阴影都分的面积为___________.【答案】34π【解析】【分析】连接OC ,作CH ⊥OB 于H ,根据直角三角形的性质求出AB ,根据勾股定理求出BD ,证明△AOC 为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.【详解】连接OC,作CH⊥OB于H,∵∠AOB=90°,∠B=30°,∴∠OAB=60°,AB=2OA=6,由勾股定理得,OB=2233AB OA-=,∵OA=OC,∠OAB=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠COB=30°,∴CO=CB,CH=12OC=32,∴阴影部分的面积=22 603131330333333602222360ππ⨯⨯-⨯⨯⨯+⨯⨯-=34π,故答案为:34π.【点睛】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.15.如图,▱ABCD中,AB∥x轴,AB=6.点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点G是AD与y轴的交点,点P是CD边上不与点C,D重合的一个动点,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,点P的坐标为______.【答案】(﹣55,4)或(655,4)【解析】【分析】先求出点G坐标,由勾股定理可求M'N的长,再由勾股定理可求m的值,即可求解.【详解】解:∵点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),∴直线AD解析式为:y=﹣2x﹣2,∴点G(0,﹣2),如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′22'M P PN5在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(5)2=m2,解得m=﹣655,∴P(65,4)根据对称性可知,P 65,4)也满足条件.故答案为:(﹣655,4)或(55,4)【点睛】本题主要考查一次函数综合题,解题关键是由勾股定理求M'N的长. 三.解答题16.先化简、再求值:(222x x x -+﹣2144x x x -++)÷4x x -,其中x ﹣2. 【答案】21(2)x -+;﹣13. 【解析】【分析】 先化简分式,然后将x 的值代入求值.【详解】解:原式=[2(2)x x x -+﹣21(2)x x -+]÷4x x- =[2(2)(2)(2)x x x x -++﹣2(1)(2)x x x x -+]÷4x x- =2224(2)x x x x x --++÷4x x- =24(2)x x x -+•4x x- =21(2)x -+.当x 2时, 原式=13. 【点睛】本题主要考查分式的化简求值,解题关键是熟练掌握计算法则.17.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,过点C 作CE ⊥DB 交DB 的延长线于点E ,直线AB 与CE 交于点F .(1)求证:CF 为⊙O 的切线;(2)填空:①若AB =4,当OB =BF 时,BE =______;②当∠CAB 的度数为______时,四边形ACFD 是菱形.【答案】(1)证明见解析;(2)①1;②30°.【解析】【分析】(1)连结OC,如图,由于∠OAC=∠OCA,则根据三角形外角性质得∠BOC=2∠OAC,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根据平行线的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根据切线的判定定理得CF为⊙O的切线;(2)①由平行线分线段成比例可得12BF BEOF OC==,即可求BE的长;②根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=∠F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.【详解】证明:(1)连结OC,如图,∵OA=OC,∴∠OAC=∠OCA,∴∠BOC=∠A+∠OCA=2∠OAC,∵∠ABD=2∠BAC,∴∠ABD=∠BOC,∴OC∥BD,∵CE⊥BD,∴OC⊥CE,∴CF为⊙O的切线;(2)①∵AB=4,∴OB =BF =OC =2,∴OF =4,∵BE ∥OC , ∴12BF BE OF OC ==, ∴BE =1,故答案为:1;②当∠CAB 的度数为30°时,四边形ACFD 是菱形,理由:∵∠CAB =30°,∴∠COF =60°,∴∠F =30°,∴∠CAB =∠F ,∴AC =CF ,连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BD ,∴AD ∥CF ,∴∠DAF =∠F =30°,在△ACB 与△ADB 中,CAB DAB 30ACB D 90AB AB ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ACB ≌△ADB (AAS ),∴AD =AC ,∴AD =CF ,∵AD ∥CF ,∴四边形ACFD 是菱形.故答案为:30°.【点睛】本题主要考查菱形的性质与切线的判定性质,解题关键是熟练掌握菱形的性质和切线的性质. 18.张老师抽取了九年级部分男生掷实心球的成绩进行整理,分成5个小组(x 表示成绩,单位:米).A 组:5.25≤x <6.25;B 组:6.25≤x <7.25;C 组:7.25≤x <8.25;D 组:8.25≤x <9.25;E 组:9.25≤x <10.25,规定x≥6.25为合格,x≥9.25为优秀.并绘制出扇形统计图和频数分布直方图(不完整).(1)抽取的这部分男生有______人,请补全频数分布直方图;(2)抽取的这部分男生成绩的中位数落在_____组?扇形统计图中D组对应的圆心角是多少度?(3)如果九年级有男生400人,请你估计他们掷实心球的成绩达到合格的有多少人?【答案】(1)50;补图见解析;(2)C;108°;(3)估计他们掷实心球的成绩达到合格的有360人.【解析】【分析】(1)设抽取的这部分男生有x人.根据A组的人数以及百分比,列出方程即可解决问题;(2)根据中位数的对应即可判定,利用圆心角=360°×百分比,计算即可;(3)用样本估计总体的思想解决问题;【详解】解:(1)设抽取的这部分男生有x人.则有5x×100%=10%,解得x=50,C组有50×30%=15人,E组有50﹣5﹣10﹣15﹣15=5人,条形图如图所示:(2)抽取的这部分男生成绩的中位数落在C组.∵D组有15人,占1530×100%=30%,∴对应的圆心角=360°×30%=108°.故答案为C.(3)(1﹣10%)×400=360人,估计他们掷实心球的成绩达到合格的有360人.【点睛】本题主要考查扇形统计图、中位数,解题关键是熟练掌握计算法则.19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).【答案】这座山的高度是1900米.【解析】【分析】设EC=x,则在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,继而根据AB+BE=AE,可得出方程,解出即可得出答案.【详解】解:设EC=x,在Rt△BCE中,tan∠EBC=EC BE,则BE=ECtan EBC∠=56x,在Rt△ACE中,tan∠EAC=EC AE,则AE=ECtan EAC∠=x,∵AB+BE=AE,∴300+56x=x,解得:x=1800,这座山的高度CD=DE﹣EC=3700﹣1800=1900(米).答:这座山的高度是1900米.【点睛】本题主要考查解直角三角形的应用,解题关键是熟练掌握勾股定理的应用.20.为了落实党的”精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少? 【答案】(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时, A城200吨肥料都运往D乡,B 城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得500100 b ab a+=⎧⎨-=⎩,解得200300 ab=⎧⎨=⎩,答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∵20002400600xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元;(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.21.如图,一次函数y=-x+3的图象与反比例函数y =kx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)2yx=,B(2,1);(2)P(53,0).【解析】【分析】(1)由一次函数解析式求出点A的坐标,代入y=kx中求出反比例函数解析式,再将两个函数解析式联立解出点B坐标;(2)作点B关于轴的对称点,连接AD并求出直线AD解析式,再求得与轴交点的坐标即可得到答案;【详解】(1)解:把点()1,A a 代人一次函数y =-x +3中,得13a =-+,解得 a=2,∴A(1,2),将A 代入反比例函数k y x =, 得122k =⨯=,反比例函数的表达式为2y x =, 当23x x=-+时, 联立一次函数与反比例函数关系式成方程组,得:32y x y x =-+⎧⎪⎨=⎪⎩,解得: 121212,21x x y y ==⎧⎧⎨⎨==⎩⎩, ∴B (2,1).(2)如图,作点B 关于轴的对称点 (2,-1),连接与轴交于一点即为点,此时PA+PB 的值最小, 设直线AD 的关系式为y=kx+b ,将点A 、D 的坐标代入,得212k b k b =+⎧⎨-=+⎩,解得35k b =-⎧⎨=⎩, ∴设直线AD 的关系式为y=-3x+5, 当y=0时,x=53, ∴P (53,0).【点睛】此题是一道综合题,用待定系数法求反比例函数解析式,解决最短路径问题,正确理解题意即可正确解答.22. 定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为”智慧三角形”.理解:⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为”智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为”智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为”智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.【答案】(1)详见解析;(2)详见解析;(3)P的坐标(223,13),(223,13).【解析】试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为”智慧三角形”;(3)根据”智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.试题解析:(1)如图1所示:(2)△AEF是否为”智慧三角形”,理由如下:设正方形边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为”智慧三角形”;(3)如图3所示:由”智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ=,PM=1×2÷3=,由勾股定理可求得OM=,故点P的坐标(﹣,),(,).考点:圆的综合题.23.如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y25=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是;(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.①当n275=时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围.【答案】(1)(2,9);(2)①DP954=DP253=②95<n215<.【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (52-,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求DA=2,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,;当PQ 与AB 不平行时,DP==②当PQ ∥AB ,DB=DP 时,DB=DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n 215<; 【详解】解:(1)顶点为D (2,9);故答案为(2,9);(2)对称轴x =2,∴C (2,95), 由已知可求A (52-,0), 点A 关于x =2对称点为(132,0), 则AD 关于x =2对称的直线为y =﹣2x+13,∴B (5,3),①当n=275时,N (2,275),∴DA=2,DN=185,CD =365, 当PQ ∥AB 时,△DPQ ∽△DAB ,∵△DAC ∽△DPN , ∴CDP DA DN D =,∴DP=4; 当PQ 与AB 不平行时,△DPQ ∽△DBA ,∴△DNQ ∽△DCA , ∴CDP DB DN D =,∴DP =综上所述,DP =DP =②当PQ ∥AB ,DB =DP 时,DB =, ∴CDP DA DN D = ∴DN 245= ∴N (2,215), ∴有且只有一个△DPQ 与△DAB 相似时,95<n 215<; 故答案为:95<n 215<; 【点睛】本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

2022年人教版中考综合模拟检测《数学卷》含答案解析

2022年人教版中考综合模拟检测《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 8的倒数是( )A. ﹣8B. 8C. 18D. ﹣182. 若x2在实数范围内有意义,则x的取值范围在数轴上表示正确的是( )A. B. C.D.3. 下列成语描述的事件为随机事件的是( )A. 水涨船高B. 守株待兔C. 水中捞月D. 缘木求鱼4. 下列四个图形中,是轴对称图形是( )A. B. C. D.5. 下列几何体的左视图为长方形的是( )A. B. C. D.6. 某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则( )A. x-y=20B. x+y=20C. 5x-2y=60D. 5x+2y=607. 将分别标有”青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他分别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成”青春”的概率是( )A. 18B.16C.14D.128. 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )A. 第3天B. 第4天C. 第5天D. 第6天9. 如图,直线y n =交轴于点,交双曲线(0)k y x x=>于点,将直线y n =向下平移4个单位长度后与轴交于点,交双曲线(0)k y x x =>于点D ,若13AB CD =,则的值( )10. 如图,在△ABC 中,AB =AC ,BC =6,E 为AC 边上的点且AE =2EC ,点D 在BC 边上且满足BD =DE ,设BD =y ,S △ABC =x ,则y 与x 的函数关系式为( )A. y =1810x 2+52B. y =4810x 2+52 C. y =1810x 2+2 D. y =4810x 2+2 二.填空题(共6小题)11. 16的平方根是 .12. 对于一组统计数据3,3,6,5,3.这组数据的中位数是__.13. 计算2111a a a ⎛⎫-• ⎪-⎝⎭=______________ 14. 在等腰△ABC 中,AD ⊥BC 交直线BC 于点D ,若AD =12BC ,则△ABC 的顶角的度数为_____. 15. 已知函数y =|x 2﹣2x ﹣3|的大致图象如图所示,如果方程|x 2﹣2x ﹣3|=m (m 为实数)有2个不相等的实数根,则m 的取值范围是__.16. 如图△ABC 中,AB =AC ,∠BAC =120°,D 是AB 上一点,且23AD BD =,E 为CB 延长线上一点,且∠BAE =∠BCD ,若BE =52,则BC 的长是_.三.解答题(共8小题)17. 计算:﹣a 4•a 3•a +(a 2)4﹣(﹣2a 4)2.18. 如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠1与∠2互余,求证:AB ∥CD.19. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.20. 已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC 边上的一点.(1)线段AC长为.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.21. 如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O切线;(2)连接MC,若1tan2MCB∠=,求sin∠B的值.22. 某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D 市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.23. 已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:FA FD AB FE=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=13,试直接写出△FBE的面积.24. 已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO=∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若23 PAPE=,求PFPB的值.答案与解析一、选择题(共10小题)1. 8的倒数是( )A. ﹣8B. 8C. 18D. ﹣18 【答案】C【解析】 【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】解:因为8×18=1,所以8的倒数是18, 故选C .【点睛】本题考查了倒数的概念,熟练掌握倒数的概念是解题的关键.2. 若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( )A.B. C.D. 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x ≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 3. 下列成语描述的事件为随机事件的是( )A. 水涨船高B. 守株待兔C. 水中捞月D. 缘木求鱼 【答案】B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.4. 下列四个图形中,是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐一进行判断即可得解.【详解】A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、不是轴对称图形,故不符合题意;D、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5. 下列几何体的左视图为长方形的是( )A. B. C. D.【答案】C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.6. 某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则( )A. x-y=20B. x+y=20C. 5x-2y=60D. 5x+2y=60【答案】C【解析】分析】设圆圆答对了x道题,答错了y道题,根据”每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【详解】设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选C.【点睛】此题考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程.7. 将分别标有”青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他分别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成”青春”的概率是( )A. 18B.16C.14D.12【答案】A【解析】【分析】画树状图展示所以16种等可能的结果数,再找出两次摸出的球上的汉字组成”青春”的结果数,然后根据概率公式求解.【详解】根据题意画图如下:共有16种等可能的结果数,其中两次摸出的球上的汉字组成”青春”的结果数为2,所以两次摸出的球上的汉字组成”青春”的概率是21168=. 故选:A .【点睛】题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.8. 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )A. 第3天B. 第4天C. 第5天D. 第6天【答案】C【解析】解:由图和题意可知, 第一天产生新的微生物有6个标号,第二天产生新的微生物有12个标号,以此类推,第三天、第四天、第五天产生新的微生物分别有24个,48个,96个,而前四天所有微生物的标号共有3+6+12+24+48=93个,所以标号为100的微生物会出现在第五天.故选C .9. 如图,直线y n =交轴于点,交双曲线(0)k y x x=>于点,将直线y n =向下平移4个单位长度后与轴交于点,交双曲线(0)k y x x =>于点D ,若13AB CD =,则的值( )【答案】B【解析】 【分析】先根据平移的性质求出平移后直线的解析式,由于13AB CD =,故可得出设B (a ,n ),D (3a ,n-4),再根据反比例函数中k=xy 为定值求出n .【详解】∵将直线y =n 向下平移4个单位长度后,∴平移后直线的解析式为y =n ﹣4,∵13AB CD =, ∴CD =3AB ,设B (a ,n ),D (3a ,n ﹣4),∵B 、D 在反比例函数(0)k y x x=>的图象上, ∴an =3a •(n ﹣4)∴n =6故选:B .【点睛】本题考查的是反比例函数图象上点的坐标特征,根据k=xy 的特点列出关于n 的方程是解题的关键. 10. 如图,在△ABC 中,AB =AC ,BC =6,E 为AC 边上的点且AE =2EC ,点D 在BC 边上且满足BD =DE ,设BD =y ,S △ABC =x ,则y 与x 的函数关系式为( )A. y =1810x 2+52B. y =4810x 2+52C. y =1810x 2+2D. y =4810x 2+2 【答案】A【解析】【分析】过A 点作△ABC 的高AH ,过E 点作EG 垂直于BC ,垂足为G. Rt △EDG 中根据勾股定理可用x 来表示EG=1025y -,由已知可知AH=3EG ,即可得到△ABC 的面积S △ABC =x=91025y -,通过变形即可得到答案.【详解】解:过A 点作△ABC 的高AH ,过E 点作EG 垂直于BC ,垂足为G.∴EG ∥AH , ∴GC CE EG CH AC AH==, 又∵AE =2EC ,∴GC=13CH ,EG=13AH ∵AB=AC ,BC =6,∴CH=BH=3,GC=1,BG=5,在Rt △EDG 中,222EG DG ED +=,∵设BD =y ,则DG=5-y ,BD=DE=y , ∴()225y y -- 1025y -∴AH=31025y -∴△ABC 的面积S △ABC =12BC AH ⨯⨯=16310252y ⨯⨯-91025y -, 即:1025x y =-,∴y =1810x 2+52故选A【点睛】本题考查了几何动点问题,利用勾股定理找到三角形高与BD 的数量关系是解题关键.再利用三角形面积公式转化即可得到函数解析式.二.填空题(共6小题)11. 16的平方根是 .【答案】±4. 【解析】【详解】由(±4)2=16,可得16的平方根是±4. 12. 对于一组统计数据3,3,6,5,3.这组数据的中位数是__.【答案】3.【解析】【分析】把这一列数按从小到大排列,按中位数的定义求解即可.【详解】把这些数从小到大排列3,3,3,5,6,则这组数据的中位数是3;故答案为:3.【点睛】本题考查的是中位数的定义,掌握中位数的定义是解题关键.13. 计算2111a a a ⎛⎫-• ⎪-⎝⎭=______________ 【答案】11a + 【解析】【分析】首先把括号里的式子进行通分,然后因式分解,再约分化简即可求解. 【详解】2111a a a ⎛⎫- ⎪-⎝⎭ =1(1)(1)a a a a a -⎛⎫⎪+-⎝⎭ =11a + 【点睛】考查分式的混合运算,通分、因式分解和约分是解答的关键.同时考查了实数的运算,解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、绝对值等考点的运算.14. 在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.15. 已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是__.【答案】m=0或m>4.【解析】【分析】有2个不相等的实数根,其含义是当y=m时,对应的x值有两个不同的数值,根据图象可以看出与x轴有两个交点,所以此时m=0;当y取的值比抛物线顶点处值大时,对应的x值有两个,所以m值应该大于抛物线顶点的纵坐标.综合表述即可.【详解】从图象可以看出当y=0时,y=|x2﹣2x﹣3|x值对应两个不等实数根,即m=0时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根;从图象可出y的值取其抛物线部分的顶点处纵坐标值时,在整个函数图象上对应的x的值有三个,当y的值比抛物线顶点处纵坐标的值大时,对于整个函数图象上对应的x值有两个不相等的实数根.|x2﹣2x﹣3|=|(x﹣1)2﹣4|,其最大值为4,所以当m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,综上所述当m=0或m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根.故答案为m=0或m>4.【点睛】本题主要考查抛物线与x轴交点问题,解题的关键是根据图象分析判断函数值与自变量之间的关系.16. 如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且23ADBD,E为CB延长线上一点,且∠BAE=∠BCD,若BE=52,则BC的长是_.5【解析】注意到∠BAE=∠BCD,于是作DF∥AC交BC于F,可得△ABE∼CFD∆,再根据相似三角形的性质列出比例方程解决问题.【详解】如图,作DF∥AC交BC于F.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠DFB=∠ACB=30°,∴BD=FD,∠ABE=∠CFD=120°,∵∠BAE=∠BCD,∴△ABE∼CFD,∴DF CF BE AB=∵23 AD BD=∴设AD=2x,BD=3x,∴AB=5x,DF=3x,BF=3,BC=3x,CF=323 5x=x 15,∴535BC x==.【点睛】本题主要考查了相似三角形的判定与性质、顶角为120度的等腰三角形的性质.作平行线构造相似三角形是解答的关键.三.解答题(共8小题)17. 计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【答案】﹣4a8.【解析】【分析】先按照幂的运算法则计算,再合并同类项即可.【详解】原式=﹣a8+a8﹣4a8【点睛】本题考查幂的运算与合并同类项,掌握运算法则是解题关键.18. 如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠1与∠2互余,求证:AB ∥CD.【答案】见解析【解析】【分析】先用角平分线的性质得到21ABD ∠=∠,22BDC ∠=∠,再用1∠与2∠互余,即可得到ABD ∠与BDC ∠互余.【详解】证明:∵∠1与∠2互余,∴∠1+∠2=90°. ∵BE 平分∠ABD ,DE 平分∠CDB ,∴∠ABD =2∠1,∠BDC =2∠2.∴∠ABD +∠BDC =2∠1+2∠2=2(∠1+∠2)=180°. ∴AB ∥DC.【点睛】此题主要考查了平行线的判定,角平分线的意义,解本题的关键是用角平分线的意义得到21ABD ∠=∠,22BDC ∠=∠.19. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.【答案】(1)本次调查的学生总人数为40人,∠α=108°;(2)补图见解析;(3)书法与乐器组合在一起的概率为16.【解析】【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是”书法”“乐器”的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为21 126.【点睛】本题考查了条形统计图、扇形统计图、列表法与树状图法求概率,读懂统计图、熟练掌握列表法或树状图法求概率是解题的关键.20. 已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC 边上的一点.(1)线段AC 的长为 .(2)在如图所示的网格中,AM 是△ABC 的角平分线,在AM 上求一点P ,使CP +DP 的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置.【答案】(1)5;(2)见解析.【解析】【分析】(1)依据勾股定理即可得到AC 的长;(2)取格点H 、G ,连AH 交BC 于点M ,依据△ACH 与△AGH 全等,即可得到HA 是∠CHG 的平分线,连DG 交AM 于点P ,利用三角形全等可得CP+DP 的最小值等于线段DG 的长.【详解】(1)由图可得,AC 5=;故答案为:5;(2)如图取格点H 、G ,且满足,HC HG = ,AC AG =,AH AH =ACH ∆∴∆≌AGH,,CHA GHA ∴∠=∠连AH 交BC 于点M ,连DG 交AM 于点P ,连,CP,,,HC HG AHC AHG HP HP =∠=∠=,PCH PGH ∴∆∆≌,PC PG ∴=,DP PC DP PG DG ∴+=+=则CP +DP 最小.【点睛】本题主要考查了勾股定理以及最短距离问题,凡是涉及最短距离的问题,一般要考虑两点之间线段最短的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21. 如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若1tan2MCB∠=,求sin∠B的值.【答案】(1)见解析;(2)3 sin5ABC∠=.【解析】【分析】(1)连接NO,过点O作OE⊥AC于点E,由,AB AC=可得∠ABC=∠ACB,结合OB OC=,证明,OBC OCB∠=∠利用角平分线的性质可得NO=EO,则结论得证;(2)过点M作MF⊥BC于点F,连结OM,ON,证得BM=BN=12BC,设BC=a,CF=b,则MF=12b,BF=a-b,BM=12a,可得22211()44a b b a-+=,解方程得b=35a,可求出答案.【详解】(1)证明:如图1,连接NO,过点O作OE⊥AC于点E,∵AB =AC ,∴∠ABC =∠ACB ,∵⊙O 分别切AB 于M ,BC 于N ,,ON BC ∴⊥ ∠ABO =∠CBO ,,OB OC =,OBC OCB ∴∠=∠∴,OCB OCA ∠=∠∵ON ⊥BC ,OE ⊥AC ,∴NO =EO ,∴AC 是⊙O 的切线;(2)解:如图2,过点M 作MF ⊥BC 于点F ,连结OM ,ON ,∵OM =ON ,OB =OB ,90BMO BNO ∠=∠=︒, ∴Rt △BOM ≌Rt △BON (HL ),∴BM =BN ,∵OB =OC ,ON ⊥BC ,∴BN =CN =12BC , ∴12BM BC = ∵1tan 2MF MCB CF ∠==∴12MF CF =, ∴12sin 12CF MF CF ABC BM BCBC ∠===, 设BC =a ,CF =b ,则MF =12b ,BF =a ﹣b ,BM =12a , ∵222,BF MF BM += ∴22211()44a b b a -+=, 解得b =3,5a 或b =a (舍去). ∴335sin .5a ABC a ∠== 【点睛】本题考查了切线的判定、等腰三角形的性质、勾股定理、全等三角形的判定与性质、解直角三角形等知识;熟练掌握切线的判定方法,并能进行推理计算是解决问题的关键.22. 某年五月,我国南方某省A 、B 两市遭受严重洪涝灾害,邻近县市C 、D 决定调运物资支援A 、B 两市灾区.已知C 市有救灾物资240吨,D 市有救灾物资260吨,现将这些救灾物资全部调往A 、B 两市,A 市需要的物资比B 市需要的物资少100吨.已知从C 市运往A 、B 两市的费用分别为每吨20元和25元,从D 市运往往A 、B 两市的费用分别为每吨15元和30元,设从D 市运往B 市的救灾物资为x 吨.(1)A 、B 两市各需救灾物资多少吨?(2)设C 、D 两市的总运费为w 元,求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)经过抢修,从D 市到B 市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线运费不变.若C 、D 两市的总运费的最小值不小于10320元,求m 的取值范围.【答案】(1)A 市需救灾物资200吨,B 市需救灾物资300吨;(2)w =10x+10200(60≤x≤260);(3)0<m≤8【解析】【分析】(1)根据题意,可以列出相应的方程,从而可以求得A 、B 两市各需救灾物资多少吨;(2)根据题意,可以写出w 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)根据题意,可以得到w 与x 的函数关系式,然后根据一次函数的性质和分类讨论的方法可以解答m 的取值范围.【详解】(1)设A 市需救灾物资a 吨,a+a+100=260+240解得,a=200,则a+100=300,答:A市需救灾物资200吨,B市需救灾物资300吨;(2)由题意可得,w=20[200﹣(260﹣x)]+25(300﹣x)+15(260﹣x)+30x=10x+10200,∵260﹣x≤200且x≤260,∴60≤x≤260,即w与x的函数关系式为w=10x+10200(60≤x≤260);(3)∵经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变,∴w=10x+10200﹣mx=(10﹣m)x+10200,①当10﹣m>0,m>0时,即0<m<10时,则w随x的增大而增大,∴x=60时,w有最小值,w最小值是(10﹣m)×60+10200,∴(10﹣m)×60+10200≥10320,解得m≤8,又∵0<m<10,∴0<m≤8;②当10﹣m=0,即m=10时无论如何调运,运费都一样.w=10200<10320,不合题意舍去;③当10﹣m<0,即m>10时,则w随x的增大而减小,∴x=260时,w有最小值,此时最小值是(10﹣m)×260+10200,∴(10﹣m)×260+10200≥10320,解得,12413m≤,又∵m>10,∴12413m≤不合题意,舍去.综上所述,0<m≤8,即m的取值范围是0<m≤8.【点睛】本题考查一次函数的应用、一元一次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的方法解答.23. 已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD =∠C .(2)如图2.在边BC 上截取BE =BD ,ED 、BA 的延长线交于点F ,求证:FA FD AB FE =. (3)在 (2)的条件下,若AD =4,CD =5,cos ∠BAC =13,试直接写出△FBE 的面积. 【答案】(1)见解析;(2)见解析;(3)S △BEF =202.【解析】【分析】(1)根据两边成比例夹角相等两三角形相似证明△ABD ∽△ACB 即可解决问题.(2)过点B 作BG ∥AC 交FE 的延长线于点G .证明△BDF ≌△BEG (ASA ),推出DF=EG ,推出EF=GD ,由BG ∥AC 推出,FA FD AB DG= 可得答案 . (3)如图2中,过点B 作BG ∥AC 交FE 延长线于点G ,作CH ⊥AB 于H ,FJ ⊥BE 于J .利用相似三角形的性质求出AB ,再证明CA=CB ,再利用相似三角形的性质求出BD ,解直角三角形求出FJ 即可解决问题.【详解】(1)证明:如图1中,∵AB 2=AD •AC 即AB AC AD AB=, 又∵∠A =∠A ∴△ABD ∽△ACB ,∴∠ABD =∠C .(2)解:过点B 作BG ∥AC 交FE 的延长线于点G .∵BG∥AC,∴∠C=∠GBE,∵∠ABD=∠C,∴∠GBE=∠C=∠ABD,∵BD=BE,∴∠BDE=∠BED,∴∠BDF=∠BEG,∴△BDF≌△BEG(ASA),∴DF=EG,∴EF=GD,∵BG∥AC,∴FA FD AB DG=,即FA FD AB FE=.(3)解:如图2中,过点B作BG∥AC交FE的延长线于点G,作CH⊥AB于H,FJ⊥BE于J.∵AB2=AD•AC,AD=4.CD=5,∴AB 2=4×9,∴AB =6,在Rt △AHC 中,∵cos ∠CAH =13AH AC =, ∴AH =3,∴BH =AH =3,∵CH ⊥AB ,∴CA =CB ,∴∠CAB =∠CBA ,∵AD ∥BG , ∴FA AD FB BG =, △BDF ≌△BEGFB =BG ,∴AF =AD =4,∴BF =AB +AF =6+4=10,∵cos ∠FBJ =cos ∠BAC =13BJ BF =, ∴BJ =103,∴FJ = ∵△ABD ∽△ACB , ∴BD AD BC AB =, ∴496BD =, ∴BD =BE =6,∴S △BEF =12•BE •FJ =162⨯=. 【点睛】本题属于相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.24. 已知:抛物线y =a (x 2﹣2mx ﹣3m 2)(m ˃0)交x 轴于A 、B 两点(其中A 点在B 点左侧),交y 轴于点C .(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO=∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C下方),直线P A、PB分别交抛物线于点E、F,若23 PAPE=,求PFPB的值.【答案】(1)(3,0);(2)满足要求的M点的坐标有(0,﹣2)、(0,2);(3)16 PFPB=.【解析】【分析】(1)将A点坐标代入抛物线解析式中求出m的值,然后可将抛物线解析式写成交点式即可知道B点坐标.(2)先考虑M在y轴负半轴的情况,在y轴负半轴上截取OG=OA=1,连AG,可证△GMA∽△GAC,然后根据相似三角形的性质列方程即可求出M点坐标,由对称性可直接写出另一种情况.(3)作EG⊥x轴于点G,FH⊥y轴于点H,由△EAG∽PAO得到线段比例等式推出OP的长度,得出P点坐标,算出直线PB解析式,与抛物线解析式联立可求出F点横坐标,再由△PFH∽△PBO即可得到所求线段比.【详解】(1)将(﹣1,0)代入y=a(x2﹣2mx﹣3m2)得:1+2m﹣3m2=0,解得:m=1或m=﹣13 (舍),∴y=a(x2﹣2mx﹣3m2)=a(x+1)(x﹣3),∴B(3,0).故答案为:(3,0).(2)当am=1,1m=时,抛物线解析式为y=x2﹣2x﹣3,∴C(0,﹣3)(3,0),B∴OB=OC=3,∠ABC=45°,如图1,M 在y 轴负半轴上,在y 轴负半轴上截取OG =OA =1,连AG ,则∠AGO =45°=∠ABC ,AG 2,∠OCA +∠AMO =∠ABC ,∴∠OCA +∠AMO =45°,又∵∠OCA +∠GAC =∠AGO =45°,∴∠AMG =∠GAC ,又∵∠AGM =∠CGA ,∴△GMA ∽△GAC ,,GA GM GC GA∴= ∴AG 2=MG •GC ,(0,3),C - GC =OC ﹣OG =2,设M (0,a )1,MG OM OG a ∴=-=--∴2=(﹣1﹣a )•2,∴a =﹣2,∴M 的坐标为(0,﹣2).根据对称性可知(0,2)也符合要求.综上所述,满足要求的M 点的坐标有:(0,﹣2)、(0,2).(3)由抛物线解析式可得:A (﹣m ,0),B (3m ,0).∴12AE AP =, 如图2,作EG ⊥x 轴于点G ,FH ⊥y 轴于点H ,则//EG y 轴,//FH x 轴,△EAG ∽P AO ,△PFH ∽△PBO ,∴12AG EG AE AO PO AP ===, ∴AG =12AO =12m ,OP =2EG , ∴x E =﹣32m ,y E =94am 2,即EG =94am 2, ∴OP =92am 2, ∴P (0,﹣92am 2), 又∵B (3m ,0),∴直线PB 的解析式为:y =32amx ﹣92am 2, ∴32amx ﹣92am 2=a (x 2﹣2mx ﹣3m 2), ∴2x 2﹣7mx +3m 2=0,∴x 1=3m (舍),x 2=12m ,△PFH∽△PBO,∴11236mPF FHPB BO m===.【点睛】本题为二次函数综合题,主要考查了抛物线与坐标轴交点坐标的求法、相似三角形的判定与性质、待定系数法求函数解析式、解一元二次方程等知识点.巧妙构造出相似三角形是解答的关键.。

人教版中考仿真模拟检测《数学试卷》含答案解析

人教版中考仿真模拟检测《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.13-的相反数是( ) A. 13 B. 13- C. 3 D. -32.下列图形中,不是轴对称图形的是( )A. B.C. D.3.结果为a 2的式子是( )A. a 6÷a 3B. a 4·a -2C. (a -1)2D. a 4-a 2 4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角 5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <y B. x >y C. x≤y D. x≥y6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.7.函数13xyx+=-中自变量x取值范围是()A. x≥B. x≠3C. x≥且x≠3D. 1x<-8.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 39.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,则⊙O的半径为()A. 5 cmB. 4 cmC. 3 cmD. 2 cm10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 111.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A 2 B. 3 C. 5 D. 612.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示为 .14.因式分解:34a a -=_______________________.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.16.如图,已知双曲线(0)k y x x=>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.三、解答题17.计算:1011()(3)2cos 45221π---+-+- 18.解方程:11322x x x-=---. 19.我校数学社团成员想利用所学知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 直径,AE ⊥CD 交CD 的延长线于点E ,DA 平分∠BDE . ⑴求证:AE 是⊙O 的切线;⑵若AE =4cm ,CD =6cm ,求AD 的长.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:脐橙品种 A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(百元) 12 16 10(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.答案与解析一、选择题1.13-的相反数是()A. 13B.13- C. 3 D. -3【答案】A 【解析】试题分析:根据相反数的意义知:13-的相反数是13.故选A.【考点】相反数.2.下列图形中,不是轴对称图形的是( )A. B.C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点睛】本题考查轴对称的定义,牢记定义是解题关键.3.结果为a2的式子是()A. a6÷a3B. a4·a-2C. (a-1)2D. a4-a2【答案】B【解析】【分析】根据同底数幂的乘除法以及幂的乘方公式,即可求得答案.【详解】解:A. a 6÷a 3=633a a -=,错误; B. a 4·a -2= a 4-2=2a ,正确;C. (a -1)2=2a -,错误;D .a 4-a 2≠a 2,错误.故选B .【点睛】本题考查整式的乘法,涉及的知识点有同底数幂的乘除法以及幂的乘方,熟练掌握整式乘法的运算法则是解题的关键.4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <yB. x >yC. x≤yD. x≥y【答案】B【解析】 【详解】解:根据题意得,他买黄瓜每斤平均价是302050x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱 则302050x y +>2x y + 解之得,x >y .所以赔钱的原因是x >y .故选B .6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.【答案】C【解析】根据浮力的知识,铁块露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.因为小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度. 故选C .7.函数1x y +=x 的取值范围是( ) A. x ≥B. x ≠3C. x ≥且x ≠3D. 1x <-【答案】C【解析】【详解】解:根据被开方数为非负数和分母不分0列不等式:10{30x x +≥-≠, 解得:x ≥且x ≠3.故选C .【点睛】本题考查函数自变量的取值范围.8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 3【答案】A【解析】【分析】本题可先求出a 的值,再代入方差的公式即可.【详解】∵3、6、a 、4、2的平均数是5,∴a=10, ∴方差22222211[35651054525]40855S =-+-+-+-+-=⨯=()()()()(). 故选A . 【点睛】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数. 9.如图,⊙O 是△ABC 的外接圆,∠C =30°,AB =2 cm ,则⊙O 的半径为( )A. 5 cmB. 4 cmC. 3 cmD. 2 cm【答案】D【解析】【分析】 连接OA 、OB ,根据一条弧所对的圆周角等于它所对的圆心角的一半,可知△OAB 是等边三角形,即可求得⊙O 的半径OA=OB=AB=2.【详解】解:如图:连接OA 、OB ,则OA 、OB 即为半径,∵∠C=30°,∴∠AOB=60°,又∵OA=OB,∴△OAB为等边三角形,且AB=2 cm,∴OA=OB= AB=2 cm.故选D.【点睛】本题考查圆周角与三角形的综合运用,熟练掌握圆周角定理,作出辅助线是解题的关键.10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出四边形AEDF是平行四边形,故①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;如果AD平分∠BAC,通过等量代换可得∠EAD=∠EDA,可得平行四边形AEDF的一组邻边相等,即可得到四边形AEDF是菱形,故③正确;由AD⊥BC且AB=AC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,故④正确;进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA∴四边形AEDF是平行四边形,①正确;若∠BAC=90°∴平行四边形AEDF为矩形,②正确;若AD平分∠BAC∴∠EDA=∠FAD又DE∥CA,∴∠EAD=∠EDA,∴AE=DE.∴平行四边形AEDF为菱形,③正确;若AD⊥BC,AB=AC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,④正确;故选A.【点睛】本题考查四边形与三角形结合的相关知识,熟练掌握平行四边形、矩形、菱形的判定定理是解答本题的关键.11.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A. 2B. 3C. 5D. 6【答案】D【解析】【分析】根据∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO△COD,进而可以证明AP=CO,即可解题.【详解】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD,∴∠APO=∠COD,在△APO和△COD中A CAPO CODOD OP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APO △COD (AAS ),即AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为6.【点睛】本题是全等三角形与旋转的综合题型,理解题意,找出全等的三角形,再通过代换求得答案是解题的关键.12.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④【答案】B【解析】【分析】 根据抛物线的开口方向可以判断a 与0的关系,由抛物线与y 轴交点判断c 与0的关系,然后根据对称轴以及抛物线与x 轴交点情况进行推理,进而得到结论. 【详解】解:∵抛物线的开口向上,∴a 0>当x=0时,可得c 0<,∵对称轴x=- 02b a<,∴a 、0b b >同号,即,∴abc <0,故①正确;当x=1时,即a++c=2故②正确;当x=-1时,a-+c 0<,又a++c=2,∴a+c=2-,将上式代入a-+c 0<,即2-2b 0<,∴b 1>.故④错误;∵对称轴x=- 12b a >-, 解得 2b < a , 因为b 1>, ∴a 12>, 故③正确.故选B .【点睛】本题是二次函数图像的综合题型,掌握二次函数的定义,对称轴等相关知识是解题的关键,是中考的必考点.二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示 .【答案】9.5×710【解析】【分析】实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n 的形式时,其中1≤|a|<10,n 为比整数位数少1的数,而且a×10n (1≤|a|<10,n 为整数)中n 的值是易错点.【详解】解:根据题意95 000 000=9.5×107. 故答案为:9.5×107. 【点睛】本题考查科学计数法,在a×10n 中,a 的整数部分只能取一位整数,且n 的数值比原数的位数少1,95 000 000的数位是8,则n 的值为7.14.因式分解:34a a -=_______________________.【答案】(2)(2)a a a +-【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a -=-=+-【点睛】本题考查因式分解,掌握因式分解方法是关键.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.【答案】76【解析】【分析】仔细观察可发现规律:第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2,然后按此公式求得上下底,再利用面积公式计算面积就行了.【详解】解法①:从图中可以看出,第一个黑色梯形的上底为1,下底为3,第2个黑色梯形的上底为5=1+4,下底为7=1+4+2,第3个黑色梯形的上底为9=1+2×4,下底为11=1+2×4+2,则第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2, ∴第10个黑色梯形的上底=1+(10﹣1)×4=37,下底=1+(10﹣1)×4+2=39, ∴第10个黑色梯形面积S 10=12×(37+39)×2=76. 解法②根据图可知:S 1=4,S 2=12,S 3=20,以此类推得Sn =8n ﹣4,S 10=8×10﹣4=76.【点睛】本题是找规律题,找到第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2是解题的关键.16.如图,已知双曲线(0)k y x x =>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.【答案】2【解析】【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值. 【详解】解:∵双曲线(0)k y x x =>经过矩形OABC 边AB 中点 设F (x ,y ),E (a ,b ),那么B (x ,2y ),∵点E 在反比例函数解析式上,∴S △COE =12ab=12k , ∵点F 在反比例函数解析式上, ∴S △AOF =12xy=12k ,即xy=k ∵S 四边形OEBF =S 矩形ABCO -S △COE -S △AOF ,且S 四边形OEBF =2,∴2xy-12k-12xy=2, ∴2k-12k-12k=2, ∴k=2.故答案为:2.【点睛】本题的难点是根据点F 的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.三、解答题17.计算:101()(3)2cos 45221π--+-+-【答案】-2.【解析】【分析】原式利负指数幂法则,零指数幂,特殊角的三角函数,分母有理化,进行计算即可解答【详解】原式=2(21)12--+++=-2. 【点睛】此题考查了零指数幂,负整数指数幂,三角函数,解题关键在于掌握运算法则18.解方程:11322x x x-=---. 【答案】无解 【解析】【详解】解:方程两边同乘(2)x -,得1(1)3(2)x x =----.解这个方程,得2x =.检验:当2x =时,20x -=,所以2x =是增根,原方程无解.解分式方程步骤:去分母转化成一元一次方程即可,但需要特别注意,需要检验方程的根是否是原方程的增根19.我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)535-米 【解析】【分析】设AP=NP=x ,在Rt △APM 中可以求出3,在Rt △BPM 中,∠MBP=30°,求得x ,利用MN =MP -NP 即可求得答案.【详解】解:∵在Rt △APN 中,∠NAP =45°,∴PA =PN ,在Rt△APM中,tan∠MAP=MP AP,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=3x,在Rt△BPM中,tan∠MBP=MP BP,∵∠MBP=30°,AB=5,∴33=3x5x+,∴x=52,∴MN=MP-NP=3x-x=5352-.答:广告牌的宽MN的长为5352-米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析 (3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已”建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD交CD的延长线于点E,DA平分∠BDE.⑴求证:AE是⊙O的切线;⑵若AE=4cm,CD=6cm,求AD的长.【答案】(1)证明见解析;(2)AD=25.【解析】【分析】(1)根据等边对等角得出∠ODA=∠OAD,进而得出∠OAD=∠EDA,证得EC∥OA,从而证得AE⊥OA,即可证得AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE=4cm,根据垂径定理得出DF=12CD=3cm,在Rt△ODF中,根据勾股定理即可求得⊙O的半径,得出ED,根据勾股定理即可求得AD.【详解】(1)证明:连结OA.∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°∴四边形AOFE是矩形.∴OF=AE=4cm. EF=OA,又∵OF⊥CD,∴DF=12CD=3cm.在Rt△ODF中,22OF DF=5cm,即⊙O的半径为5cm,∴EF=OA=5cm,∴ED=EF-DF=5-3=2cm,在Rt△AED中,【点睛】此题考查等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用,熟练掌握性质定理和作辅助线是解题的关键.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值【答案】(1)y=20-2x;(2)详见解析;(3)当装运A种脐橙4车、B种脐橙12车、C种脐橙4车时,获利最大,最大利润为14.08万元.【解析】【分析】(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数≥4;(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.【详解】解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20-x-y),则有:6x+5y+4(20-x-y)=100整理得:y=-2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,-2x+20,x.由题意得42204 xx⎧⎨-+⎩解得:4≤x≤8因x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)设利润为W(百元)则:W=6x×12+5(-2x+20)×16+4x×10=-48x+1600∵k=-48<0∴W的值随x的增大而减小.要使利润W最大,则x=4,故选方案一W最大=-48×4+1600=1408(百元)=14.08(万元)答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.【点睛】解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;【答案】(1)34;(2)2∶3;(3)3<a≤6.【解析】【分析】(1)由题意可知,t =1秒时,BN=BM=1,又因为PM ⊥BC ,所以△ANB ∽△APM ,根据相似三角形的性质,即可求得PM ;(2)根据题意,当△PNB ∽△PAD 时,对应边之比等于高之比,即NB BM AD AM=,进而可以求出时间t 以及相似比;(3)设BN=t ,则0t 3≤≤,则BM=t ,再用t 表示出PM ,就可以用t 表示出两个梯形的面积,求出t 的值,进而求出a 的取值范围.【详解】解:(1)当t =1时,MB =1,NB =1,AM =4-1=3,∵PM ∥BN ,∴△ANB ∽△APM , ∴PM AM NB AB=, ∴PM =34. (2)作出△PNB 和△PAD ,则BM 和AM 分别是它们的高,若△PNB ∽△PAD ,则NB BM AD AM =, 即35t t t=-,解得t=2, 即t =2时,使得△PNB ∽△PAD ,∴相似比为2∶3.(3)∵PM ⊥AB ,CB ⊥AB ,∠AMP =∠ABC ,△AMP ∽△ABN , ∴PM AM NB AB =,即PM a t t a-=, ∴()PM t a t a -=,∴()QP 3t a t a -=-,当梯形PMBN 与梯形PQDA 的面积相等时,即()()()()()332222t a t t a t a t t t a QP AD DQ MP BN BM a ⎛⎫-⎛⎫-+- ⎪-+ ⎪++⎝⎭⎝⎭===, 化简得t =66a a +, ∵t3, ∴636a a≤+,则a6, ∴3a6.【点睛】本题是矩形中动点与相似三角形的的综合问题,难度一般,根据所求正确的找出相似三角形,再利用对应边成比例是解题的关键,是中考的重要考点.24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.【答案】(1)y=-x2+2x+3;(2)存在,N(2,3),N′(-2,3);(3)点Q不在抛物线L2上.【解析】【分析】(1)由于是平移,所以抛物线的开口方向和开口大小不变,先求出L1与x轴的交点,再求出L2与x轴的交点,即可求出抛物线L2的解析式;(2)因为是平移,根据平移的性质,连接各组对应点的线段平行且相等,故存在符合条件的点N,即可求得N 点坐标;(3)先设出L1上的点(x1,y1),进而求得关于原点的对称点(-x1,-y1),再将(-x1,-y1)代入函数L2的解析式,成立则在图像上,不成立则不在图像上.【详解】解:(1)令y=0,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0) ,∵抛物线L1向右平移2个单位得抛物线L2,∴C(-1,0),D(3,0),a=-1,∴抛物线L 2为y =-(x +1)(x -3) .即y =-x 2+2x +3.(2)存在;令x =0,得y =3,∴M(0,3),∵抛物线L 2是L 1向右平移2个单位得到的,∴点N(2,3)在L 2上,且MN =2,MN ∥AC ,又∵AC =2,∴MN =AC ,∴四边形ACNM 为平行四边形.同理,L 1上的点N′(-2,3)满足N′M ∥AC ,N′M =AC ,∴四边形ACMN′是平行四边形.∴N(2,3)或N′(-2,3)即所求.(3)设P(x 1,y 1)是L 1上任意一点(y 1≠0),则点P 关于原点的对称点Q(-x 1,-y 1),且211123y x x =--+,将点Q 的横坐标代入L 2,得:2111123Q y x x y y =--+=≠-∴点Q 不在抛物线L 2上.【点睛】本题目是二次函数的综合题型,涉及的知识点有平移、平行四边形的判定、对称等相关知识,是中考的常考点,同学们需要熟练掌握解题技巧方能快速解题.。

2022年人教版中考一模考试《数学卷》含答案解析

2022年人教版中考一模考试《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题.每小题都給出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1. 下列各数中,与2020的和为1的数是( )A. 2019-B. 2020-C. 2021-D. 120202. 下列运算中,正确( )A. 2232a a -=B. ()325a a =C. 369a a a ⋅=D. ()22422a a = 3. 国务院新闻办公室2020年1月17日举行新闻发布会称,数据显示,2019年全年出生人口1465万人,这里的”1465万”用科学记数法表示( )A. 4146510⨯B. 61.46510⨯C. 81.46510⨯D. 71.46510⨯ 4. 下面四个几何体中,左视图是四边形的几何体共有()A. 1个B. 2个C. 3个D. 4个5. 据省统计局公布的数据,某市2019年第三季度GDP 总值约为亿元,第四季度GDP 总值比第三季度增长了8.59%,受”新型冠状肺炎”疫情的影响,该市2020年第一季度GDP 总值比2019年第四季度降低了17.8%,则该市2020年第一季度GDP 总值可用代数式表示为( )A. 8.5%17.8%⨯a 亿元B. ()18.5%17.8%+-a 亿元 C ()()18.5%117.8%-⨯+a 亿元D. ()()18.5%1% 17.8+⨯-a 亿元6. 下列说法正确的是( )A. 对”新型冠状肺炎”疑似病例的核酸检查宜采用抽样调查B. 调查全省中小学生对疫情期间”网课”的满意程度宜采用全面调查C. 一个不透明的袋子里装有大小、质地完全相同的3个红球和5个白球,从中随机摸出一个球是红球的概率是38D. 我国大功率火箭”胖五”目前进行了两次发射,一次成功,一次失败,所以”胖五”发射成功的概率是127. 关于的一元二次方程()210--=mx x 有两个实数根,则实数的取值范围( )A. 1m ≥-B. 1m ≥-且0m ≠C. 1m >-D. 1m >-且0m ≠ 8. 如图,为ABC 的边AC 上一点,4AB BC CD ===,2∠=∠DBC A ,则BD 的长为( )A 225-+ B. 225-- C. 225+ D. 51-9. 如图,等边ABC 的边长为6cm ,动点从点出发,以每秒2cm 的速度,沿A B C →→的方向运动,到达点时停止,设运动时间为秒,2y PC =,则关于的函数图像大致为( )A. B. C. D. 10. 如图,在边长为1的正方形ABCD 中,点,分别在边CD ,BC 上,且DF CE =,连接BF 、AE 交于点,连接CP ,则线段CP 的最小值为( )A. 512B. 512C. 51D. 51二、填空题11. 因式分解:22242x xy y -+=_________.12. 如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.13. 如图,以等腰OAB 的顶点为圆心的O 与AB 相切于点,并与OA 、OB 交于、两点,连接CD .若30A ∠=︒,且CED 的长为4π3,则CD 的长为______.14. 在CAB 中,90A ∠=︒,4AB AC ==,点,分别是边AC 、AB 上的点,且1AD =,连接DE ,以线段DE 为直角边作等腰直角DEF ,当点恰好落在BC 边上时,则BE 的长______.三、简答题15. 先化简,再求值:2221221118a a a a a a a +-⎛⎫⋅-÷ ⎪-+-⎝⎭,其中3a =. 16. 李华家到学校的路是一段平路和一段下坡路.已知李华在平路骑自行车的速度为240米/分钟,在下坡路骑自行车的速度为320米/分钟,在上坡路骑自行车的速度为160米/分钟,若李华从家里到学校需20分钟,从学校到家里需30分钟.请问李华家与学校的距离是多少?(不考虑其他因素)17. 在如图所示的1212⨯网格中,ABC 和222A B C △都是格点三角形,已知格点线段MN .(我们把网格线的交点叫做格点)(1)画出ABC 关于MN 对称的图形111A B C △;(2)说明222A B C △是由111A B C △经过怎样的平移得到的?18. 观察点阵图中点与等式之间关系,寻找规律.①2221211-⨯=+;②2232221-⨯=+;③2243231-⨯=+;④2254241-⨯=+;…按照你发现的规律解答下列问题:(1)第⑥个等式______;(2)用含 (为正整数)的等式表示第n 个等式,并证明其正确性.19. 如图所示,在一个坡度1:2i =的山坡CB 的顶端处竖直立着一个电视发射塔AB .为测得电视发射塔的高度,小明站在山脚的平地处测得电视发射塔的顶端的仰角为40°,若测得斜坡BC 长为1005米,点到点的水平距离20CD =米,求电视发射塔AB 的高度.(参考数值:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,结果保留整数)20. 如图,在矩形ABCD 中,1AB =,2BC =ADC ∠的平分线交边BC 于点,AH DE ⊥于点,连接AE ,连接CH 并延长交AE 于点.(1)求证:ABE AHE ≌△△;(2)求证:2AE FH =.21. 某校为了解九年级学生对安徽省2020年中考新变化的了解情况,随机抽查了部分九年级学生(了解程度分为:”A :非常了解”、”B :比较了解”、”C :不太了解”、”D :完全不了解”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项而且只能选一项),并将统计结果制成如下两幅不完整的统计图,图1中的、、的高度之比为3:11:1,并且知道被调查的学生中非常了解和比较了解的共84人.请你根据以上提供的信息,解答下列问题.(1)被调查的学生中选”A :非常了解”的有______人;(2)一共调查了多少人?(3)若该校九年级有960名学生,请你估算该校九年级学生中对安徽省2020年中考新变化”不太了解”的有多少人?22. 如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线:2y kx =+与抛物线交于、两点,点在点的右侧,过点作轴的垂线,垂足为.(1)求抛物线的解析式;(2)若FOC 的面积为4,求的值;(3)当点在抛物线上运动时,判断线段BF 与BC 的数量关系(、、),并证明你的判断.23. 在ABC 中,2ABC ACB ∠=∠,BD 平分ABC ∠.(1)如图1,若3AB =,5AC =,求AD 的长.(2)如图2,过分别作AE AC ⊥交BC 于,AF BD ⊥于.①求证:ABC EAF ∠=∠; ②求BF AC值.答案与解析一、选择题.每小题都給出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1. 下列各数中,与2020的和为1的数是( )A. 2019-B. 2020-C. 2021-D. 12020 【答案】A【解析】【分析】根据题意列式1-2020求值即可.【详解】由题意得1-2020=1+(-2020)=-2019,故选:A .【点睛】此题考查有理数的减法计算法则:减去一个数等于加上这个数的相反数.2. 下列运算中,正确( )A. 2232a a -=B. ()325a a =C. 369a a a ⋅=D. ()22422a a =【答案】C【解析】【分析】先根据合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方求出每个式子的值,再判断即可.【详解】解:A 、结果是2a 2,故本选项不符合题意;B 、结果是a 6,故本选项不符合题意;C 、结果正确,故本选项符合题意;D 、结果是4a 4,故本选项不符合题意;故选:C .【点睛】本题考查了合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方等知识点,能求出每个式子的值是解此题的关键.3. 国务院新闻办公室2020年1月17日举行新闻发布会称,数据显示,2019年全年出生人口1465万人,这里的”1465万”用科学记数法表示( )A. 4146510⨯B. 61.46510⨯C. 81.46510⨯D. 71.46510⨯ 【答案】D【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:1465万=14650000,用科学记数法表示时n=7,∴14650000=71.46510⨯.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 下面四个几何体中,左视图是四边形的几何体共有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】简单几何体的三视图. 【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B . 5. 据省统计局公布的数据,某市2019年第三季度GDP 总值约为亿元,第四季度GDP 总值比第三季度增长了8.59%,受”新型冠状肺炎”疫情的影响,该市2020年第一季度GDP 总值比2019年第四季度降低了17.8%,则该市2020年第一季度GDP 总值可用代数式表示为( )A. 8.5%17.8%⨯a 亿元B. ()18.5%17.8%+-a 亿元C. ()()18.5%117.8%-⨯+a 亿元D. ()()18.5%1% 17.8+⨯-a 亿元【答案】D【解析】【分析】根据”2020年第一季度GDP 总值=2019年第四季度GDP 总值×(1-降低率)”解答可得.【详解】解:根据题意知到2019年第四季度GDP 总值为1×(1+8.5%)a 亿元,则2020年第一季度GDP 总值为:()()18.5%1% 17.8+⨯-a 亿元,【点睛】本题考查了根据实际问题列代数式,解题的关键是弄清题意,准确表达所求的量.6. 下列说法正确的是( )A. 对”新型冠状肺炎”疑似病例的核酸检查宜采用抽样调查B. 调查全省中小学生对疫情期间”网课”的满意程度宜采用全面调查C. 一个不透明的袋子里装有大小、质地完全相同的3个红球和5个白球,从中随机摸出一个球是红球的概率是38D. 我国大功率火箭”胖五”目前进行了两次发射,一次成功,一次失败,所以”胖五”发射成功的概率是12【答案】C【解析】【分析】根据全面调查和抽样调查的概念判断.A 、B 选项,根据概率计算方法判断C 、D 选项即可【详解】A .对”新型冠状肺炎”疑似病例的核酸检查宜采用全面调查,此选项错误;B .调查全省中小学生对疫情期间”网课”的满意程度宜采用抽样调查,此选项错误;C .一个不透明的袋子里装有大小、质地完全相同的3个红球和5个白球,从中随机摸出一个球是红球的概率是38,此选项正确; D .根据概率的定义,我国大功率火箭”胖五”目前进行了两次发射,一次成功,一次失败,只经过两次实验,次数太少,不能说明”胖五”发射成功的概率是12,此选项错误, 故选:C .【点睛】本题考查全面调查与抽样调查、概率定义与计算,会根据实际情况选择调查方式,会求事件的概率是解答的关键.7. 关于的一元二次方程()210--=mx x 有两个实数根,则实数的取值范围( )A. 1m ≥-B. 1m ≥-且0m ≠C. 1m >-D. 1m >-且0m ≠ 【答案】B【解析】【分析】根据一元二次方程的定义和判别式与根的关系解答即可.【详解】∵一元二次方程()210--=mx x 即2210mx x --=有两个实数根,∴()20,241440m m m ≠=--=+≥, 解得:m ≠0且m ≥﹣1,故选:B .【点睛】本题考查一元二次方程的定义及根的判别式、解一元一次不等式,熟练掌握一元二次方程的根与判别式的关系是解答的关键.8. 如图,为ABC 边AC 上一点,4AB BC CD ===,2∠=∠DBC A ,则BD 的长为( )A. 225-+B. 225--C. 225+ 51【答案】A【解析】【分析】 根据已知证明△ADB ∽△ABC,利用AB BD AC BC=代值求解即可. 【详解】∵4AB BC CD ===,∴∠A=∠C ,∠DBC=∠BDC ,∵∠DBC=2∠A ,∴∠BDC=∠A+∠ABD=2∠A ,∴∠ABD=∠A=∠C ,∴△ADB ∽△ABC ,AD=BD ∴AB BD AC BC=, 设BD=AD=x ,则44x x =,即24160x x +-=, 解得:12225,225x x =-+=--不符题意,舍去), ∴25BD =-+故选:A .【点睛】本题考查等腰三角形的判定与性质、相似三角形的判定与性质、解一元二次方程,熟练掌握相似三角形的判定与性质是解答的关键.9. 如图,等边ABC 的边长为6cm ,动点从点出发,以每秒2cm 的速度,沿A B C →→的方向运动,到达点时停止,设运动时间为秒,2y PC =,则关于的函数图像大致为( )A. B. C. D.【答案】C【解析】【分析】分段讨论,当03x ≤≤,作PQ ⊥AC 于Q ,根据锐角三角函数求出AQ=x ,3x ,得到CQ=6-x ,利用勾股定理求出2223412364()272PC x x x =-+=-+,是二次函数;当36x <≤时,PC=12-2x ,求出222(122)4(6)PC x x =-=-,是二次函数,根据函数的性质判断图象.【详解】当03x ≤≤,作PQ ⊥AC 于Q ,∵AP=2x ,∠A=60°,∴AQ=x ,3x ,∴CQ=6-x ,∴22241236PQ CQ x x +=-+, ∴2223412364()272PC x x x =-+=-+, 当36x <≤时,PC=12-2x ,∴222(122)4(6)PC x x =-=-,故选:C .【点睛】此题考查等边三角形的性质,锐角三角函数,勾股定理,动点问题与分段函数图象,正确理解分段情况,依据图形的特点求出2PC 是解题的关键.10. 如图,在边长为1的正方形ABCD 中,点,分别在边CD ,BC 上,且DF CE =,连接BF 、AE 交于点,连接CP ,则线段CP 的最小值为( )51- B. 512 51 51【答案】A【解析】【分析】首先判断出△ABE ≌△BCF ,即可判断出∠BAE=∠CBF ,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据∠APB=90°保持不变,可得点P 的路径是一段以AB 为直径的弧,设AB 的中点为G ,连接CG 交弧于点P ,此时CP 的长度最小,最后在Rt △BCG 中,根据勾股定理,求出CG 的长度,再求出PG 的长度,即可求出线段CP 的最小值为多少.【详解】如图,∵DF CE =,CD BC =,∴CF BE =,在ABE △和BCF △中,190AB BC ABE BCF BE CF ==⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF ,∴BAE CBF ∠=∠,∵90BAE BEA ∠+∠=︒,∴90CBF BEA ∠+∠=︒,∴90APB ∠=︒,∵点在运动中保持90APB ∠=︒,∴点的路径是一段以AB 为直径的弧,设AB 的中点为,连接CG 交弧于点,此时CP 的长度最小,在Rt BCG 中,222215122CG BC BG ⎛⎫=+=+= ⎪⎝⎭, ∵1122PG AB ==, ∴5151222CP CG PG -=-=-=,即线段CP 的最小值为512-.【点睛】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP 的长度最小.二、填空题11. 因式分解:22242x xy y -+=_________.【答案】22()x y -【解析】【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【详解】222222422(2)2()x xy y x xy y x y -+=-+=-故答案为:22()x y -【点睛】本题主要考查利用完全平方式进行因式分解,熟练掌握完全平方式是解题的关键.12. 如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.【答案】5y x =+【解析】试题分析:首先设点P 的坐标为(x ,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.13. 如图,以等腰OAB 的顶点为圆心的O 与AB 相切于点,并与OA 、OB 交于、两点,连接CD .若30A ∠=︒,且CED 的长为4π3,则CD 的长为______.【答案】3【解析】【分析】由等腰三角形的性质求得∠AOC=120º,由圆的切线定理得OE ⊥AB ,可证得∠COE=BOE=60º,进而证得OF ⊥CD ,CF=DF ,再由弧长公式求得OC=OD=2,然后由CF=OC ·sin60º即可解得CD 的长.【详解】设OE 与CD 交于点F ,∵△AOB 是等腰三角形,∠A=30º,∴∠AOB=120º,∵O 与AB 相切于点,∴OE ⊥AB ,∴∠COE=BOE=60º,∵OC=OD ,∴OF ⊥CD ,CF=DF , ∵CED 的长为4π3, ∴1204π1803OC π=,即OC=2,∴CF=OC ·sin60º=3232⨯=, ∴CD=2CF=23,故答案为:23.【点睛】本题考查了等腰三角形的性质、切线定理、弧长公式、特殊角的三角函数、解直角三角形,熟练掌握这些知识的运用是解答的关键. 14. 在CAB 中,90A ∠=︒,4AB AC ==,点,分别是边AC 、AB 上的点,且1AD =,连接DE ,以线段DE 为直角边作等腰直角DEF ,当点恰好落在BC 边上时,则BE 的长______.【答案】52或2 【解析】【分析】根据题目信息作等腰直角DEF ,分别讨论①当90DEF ∠=︒或②当90EDF ∠=︒时,证明CDF BFE ∽△△,即可列出等式计算BE 的长度.【详解】解:分两种情况:①当90DEF ∠=︒时,如图1所示:∵ABC 和DEF 是等腰直角三角形, ∴4AC AB ==,45B C EFD EDF ∠=∠=∠=∠=︒,242BC AB ==,2DF EF =, ∵1AD =,∴3CD AC AD =-=,∵EFC EFD CFD B BEF ∠=∠+∠=∠+∠,∴CFD BEF ∠=∠,∴CDF BFE ∽△△, ∴2CF CD DF BE BF EF=== ∴32222BF ===, ∴322222CF BC BF =-==,∴522CF BE ==; ②当90EDF ∠=︒时,如图2所示:同①得:CDF BFE ∽△△,∴12CF CD DF BE BF EF ===, ∴232BF CD ==, ∴42322CF BC BF =-=-=, ∴22BE CF ==;综上所述,BE 的长是52或2. ∴答案为:52或2.【点睛】本题主要考查了等腰直角三角形的性质和相似三角形的证明及性质,其中证明出CDF BFE ∽△△相似是解题的关键.三、简答题15. 先化简,再求值:2221221118a a a a a a a +-⎛⎫⋅-÷ ⎪-+-⎝⎭,其中3a =. 【答案】221a a -+,1 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【详解】解:2221221118a a a a a a a +-⎛⎫⋅-÷ ⎪-+-⎝⎭ ()()()()()()22212181111a a a a a a a a +-=⋅-⋅++-- ()()()()()22181111a a a a a a +=--++-()()()22111a a a -=-+ 221a a -=+, 当3a =时,原式62131-==+. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 16. 李华家到学校的路是一段平路和一段下坡路.已知李华在平路骑自行车的速度为240米/分钟,在下坡路骑自行车的速度为320米/分钟,在上坡路骑自行车的速度为160米/分钟,若李华从家里到学校需20分钟,从学校到家里需30分钟.请问李华家与学校的距离是多少?(不考虑其他因素)【答案】李华家与学校的距离是5600米【解析】【分析】设平路有米,坡路有米,根据”李华从家里到学校的时间=20分钟,从学校到家里的时间=30分钟”即可列出方程组,解方程组求出x 、y 的值后进一步即可求出答案.【详解】解:设平路有米,坡路有米,根据题意,得:2024032030160240x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得24003200x y =⎧⎨=⎩, 所以240032005600x y +=+=米.答:李华家与学校的距离是5600米.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 17. 在如图所示的1212⨯网格中,ABC 和222A B C △都是格点三角形,已知格点线段MN .(我们把网格线的交点叫做格点)(1)画出ABC 关于MN 对称图形111A B C △;(2)说明222A B C △是由111A B C △经过怎样的平移得到的?【答案】(1)见解析;(2)先向右平移6个单位长度,再向下平移2个单位长度【解析】【分析】(1)根据轴对称的性质,作出对应点,再把对应点顺次连接作答即可;(2)根据对应点的平移方向和距离作答即可.【详解】解:(1)如图;(2)先向右平移6个单位长度,再向下平移2个单位长度.【点睛】本题考查是网格中图形的变换,图形的变换有三种:平移、旋转和轴对称,正确理解和运用图形的变换规律是解本题的关键18. 观察点阵图中点与等式之间的关系,寻找规律.①2221211-⨯=+;②2232221-⨯=+;③2243231-⨯=+;④2254241-⨯=+;…按照你发现的规律解答下列问题:(1)第⑥个等式是______;(2)用含 (为正整数)的等式表示第n 个等式,并证明其正确性.【答案】(1)2276261-⨯=+;(2)()22121n n n +-=+,证明见解析【解析】【分析】(1)接着第4个等式,写出第5个和第6个等式即可;(2)根据前四个等式与n 的关系,写出第n 个等式,利用完全平方公式展开证明等式成立即可.【详解】解:(1)接着第4个等式,得:第5个等式为:2252561-⨯=+,第6个等式为:2276261-⨯=+,故答案为:2276261-⨯=+;(2)()22121n n n +-=+,证明:左边222121n n n n =++-=+,右边21n =+,∴左边右边,等式成立.【点睛】本题考查探究数字型变化规律、完全平方公式,认真观察,仔细思考,善用联想并借用公式证明是解决这类题的方法.19. 如图所示,在一个坡度1:2i =的山坡CB 的顶端处竖直立着一个电视发射塔AB .为测得电视发射塔的高度,小明站在山脚的平地处测得电视发射塔的顶端的仰角为40°,若测得斜坡BC 长为1005米,点到点的水平距离20CD =米,求电视发射塔AB 的高度.(参考数值:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,结果保留整数)【答案】85米【解析】【分析】如图,根据坡比设BE=x ,EC=2x ,在RtBEC 中,根据勾股定理列出关于x 的方程求出BE 和CE ;在R AEDt △中,利用正切的定义求出AE 问题得解.【详解】解:如图,作AB DC ⊥交DC 的延长线于点,在Rt BCE 中,∵:1:2i BE CE ==,设BE x =,则2CE x =,1005BC =,根据勾股定理得()(22225x x +=, 解得100x =,∴100BE =(米),200CE =(米),∴220DE CE CD =+=(米),在Rt ADE △中, ∵tan 40AE DE︒=, ∴2200.84184.8AE ≈⨯=,∴184.810084.885AB AE BE =-≈-=≈(米),答:电视发射塔AB 的高度约为85米.【点睛】本题考查了坡比的概念、仰角概念及锐角三角函数定义,要求学生能借助仰角、坡比构造直角三角形并结合图形利用三角函数解直角三角形.20. 如图,在矩形ABCD 中,1AB =,2BC =ADC ∠的平分线交边BC 于点,AH DE ⊥于点,连接AE ,连接CH 并延长交AE 于点.(1)求证:ABE AHE ≌△△;(2)求证:2AE FH =.【答案】(1)见解析;(2)见解析【解析】【分析】(1)由矩形的性质得到2,AD =证明ADH 是等腰直角三角形,求解1,AH = 从而利用斜边直角边公理证明ABE AHE ≌△△.(2)由EDC △是等腰直角三角形,Rt ABE Rt AHE ≌△△,求解67.5,AEH ∠=︒ 再求解67.5,DHC ∠=︒ 利用等腰三角形的性质可得答案.【详解】解:(1)在矩形ABCD 中,2AD BC ==, ∵DE 平分ADC ∠,∴45ADE ∠=︒,∵AH DE ⊥,∴ADH 是等腰直角三角形, ∴2AD AH =,∴1AH =,∴1AH AB ==,又∵AE AE =,∴Rt ABE Rt AHE ≌△△.(2)证明:∵EDC △是等腰直角三角形,∴45EDC DEC ∠∠==︒,∵Rt ABE Rt AHE ≌△△, ∴1801804567.522DEC AEH ︒-∠︒-︒∠===︒, 在等腰直角ADH 中,1DH AH ==,在矩形ABCD 中,1DC AB ==,∴DH DC =, ∴1801804567.522HDC DHC ︒-∠︒-︒∠===︒, ∴67.5FHE DHC ∠=∠=︒∴AEH FHE ∠=∠,∴FE FH =,AH DE ⊥90,AEH FAH FHE FHA ∴∠+∠=︒=∠+∠,FAH FHA ∴∠=∠FA FH ∴=,∴2AE FH =.【点睛】本题考查的是矩形的性质,等腰三角形的判定,等腰直角三角形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.21. 某校为了解九年级学生对安徽省2020年中考新变化的了解情况,随机抽查了部分九年级学生(了解程度分为:”A :非常了解”、”B :比较了解”、”C :不太了解”、”D :完全不了解”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项而且只能选一项),并将统计结果制成如下两幅不完整的统计图,图1中的、、的高度之比为3:11:1,并且知道被调查的学生中非常了解和比较了解的共84人.请你根据以上提供的信息,解答下列问题.(1)被调查的学生中选”A :非常了解”的有______人;(2)一共调查了多少人?(3)若该校九年级有960名学生,请你估算该校九年级学生中对安徽省2020年中考新变化”不太了解”的有多少人?【答案】(1)18;(2)120人;(3)240人.【解析】【分析】(1)设被调查的学生中选A 的人数为人,从而可得选B 、D 的人数,再根据选A 、B 的共有84人建立方程求出x 的值,由此即可得出答案;(2)先根据(1)求出选D 的人数,再根据扇形统计图中的数据即可得;(3)先求出选”C :不太了解”的学生人数占比,再乘以960即可得.【详解】(1)设被调查的学生中选A 的人数为人,则选B 的人数为11x 人,选D 的人数为人由题意得:31184x x +=解得6x =则318x =即被调查的学生中选A 的人数为18人故答案为:18;(2)由(1)可知,选D 的人数为6人则65%120÷=(人)答:一共调查了120人;(3)由(1)可知,选A 、B 、D 的学生人数为3111515690x x x x ++==⨯=(人)则选”C :不太了解”的学生人数占比为12090100%25%120-⨯= 96025%240⨯=(人) 答:估计该校九年级学生中对安徽省2020年中考新变化”不太了解”的有240人.【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,熟练掌握统计调查的相关知识是解题关键.22. 如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线:2y kx =+与抛物线交于、两点,点在点的右侧,过点作轴的垂线,垂足为.(1)求抛物线的解析式;(2)若FOC 的面积为4,求的值;(3)当点在抛物线上运动时,判断线段BF 与BC 的数量关系(、、),并证明你的判断.【答案】(1)2114y x =+;(2)34k =;(3)BF=BC ,证明见解析【解析】【分析】(1)把点()2,2-,()4,5代人2y ax c =+即可求解;(2)根据FOC 的面积求出OC 的长度,从而得到点B 的横坐标,将点B 的横坐标代入二次函数2114y x =+中求得B 的纵坐标,将B 的坐标代入一次函数2y kx =+中,即可求出k 的值;(3)设21,14B x x ⎛⎫+ ⎪⎝⎭,而()0,2F ,则2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2114BC x =+,故BF=BC . 【详解】解:(1)把点()2,2-,()4,5代人2y ax c =+得42165,a c a c +=⎧⎨+=⎩ 解得1,41a c ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为2114y x =+; (2)∵142FOC S OC OF =⨯=△,2OF =, ∴4OC =,把4x =代入二次函数2114y x =+得5y =, 把()4,5代入2y kx =+得34k =; (3)BF BC =. 证明:设21,14B x x ⎛⎫+ ⎪⎝⎭,而()0,2F , ∴2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2114BF x =+, ∵BC x ⊥轴, ∴2114BC x =+,∴BF BC =.【点睛】本题考查了一次函数的定义,利用待定系数法求二次函数解析式,两点间的距离等知识,属于二次函数综合题.两点间的距离公式:设A(x 1,y 1),B(x 2,y 2),则()()221212A y B x x y -+-=.23. 在ABC 中,2ABC ACB ∠=∠,BD 平分ABC ∠.(1)如图1,若3AB =,5AC =,求AD 的长.(2)如图2,过分别作AE AC ⊥交BC 于,AF BD ⊥于. ①求证:ABC EAF ∠=∠;②求BF AC的值. 【答案】(1)95AD =;(2)①见解析;②12 【解析】【分析】 (1)由已知易证ABD ACB ∽△△,利用AD AB AB AC=可求得AD 的长; (2)①由(1)和已知易证ABF ECA ∽△△,进而证得ABC EAF ∠=∠;②过作//AG BC ,与BD 的延长线交于,易证:BDC 、ABG 和ADG 均为等腰三角形,进而得到AC=BG ,根据等腰三角形的”三线合一”性质即可得证.【详解】解:(1)∵在ABC 中,2ABC ACB ∠=∠,BD 平分ABC ∠,∴ABD DBC ACB ∠=∠=∠,又∠A=∠A ,∴ABD ACB ∽△△,∴AD AB AB AC=, ∵3AB =,5AC =,∴95AD =; (2)①∵AE AC ⊥交BC 于,AF BD ⊥于,∴∠AFB=∠EAC ,又∠ABF=∠ACB ,∴ABF ECA ∽△△,∴BAF AEC ∠=∠,∵BAF BAE EAF ∠=∠+∠,AEC ABC BAE ∠=∠+∠,∴ABC EAF ∠=∠;②过作//AG BC ,与BD 的延长线交于,∵ABD DBC ACB ∠=∠=∠,∴ABD DBC ACB CAG G ∠=∠=∠=∠=∠,∴BDC 、ABG 和ADG 均等腰三角形,∴AC BG =,∵在等腰ABG 中,AF BG ⊥于,∴2BG BF =,即12BF BG =, ∴BF AC的值为12.【点睛】本题考查了等腰三角形的判定与性质、相似三角形的判定与性质、平行线的性质,熟练掌握相似三角形的判定与性质,会借助作平行线,用等腰三角形的”三线合一”性质解决问题是解答的关键.。

人教版中考模拟检测《数学卷》含答案解析

人教版中考模拟检测《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的相反数是()A. 2B.22C. 2D. -22.中国领空面积约为1260000平方公里,将1260000用科学记数法表示为( )A. 0.126×107B. 1.26×106C. 126×105D. 126×1043.下列运算正确是()A. (m3)2=m5B. m3 m 2=m6C. m2-1=(m+1)(m-1)D. (m+1)2=m2+14.图中几何体的主视图是()A. B. C. D.5.如图,把一个直角三角尺的直角顶点放在直尺的一边上,则∠1与∠2之间关系一定成立的是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1=∠2D. ∠1+∠2=90°6.某中学12个班级参加春季植树,其中2个班各植60棵,3个班各植100棵,4个班各植120棵,另外三个班分别植70棵、80棵、90棵,下列叙述正确的是()A. 中位数是100,众数是100B. 中位数是100,众数是120C. 中位数90,众数是120D. 中位数是120,众数是1007.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A. 是中心对称图形,但不是轴对称图形B. 是轴对称图形,但不是中心对称图形C. 既是中心对称图形,又是轴对称图形D. 既不是中心对称图形,又不是轴对称图形8.我国古代数学著作《九章算术》卷七有下列问题:”今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-= D.3487y y-+=9.矩形ABCD的边BC上有一动点E,连接AE、DE,以AE、DE为边作▱AEDF.在点E从点B移动到点C 的过程中,▱AEDF的面积()A. 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变10.抛物线24(0)y ax x c a经过点(x0,y0),且x0满足关于x的方程20ax+=,则下列选项正确的是( )A. 对于任意实数x都有y≥ y0B. 对于任意实数x都有y≤y0C. 对于任意实数x都有y>y0D. 对于任意实数x都有y<y0二、填空题:本大题共6小题11.分解因式:ab a-=______.12.如图,等边三角形ABC的边长为2,DE是它的中位线则DE的长为________.13.我市某校开展”我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图在抽查的学生中,喜欢足球运动的人数为________.14.一个扇形圆心角为 120°,半径为 2,则这个扇形的弧长为____.15.小艾在母亲节给妈妈送了一束鲜花,出差在外爸爸问小艾送了些什么花.小艾调皮地说:”考考你,花束是由象征爱的康乃馨、玫瑰和百合组成.康乃馨的支数比玫瑰多,但比百合的两倍少,玫瑰的支数比百合多.”请帮小艾爸爸算一算,这束花的总支数至少为________.16.如图,在平面直角坐标系中,平行四边形OABC 的对角线交于点D ,双曲线y=k x (x >0)经过C 、D 两点,双曲线y=8x(x >0)经过点B ,则平行四边形OABC 的面积为________.三、解答题:本大题共9小题,解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.计算: 2312sin 30(1)--+-___________.18.先化简,再求值:(x +21x x +)÷(x+1),其中x=3. 19.如图,ABC ADE ,均是顶角为42°的等腰三角形,BC 、DE 分别是底边.图中ACE △可以看成由哪个三角形通过怎样的旋转得到的?证明这两个三角形全等.20.已知边长为a 的正方形ABCD 和∠O=45°.(1)以∠O 为一个内角作菱形OPMN ,使OP=a (要求:尺规作图,不写作法,保留作图痕迹)(2)设正方形ABCD 的面积为S 1,菱形OPMN 的面积为S 2,求12S S 的值. 21.如图,AB 是⊙O 的直径,D 是BC 的中点,弦DH ⊥AB 于点E ,交弦BC 于点F ,AD 交BC 于点G ,连接BD ,求证:F 是BG 的中点.22.实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如下图(图象由线段OA 与部分双曲线AB 组成) .国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于”酒后驾驶”,不能驾车上路.(1)求部分双曲线AB 的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班请说明理由.23. “五月杨梅已满林,初疑一颗值千金 “,莆田杨梅核小,果味酸甜适中,既可直接食用,又可加工成杨梅干、酱、蜜饯等,还可酿酒,止渴、生津、助消化等功能,深受当地老百姓喜爱.杨梅采摘当天食用口感最好,隔天食用口感较差,某水果超市计划六月份订购莆田杨梅,每天进货量相同,进货成本每斤4元,售价每斤6元,未售出的杨梅降价转卖给蜜饯加工厂,以每斤2元的价格当天全部处理完,根据往年销售经验,每天需求量与当天平均气温有关,为了确定六月份的订购计划,统计了前三年六月份日平均气温数据,如下表所示:日平均气温(°C) t<25 25≤t<30 t≥30天数(天) 18 36 36杨梅每天需求量(斤) 200 300 500(1)以前三年六月份日平均气温为样本,估计今年六月份日平均气温不低于25℃的概率;(2)该超市六月份莆田杨梅每天的进货量为x斤(300≤x≤500,试以”平均每天销售利润y元”为决策依据,说明当x为何值时,y取得最大值.24.如图,在四边形ABCD中,AC⊥AD,∠ABC=∠ADC.在BC延长线上取点E,使得DC=DE.(1)如图1,当AD∥BC时,求证:①∠ABC=∠DEC;②CE=2BC;(2)如图2,若tan∠ABC=43,BE=10,设AB=x,BC=y,求y与x的函数表达式.25.已知抛物线F1:y=x2-4与抛物线F2:y=ax2-4a(a≠1).(1)直接写出抛物线F1与抛物线F2有关图象的两条相同性质;(2)抛物线F1与x轴交于A、B两点(点B在点A的右边),直线BC交抛物线F1于点C(点C与点B不重合),点D是抛物线F2的顶点.①若点C为抛物线F1的顶点,且点C为ABD△的外心,求a的值;②设直线BC的解析式为y=kx+b,若k+2a=4,则直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.答案与解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的.的相反数是( )A. 2B.C.D.【答案】D【解析】【分析】根据一个数的相反数就是在这个数前面添上”-”号,即可解答.的相反数是,故选:D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上”-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.中国的领空面积约为1260000平方公里,将1260000用科学记数法表示为( )A. 0.126×107 B. 1.26×106 C. 126×105 D. 126×104 【答案】B【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 1.26a =,1260000整数位数是7位,所以6n =∴1260000=61.2610⨯ .故选:B .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.下列运算正确的是( )A. (m 3)2=m 5B. m 3⋅ m 2=m 6C. m 2-1=(m+1)(m -1)D. (m+1)2=m 2+1 【答案】C【解析】【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,运用平方差公式因式分解以及完全平方公式逐一判断即可.【详解】】解:A.(m3)2=m6,故本选项不合题意;B.m3⋅m2=m5,故本选项不合题意;C.m2-1=(m+1)(m-1),故本选项符合题意;D.(m+1)2=m2+2m+1,故本选项不合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法、幂的乘方以及运用公式法因式分解,熟记幂的运算法则和乘法公式是解答本题的关键4.图中几何体的主视图是()A. B. C. D.【答案】A【解析】【分析】根据从正面看到的图是主视图求解即可.【详解】解:A.是主视图,符合题意;B.不是该几何体的三视图,故不符合题意;C.是左视图,故不符合题意;D.俯视图,故不符合题意;故选A.【点睛】本题考查了三视图的知识,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.5.如图,把一个直角三角尺的直角顶点放在直尺的一边上,则∠1与∠2之间关系一定成立的是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1=∠2D. ∠1+∠2=90°【分析】如图,根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°计算即可得解.【详解】∵直尺对边互相平行,∴∠3=∠1,∵∠3+∠2=180°-90°=90°,∴∠1+∠2=90°.故选:D.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.6.某中学12个班级参加春季植树,其中2个班各植60棵,3个班各植100棵,4个班各植120棵,另外三个班分别植70棵、80棵、90棵,下列叙述正确的是()A. 中位数是100,众数是100B. 中位数是100,众数是120C. 中位数是90,众数是120D. 中位数是120,众数是100【答案】B【解析】【分析】将数据按从小到大的顺序排列,再根据众数和中位数的概念即可得到结果.【详解】解:根据题意,将这组数据重新排列为60、60、70、80、90、100、100、100、120、120、120、120,最中间位置的数据为第6个和第7个数据,都为100,因此中位数为1001001002+=,120出现了4次,出现次数最多,所以这组数据的众数为120,故选:B.【点睛】本题主要考查了找一组数据中的众数和中位数,解题的关键是掌握众数和中位数的概念.7.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是()A. 是中心对称图形,但不是轴对称图形B. 是轴对称图形,但不是中心对称图形C. 既是中心对称图形,又是轴对称图形D. 既不是中心对称图形,又不是轴对称图形【分析】先根据已知条件OA=OB=OC=OD,可知四边形ABCD的对角线相等且互相平分,得出四边形ABCD是矩形,然后根据矩形的对称性,得出结果.【详解】解:如图所示:∵四边形ABCD的对角线相交于点O且OA=OB=OC=OD,∴OA=OC,OB=OD;AC=BD,∴四边形ABCD是矩形,∴四边形ABCD既是轴对称图形,又是中心对称图形.故选:C.【点睛】本题主要考查了矩形的判定及矩形的对称性.对角线相等且互相平分的四边形是矩形,矩形既是轴对称图形,又是中心对称图形.8.我国古代数学著作《九章算术》卷七有下列问题:”今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-= D.3487y y-+=【答案】A【解析】【分析】设有x人,物品的价格为y元,根据所花总钱数不变列出方程即可.【详解】设有x人,物品的价格为y元,根据题意,可列方程:8374x yx y-=⎧⎨+=⎩,故选A.【点睛】本题考查了由实际问题抽象出二元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.矩形ABCD 的边BC 上有一动点E ,连接AE 、DE ,以AE 、DE 为边作▱AEDF .在点E 从点B 移动到点C 的过程中,▱AEDF 的面积( )A 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变【答案】D【解析】【分析】 过点E 作EG ⊥AD 于G ,证四边形ABEG 是矩形,得出EG=AB ,平行四边形AEDF 的面积=2△ADE 的面积=2×12AD×EG=AD×AB=矩形ABCD 的面积,即可得出结论. 【详解】解:过点E 作EG ⊥AD 于G ,如图所示:则∠AGE=90°,∵四边形ABCD 是矩形,∴∠ABC=∠BAD=90°, ∴四边形ABEG 是矩形,∴EG=AB ,∵四边形AEDF 是平行四边形,∴平行四边形AEDF 的面积=2△ADE 的面积=2×12AD×EG=AD×AB=矩形ABCD 的面积, 即▱AEDF 的面积保持不变;故选:D .【点睛】本题考查了矩形的性质与判定、平行四边形的性质以及三角形面积等知识;熟练掌握矩形的性质,证出▱AEDF 的面积=矩形ABCD 的面积是解题的关键.10.抛物线24(0)y ax x c a 经过点(x 0,y 0),且x 0满足关于x 的方程20ax +=,则下列选项正确的是( )A. 对于任意实数x 都有y≥ y 0B. 对于任意实数x 都有y≤y 0C. 对于任意实数x 都有y > y 0D. 对于任意实数x 都有y <y 0【答案】A 【解析】 【分析】由0x 满足关于的方程20ax +=,可得出点0(x ,0)y 是二次函数24y ax x c =++的顶点坐标,再由0a >利用二次函数的性质即可得出对于任意实数都有0y y ,此题得解. 【详解】解:0x 满足关于的方程20ax +=,2x a, 点0(x ,0)y 是二次函数24y ax x c =++的顶点坐标.0a >,对于任意实数都有0y y . 故选:.【点睛】本题考查了二次函数的性质,牢记”当0a >时,顶点是抛物线的最低点”是解题的关键.二、填空题:本大题共6小题11.分解因式:ab a -=______. 【答案】()1a b - 【解析】 【分析】确定多项式每项的公因式为a ,直接提取即可. 【详解】解:1(1)ab a a b a a b -=⋅-⋅=- 故答案为()1a b -【点睛】本题考查提公因式法因式分解,确定公因式是解答此题的关键,确定公因式的方法为公因式的系数是多项式各项系数的最大公约数;字母取各项都含有的相同字母,相同字母的指数取次数最低的. 12.如图,等边三角形ABC 边长为2,DE 是它的中位线则DE 的长为________.【答案】1【解析】【分析】根据三角形中位线定理解答.【详解】解:∵DE是△ABC的中位线,∴112DE BC==,故答案为:1.【点睛】本题考查是中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13.我市某校开展”我最喜爱的一项体育运动”调查,每名学生必选且只能选一项.现随机抽查了若干名学生,并将其结果绘制成不完整的条形图和扇形图在抽查的学生中,喜欢足球运动的人数为________.【答案】30【解析】【分析】根据排球的人数以及百分比,即可得到被调查的人数;再由总人数×20%即可;【详解】解:总人数=21150 14%人,喜欢足球的人数=150×20%=30(人)故答案为30.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百14.一个扇形的圆心角为120°,半径为2,则这个扇形的弧长为____.【答案】4 3π【解析】【分析】根据弧长公式可得.【详解】根据题意,扇形的弧长为12024 1803ππ⋅⋅=.故答案为43π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.小艾在母亲节给妈妈送了一束鲜花,出差在外的爸爸问小艾送了些什么花.小艾调皮地说:”考考你,花束是由象征爱的康乃馨、玫瑰和百合组成.康乃馨的支数比玫瑰多,但比百合的两倍少,玫瑰的支数比百合多.”请帮小艾爸爸算一算,这束花的总支数至少为________.【答案】12【解析】【分析】设康乃馨有x支,百合有y支,玫瑰有m支,根据题意得到不等式组,确定百合的最少支数即可解答.【详解】解:设康乃馨有x支,百合有y支,玫瑰有m支,根据题意可得:2y m x y ,且x,y,m为正整数,所以y的最小值为3,则m=4,x=5,所以总支数至少为3+4+5=12(支),故答案为:12.【点睛】本题考查了不等式的应用,解题的关键是找出不等关系,确定百合的最少支数.16.如图,在平面直角坐标系中,平行四边形OABC的对角线交于点D,双曲线y=kx(x>0)经过C、D两点,双曲线y=8x(x>0)经过点B,则平行四边形OABC的面积为________.【解析】 【分析】根据平行四边形的性质得到OD BD =,设的坐标是4(2,)m m ,得到的坐标是2(,)m m ,的纵坐标是4m求得22kmm,把4y m =代入2y x =得到的横坐标是2m,根据平行四边形的面积公式即可得到结论. 【详解】解:平行四边形OABC 的对角线交于点,OD BD ∴=,设的坐标是4(2,)m m,D ∴的坐标是2(,)m m,的纵坐标是4m22kmm,把4y m =代入2y x =得:2m x =,即的横坐标是:2m, BCOA ,平行四边形OABC 的面积BC 点的纵坐标4(2)62m mm,故答案为:6.【点睛】本题考查了平形四边形的性质,反比例函数系数的几何意义,根据点的坐标表示出BC 的长度是解题的关键.三、解答题:本大题共9小题,解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.计算:212sin 30(1)-+-___________.1 【解析】 【分析】先根据取绝对值、特殊角的三角函数以及乘方的知识进行化简,再进行计算即可.212sin 30(1)-+-1-2×12+11-1+1=31-故答案为31-.【点睛】本题考查了取绝对值、特殊角的三角函数以及乘方等知识,灵活运用相关基础知识是解答本题的关键.18.先化简,再求值:(x +21x x+)÷(x+1),其中x=3. 【答案】14,3x x + 【解析】 【分析】直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:原式22111x x x x2(1)11x x x1x x+=, 当3x =时,原式3+1433. 【点睛】本题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.如图,ABC ADE ,均是顶角为42°的等腰三角形,BC 、DE 分别是底边.图中ACE △可以看成由哪个三角形通过怎样的旋转得到的?证明这两个三角形全等.【答案】图中的△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的,证明见解析 【解析】 【分析】先根据图形得出△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的,再根据SAS 判定△ACE ≌△ABD 即可.【详解】解:图中的△ACE 可以看成由△ABD 绕着点A 逆时针旋转42°得到的, 证明:∵△ABC 和△ADE 都是顶角为42°的等腰三角形,∴AB =AC ,∠BAC =∠DAE =42°,AD =AE , ∴∠BAD =∠CAE , 在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD (SAS ).【点睛】本题主要考查了旋转的性质以及全等三角形的判定,解题的关键是熟练掌握旋转的性质. 20.已知边长为a 的正方形ABCD 和∠O=45°.(1)以∠O 为一个内角作菱形OPMN ,使OP=a (要求:尺规作图,不写作法,保留作图痕迹) (2)设正方形ABCD 的面积为S 1,菱形OPMN 的面积为S 2,求12S S 的值. 【答案】(1)见解析;(2)2 【解析】 【分析】(1)根据四边相等的四边形是菱形画出图形即可. (2)分别求出正方形,菱形的面积即可解决问题. 【详解】解:(1)如图,菱形ONMP 即为所求.(2)如图,过点N 作NH ⊥OP 于H .∵AB=ON=OP=a ,∴正方形ABCD 的面积S 1=a 2, 在Rt △ONH 中, ∵∠NOH=45°,ON=a ,2sin 452NH ON a ∴=⋅︒=, ∴菱形ONMP 的面积2222S a =, 2122222S a S a ∴==. 【点睛】本题考查作图-复杂作图,菱形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.如图,AB 是⊙O 的直径,D 是BC 的中点,弦DH ⊥AB 于点E ,交弦BC 于点F ,AD 交BC 于点G ,连接BD ,求证:F 是BG 的中点.【答案】见解析 【解析】 【分析】根据圆周角定理证明∠CBD=∠HDB ,推出FB=FD ,再根据余角的性质证明∠FDG=∠FGD ,推出FD=FG 即可解决问题.【详解】证明:∵AB 是直径,AB ⊥DH ,∴BH DB=,∵D是BC的中点,∴BH DB CD==,∴∠CBD=∠HDB,∴FB=FD,∵AB是直径,∴∠ADB=90°,∴∠FDG+∠FDB=90°,∠FGD+∠FBD=90°,∴∠FDG=∠FGD,∴FD=FG,∴FG=FB,即点F是BG的中点.【点睛】本题考查圆周角定理,垂径定理,以及余角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如下图(图象由线段OA与部分双曲线AB组成) .国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于”酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)18032y xx≥;(2)不能,见解析【解析】【分析】(1)首先求得线段OA所在直线的解析式,然后求得点的坐标,代入反比例函数的解析式即可求解;(2)把.20x .代入反比例函数解析式可求得时间,结合规定可进行判断.【详解】解:(1)依题意,直线OA 过1(4,20),则直线OA 的解析式为80y x =,当32x =时,120y =,即3(2A ,120),设双曲线的解析式为k y x=,将点3(2A ,120)代入得:180k =,1803()2y x x ∴=; 由180y x=得当20y =时,9x =, 从晚上22:30到第二天早上7:00时间间距为8.5小时,8.59<,第二天早上7:00不能驾车去上班.【点睛】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点,熟练相关性质是解题的关键. 23. “五月杨梅已满林,初疑一颗值千金 “,莆田杨梅核小,果味酸甜适中,既可直接食用,又可加工成杨梅干、酱、蜜饯等,还可酿酒, 止渴、生津、助消化等功能,深受当地老百姓喜爱.杨梅采摘当天食用口感最好,隔天食用口感较差,某水果超市计划六月份订购莆田杨梅,每天进货量相同,进货成本每斤4元,售价每斤6元,未售出的杨梅降价转卖给蜜饯加工厂,以每斤2元的价格当天全部处理完,根据往年销售经验,每天需求量与当天平均气温有关,为了确定六月份的订购计划,统计了前三年六月份日平均气温数据,如下表所示:(1)以前三年六月份日平均气温为样本,估计今年六月份日平均气温不低于25℃的概率;(2)该超市六月份莆田杨梅每天的进货量为x 斤(300≤x≤500,试以”平均每天销售利润y 元”为决策依据,说明当x 为何值时,y 取得最大值. 【答案】(1)45;(2)每天的进货量300斤,利润最大值为520元 【解析】 【分析】1)用前三年六月份日平均气温不低于25C ︒的天数除以前三年六月份的总天数即可; (2)当300500x 时,分25t <;2530t;30t 三种情况,分别表示出每天的利润,再根据加权平均数的定义求出平均每天销售利润与之间的函数解析式,然后根据一次函数的性质求解即可. 【详解】解:(1)估计今年六月份日平均气温不低于25C ︒的概率为:36364905; (2)由题意,300500x ,若25t <,则利润为62002(200)48002x x x ; 若2530t,则利润为63002(300)412002x xx ;若30t ,则利润为642x x x ;(8002)18(12002)363620.464090x x xyx,0.40-<,y ∴随的增大而减小,当300x =时,有最大值,此时0.4300640520y.答:每天的进货量为300斤,平均每天销售的利润取得最大值为520元.【点睛】本题考查了概率,一次函数的应用,频数分布表,加权平均数,分类讨论的思想等知识点,求出与之间的函数解析式是本题的难点.24.如图,在四边形ABCD 中,AC ⊥AD ,∠ABC=∠ADC .在BC 延长线上取点E ,使得DC=DE . (1)如图1,当AD ∥BC 时,求证:①∠ABC=∠DEC ;②CE=2BC ; (2)如图2,若tan ∠ABC=43,BE=10,设AB=x ,BC=y ,求y 与x 的函数表达式.【答案】(1)①证明见解析;②证明见解析;(2)12252510563y x x ⎛⎫=-<< ⎪⎝⎭. 【解析】 【分析】(1)①先根据平行线的性质可得DCE ADC ∠=∠,再根据等腰三角形的性质可得DCE DEC ∠=∠,从而可得ADC DEC ∠=∠,然后根据等量代换即可得证;②如图1(见解析),先根据平行线的判定、平行四边形的判定可得四边形ABCD 是平行四边形,再根据平行四边形的性质可得AD BC =,然后根据矩形的判定与性质AD CH =,从而可得CH BC =,最后根据等腰三角形的三线合一即可得证;(2)如图2(见解析),先根据等腰三角形的三线合一可得2CE HE =,再根据矩形的判定与性质可得,90AN MH MAN =∠=︒,然后根据相似三角形的判定与性质可得AM AC AN AD=,又分别在Rt ABM 和Rt ACD △中,利用正切函数值求出433,,555AM x BM x AN x ===,最后利用线段的和差求出BH 、HE 、CE 的长,据此利用BC BE CE =-即可得.【详解】(1)①//AD BCDCE ADC ∴∠=∠DC DE =DCE DEC ∴∠=∠ADC DEC ∴∠=∠ABC ADC ∠=∠ABC DEC ∴∠=∠;②ABC DEC DCE ∠=∠=∠//AB CD ∴//AD BC四边形ABCD 是平行四边形AD BC ∴=如图1,作DH BE ⊥于点HAC AD ⊥四边形ACHD 是矩形AD CH ∴=CH BC ∴=DC DE =且DH BE ⊥22CE CH BC ∴==;(2)如图2,作DH BE ⊥于点H由等腰三角形的三线合一得:2CE HE =作AN DH ⊥于点N ,AM BE ⊥于点M四边形AMHN 是矩形,90AN MH MAN ∴=∠=︒90MAC NAC ∴∠+∠=︒AC AD ⊥90NAD NAC ∴∠+∠=︒MAC NAD ∠=∠在ACM △和ADN △中,90MAC NAD ANC AND ∠=∠⎧⎨∠=∠=︒⎩ ACM ADN ∴~AM AC AN AD∴= 在Rt ABM 中,4tan 3AM ABC BM ∠== 设4=AM a ,则3BM a =5AB a x ∴=== 解得15a x = 43,55AM x BM x ∴== 在Rt ACD △中,4tan tan 3AC ADC ABC AD =∠=∠= 4453x AN ∴= 解得35AN x = 336555BH BM MH BM AN x x x ∴=+=+=+= 10BE =6105HE BE BH x ∴=-=- 122205CE HE x ∴==- 121210(20)1055BC BE CE x x ∴=-=--=- 即12105y x =- 又0BC BE <<,即010BC <<252563x ∴<< 故y 与x 的函数表达式为12252510()563y x x =-<<.【点睛】本题考查了等腰三角形的判定与性质、矩形的判定与性质、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造直角三角形和相似三角形是解题关键.25.已知抛物线F 1:y=x 2-4与抛物线F 2:y=ax 2-4a(a≠1).(1)直接写出抛物线F 1与抛物线F 2有关图象的两条相同性质;(2)抛物线F 1与x 轴交于A 、B 两点(点B 在点A 的右边),直线BC 交抛物线F 1于点C(点C 与点B 不重合),点D 是抛物线F 2的顶点.①若点C 为抛物线F 1的顶点,且点C 为ABD △的外心,求a 的值; ②设直线BC 解析式为y=kx+b ,若k+2a=4,则直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)对称轴为y 轴,顶点的横坐标为0;(2)①252+或252-,②过定点,定点坐标为(-2,0) 【解析】【分析】(1)根据两个抛物线的b 都为0,即可得抛物线的对称轴都是y 轴,顶点横坐标都是0;(2)①根据题意得出C(0,-4),D(0,-4a),根据抛物线F 1与x 轴交于A ,B 两点,求出A(-2,0),B(2,0),从而可得AC=5a>0时和当a<0吋两种情况分析即可;②设C(x 1,y 1),先求出BC 的解析式,然后求出C 的坐标,再求出直线CD 的解析式即可得得出直线CD 恒过定点.【详解】(1)两个抛物线的b 都为0,∴抛物线的对称轴都是y 轴,顶点横坐标都是0;(2)①点C ,D 分别为抛物线F 1,F 2的顶点,故C(0,-4),D(0,-4a),抛物线F1与x轴交于A,B两点,则A(-2,0),B(2,0),故AC=25,当a>0时,如图1,依题意得,CD=AC=25,则OD=OC+CD=4+25,即4a=4+25,解得:a=252+;当a<0吋,如图2,依题意得:CD=AC=25则OD=CD-OC=25,即-4a=5,解得a=252-,故a 的值为:252+或252-; ②设C(x 1,y 1),依题意得,直线BC 的解析式为y=kx+b ,过点B (2,0), 则b=-2k ,故BC 的解析式为y=kx-2k ,由224y kx k y x =-=-⎧⎨⎩, 得x 2-kx+2k-4=0,则x 1=k-2,y=x 2-4=(k-2)2-4=k 2-4k ,即C 的坐标是(k-2,k 2-4k ),直线CD 的解析式为y=mx+n 过点D(0,-4a), 则()2424n a m k n k k =--+=-⎧⎪⎨⎪⎩, 则m(k-2)-4a=k 2-4k ,又k+2a=4,则a=42k -, 解得428m k n k =-=-⎧⎨⎩, 又点C 异于点B ,故k-4≠0,故CD 的解析式为y=(k-4)x+2k-8,即y=(k-4)(x+2),故直线CD 恒过点(-2,0) .【点睛】本题考查了二次函数的性质,求一次函数解析式,结合知识点灵活分析是解题关键.。

人教版中考综合模拟检测《数学卷》含答案解析

人教版中考综合模拟检测《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 12.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b23.已知反比例函数y=kx(k≠0)图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.1695.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣17.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B 2400元、2300元C. 2200元、2200元D. 2200元、2300元8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π9.货车行驶25 千米与小车行驶35 千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A. 253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+10.如图已知点A(1,4),B(2,2)是反比例函数y=4x图象上的两点,动点P(x,0)在x轴上运动,当线段AP=BP时,点P的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0)二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.12.因式分解:a4﹣2a3+a2=_____.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.14.四边形ABCD是某个圆内接四边形,若∠A=100°,则∠C= .15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x值是_____.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|﹣18|+(12)﹣2(2)先化简,再求值:(1111x x-+-)÷21x-,其中x=2.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.答案与解析一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 1【答案】D【解析】【分析】根据负数的偶次方是正数可以解答.【详解】(﹣1)2020=1,故选:D.【点睛】本题考查了有理数的乘方运算,知道-1的奇次方是-1,-1的偶次方是1,是常考题型.2.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b2【答案】C【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.(﹣2a2)4=16a8,故本选项不合题意;B.a3与a不是同类项,所以不能合并,故本选项不合题意;C.a5÷a2=a3,正确;D.(a+b)2=a2+2ab+b2,故本选项不合题意.故选:C.【点睛】本题考查幂运算、合并同类项以及完全平方公式,掌握相关的公式以及运算法则是解题关键.3.已知反比例函数y=kx(k≠0)的图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.【答案】B【解析】【分析】根据反比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【详解】解:∵反比例函数kyx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点睛】本题考查反比例函数与一次函数的图象特点,根据图象象限分布判断参数正负性以及根据参数正负性判断象限分布是解题关键.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.169【答案】A 【解析】试题分析:∵△ABC∽△DEF,△ABC与△DEF的相似比为34,∴△ABC与△DEF对应中线的比为34,故选A.考点:相似三角形的性质.5.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°【答案】A【解析】【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣1【答案】C【解析】【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【详解】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.【点睛】本题考查分式值为零的条件,掌握分式值为零的条件是分子为零,分母不为零是解题关键.7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B. 2400元、2300元C. 2200元、2200元D. 2200元、2300元【答案】A【解析】【分析】众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π【答案】C【解析】【分析】根据题意画出图形,由等边三角形的周长为6,可得BC=2,设点D为BC边与内切圆的切点,连接AD,则AD⊥BC,可得BD=DC=12BC=1,再根据勾股定理可得OB2﹣OD2=BD2=1,再根据S圆环=S外接圆﹣S内切圆即可得结论.【详解】解:如图,∵等边三角形ABC的周长为6,∴BC=2,设点D为BC边与内切圆的切点,连接AD ,则AD ⊥BC , ∴BD =DC =12BC =1, 在Rt △BOD 中,根据勾股定理,得 OB 2﹣OD 2=BD 2=1, ∴S 圆环=S 外接圆﹣S 内切圆 =OB 2π﹣OD 2π =BD 2π =π. 故选:C .【点睛】本题考查三角形的外接圆与内切圆,掌握正三角形的外接圆与内切圆半径求算是解题关键. 9.货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( ) A.253520x x =- B.253520x x=-C.253520x x =+ D.253520x x=+【答案】C 【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式. 解:根据题意,得253520x x =+. 故选C .10.如图已知点A(1,4),B(2,2)是反比例函数y =4x的图象上的两点,动点P(x ,0)在x 轴上运动,当线段AP =BP 时,点P 的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0) 【答案】A 【解析】 【分析】根据平面直角坐标系中距离公式得到:(x﹣1)2+42=(x﹣2)2+22,求解即可.【详解】解:∵点A(1,4),B(2,2),动点P(x,0)在x轴上运动,∴2AP=(x﹣1)2+42,2BP=(x﹣2)2+22,∵AP=BP,∴(x﹣1)2+42=(x﹣2)2+22,解得x=﹣92,∴点P的坐标是(﹣92,0),故选:A.【点睛】本题考查距离公式,掌握平面直角坐标系中距离公式是解题关键.二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.【答案】6.7×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:将670 000用科学记数法表示为6.7×105m.故答案为:6.7×105【点睛】本题考查科学记数法,确定,a n的值是解题关键.12.因式分解:a4﹣2a3+a2=_____.【答案】a2(a﹣1)2.【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=a2(a2﹣2a+1)=a2(a﹣1)2.故答案为:a2(a﹣1)2.【点睛】本题考查因式分解,掌握提公因式法和公式法因式分解解题关键.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.【答案】24【解析】【详解】解:x2﹣14x+48=0,则有(x-6)(x-8)=0解得:x=6或x=8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为24.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.14.四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C= .【答案】80°.【解析】试题分析:已知四边ABCD是圆的内接四边形,∠A=100°,根据圆内接四边形的对角互补可得∠C=180°﹣100°=80°.考点:圆内接四边形的性质.15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x的值是_____.【答案】4或﹣1.【解析】【分析】先根据新定义得出一元二次方程,求出方程的解即可.【详解】解:∵x☆2=6,∴x2﹣3x+2=6,x2﹣3x﹣4=0,即(x﹣4)(x+1)=0,x﹣4=0,x+1=0,x1=4,x2=﹣1,故答案为:4或﹣1.【点睛】本题考查定义新运算与一元二次方程,正确理解定义新运算是解题关键.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.【答案】12.【解析】【分析】用红球的个数除以球的总个数即可得.【详解】解:从袋中随机摸出一个球是红球的概率为31= 3+2+12故答案为:12.【点睛】本题考查概率求算,掌握利用概率公式求算是解题关键.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.【答案】13【解析】试题分析:过点A作AE⊥BC,然后根据∠BAD的正切值以及角度之间的关系和AD、CD的长度大小求出AC的长度.考点:三角函数的应用.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.【答案】6.【解析】【分析】观察发现,每四个一组,个位数字循环,然后用2016除以4,正好能够整除,所以与第四个数的个位数字相同.【详解】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,所以,每四个一组,个位数字循环,∵2016÷4=504,∴22016的个位数字与24的个位数字相同是:6.故答案为:6.【点睛】本题考查了尾数特征,利用有理数的乘法考查了数字变化规律的问题,观察得到”每四个数一组,个位数字循环”是解题的关键.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|(12)﹣2(2)先化简,再求值:(1111x x -+-)÷21x -,其中x .【答案】(1)5;(2)11x +,﹣1. 【解析】【分析】(1)根据零指数幂、特殊角的三角函数值、绝对值和负整数指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.详解】解:(1)(π﹣2016)0+6cos45°﹣|(12)﹣2=1+6×2﹣+4=﹣+4=5;(2)(1111x x -+-)÷21x - =1(1)(1(1)1)2x x x x x -•--+-+ =1)12(1x x x --+-- =2()21x --+ =11x +,当x 时,﹣1.【点睛】本题考查分式的化简求值、零指数幂、特殊角的三角函数值、绝对值和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?【答案】(1)25,90°,图详见解析;(2)200;(3)15000【解析】【分析】(1)用100%减去3天、4天、5天、7天所占百分比可得a,利用360°乘以所占百分比可得该扇形所对圆心角的度数,求出总数,再乘以所占百分比可得6天的人数,再补图即可;(2)由(1)的计算可得答案;(3)利用样本估计总体的方法计算即可.【详解】解:(1)a=100%﹣30%﹣15%﹣10%﹣20%=25%,360°×25%=90°,调查人数:20÷10%=200(人),200×25%=50(人),如图所示:故答案为:25;90°;(2)由(1)可得一共调查了200名学生;(3)20000×(30%+20%+25%)=15000(人),答:”活动时间不少于5天”的大约有15000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.【答案】详见解析【解析】分析】根据SSS可证明△ABD≌△CDB,则可得出结论.【详解】证明:∵AB=CD,BC=DA,BD=DB,∴△ABD≌△CDB(SSS),∴∠A=∠C.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解本题的关键.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?【答案】渔船继续向正东方向航行是安全的,理由详见解析.【解析】【分析】作CH⊥AB于H.利用解直角三角形,求出PH的值即可判定; 【详解】解:作CH⊥AB于H.∵∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣∠CAB﹣∠ABC=30°,∵∠BAC=∠BCA=30°,∴BA=BC=60海里,在Rt△CBH中,CH=CB•sin60°=60×33海里),∵350,∴渔船继续向正东方向航行是安全的.【点睛】本题考查的是解直角三角形的应用——方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?【答案】(1)这种产品应将售价定为54元或56元;(2)销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【解析】【分析】(1)设每千克水果应降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)设每天获得的利润为W,销售价格为x,列出W与x的函数关系式即可解答.【详解】解:(1)设每千克水果应降价x元,根据题意,得:(60﹣x﹣40)(100+10x)=2240,解得:x1=4,x2=6,答:这种产品应将售价定为54元或56元;(2)设每天获得利润为W,销售价格为x,则W=(x﹣40)[100+10(60﹣x)]=(x﹣40)(﹣10x+700)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是根据题目中的等量关系列出方程和函数关系式.24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.【答案】见解析【解析】【分析】(1)根据△PAB与△PCA的对应边成比例,夹角相等证得结论.(2)欲证明AP是⊙O切线,只需证得∠PAC=90°.【详解】证明:(1)∵PC=50,PA=30,PB=18,∴PC505PA305,PA303PB183 ====.∴PC PA PA PB=.又∵∠APC=∠BPA,∴△PAB∽△PCA.(2)∵AC是⊙O的直径,∴∠ABC=90°.∴∠ABP=90°.又∵△PAB∽△PCA,∴∠PAC=∠ABP.∴∠PAC=90°.∴PA是⊙O的切线.。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2024年中考数学模拟考试试卷(有参考答案)

2024年中考数学模拟考试试卷(有参考答案)
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵





在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式

【小问2详解】
原式

【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54

人教版九年级数学中考模拟试卷及答案解析

人教版九年级数学中考模拟试卷及答案解析

人教版九年级数学中考模拟试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣35.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1910.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣411.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= .15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= .18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .三、解答题(本大题2小题,每小题8分,共16分19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.(10分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.(10分)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.(10分)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.26.(12分)如图,抛物线y=﹣x2+x+3 与 x 轴交于点 A,点 B,与 y 轴交于点C,点D 与点C关于 x 轴对称,点 P 是 x 轴上的一个动点,设点P 的坐标为(m,0),过点P 作 x 轴的垂线 l 交抛物线于点 Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线 l 交 BD 于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x>0,解得x<3.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】47:幂的乘方与积的乘方;35:合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°【考点】JA:平行线的性质;KH:等腰三角形的性质.【分析】根据AB∥CD,CP交AB于O,可得∠POB=∠C,再利用AO=PO,可得∠A=∠P,然后即可求得∠A的度数.【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.【点评】此题主要考查学生对平行线的性质,三角形外角的性质,等腰三角形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.要求学生应熟练掌握.7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:乘坐高铁对旅客的行李的检查适合采用全面调查,A错误;了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度适合采用全抽样调查,B正确;调查初2016级15班全体同学的身高情况适合采用全面调查,C错误;对新研发的新型战斗机的零部件进行检查适合采用全面调查,D错误,故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】38:规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n 个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.10.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4.故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据不等式组有解,可得m的范围,根据分式方程有非负整数解,可得5+m是3的倍数,根据有理数的加法,可得答案.【解答】解:不等式组整理得:,由不等式组有解,得到m﹣9<﹣2m+6,解得:m<5,分式方程整理得: +=2,去分母得:1+m﹣x=2x﹣4,解得:x=,由分式方程﹣=2有非负整数解,得5+m=0,m1=﹣5,5+m=3,m2=﹣2,5+m=6,m3=1(舍),5+m=9,m4=4,使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和﹣5+(﹣2)+4=﹣3,故选:B.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为4:9 .【考点】S7:相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴S△ABC:S△DEF=()2=4:9.故答案为:4:9.【点评】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= ﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣2+1﹣2+1=﹣2,故答案为:﹣2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】根据一次函数y=﹣3x+a不经过三象限得出a的符号,进而可得出结论.【解答】解:∵一次函数y=﹣3x+a不经过三象限,∴a≥0,∴五个数字中符合条件的数有:0,1,3,4共4个,∴一次函数y=﹣3x+a不经过三象限的概率=.故答案为:.【点评】本题考查的是概率公式,熟知概率=所求情况数与总情况数之比是解答此题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).【考点】MO:扇形面积的计算;KQ:勾股定理;MC:切线的性质.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= 192 .【考点】FH:一次函数的应用.【分析】由图象可以看出甲2秒跑了8米可以求出甲的速度为4米/秒,由乙跑的距离﹣甲跑的距离就可以得出结论.【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,故答案为:192.【点评】此题考查了一次函数的应用,追击问题的运用,解答时求出甲的速度是解答本题的关键.18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,在△CC′B′与△CC′D中,,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB=8,所以∠ACB=30°,∴∠BAC=60°,∠ACC′=∠DCC′=30°,∴∠DC′C=∠1=60°,∴∠DC′F=∠FC′C=30°,∴C′F=CF=2DF,∵DF+CF=CD=AB=4,∴DF=.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.三、解答题(本大题2小题,每小题8分,共16分19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是12 元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?【考点】VB:扇形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据加权平均数的计算公式计算可得;(2)用样本中零花钱数额为20元的人数所占的比例乘以360°即可得;(3)用平均数乘以总人数,再乘以75%即可得.【解答】解:(1)平均数是×(5×10+10×15+15×20+20×5)=12元,故答案为:12;(2)一周内的零花钱数额为20元的人数所占的圆心角度数是360°×=36°,故答案为:36°;(3)1500×12×75%=13500元,答:估计该校学生每周在学校超市消费的零花钱总金额为13500元.【点评】此题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2017•开县一模)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】6C:分式的混合运算;4I:整式的混合运算.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】GB:反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.(10分)(2017•开县一模)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【考点】AD:一元二次方程的应用.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.(10分)(2017•开县一模)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】#6:约数与倍数;1C:有理数的乘法.【分析】(1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;(2)设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,找出原数的10倍,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),再根据m 和9均为3的倍数,由此即可证出结论.【解答】(1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.(2)证明:设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,原数10倍为a1a2a3…a n﹣2a n﹣1a n0,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除.【点评】本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m(2)将关联数与原数的10做差得出m•﹣9×(…a n﹣1a n).本之间的关系;题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)(2017•开县一模)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)如图1,过C作CD⊥AB于D,根据等腰直角三角形的性质得到∠ABC=∠BAC=45°,得到∠KBC=30°,根据直角三角形的性质得到BC=4,求得CD=BC=2,解直角三角形即可得到结论;(2)如图2,连接DF,CD,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,由全等三角形的性质得到BE=CF,CE=AF,推出△BDE≌△CDF,根据全等三角形的性质得到∠EDB=∠FDC,DE=DF,根据余角的性质得到∠EDF=90°,根据等腰直角三角形的性质得到EF=DE,于是得到结论.【解答】解:(1)如图1,过C作CD⊥AB于D,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∵∠MBN=15°,∴∠KBC=30°,∵BK=8,∴BC=4,∴CD=BC=2,∵∠MCA=15°,∠BAC=45°,∴∠M=30°,∴CM=2CD=4;(2)如图2,连接DF,CD,∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,。

2024年湖北省武汉市部分学校中考模拟数学试题(四)(含答案)

2024年湖北省武汉市部分学校中考模拟数学试题(四)(含答案)

2024年武汉市中考模拟试题数学试卷(四)亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共6页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答.题.卡.上将正确答案的标号涂黑.1.相反数是( )A .2024B .C.D .2.我国古代的二十四节气图标诸多呈现对称之美,下列图标是轴对称图形的是()A .B .C .D .3.下列事件中是必然事件的是()A .在十字交叉路口,遇到红灯亮起.B .射击运动员在进行一次射击时,能够精准地将子弹命中靶心.C .在平面内任意绘制一个三角形,其结构表现出稳定性.D .掷一枚硬币,国徽面朝上.4.计算的结果是()A .B .C .D .5.如图,一个几何体是由6个相同的小正方体组成的,它的主视图是()2024-12024-120242024-()323a 59a69a 527a627aA .B .C .D .6.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角是,第二次的拐角的度数是()A .45°B .90°C .120°D .135°7.抛一枚质地均匀的正方体骰子,下列事件中发生的概率最大的是()A .朝上的数字为奇数B .朝上的数字是3的倍数C .朝上的数字大于2D .朝上的数字是58.甲和乙两辆车从地同时出发,沿相同的路线匀速驶向地.在甲车行驶了2小时后,因发生故障停车进行维修.维修结束后,甲车继续以匀速驶向地,结果比乙车晚到了30分钟.甲、乙两车行驶的路程与离开地的时间的函数图象如图所示,当两车相距60km 时,乙车所行驶的时间是()A .2hB .2h 或4hC .4h 或7hD .4h 或7h 或2h9的六等分,依次得到六个分点;②分别以点为圆心,长为半径画弧,是两弧的一个交点;③从点引出的切线与所在的直线围成三角形。

2022年人教版中考一模考试《数学试题》含答案解析

2022年人教版中考一模考试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1. 2020的绝对值等于( )A. 2020B. -2020C. 12020D. 12020- 2. 如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 平分线与∠BCD 的平分线交于点P ,则∠P=( )A. 90°-12αB. 90°+ 12αC. 2αD. 360°-α3. 在下列几何体中,从正面看到的平面图形为三角形的是( )A. B. C. D. 4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5. 下列式子中计算结果与2()m -相同的是( )A. 12()m -B. 24m m -⨯C. 24m m ÷D. 24m m --÷ 6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( )A. 0.51×109B. 5.1×108C. 5.1×109D. 51×1077. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩8. 将抛物线y=x 2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为( )A. y=(x+1)2+3B. y=(x ﹣1)2+3C. y=(x ﹣1)2﹣3D. y=(x+1)2﹣39. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A. B. C. D.10. 下列命题中真命题是( )A. 若a 2=b 2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等两个角是对顶角11. 如图,给出线段,,作等腰ABC ∆,使AB AC a ==,BC 边上高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点为圆心,为半径作弧,与MN 分别交于点,;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A ① B. ② C. ③ D. ④12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1C. 1x =1,2x =﹣2D. 1x =1,2x =2二.填空题13. 若分式232x x -+无意义,则的值为__________. 14. 因式分解:-2x 2+12x -18=______.15. 在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.17. 如图,在平面直角坐标系中,已知C(1,2),△ABC 与△DEF 位似,原点O 是位似中心,要使△DEF 面积是△ABC 面积的5倍,则点F 的坐标为_____.18. 如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的项点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为3时,阴影部分的面积为____.三.解答题19. 计算:0(13)+|12|﹣2cos45°+114-⎛⎫ ⎪⎝⎭. 20. 先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 21. 如图,在平面直角坐标系xOy 中,函数y =﹣x+5的图象与函数y =k x(k <0)的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC =2:3.(1)求k 的值;(2)根据图象,直接写出当x <0时不等式k x >﹣x+5的解集; (3)求△AOD 的面积.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.23. 为了传承中华民族优秀传统文化,我市某中学举行”汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m 的值为_____,表示”D 等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生”汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行”远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.答案与解析一.选择题1. 2020的绝对值等于()A. 2020B. -2020C.12020D.12020-【答案】A【解析】【分析】根据绝对值的定义直接进行计算即可.【详解】根据绝对值的概念可知:|2020|=2020.故选:A.【点睛】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )A. 90°-12α B. 90°+12α C.2αD. 360°-α【答案】C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.3. 在下列几何体中,从正面看到的平面图形为三角形的是()A. B. C. D.【答案】B【解析】【分析】主视图是从物体前面看所得到的图形,由此进行判断即可.【详解】A选项:圆柱的主视图是长方形,故本选项不合题意;B选项:圆锥的主视图是三角形,故本选项符合题意;C选项:正方体的主视图是正方形,故本选项不合题意;D选项:三棱柱的主视图是长方形,故本选项不合题意;故选:D.【点睛】考查了简单几何体的主视图,解题关键是掌握主视图的定义,即从正面看得到的图形.4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5. 下列式子中计算结果与2()m -相同的是( )A. 12()m -B. 24m m -⨯C. 24m m ÷D. 24m m --÷【答案】D【解析】【分析】先计算原数,再根据幂的运算性质逐项判断即可.【详解】解:22()m m -=,A 、122()m m --=,与原数不相等,本选项不符合题意;B 、242m m m --⨯=,与原数不相等,本选项不符合题意;C 、242m m m -÷=,与原数不相等,本选项不符合题意;D 、()24242m m m m -----÷==,与原数相等,本选项符合题意.故选D.【点睛】本题考查了幂的运算性质,属于常考题型,熟练掌握幂的运算性质是关键.6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( )A. 0.51×109B. 5.1×108C. 5.1×109D. 51×107 【答案】B【解析】【详解】试题分析:510 000 000=5.1×108.故选B . 考点:科学记数法—表示较大的数.7. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩【答案】B【解析】【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.8. 将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为( )A. y=(x+1)2+3B. y=(x﹣1)2+3C. y=(x﹣1)2﹣3D. y=(x+1)2﹣3【答案】D【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】抛物线y=x2的顶点坐标为(0,0),向下平移3个单位,再向左平移1个单位后的图象的顶点坐标为(-1,-3),所以,所得图象的解析式为y=(x+1)2﹣3,故选D.【点睛】本题主要考查的是函数图象的平移,根据平移规律”左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A. B. C. D. 【答案】C【解析】【分析】根据第一小组人数占总人数的百分比即可计算其角度.【详解】由题意可得,总人数为12+20+13+5+10=60,第一小组对应的圆心角度数是:12360=72 60⨯︒︒,故选C.考点:1.扇形统计图;2.条形统计图.10. 下列命题中真命题( )A. 若a2=b2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.11. 如图,给出线段,,作等腰ABC ∆,使AB AC a ==,BC 边上的高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点为圆心,为半径作弧,与MN 分别交于点,;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A. ①B. ②C. ③D. ④【答案】B【解析】【分析】 利用基本作图(过已知直线上一点作直线的垂线)可判断②错误.【详解】有错误的一步是②,应该为过D 点作MN ⊥AD .故选B .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1 C 1x =1,2x =﹣2D. 1x =1,2x =2【答案】B【解析】【分析】分两种情况把含绝对值的方程化为一元二次方程,进而即可求解.【详解】当x≥1时,方程为x 2﹣x+1﹣1=0,∴x 1=0(舍去),x 2=1;当x <1时,方程为x 2+x ﹣1﹣1=0,∴x 1=﹣2,x 2=1(舍去),∴方程的解是:x 1=﹣2,x 2=1.故选:B.【点睛】本题主要考查含绝对值的方程,掌握求绝对值法则以及解一元二次方程的步骤,是解题的关键.二.填空题13. 若分式232xx-+无意义,则的值为__________.【答案】-2【解析】【分析】根据分式无意义的条件为:分母为0即可求出x的值.【详解】∵分式232xx-+无意义∴20x+=解得2x=-故答案为:-2.【点睛】本题主要考查分式无意义的条件,掌握分式无意义的条件是分母为0是解题的关键.14. 因式分解:-2x2+12x-18=______.【答案】-2(x-3)2.【解析】【分析】先提取公因式,再根据完全平方公式分解即可.【详解】解:-2x2+12x-18=-2(x2-6x+9)=-2(x-3)2,故答案为-2(x-3)2.【点睛】本题考查了分解因式,能灵活运用因式分解的方法分解因式是解此题的关键.15. 在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n=_____.【答案】8 【解析】【分析】根据白球的概率公式44n+=13列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=44n+=13.解得:n=8,故答案为8.【点睛】此题主要考查了概率公式应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.【答案】2051【解析】【分析】根据题意,列出有理数的加减法算式,进而即可求解.【详解】∵﹣1+2﹣3+4﹣5+6﹣…﹣99+100=50,∴2001+(﹣1+2﹣3+4﹣5+6﹣…﹣99+100)=2051,故答案为:2051.【点睛】本题主要考查有理数的加减法,掌握有理数的加减混合运算法则,是解题的关键.17. 如图,在平面直角坐标系中,已知C(1,2),△ABC与△DEF位似,原点O是位似中心,要使△DEF 的面积是△ABC面积的5倍,则点F的坐标为_____.【答案】510)【解析】【分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC5,∴点F的坐标为(1×5,2×5),即(5,10),故答案为(5,10).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18. 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的项点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为3时,阴影部分的面积为____.【答案】99 42π-【解析】【分析】连接OC,可得∠COD=45°,利用阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即可求解.【详解】连接OC,∵在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=32,∴阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即:245(32)360π⨯﹣1332⨯⨯=94π﹣92.故答案为:9942π-.【点睛】本题主要考查求阴影部分的面积,掌握扇形的面积公式,是解题的关键.三.解答题19. 计算:0(1+|1|﹣2cos45°+114-⎛⎫ ⎪⎝⎭. 【答案】4.【解析】【分析】先求零指数幂,负整数指数幂,绝对值以及特殊角的三角函数,再算加减法,即可求解.【详解】原式=﹣1﹣2×2+4 =4.【点睛】本题主要考查实数的混合运算,掌握零指数幂,负整数指数幂,绝对值以及特殊角的三角函数的运算法则,是解题的关键.20. 先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【解析】分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.21. 如图,在平面直角坐标系xOy 中,函数y =﹣x+5的图象与函数y =k x (k <0)的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC =2:3.(1)求k 的值;(2)根据图象,直接写出当x <0时不等式k x>﹣x+5的解集; (3)求△AOD 的面积.【答案】(1)k=﹣6;(2)﹣1<x<0;(3)5.【解析】【分析】(1)过A作AM⊥x轴于M,先求出点C的坐标,再根据S△AOC=15,求出点A的坐标,进而即可得到k的值;(2)由函数的图象,可知:反比例函数图象在一次函数图象上方部分所对应的x的范围,即为不等式kx>﹣x+5的解集;(3)由△AOD与△AOC的高相等,CD:AC=2:3,进而求解.【详解】(1)对于y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,∵S△AOC=15,∴15AM2⨯⨯=15,解得:AM=6,∴A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=kx得:k=﹣6;(2)由函数图象可知:当﹣1<x<0时,kx>﹣x+5,∴当x<0时不等式kx>﹣x+5的解集是:﹣1<x<0;(3)∵CD:AC=2:3,S△AOC=15,∴△AOD的面积=13S△AOC=1153⨯=5.【点睛】本题主要考查反比例函数与一次函数的综合,掌握一次函数与反比例函数的图象和性质,是解题的关键.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由题意由”HL ”可判定Rt △ABC ≌Rt △EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF 是平行四边形.【详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF ,∴Rt △ABC ≌Rt △EDF(2)∵Rt △ABC ≌Rt △EDF∴BC=DF ,∠ACB=∠DFE∴∠BCF=∠DFC∴BC ∥DF ,BC=DF∴四边形BCDF 是平行四边形【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.23. 为了传承中华民族优秀传统文化,我市某中学举行”汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m的值为_____,表示”D等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生”汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【答案】(1)参赛学生共20人;补图见解析;(2)40;72;(3)23.【解析】【分析】(1)由”A等级的人数÷A等级的百分比=参赛学生人数”,即可求得参赛人数,再求出B等级人数,补全条形统计图,即可;(2)由C等级人数÷参赛学生人数,即可得到m的值,由360°×D等级的百分比,即可得到”D等级”的扇形的圆心角;(3)根据题意,列出表格,得到所有等可能的结果,再根据概率公式,即可求解.【详解】(1)根据题意得:3÷15%=20(人),∴参赛学生共20人,B等级人数有:20﹣(3+8+4)=5(人),补全条形图如下:(2)C等级的百分比为:820×100%=40%,即:m=40,表示”D等级”的扇形的圆心角为:360°×420=72°,故答案为:40,72;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,∴P(恰好是一名男生和一名女生)=46=23.【点睛】本题主要考查条形统计图、扇形统计图以及等可能事件的概率,掌握条形统计图、扇形统计图的特征以及列举法求概率,是解题的关键.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行”远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.【答案】平路有443千米,坡路有53千米【解析】【分析】设去时平路为xkm,上山的坡路为ykm,根据去的时候共用3h,返回时共用4h,列方程组即可.【详解】解:设平路有x千米,坡路有y千米.由题意可知3 634 45x yx y⎧+=⎪⎪⎨⎪+=⎪⎩解得44353 xy⎧=⎪⎪⎨⎪=⎪⎩答:平路有443千米,坡路有53千米【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程组.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=tan∠FAC=12,∵Rt△ABE中,tan∠ABE=AEBE=12,∴设AE=x,则BE=2x,∴AB=10,解得:x=∴∆ABE≅∆CBE,∴AC=2AE=BE=作CH⊥AF于点H,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAE,∴HCAE=AHBE=ACAB10,∴HC=4,AH=8,∵HC∥AB,∴FCFB=HCAB,即FCFC10+=25,解得:FC=203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【答案】(1)y=﹣x2﹣x+2; (2)(0,2)或(﹣1,2)或117-+,﹣2)或117--,﹣2);(3)1.【解析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x,x+2),则D点坐标为(x,-x2-x+2),然后用含x的代数式表示ND,根据二次函数的性质即可求出线段ND长度的最大值.解:(1)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,得4202m nn--+=⎧⎨=⎩,解得12mn=-⎧⎨=⎩,∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC , ∴12×2×|﹣m 2﹣m +2|=2, ∴m 2+m =0或m 2+m ﹣4=0,解得m =0或﹣1或12-±,∴符合条件的点M 的坐标为:(0,2)或(﹣1,2)或(12-,﹣2)或(12--,﹣2). (3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入得到202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩, ∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2),ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1,∵﹣1<0,∴x =﹣1时,ND 有最大值1.∴ND 的最大值为1.点睛:本题考查二次函数的图象和性质.根据二次函数的性质并结合已知条件及图象进行分析是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版中考模拟试题(四)数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 数据-2,-1,0,1,2的方差是()
A.0B.C.2D.4
2 . 某物体的三视图如图所示,则该物体的形状是()
A.正方体B.长方体C.圆柱体D.球体
3 . 如图,为直径,于点,于,,则阴影部分的面积为()
D.
A.B.C.
4 . 如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()
A.3B.4C.5D.6
5 . 若矩形的面积为10,矩形的长为a,宽为b,则b关于a的函数图象大致是()
A.B.C.D.
6 . 如图,AD是的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF, BE=7.5, CF=6,则EF=().
A.2.5B.2C.1.5D.1
7 . 下列运算正确的是()
A.a6÷a2= a3B.a5-a2= a3C.(3a3)2 =6a9D.2(a3b)2-3(a3b)2 =-a6b2
8 . 反比例函数(k>0)的部分图象如图所示,A、B是图象上两点,AC⊥轴于点C,BD⊥轴于点D,若△AOC的面积为S,△BOD的面积为S,则S和S的大小关系为()
A.S> S B.S= S C.S<S D.无法确定
9 . 有理数-3的绝对值是()
A.0B.-3C.3D.
10 . 如图,在中, ,将折叠,使点落在边上的点处,
为折痕,若,则的值为()
A.B.C.D.
二、填空题
11 . 如图,是的斜边上异于、的一定点,过点作直线截交于点,
使截得的与相似.已知,,,则________.
12 . 小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的基本话费为________ 元.
13 . 把多项式分解因式的结果是__________.
14 . 若式子有意义,则x的取值范围是______.
15 . 如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O处,再分别取OA,OB
的中点M,N,量得MN=20m,则池塘的宽度AB为__________m.
16 . 如图,△OAB中,OA=OB=12,∠A=30°,AB与⊙O相切于点C,则以图中阴影部分扇形围成一个圆锥
的侧面,则这个圆锥的高为_____.
17 . 解方程: (1) (2)
18 . 2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000
用科学记数法表示应为_______________.
三、解答题
19 . 在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.
(1)表示出所有可能出现的结果;
(2)小黄和小石做游戏,制定了两个游戏规则:
规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合)PQ⊥AB,垂足为Q.设PC=x,PQ= y.
⑴求y与x的函数关系式;
⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?
⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.
20 . 某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?
21 . (1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;
(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC;
(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成的锐角为β.求四边形ABCD
的面积S四边形ABCD .
22 . 今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:
(1)本次模拟测试共抽取了多少个学生?
(2)将图乙中条形统计图补充完整;
(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.
23 . 如图,在▱ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BC
A.
(1)求证:AD=CE;
(2)判断直线BC与⊙O的位置关系,并说明理由;
(3)若BC=4,DE=10,求BE的长.
24 . 解方程:


(公式法);
(配方法).
25 . 如图,抛物线与轴交于两点,与轴的正半轴交于点,其顶点为.
(1)写出两点的坐标(用含的式子表示);
(2)设,求的值;
(3)当是直角三角形时,求对应抛物线的解析式.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题
1、
2、
3、
4、
5、
6、
7、
8、。

相关文档
最新文档