高三数学新教材

合集下载

新教材2023年高中数学第四章数列4

新教材2023年高中数学第四章数列4
第四章 数 列
4.3 等比数列
4.3.2 等比数列的前n项和公式 第1课时 等比数列的前n项和公式
素养目标·定方向 必备知识·探新知 关键能力·攻重难 课堂检测·固双基
素养目标 ·定方向
学习目标 借助教材实例了解等比数列前n项和公式的推 导过程 借助教材掌握a1,an,q,n,Sn的关系 掌握等比数列的前n项和公式、性质及其应用
想一想:如果数列{an}的前n项和为Sn=-Aqn+A(Aq≠0,q≠1, n∈N+),那么这个数列一定是等比数列吗?
提示:一定.理由如下:由于 Sn=-Aqn+A,则当 n=1 时,S1=a1 =A(1-q);当 n≥2 时,an=Sn-Sn-1=(-Aqn+A)-(-Aqn-1+A)=Aqn- 1(1-q),而当 n=1 时也符合该式.故数列{an}的通项公式为 an=Aqn-1(1 -q)(n∈N+),并且aan+n 1=AAqqn-n(1(11--qq))=q(常数),
(C )
A.3
B.13
C.3 或13
D.以上都不对
[解析] (1)设等比数列的公比为 q, 由 a5-a3=12,a6-a4=24 可得: aa11qq45--aa11qq23==1224⇒aq1==21, 所以 an=a1qn-1=2n-1, Sn=a1(11--qqn)=11--22n=2n-1, 因此Sann=22n-n-11=2-21-n.
【对点训练】❷(2022·汕尾高二检测)中国古代数学名著《九章算
术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊
主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各
出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人
要求赔偿5斗粟. 羊主人说:“我羊所吃的禾苗只有马的一半.”马主人

上海市新高中数学教材目录

上海市新高中数学教材目录

精心整理上海市高中数学教材目录高一上第一章集合和命题一集合1.11.21.31.41.51.62.12.22.32.4*2.5不等式的证明第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1幂函数的性质与图像4.24.44.54.64.74.8简单的对数方程第五章三角比一任意角的三角比5.1任意角及其度量5.2任意角的是那叫比三三角恒等式5.3同角三角比的关系和诱导公式5.4两角和与差的余弦、正弦和正切5.5二倍角与半角的正弦、余弦和正切5.66.16.26.36.46.57.1数列7.2等差数列7.3等比数列二数学归纳法7.4数学归纳法7.5数学归纳法的应用7.6归纳——猜想——证明三数列的极限7.7数列的极限7.88.18.28.38.49.19.29.39.4第十章算法初步10.1算法的概念10.2程序框图*10.3计算机语句和算法程序第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系13.3复数的加法与减法13.4复数的乘法与除法13.5复数的平方根与立方根13.6实习数的一元二次方程第一学期第十四章空间直线与平面14.1平面及其基本性质14.2空间直线与直线的位置关系16.1计数原理I——乘法原理16.2排列16.3计数原理II——加法原理16.4组合16.5二项式定理第二学期第十七章概率论初步17.1古典模型17.2频率与概率。

详解高中数学新教材的十点变化

详解高中数学新教材的十点变化

详解高中数学新教材的十点变化1.集合定位在只是作为一种特殊的符号语言.他能帮助我们更好地理解数学的概念,描述某些数学的问题。

而不是在讲集合概念的时候在集合元素的三大特征上下大工夫。

2.淡化函数定义域和值域求法的要求.因为我们现在所提供的主要的函数,它的定义域和值域都是比较清晰的,我们没有必要人为地构架一些求定义域和值域的难题。

这一点在我们高三复习时尤其注意。

3.对反函数的要求,不象老教材中一步到位.在这里我们不要求抽象地理解反函数,而只要求学生通过对数函数和指数函数的关系,认识对数函数作为指数函数的反函数,初步地形成对反函数的认识即可。

4.不学三角函数也能讲好斜率.人教社B版先讲直线的斜率,再讲直线的倾斜角,既谈到直线由其上面的任意两个不同的点所唯一确定,那么这样点的坐标满足方程,用两个方程的做差之后,得到斜率的公式,也就是直线的斜率公式。

原来讲课时觉得特别别扭,因为老教材中先讲倾斜角再讲斜率,而这里是在必修四才讲三角函数。

通过隋丽丽老师的讲解才明白斜率的四种出场背景和要求,一次函数中渗透斜率的概念,使学生有一个初步认识;直线方程中点明斜率的概念,进一步理解其意义;向量中借助于其几何意义使斜率的概念再上新台阶;高中教材对斜率概念的升华是在导数部分,斜率实际上就是直线的瞬时变化。

帮助学生从四个视角认识斜率这一个概念;突出导数的思想,重视导数的思想在我们数学教学当中的渗透。

所以说,斜率这个概念是学生逐渐积淀下来的一个重要的数学概念之一.5.没有概率也能讲统计.统计和概率这两个学科从根本上来说,它们最初的产生完全是来自于两个完全不同的领域,统计产生的非常非常早,早在很远古的时候,人们就已经开始要统计,国家的人口等问题。

所以统计和概率并没有一个学科上的必然的逻辑关系。

但是随着社会的发展,统计的数据不是一个普查的,数了数全班有多少人,而这个数据带有随机性,因此从它的理论基础来说,的确用到概率的一些知识。

但是就我们现在中学来讲,我们并不需要对统计做理论的概率的分析,建立一个很抽象的概率模型。

高三数学新教材下册知识点

高三数学新教材下册知识点

高三数学新教材下册知识点在高三数学的学习过程中,下册是非常重要的一部分。

下册的知识点是建立在上册知识基础上的,涵盖了更加深入和复杂的数学内容。

下面将介绍一些高三数学新教材下册的知识点。

1. 极限与连续极限是数学中非常重要的概念,在高三数学下册中,我们将学习极限的定义,极限运算法则以及与极限相关的一些重要定理,如夹逼定理等。

除此之外,我们还需要掌握连续函数的性质以及与极限的关系。

2. 定积分与不定积分定积分是高三数学下册的重点内容之一。

我们将学习定积分的定义、性质以及重要的计算方法,如换元法和分部积分法。

同时,还需要掌握不定积分的定义和计算方法,了解不定积分与定积分的关系。

3. 函数的导数与微分函数的导数是高三数学下册的核心概念之一。

我们将学习导数的定义、性质以及导数的计算方法,包括常见函数的导数求法和导数的四则运算法则。

此外,我们还需要了解微分的概念及其应用,如函数极值、函数图像的变化等。

4. 函数的应用在高三数学下册中,函数的应用是非常重要的部分。

我们将学习如何利用函数来描述和解决实际问题,如最值问题、最优化问题以及曲线的切线与法线问题等。

同时,我们还需要掌握函数模型的建立和函数图像的分析方法。

5. 三角函数与解三角形三角函数是高三数学下册的重要内容之一。

我们将学习三角函数的定义、性质以及与三角恒等式相关的计算方法。

此外,我们还需要掌握解三角形的方法,包括正弦定理、余弦定理以及解一般三角形的方法。

6. 空间几何空间几何也是高三数学下册的一大亮点。

我们将学习空间中直线与平面的位置关系,空间中点、直线、平面的方程表示方法,以及空间几何中的重要定理和性质,如平行四边形定理、垂直平分线定理等。

以上仅是高三数学新教材下册的一些重要知识点的简要介绍。

在学习过程中,我们需要深入理解和掌握这些知识点,并能够灵活运用于解决问题。

通过系统学习和不断练习,我们能够在高考中取得良好的数学成绩。

【新教材】高三人教A版数学一轮复习课件:第2章 2.6 对数与对数函数

【新教材】高三人教A版数学一轮复习课件:第2章 2.6 对数与对数函数

(1)原式=100
3 2
3
lg
2lg
2
=10
=10 2
=
2
.
lg
=100(lg 3-lg 2)=100
3
3
lg
2 =(102) 2
9
.
4
(2)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5
=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.
3
(3)当 x>1 时,若 logax>logbx,则 a<b.( × )
-2
(4)函数 f(x)=lg+2与 g(x)=lg(x-2)-lg(x+2)是同一个函数.( × )
1
(5)对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1), ,-1 .
( √ )
结合法求解.
对点训练2
(1)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结
论成立的是( D )
A.a>1,c>1
B.a>1,0<c<1
C.0<a<1,c>1
D.0<a<1,0<c<1
由该函数的图象通过第一、第二、第四象限知该函数为减函数,所以
0<a<1.因为图象与x轴的交点在区间(0,1)之间,所以该函数的图象是由函
(2)讨论函数f(x)的单调性.
解 (1)由ax-1>0,得ax>1.

高三数学新教材知识点归纳总结

高三数学新教材知识点归纳总结

高三数学新教材知识点归纳总结一、函数与方程1. 函数的基本概念函数是一个或多个自变量和因变量之间的对应关系,通常表示为y=f(x)。

函数的定义域、值域和图像为常见的函数性质。

2. 基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等。

学习基本初等函数的性质和图像,掌握其函数图像的平移、翻折、伸缩等变换规律。

3. 方程与不等式解方程和不等式的基本方法,包括二次方程、一次方程、分式方程等。

通过应用数学工具解决实际问题。

二、数列与数学归纳法1. 数列的概念与表示数列是按照一定规律排列的一组数字。

常见的数列有等差数列和等比数列。

2. 数列的通项与前n项和掌握求等差数列和等比数列的通项公式和前n项和公式。

3. 数学归纳法数学归纳法是证明数学命题的常用方法,通过证明基准情形成立和归纳假设成立,推导出待证情形成立。

三、三角函数与解三角形1. 三角函数的基本概念与性质掌握正弦函数、余弦函数、正切函数等的定义和基本性质,能够利用三角函数解决实际问题。

2. 特殊角与通角熟练掌握特殊角的计算和通角的概念,能够灵活运用它们解决问题。

3. 解三角形熟练掌握利用三角函数解三角形的基本思路和方法,包括解任意三角形和解直角三角形。

四、立体几何1. 空间直角坐标系与向量了解空间直角坐标系的定义和性质,熟悉坐标表示点、直线和平面的方法。

掌握向量的定义、加法和数量积的运算。

2. 空间几何体的表示能够根据给定条件,利用空间直角坐标系表示球、圆锥、椭球等几何体。

3. 空间几何体的性质与计算熟悉立体几何体的性质和计算方法,如计算体积、表面积等。

五、导数与微分应用1. 导数的概念与计算掌握导数的定义和基本性质,能够利用求导法则计算导数。

2. 函数的求导与应用了解函数的增减性、极值和曲线的凹凸性等,能够利用导数求解函数相关问题。

3. 微分与线性近似掌握微分的概念与计算方法,能够利用微分求解近似问题,如线性近似、最优化问题等。

六、概率与统计1. 随机事件与概率了解随机事件、样本空间和事件概率的基本概念,掌握概率的计算方法。

新教材高中数学第十章概率

新教材高中数学第十章概率

(2)同时抛掷两枚骰子,既不出现 5 点也不出现 6 点的概率为49 ,则 5 点或 6 点至 少出现一个的概率是________. 【解析】记事件 A=“既不出现 5 点也不出现 6 点”,则 P(A)=94 ,事件 B=“5 点 或 6 点至少出现一个”.因 A∩B=∅,A∪B 为必然事件,故 A 与 B 为对立事件, 则 P(B)=1-P(A)=1-94 =59 . 答案:59
【解析】(1)由题意知,(a,b,c)所有的可能结果为(1,1,1),(1,1,2),(1,1, 3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1, 1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3, 2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2, 3),(3,3,1),(3,3,2),(3,3,3),共 27 种.
1.已知 A 与 B 是对立事件,且 P(A)=0.2,P(B)=________. 【解析】因为 A 与 B 对立, 所以 P(B)=1-P(A)=1-0.2=0.8. 答案:0.8
2.一枚均匀的正六面体骰子,设 A 表示事件“出现 3 点”,B 表示事件“出现偶数 点”,则 P(A∪B)等于________. 【解析】显然事件 A 与事件 B 互斥, 所以 P(A∪B)=P(A)+P(B)=16 +63 =23 . 答案:23
3.某城市的空气质量状况如下表所示:
污染指数 T 30 60 100 110 130 140
概率 P
1
11 7
21
10 6 3 30 15 30

_新教材高中数学第五章统计与概率

_新教材高中数学第五章统计与概率

5.1.1 数据的收集【课程标准】(1)获取数据的基本途径及相关概念:①知道获取数据的基本途径,包括:统计报表和年鉴、社会调查、试验设计、普查和抽样、互联网等.②了解总体、样本、样本量的概念,了解数据的随机性.(2)抽样:①简单随机抽样通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法.会计算样本均值和样本方差,了解样本与总体的关系.②分层随机抽样通过实例,了解分层随机抽样的特点和适用范围,了解分层随机抽样的必要性,掌握各层样本量比例分配的方法.结合具体实例,掌握分层随机抽样的样本均值和样本方差.③抽样方法的选择在简单的实际情境中,能根据实际问题的特点,设计恰当的抽样方法解决问题.新知初探·自主学习——突出基础性教材要点知识点一总体与样本所考察问题涉及的对象全体是________,总体中每个对象都是________,抽取的部分对象组成总体的一个样本,一个样本中包含的个体数目是________容量.知识点二简单随机抽样1.简单随机抽样的意义:一般地,简单随机抽样(也称为纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个体.简单随机抽样是其它各种抽样形式的基础.通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法.2.简单随机抽样的分类简单随机抽样{____________________状元随笔 (1)对总体、个体、样本、样本容量的认识总体:统计中所考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的一部分个体叫做样本.样本容量:样本的个体的数目叫做样本容量.(2)简单随机抽样必须具备的几个特点①被抽取样本的总体中的个体数N 是有限的.②抽取的样本个体数n 小于或等于总体中的个体数N.③样本中的每个个体都是逐个不放回抽取的.④每个个体入样的可能性均为n N .3.随机数表法进行简单随机抽样的步骤状元随笔 用随机数表法进行简单随机抽样的规则(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.知识点三分层抽样1.分层抽样的定义一般地,如果相对于要考察的问题来说,总体可以分成有明显差别的、互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样)注意:分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2.分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分.(2)按比例确定每层抽取个体的个数.(3)各层分别按简单随机抽样的方法抽取.(4)综合每层抽样,组成样本.状元随笔应用分层抽样法的前提条件①总体可以分层,层与层之间有明显区别,而层内个体间差异较小.②每层中所抽取的个体差异可按各层个体在总体中所占的比例抽取.③分层抽样要求对总体的情况有一定的了解,明确分层的界限和数目.基础自测1.某校期末考试后,为了分析该校高一年级1000名学生的成绩,从中抽取了100名学生的成绩单进行调查.就这个问题来说,下面说法正确的是( )A.1000名学生是总体B.每名学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002.某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适( )A.抽签法 B.简单随机抽样法C.分层抽样法D.随机数表法3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100B.150C.200D.2504.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人课堂探究·素养提升——强化创新性题型1 简单随机抽样的概念[经典例题]例1 下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样过程中,从中任取一种玩具检验后再放回;(3)某社区组织100名党员研读《十九大报告》,学习十九大精神;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出7个号签.方法归纳简单随机抽样的四个特征跟踪训练1 下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,检验其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.题型2 简单随机抽样的应用[经典例题]例2 (1)要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程;(2)某车间工人加工了一批零件共40件.为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本,写出抽样步骤.状元随笔(1)总体中的个体数有限,可以采用简单易行的抽签法,按照抽签法的步骤进行即可.抽签法:按照抽签法的步骤:“编号,制号签,搅拌均匀,随机抽取,得号码”进行.→→方法归纳(1)抽签法的优点:简单易行.当总体的个数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.缺点:仅适用于个体数较少的总体.当总体容量非常大时,费时费力又不方便.况且,如果号签搅拌不均匀,可能导致抽样不公平.(2)在随机数表法抽样的过程中要注意:①编号要求位数相同,读数时应结合编号特点进行读取,如:编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.②第一个数字的抽取是随机的.③读数的方向是任意的,且事先定好.跟踪训练2 (1)第十三届中国(徐州)国际园林博览会于2021年9月开幕.为做好徐州园博园运营管理工作,2022年春节期间,还需要从30名大学生中随机抽取8人作为志愿者,请写出抽取样本的过程;(2)有一批机器,编号为1,2,3,…,112.请用随机数法抽取10台入样,写出抽样过程.题型3 分层抽样的概念及计算[经典例题]例3 (1)某中学有老年教师20人,中年教师65人,青年教师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是( )A .抽签法B .简单随机抽样C .分层抽样D .随机数表法(2)某市有大型超市200家,中型超市400家,小型超市1400家.为掌握各类超市的营业情况,现按分层抽样的方法抽取一个容量为100的样本,应抽取中型超市________家.状元随笔 (1)有明显差异用分层抽样.→方法归纳(1)各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的,可用简单随机抽样,也可采用系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公平性.(2)分层抽样中有关抽样比的计算方法对于分层抽样中的比值问题,常利用以下关系式巧解: ①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.跟踪训练3 (1)某市有四所重点大学,为了解该市大学生的课外书籍阅读情况,采用下列哪种方法抽取样本最合适(四所大学图书馆的藏书有一定的差距)( )A .抽签法B .随机数表法C.简单随机法D.分层抽样法(2)某校高三年级有男生800人,女生600人,为了解该年级学生的身体健康情况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是 ( ) 关键看是否有明显差异A.简单随机法B.抽签法C.随机数表法D.分层抽样法(3)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工的身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.题型4 分层抽样的概念及应用例4 某家电视台在因特网上征集某电视节目现场参与的观众,报名的总人数为12000人,分别来自4个城区,其中东城区2400人,西城区4600人,南城区3800人,北城区1200人,从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程.状元随笔由题知有明显差异,利用分层抽样抽样.(1)分多少层.(2)比例是多少.(3)每层抽多少.方法归纳(1)如果总体中的个体有差异时,就用分层抽样抽取样本,用分层抽样抽取样本时,要把性质、结构相同的个体,组成一层.(2)每层中所抽取的个体数应按各层个体数在总体中所占的比例抽取,也就是各层抽取.这样抽取能使所得到的样本结的比例都等于样本容量在总体中的比例,即抽样比=样本容量总体容量构与总体结构相同,可以提高样本对总体的代表性.跟踪训练4 在100个产品中,有一等品20个,二等品30个,三等品50个,现要抽取一个容量为30的样本,请说明抽样过程.第五章 统计与概率5.1 统计5.1.1 数据的收集新知初探·自主学习知识点一总体 个体 样本知识点二2.抽签法 随机数表法3.编号 任意 规则 编号[基础自测]1.解析:由随机抽样的基本概念可得,选D.答案:D2.解析:总体由差异明显的三部分组成,应选用分层抽样.答案:C3.解析:方法一:由题意可得70n−70=3 5001 500,解得n =100,故选A. 方法二:由题意,抽样比为703 500=150,总体容量为3500+1500=5000,故n =5000×150=100.答案:A4.解析:先求抽样比n N =903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取3600×1120=30(人),乙校抽取5400×1120=45(人),丙校抽取1800×1120=15(人),故选B. 答案:B课堂探究·素养提升例 1 【解析】 (1)不是简单随机抽样,因为简单随机抽样要求被抽取样本的总体的个数是有限的.(2)不是简单随机抽样,因为简单随机抽样要求逐个不放回地抽取.(3)不是简单随机抽样,因为这100名党员是挑选出来的,该社区每个人被抽到的可能性不同,不符合简单随机抽样中“等可能性”的要求.(4)是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.跟踪训练1 解析:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.(1)总体个数不是有限的.(2)不符合“等可能性”的要求.例2 【解析】(1)利用抽签法,步骤如下:①将30辆汽车编号,号码是1,2, (30)②将号码分别写在一张纸条上,揉成团,制成号签;③将得到的号签放入一个不透明的袋子中,并搅拌均匀;④从袋子中依次抽取3个号签,并记录上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.(2)抽样步骤是:第一步,先将40件零件编号,可以编号为00,01,02,…,38,39.第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数0开始.为便于说明,我们将随机数表中的第6行到第10行分别摘录如下:6606574717 3407276850 3669736170 6581339885 11199291708105010805 4557182405 3530342814 8879907439 23403097328326977602 020******* 6855574818 7305385247 18623885796357332135 0532547048 9055857518 2846828709 83401256247379645753 0352964778 3580834282 6093520344 3527388435第三步,从选定的数0开始向右读下去,得一个两位数字号码02,将它取出;继续向右读,得到02,由于前面已经取出,将它去掉;继续下去,去掉重复的号码,又得到05,16,18,38,33,21,35,32,28.至此,10个样本号码已经取满,于是,所要抽取的样本号码是02,05,16,18,38,33,21,35,32,28.与这10个号码对应的零件即是抽取的样本个体.跟踪训练2 解析:(1)抽样过程如下:第一步,先将30名大学生进行编号,从1到30.第二步,将编号写在形状、大小相同的号签上.第三步,将号签放到一个不透明的盒子中搅拌均匀,然后从盒子中逐个抽取8个号签.第四步,将与号签上的编号对应的大学生抽出,即得样本.(2)方法一:第一步,将原来的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第14行第7个数“0”,向右读.第三步,从“0”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到020,086,013,110,089,021,080,098,027,002.第四步,对应原来编号为20,86,13,110,89,21,80,98,27,2的机器便是要抽取的对象.方法二:第一步,将原来的编号调整为101,102,103, (212)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“1”,向右读.第三步,从“1”开始,向右读,每次读取三位,凡不在101~212中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到173,119,170,187,186,125,140,109,184,178.第四步,对应原来编号为73,19,70,87,86,25,40,9,84,78的机器便是要抽取的对象.例3 【解析】 (1)各部分之间有明显的差异是分层抽样的依据.(2)依据题意,可得抽样比为100200+400+1 400=120,故应抽取中型超市400×120=20(家).【答案】 (1)C (2)20跟踪训练3 解析:(1)因为学校图书馆的藏书对学生课外书籍阅读影响比较大,因此采取分层抽样.(2)总体中个体差异比较明显40800=30600=120,且抽取的比例也符合分层抽样.(3)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.答案:(1)D (2)D (3)18例4 【解析】 采用分层抽样的方式抽取参加现场节目的观众,步骤如下:第一步,分层.按城区分为四层:东城区、西城区、南城区、北城区.第二步,确定抽样比.样本容量n =60,总体容量N =12000,故抽样比k =n N =6012 000=1200.第三步,按比例确定每层抽取个体数.在东城区抽取2400×1200=12(人),在西城区抽取4600×1200=23(人),在南城区抽取3800×1200=19(人),在北城区抽取1200×1200=6(人).第四步,在各层分别用简单随机抽样法抽取样本.将各城区抽取的观众合在一起组成样本.跟踪训练4 解析:先将产品按等级分成三层;第一层,一等品20个;第二层,二等品30个;第三层,三等品50个.然后确定每一层抽取的个体数,因为抽样比为30100=310,所以应在第一层中抽取产品20×310=6(个),在第二层中抽取产品30×310=9(个),在第三层中抽取产品50×3=15(个).分别给这些产品编号并贴上标签,用抽签法或随机数表法10在各层中抽取,得到一等品6个,二等品9个,三等品15个,这样就通过分层抽样得到了一个容量为30的样本.。

【新教材】高三人教A版数学一轮复习课件:第4章 规范答题增分专项二 高考中的三角函数与解三角形问题

【新教材】高三人教A版数学一轮复习课件:第4章 规范答题增分专项二 高考中的三角函数与解三角形问题
所以 cos C= 2 = 2.
π
因为 C∈(0,π),所以 C=3.
.
(2)在△ACD 中,AC2=AD2+CD2-2AD·CDcos∠ADC,
即 b2=1+3-2 3cos∠ADC.
在△BCD 中,BC2=BD2+CD2-2BD·CDcos∠BDC,
1
π
因为 sin C≠0,所以 cos C=2.又 C 为三角形的内角,则 C=3.


3
由正弦定理,得
=
= =2 3,
sin sin
3
2
即 a=2 3sin A,b=2 3sin B,
则 a-b=2 3sin A-2 3sin B

=2 3sin A-2 3sin 3 -
π
= 3sin A-3cos A=2 3sin - .
6
2
2
2
3+1 3
, .
故 cos A+cos B+cos C 的取值范围是
2
2
1
+
2

3+1 3
,
2
2
.
题型三
正弦定理、余弦定理与三角形面积的综合问题
突破策略一
边角互化法
在解三角形中,根据所求结论的需要,通过正弦定理把角的正弦转化成边
或把边转化成角的正弦,通过余弦定理把角的余弦转化成边,使已知条件要
13,sin A= 13 .
sin
sin
A=
=
3 13
.
13
2 13
(2)由(1)及 a<c,得 cos A=
,
13
12

新教材高中数学第九章统计1

新教材高中数学第九章统计1

分层随机抽样市体育协会组织了“健步走”活动,活动共有10 000余人参加,按参加者年龄分老年组、青年组和少年组。

活动后市电视台拟从参加比赛的人群中抽取10人进行采访。

【问题1】上述问题中总体有什么特征?【问题2】抽取样本时采用抽签法合适吗?【问题3】你认为怎样抽取样本更合理?1.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)应用:抽取样本.1.本质:对于含有差异明显几个层的总体随机抽样的一种方法,即按照一定比例进行抽样.2.混淆:不要与简单随机抽样混淆.3.简单随机抽样和分层随机抽样的区别和联系(1)区别:简单随机抽样是从总体中逐个抽取样本;分层随机抽样则首先将总体分成几层,在各层中按比例分别抽取样本.(2)联系:①抽样过程中每个个体被抽到的可能性相等;②每次抽出个体后不再将它放回,即不放回抽样. 2.分层随机抽样中的总体平均数与样本平均数1层 2层 层个体数 M N 层样本量 m n 层个体 变量值 X 1,X 2,…,X MY 1,Y 2,…,Y N层样本 的个体 变量值x 1,x 2,…,x m y 1,y 2,…,y n层总体 平均数X =X 1+X 2+…+X M M =1M∑i =1MX iY =Y 1+Y 2+…+Y N N =1N∑i =1NY i层样本 平均数x =x 1+x 2+…+x m m =1m ∑i =1mx iy =y 1+y 2+…+y n n =1n∑i =1ny i总体平 均数W =∑i =1M X i +∑i =1NY iM +N样本平 均数w =∑i =1mx i +∑i =1ny im +n3.获取数据的途径 获取数据的基本途径有: (1)通过调查获取数据; (2)通过试验获取数据; (3)通过观察获取数据; (4)通过查询获取数据.1.分层随机抽样时,样本是在各层中分别抽取吗?2.分层随机抽样中,个体数量较少的层抽取的样本量较少,这是公平的吗?3.观察法是获取样本数据的途径吗?4.在比例分配的分层随机抽样中,可以直接用样本平均数w估计总体平均数W,是吗?提示:1.是;2.是;3.是;4.是.阅读教材P181问题3,如果要抽取一个有代表性的样本,男、女生的抽取比例大致是多少?提示:326∶386=163∶193.1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( )A.简单随机抽样B.抽签法C.随机数法D.分层随机抽样【解析】选D.从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层随机抽样.2.某单位有职工160人,其中业务员104人,管理人员32人,后勤服务人员24人,现用比例分配的分层随机抽样法从中抽取一容量为20的样本,则抽取管理人员______人.【解析】20160=18,设管理人员为x人,则x32=18,得x=4.答案:4基础类型一获取数据的途径(数学抽象)1.“中国天眼”为500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,简称FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是( )A.通过调查获取数据 B.通过试验获取数据C.通过观察获取数据 D.通过查询获得数据【解析】选C.“中国天眼”主要是通过观察获取数据.2.下列哪些数据一般是通过试验获取的( )A.2021年济宁市的降雨量B.2021年全国新生儿人口数量C.某学校高一年级同学的数学测试成绩D.某种特效中成药的配方【解析】选D.某种特效中成药的配方的数据一般通过试验获得.3.下列调查所抽取的样本具有代表性的是( )A.利用某地七月份的日平均最高气温值估计该地全年的日平均最高气温B.在农村调查市民的平均寿命C.利用一块试验水稻田的产量估计水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验【解析】选D.A项中某地七月份的日平均最高气温值不能代表全年的日平均最高气温;B项中在农村调查得到的平均寿命不能代表市民的平均寿命;C项中试验田的产量与水稻的实际产量相差可能较大,只有D项正确.1.获取数据的基本途径:观察、查询、调查、试验.2.根据调查问题的特点设计抽样调查的不同方案,应遵循的原则:(1)要考虑如何保证调查内容的真实性;(2)要考虑如何合理地获取样本,以确保其典型性、代表性.基础类型二分层随机抽样的概念(数学抽象)【典例】1.分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体被等可能抽取,必须进行( ) A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数量相同【解析】选C.为了保证每个个体等可能的被抽取,分层随机抽样时必须在所有层都按同一抽样比等可能抽取.2.下列问题中,适合用分层随机抽样抽取样本的是( )A.学校从10个优秀节目中抽取3个参加县元旦晚会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.某学校有男、女学生各500名,为了解学生的期末复习情况,拟抽取100名学生进行调查D .某啤酒厂质检员从生产流水线上,抽取样本检查产品质量【解析】选B.A 中总体所含个体无差异且个数较少,适合用简单随机抽样;C 中总体虽然分男、女两个层,但是要了解期末复习情况,没有必要采取分层随机抽样;D 中总体所含个体无差异,不适合用分层随机抽样;B 中总体所含个体差异明显,并且要了解购买能力,与收入关系密切,适合用分层随机抽样.分层随机抽样的特点(1)适用于总体由差异明显的几部分组成的情况; (2)更充分地反映了总体的情况;(3)等概率抽样,每个个体被抽到的概率都相等.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A .抽签法抽样 B .按性别分层随机抽样 C .按年龄段分层随机抽样 D .随机数法抽样【解析】选C.该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女差异不大,所以按年龄段分层随机抽样具有代表性,比较合理.【加固训练】为了保证分层随机抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .每层抽取的个体数可以不一样多,但必须满足抽取n i =n·N i N (i =1,2,…,k)个个体(其中i 是层的序号,k 是总层数,n 为抽取的样本容量,N i 是第i 层中的个体数,N 是总体容量)D .只要抽取的样本容量一定,每层抽取的个体数没有限制【解析】选C.分层随机抽样时,在各层中按层中所含个体在总体中所占的比例进行抽样. A 中,虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A 不正确; B 中,由于每层的个体数不一定相等,每层抽取同样多的个体数,显然从总体来看,各层的个体被抽取的可能性就不相等了,因此B 也不正确;C 中,对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C 正确;D 显然不正确.综合类型 分层随机抽样的应用(数据分析)比例分配的计算【典例】我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A .104人 B .108人 C .112人 D .120人【解析】选 B.由题意可知,这是一个分层随机抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912 =300×8 10022 500=108.分层随机抽样中按比例分配计算时,用到的两个关系式(1)样本量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.分层随机抽样的实际应用【典例】某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.(1)若上级机关为了了解政府机构改革的意见,要从中抽取20人了解情况,应用何种方法抽取,请具体实施操作;(2)若要从工人中抽取2人作为工人代表,应用何种方法抽取.【解析】(1)由于机构改革关系到各人的不同利益,故采用分层随机抽样的方法为妥. 抽取过程如下:①将在编人员按副处级以上干部、一般干部、工人分成三层;②因为10020 =5,105 =2,705 =14,205 =4,所以从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.③由于副处级以上干部与工人人数都较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,…,69编号,然后用随机数法抽取14人.④将这20人合在一起,构成样本.(2)要从工人中抽取2人作为工人代表,应用抽签法抽取最合适.分层随机抽样的步骤【加固训练】一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?【解析】由题意知,该抽样为比例分配的分层随机抽样,抽取步骤如下:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500 =15 ,则在不到35岁的职工中抽取125×15 =25(人);在35岁至49岁的职工中抽取280×15 =56(人);在50岁及50岁以上的职工中抽取95×15=19(人).(3)在各层按随机数法抽取样本. (4)汇总每层抽样,组成样本.用样本平均数估计总体平均数【典例】某学校为了调查高一年级学生的体育锻炼情况,从甲、乙、丙3个班中,按分层随机抽样的方法获得了部分学生一周的锻炼时间(单位:h),数据如下.甲 6 6.5 7 7.5 8 乙 6 7 8 9 10 11 12 丙34.567.5910.51213.5(1)(2)估计这个学校高一的学生中,一周的锻炼时间超过10个小时的百分比; (3)估计这个学校高一年级学生一周的平均锻炼时间.【解析】(1)由题干中的表格可知,按分层随机抽样的方法从甲、乙、丙3个班中分别抽取5个,7个,8个学生.故三个班学生人数之比为5∶7∶8.(2)由题意知,抽取的20个学生中,一周的锻炼时间超过10小时的有5人,故一周的锻炼时间超过10个小时的百分比为520=25%.(3)从甲班抽取的5名学生的总时间为6+6.5+7+7.5+8=35. 从乙班抽取的7名学生的总时间为6+7+8+9+10+11+12=63.从丙班抽取的8名学生的总时间为3+4.5+6+7.5+9+10.5+12+13.5=66. 则35+63+665+7+8 =16420=8.2.即这个学校高一年级学生一周的平均锻炼时间为8.2小时.在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +ny m +n.1.某学校为了解三年级、六年级、九年级这三个年级之间的学生的课业负担情况,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( ) A .抽签法B .简单随机抽样 C.分层随机抽样D .随机数法【解析】选C.根据年级不同产生差异及按人数比例抽取易知应为分层随机抽样. 2.为了报考理想的大学,小明需要获取近年来我国各大学会计专业录取人数的相关数据,他获取这些数据的途径最好是( ) A.通过调查获取数据 B.通过试验获取数据 C.通过观察获取数据 D.通过查询获得数据【解析】选D.因为近年来我国各大学会计专业录取人数的相关数据有存储,所以小明获取这些数据的途径最好是通过查询获得数据.3.为调查某快餐店各分店的经营状况,某统计机构用分层随机抽样的方法,从A ,B ,C 三个城市中抽取若干家某快餐店分店组成样本进行深入研究,有关数据见下表:(单位:个)城市 某快餐店数量抽取数量A 26 2B 13 x C39y则样本量为( )A.4 B.6 C.10 D.12【解析】选B.设所求的样本量为n,由题意得n26+13+39=226,解得n=6.4.从总体容量为N的一批零件中用分层抽样抽取一个容量为30的样本,若每个零件被抽取的可能性为0.25,则N等于______.【解析】分层抽样是等可能抽样,故总体容量为30÷0.25=120.答案:1205.分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为______.【解析】ω=2020+30×3+3020+30×8=6.答案:6。

高中数学新旧教材变化梳理(必修一)

高中数学新旧教材变化梳理(必修一)

高中数学新旧教材变化梳理(必修一)
自2021年起,高中数学必修一教材发生了变化。

新版教材相较于旧版教材,主要有以下几点变化:
1.内容结构调整
新版教材对内容的结构进行了调整,更加合理、科学、严谨。

具体来说,调整的内容包括:
- 知识点的组织形式:材对知识点进行了整合,对一些散乱的知识点进行了归类;
- 知识点的安排顺序:材对知识点的安排顺序进行了优化,使学生更容易理解和掌握;
- 必修一和必修二知识的划分:材对必修一和必修二的知识划分更加明确,方便学生系统研究。

2.知识点细化
新版教材对一些知识点进行了细化和深入,以帮助学生更好地理解和掌握数学知识。

例如,对函数的判断、绝对值函数的基本性质和解法等进行了详细的讲解。

3.注重应用
新版教材注重数学知识的应用,通过对知识点的研究,让学生了解数学知识在现实中的应用场景。

例如,通过关于投影仪的小案例,帮助学生了解正弦函数和余弦函数的应用。

通过以上的变化,新版教材更加符合教育教学的要求,能够更好地帮助学生理解和掌握数学知识,为将来的数学学习打下坚实的基础。

第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。

【新教材】高三人教A版数学一轮复习课件:第2章 2.8 函数与方程

【新教材】高三人教A版数学一轮复习课件:第2章 2.8 函数与方程
3.如果二次函数y=x2+mx+m+3有两个不同的零点,那么m的取值范围是
( D )
A.(-2,6)
B.[-2,6]
C.{-2,6}
D.(-∞,-2)∪(6,+∞)
由题意,有Δ=m2-4(m+3)>0,即(m-6)(m+2)>0,解得m>6或m<-2,故选D.
4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,
据函数的零点求参数.此类题目常与函数的性质、图象综合,有时也用到导
数知识,考查数形结合思想的应用,有一定的难度.复习时要掌握基本初等
函数图象及变换,善于应用转化与化归思想解题,提升直观想象和逻辑推理
的数学素养.




01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
因为f(x)的图象在区间(0,+∞)内是连续的,
且f
即f
1
4
1
4
=
·f
π
1
π
1
π
+log24 = 4-2<0,f 2 = 2-1>0,
4
1
1 1
<0,所以 f(x)在区间 , 上有一个零点.故选 A.
2
4 2
2
- -a
(2)已知函数 f(x)=2
的零点在区间(1,2)内,则实数a的取值范围是(

x
必备知识落实
【知识筛查】
1.函数的零点
(1)函数零点的定义
对于一般函数y=f(x),x∈D,我们把使f(x)=0的实数x叫做函数y=f(x)的零点.

高三数学等差数列4(新编教材)

高三数学等差数列4(新编教材)
§2.2 等差数列 (第一课时)
一、等差数列的定义
如果一个数列从第2项起,每一项与它的前 一项的差等于同一常数,那么这个数列就叫 做等差数列。
这个常数叫等差数列的公差,用字母d表示。ຫໍສະໝຸດ 观察下列数列是否是等差数列
① 1,2,4,6,8,10,…… 不是
② 0,1,2,3,4,5,6,…… d=1
③ 3,3,3,3,3,3,3,…… d=0
④ 2,4,7,11,16,……
不是
⑤ -8,-6,-4,0,2,4,…… 不是
⑥ 3,0,-3,-6,-9,……
d= -3
;优游注册 / 优游注册 ;
元恶既殄 百官拜伏 间者杨骏之难 冤魂哭于幽都 广武将军赵诱受侃节度 左腋犹痛 与臣隔山 乃令给协 {臣闻明君思隆其道 随才补授 历阳太守沛国武嘏 所向皆平 非圣朝之令典 畏也宜哉 伦大震 与亲昵乘船就之饮宴 甘受专辄之罪 且始事而诛大将 假节 二征奔走 及琨为匹磾所害 欲扬 威西土 而胡戍饑久 迁散骑常侍 若恭得志 遗晋怖威 镇南大将军 投空自窜 收晏付廷尉 将杀嘉 皆封侯 敛板曰 矩谋夜袭之 寻掘地 茂弘 帝然之 暨东海王越迎大驾 谧字稚远 晞以京邑荒馑日甚 峻勇而无谋 纵兵寇抄 获御史驺人问曰 有死难之名 谢浮等十馀部 收吴太妃 不许 纲维不举 古 人举至极以为验 季龙伏骑断其后 时帝方拓定江南 永康初 罕有所推 侃不听 冀东军可罢 下附州征野战之比 爰立章程 兵年过六十 夏殷繁帝者之约法 其后并州刺史 帝爱之 遣尚书和郁持节送贾庶人于金墉 假节 及长 遂留不去 翼成中兴 育并清身洁己 重不奉诏 都督河北诸军事 时庾冰辅 政 使越稽首归政 谟 尚当深进 头可截不 得士类欢心 琨不从 犹豫不决 领京兆太守 徇国亡躯 许之 历观前代 侍中宣诏 曹公之拔官渡 及京师不守 方闻圣明辅世 礼乐征伐 解

2025届高三一轮复习数学课件(人教版新高考新教材)

2025届高三一轮复习数学课件(人教版新高考新教材)
第一章
1.1 集合
课标要求
1.通过实例,了解集合的含义,理解元素与集合的属于关系.
2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.
3.在具体情境中,了解全集与空集的含义.
4.理解集合之间包含与相等的含义,能识别给定集合的子集.
5.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.
(4){x|x≤1}={t|t≤1}.( √ )
(5)若A∩B=A∩C,则B=C.( × )
(6)直线x=1和直线y=4的交点构成的集合为{1,4}.( × )
2.(多选)若集合A={x|x≤2}, a=√3 ,则下列结论正确的是( BC )
A.a⊆A
B.{a}⊆A
C.a∈A
D.{a}∈A
因为√3<2,所以 a∈A,{a}⊆A.
集合 A⊆B,但存在元素 x∈B, A⫋B
真子集
(或 B⫌A)
且 x∉A
集合 A 的任何一个元素都是
集合
集合 B 的元素,同时集合 B 的
A=B
相等
任何一个元素都是集合 A 的
元素,即 A⊆B,且 B⊆A
问题思考
(1)什么是空集?如何表示?
一般地,我们把不含任何元素的集合叫做空集,用符号⌀表示.
(2)空集与任何集合之间有什么关系?
C.{x|4≤x<5}
1
3
B.
1
x|
3
1
x| 3
≤ x ≤ 5 ,则 M∩N=( B )
≤x<4
D.{x|0<x≤5}
如图,由交集的定义及图知
1
M∩N={x|3
≤x<4}.
第二环节

在新教材中如何进行高三数学教学

在新教材中如何进行高三数学教学
试 提 高 应试 技 能 。 考试是一门学 问, 高考要想取得好成绩 , 不仅取 决 于 扎 实 的 基础 知 识 、 练 的基 本 技 能 和 过 硬 的 解 熟 题能力 , 而且取决 于临场 的发挥。我们 要把平 常 的 考试看 成是 积累考试经验 的重要 途径 , 把平 时考试 当做高考 , 从心理调节 、 间分配 、 时 节奏 的掌握 以及

这需要教 师认 真学 习、 《 研究 考试说明》一定要让学 , 生体会 到高考 的四个层 次, 即了解 、 理解 、 掌握 、 运用 的区别 与要求 , 对每章的知识结构 , 在复习开始与复
习结束 , 都要写出或说 出章节 的知 识结 构与知识 体 系, 特别要强调课 本 内涉及的 内容 与课外 补充 的 内 容及 高考 考 过 的知 识 点 。为 此 , 师 要 研 究 近 几 年 教 的高考题 目, 特别 是近 三年 的高考题 目。对于 近几 年高考的热点 问题 , 需要老师多讲一些 , 让同学们下 大力气掌握 , 对于要求降低 的 , 当减少课时 , 适 针对 性处理数学知识点 。这 样就 减少盲 目性 , 帮助 同学
新课 程视 窗

高三数学 , 不同于高一高二阶段 , 随着知识内容 的深化 , 由单纯新授课转变到复习课 , 由单元知识的 测验 转化 到全 面知识 的考查 , 学生进入 高三后 , 但 由 于高一入学时基础 和思维水 平参差 不齐 , 加上 在高 二学 习中逐渐分化 , 导致他们掌握 、 运用知识的能力 差异很大 。因此教 师 既要 注 意不 能 让优 生 乏味 没 劲, 又不能让学困生跟不上趟 , 以高三数学学习可 所 分三个 阶段 , 一是 基 础复 习 阶段 , 二是 专题 复 习阶 段, 三是 自由复习阶段 。 基础复 习阶段 ( 一轮复 习) 首先强调课本 的重要性 。课本是一切知识的来 源与基础 , 历年高考都 强调 以课 本 为依据 。课 本中 的结论 、 定理 与性 质 , 都是 学 习数 学非 常重 要 的环 节。近几年 的高考题 目中, 常常 以课本 定义定 理变 换模式 , 加以判断 。以课 本 的例 题 、 习题变 换条件 , 加以求解 与证 明。客 观上讲 , 近几 年 的高三复 习资 料在编排上不是依 高一高 二时 讲课 顺序编排 的, 限 于篇幅 , 常常过度太快 , 综合性强 , 台阶跨度 大 , 不能 使一部分 同学 因高一 、 高二学业荒 废而 想在 高三好 好学 的想法得 以实现 。学生 往往 是 并不 是 不想 学 会, 而是会的没有做 , 可做 的常不 会 。作为 老师 , 在 选择 复习资料时 , 必须 考虑 到这些 同学 , 资料不宜过 多、 过难 , 让每一个 同学都应该有“ ” 会 消化课本 内容 的能力。 其次 强调 分层 次 教学 , 学 内容 要 有针 对性 。 教
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4概率论初步(续)
4.3数学期望和方差
4.4正态分布
*专题五线性回归
5.1直接观察法
5.2最小二乘法
高三文科拓展目录
专题一线性规划
1.1线性规划问题
1.2线性规划的可行域
1.3线性规划的解
*专题二优选与统筹
2.1二分法
2.2 0.618法
2.3统筹规划
专题三投影与画图
3.1空间图形的平面图
*3.2轴测图
3.3三视图
专题四统计案例
4.1抽样调查案例
4.2平均数与中位数的正确应用
*专题五数学与文化艺术
5.1数学与音乐
5.2数学与美术
5.3数学与文学
15.5几何体的体积
15.6球面距离
第16章排列组合和二项式定理
16.1计数原理I——乘法原理
16.2排列
16.3计数原理II——加法原理
16.4组合
16.5二项式定理
高三第二学期
第17章概率论初步
17.1古典概型
17.2频率和概率
第18章基本统计方法
18.1总体和样本
18.2抽样技术
18.3统计估计
专题二参数方程与极坐标方程
2.1曲线的参数方程
2.2直线和圆锥曲线的参数方程
2.2(1)直线的参数方程
2.2(2)圆锥曲线的参数方程(其中抛物线参数方程打*号,为不考的内容)
2.3极坐标方程
专题三空间向量及其应用
3.1空间向量
3.2空间向量的坐标表示
3.3空间直线的方向向量和平面的法向量
3.4空间向量在度量问题中的应用
18.4实例分析
*18.5概率统计实验
高三理科拓展目录
专题一三角比(续)
1.1半角公式的应用
*1.2恒等变换与求值
1.3三角比的积化和差与和差化积
说明:本专题为理科需要考查的内容。打星号部分为选学,但从中也许可以猜想文科连半角公式都不怎么会考了。建议将本专题作为理科三角复习的延续,关键是把握公式推理体系。
高三数学新教材目录(CONTENTS)0806
高三第一学期
第14章空间直线与平面
14.1平面及其基本性质
14.2空间直线与直线的位置关系
14.3空间直线与平面的位置关系
14.4空间平面与平面的位置关系
第15章简单几何体
15.1多面体的概念
15.2多面体的直观图
15.3旋转体的概念(圆柱、圆锥、球)
15.4几何体的表面积
相关文档
最新文档