深圳龙岗区实验学校初中部数学全等三角形综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳龙岗区实验学校初中部数学全等三角形综合测试卷(word含答
案)
一、八年级数学轴对称三角形填空题(难)
1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.
【答案】4
【解析】
【分析】
由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.
【详解】
(1)当点P在x轴正半轴上,
①如图,以OA为腰时,
∵A的坐标是(2,2),
∴∠AOP=45°,OA=22,
当∠AOP为顶角时,OA=OP=22,
当∠OAP为顶角时,AO=AP,
∴OPA=∠AOP=45°,
∴∠OAP=90°,
∴OP=2OA=4,
∴P的坐标是(4,0)或(22,0).
②以OA为底边时,
∵点A的坐标是(2,2),
∴∠AOP=45°,
∵AP=OP,
∴∠OAP=∠AOP=45°,
∴∠OPA=90°,
∴OP=2,
∴P点坐标为(2,0).
(2)当点P在x轴负半轴上,
③以OA为腰时,
∵A的坐标是(2,2),
∴OA=22,
∴OA=OP=22,
∴P的坐标是(﹣22,0).
综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).
故答案为:4.
【点睛】
此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.
2.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将
△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.
【答案】363
【解析】 【分析】 分若AE =AM
则∠AME =∠AEM =45°;若AE =EM ;若MA =ME 则∠MAE =∠AEM =45°三种情况讨论解答即可;
【详解】
解:①若AE =AM 则∠AME =∠AEM =45°
∵∠C =45°
∴∠AME =∠C
又∵∠AME >∠C
∴这种情况不成立;
②若AE =EM
∵∠B =∠AEM =45°
∴∠BAE+∠AEB =135°,∠MEC+∠AEB =135°
∴∠BAE =∠MEC
在△ABE 和△ECM 中,
B BAE CEN
AE EII C ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△ABE ≌△ECM (AAS ),
∴CE =AB =6,
∵AC =BC =2AB =23,
∴BE =23﹣6;
③若MA =ME 则∠MAE =∠AEM =45°
∵∠BAC =90°,
∴∠BAE =45°
∴AE 平分∠BAC
∵AB =AC ,
∴BE =12
BC =3. 故答案为23﹣6或3.
【点睛】
本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.
3.如图,在等边ABC ∆中取点P 使得PA ,PB ,PC 的长分别为3, 4, 5,则APC APB S S ∆∆+=_________.
【答案】936 【解析】
【分析】
把线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS 证得△ADB ≌△APC ,连接PD ,根据旋转的性质知△APD 是等边三角形,利用勾股定理的逆定理可得△PBD 为直角三角形,∠BPD =90︒,由△ADB ≌△APC 得S △ADB =S △APC ,则有S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD ,根据等边3S △ADP +S △BPD =332+12×3×4=936+. 【详解】
将线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,连接PD
∴AD =AP ,∠DAP =60︒,
又∵△ABC 为等边三角形,
∴∠BAC =60︒,AB =AC ,
∴∠DAB +∠BAP =∠PAC +∠BAP ,
∴∠DAB =∠PAC ,
又AB=AC,AD=AP
∴△ADB ≌△APC
∵DA =PA ,∠DAP =60︒,
∴△ADP 为等边三角形,
在△PBD 中,PB =4,PD =3,BD =PC =5,
∵32+42=52,即PD 2+PB 2=BD 2,
∴△PBD 为直角三角形,∠BPD =90︒,
∵△ADB≌△APC,∴S△ADB=S△APC,
∴S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD=
3
4
×32+
1
2
×3×4=
93
6
4
+.
故答案为:
93
6
4 +.
【点睛】
本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.
4.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为_____.
53
【解析】
试题分析:如图所示,由△ABC是等边三角形,BC=433
,
∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;
S△ABC=1
2
AC•BE=
1
2
AC×EH×3EH=
1
3
BE=
1
3
×6=2.由三角形外角的性质,得∠BIF=∠FGE﹣
∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,3S五边形NIGHM=S△EFG﹣S△EMH﹣