2020年江西省中考数学试卷-解析版
2020年江西省中考数学试卷
2020年江西省中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (3分)-6的相反数是()A. —B. - -C. 6D. - 66 62. (3分)在国家带一路”战略下,我国与欧洲开通了互利互惠的中欧班列. 行程最长,途经城市和国家最多白一趟专列全程长13000km,将13000用科学记数法表示应为()A. 0.13X105B. 1.3X104C. 1.3X 105D. 13X1033. (3分)下列图形中,是轴对称图形的是()/ CA.当E, F, G, H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E, F, G, H 是各边中点,且AC± BD时,四边形EFGH为矩形C当E, F, G, H不是各边中点时,四边形EFGHRT以为平行四边形D.当E, F, G, H不是各边中点时,四边形EFGH^可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7. (3分)函数y=/T年中,自变量x的取值范围是.8. (3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB若剪刀张开的角为30°,则/A=度.图29. (3分)中国人最先使用负数,魏晋时期的数学家刘徽在正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为 .②10. (3分)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱, 所得几何体的俯视图的周长是 .11. (3分)已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中 位数都是7,则这组数据的众数是 .12. (3 分)已知点 A (0, 4), B (7, 0), C (7, 4),连接 AC, BC 得到矩形AOBQ 点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应点为A'.若点A'到矩形较长 两对边的距离之比为1: 3,则点A'的坐标为三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证 明过程或演算步骤.)13. (6分)(1)计算:浮」+=;(2)如图,正方形ABCD 中,点E, F, G 分别在AB, BC, CD 上,且/ EFG=90.求 证:z\EBSAFCCG-5 -4 -3 -2 -1 0 12 3 4 5 15. (6分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽 各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可 能的结14. (6分)解不等式组:卜2乂<6 L 3(X -2)4 x-4并把解集在数轴上表示出来.果,并求出小贤取出的两个都是蜜枣粽的概率.16. (6分)如图,已知正七边形ABCDEFG请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.17. (6分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的视线角” a 约为20。
2020年江西中考数学试卷解析
江西省 2020 年中等学校招生考试试卷解析一、选择题(本大题共6 小题,每题3 分,共18 分,每小题只有一个正确选项)1.-3的倒数是()A.3B.-3C.-D.【解析】考点:倒数的概念,答案:C2.下列正确的是()A.B.C.-D.【解析】考点:同底数幂的运算,答案:D3.教育部近日发布了2019年全国教育经费执行情况统计快报,经统计,2019年全国教育经费总投入为50175亿元,比上年8.74%. 将50175 亿用科学记数法表示为()A.B.C.-D.【解析】考点:用科学计数法表示较大数,答案:B4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A. AB∥CDB.∠B=30°C.∠C+∠2=∠EFCD.C G>FG【解析】考点:平行线的判定和性质,三角形的外角性质,在同一个三角形中,较大角所对的边较大,较小角所对的边较小,答案:C5.如图所示,正方体的展开图为()A.B.C.D.【解析】具体折一折,从中发挥想象力,根据带有各种符号的面的特点及位置,可知只有A 正确6.在平面直角坐标系中,点O为坐标原点,抛物线与y轴交于点A,与x轴正半轴交于点B,连接A B,将R t△O A B向右上方平移,得到R t△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()A.y=xB.y=x+1C.D.y=x+1【解析】∵∴对称轴为直线当时,,解得,当时,∴点,根据题意设平移后点,则,∵ 点在抛物线上∴∴,设直线的解析式为,则,解得∴设直线的解析式为,故选B二、填空题(本大题6 小题,每小题3 分,共18 分)7.计算(a-1)²=.【解析】8.若关于x的一元二次方程x2-k x-2=0的一个根为x=1,则这个一元二次方程的另一个根为.【解析】,,∴另一个根为9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头代表1,一个尖头代表 10,再古比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表各位,然后是十位,百位,根据符号计数的方法,右下图符号表示一个两位数,则这个两位数是.【解析】右边有 5 个钉头,个位数为 5,左边有 2 个尖头,十位数为 2。
江西省2020年中考数学试题(含答案)
江西省2020年中等学校招生考试数学试题卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.3-的倒数是( ) A .3B .3-C .13-D .132.下列计算正确的是( ) A .325+=a a aB .32-=a a aC .326⋅=a a aD .32÷=a a a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为( ) A .115.017510⨯B .125.017510⨯C .130.5017510⨯D .140.5017510⨯4.如图,1265∠=∠=︒,335∠=︒,则下列结论错误的是( )A .ABCD B .30∠=︒B C .2∠+∠=∠C EFC D .>CG FG5.如图所示,正方体的展开图为( )A .B .C .D .6.在平面直角坐标系中,点O 为坐标原点,抛物线223=--y x x 与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将∆Rt OAB 向右上方平移,得到'''∆Rt O A B ,且点'O ,'A 落在抛物线的对称轴上,点'B 落在抛物线上,则直线''A B 的表达式为( ) A .=y xB .1=+y xC .12=+y x D .2=+y x二、填空题(本大题共6小题,每小题3分,共18分)7.计算:()21-=a __________.8.若关于x 的一元二次方程220--=x kx 的一个根为1=x ,则这个一元二次方程的另一个根为________. 9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,右下图符号表示一个两位数,则这个两位数是________.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:那么,圆周率的小数点后100位数字的众数为_________.11.如图,AC 平分∠DCB ,=CB CD ,DA 的延长线交BC 于点E ,若49∠=︒EAC ,则∠BAE 的度数为___________.12.矩形纸片ABCD ,长8=AD cm ,宽4=AB cm ,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点'A 处,展平后得到折痕BE ,同时得到线段'BA ,'EA ,不再添加其它线段.当图中存在30︒角时,AE 的长为___________厘米.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:201(1|2|2-⎛⎫---+ ⎪⎝⎭;(2)解不等式组:32152-⎧⎨->⎩x x .14.先化简,再求值:221111⎛⎫-÷⎪--+⎝⎭xx x x x ,其中=x 15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为_________;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,∆ABC 的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作∆ABC 关于点O 对称的'''∆A B C ;(2)在图2中,作∆ABC 绕点A 顺时针旋转一定角度后,顶点仍在格点上的''∆AB C .17.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,∆Rt ABC 中,90∠=︒ACB ,顶点,A B 都在反比例函数()0=>ky x x的图象上,直线⊥AC x 轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2=AB OA 时,点E 恰为AB 的中点,若45∠=︒AOD ,=OA(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:根据以上图表信息,完成下列问题:(1)=m________;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有_______人,至多有_________人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长120=AB mm,支撑板长80=CD mm,底座长90=DE mm.托板AB固定在支撑板顶端点C处,且40=CB mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若80∠=︒DCB,60∠=︒CDE,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10︒后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643︒≈,cos400.766︒≈,tan 400.839︒≈,sin 26.60.894︒≈,tan 26.60.500︒≈,1.732≈)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN 的两边分别与O 相切于点A ,B ,O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,80∠=︒MPN ,求∠ACB 的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,∠APB 的度数应为多少?请说明理由; (3)若PC 交O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).22.已知抛物线2=++y ax bx c (,,a b c 是常数,0≠a )的自变量x 与函数值y 的部分对应值如下表:(1)根据以上信息,可知抛物线开口向_____________,对称轴为___________; (2)求抛物线的表达式及m ,n 的值;(3)请在图1中画出所求的抛物线.设点P 为抛物线上的动点,OP 的中点为'P ,描出相应的点'P ,再把相应的点'P 用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线()2=>-y m m 与抛物线及(3)中的点'P 所在曲线都有两个交点,交点从左到右依次为1A ,2A ,3A ,4A ,请根据图象直接写出线段12A A ,34A A 之间的数量关系___________.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在∆Rt ABC 中,BC 为斜边,分别以AB ,AC ,BC 为斜边向外侧作∆Rt ABD ,∆Rt ACE ,∆Rt BCF ,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为___________;推广验证(2)如图3,在∆Rt ABC 中,BC 为斜边,分别以AB ,AC ,BC 为边向外侧作任意∆ABD ,∆ACE ,∆BCF ,满足123∠=∠=∠,∠=∠=∠D E F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由; 拓展应用(3)如图4,在五边形ABCDE 中,105∠=∠=∠=︒A E C ,90∠=︒ABC ,=AB 2=DE ,点P 在AE 上,30∠=︒ABP ,=PE ABCDE 的面积.参考答案一、选择题1.C2.D3.B4.C5.A6.B二、填空题7.221-+a a 8.2=-x 9.25 10.9 11.82︒12.3,8- 三、13.(1)21(1|2|2-⎛⎫--+ ⎪⎝⎭解:原式211214312=-+=-+=⎛⎫ ⎪⎝⎭(2)32152①②-≥⎧⎨->⎩x x解:解不等式①,得1≥x . 解不等式②,得3<x .∴原不等式组的解集是13≤<x . 14.解:原式211(1)(1)(1)(1)⎡⎤++=-⋅⎢⎥+-+-⎣⎦x x x x x x x x2(1)1(1)(1)-++=⋅+-x x x x x x11(1)(1)-+=⋅+-x x x x x1=x∵=x1===x . 15.解:(1)14; (2)解法一:根据题意,可以列表如下:由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“其中两位同学均来自八年级”的结果共有2种,所以,P(两位同学均来自八年级)21126==.解法二:根据题意,可以画出如下的树状图:由树状图可以得出所有可能出现的结果共有12种,这些结果出现的可能性相等,“其中两位同学均来自八年级”的结果共有2种,所以,P(两位同学均来自八年级)21126==.16.解:作图如下:(1)'''∆A B C即为所求.(2)''∆AB C即为所求.17.解:(1)设笔芯x元/支,笔记本y元/本.依题意,得3219726+=⎧⎨+=⎩x yx y,解得35=⎧⎨=⎩xy答:笔芯3元/支,笔记本5元/本.(2)方法一:合买笔芯,合算.∵整盒购买比单支购买每支可优惠0.5元,∴小贤和小艺可一起购买整盒笔芯.∴共可节约:0.5105⨯=元.∵小工艺品的单价为3元,5232+>⨯,∴他们既能买到各自所需的文具用品,又都能购买到一个小工艺品. 方法二:合买笔芯,单算.∵整盒购买比单支购买每支可优惠0.5元, ∴小贤和小艺可一起购买整盒笔芯. ∴小工艺品的单价为3元,小贤:30.52 3.53⨯+=>,小艺:70.5 3.53⨯=>.∴他们既能买到各自所需的文具用品,又都能购买到一个小工艺品.四、18.解:(1)∵⊥AD x 轴,45∠=︒AOD ,=OA ∴2==AD OD .∴()2,2A . ∵点A 在反比例函数图象上 ∴224=⨯=k . ∴4=y x. (2)∵∆ABC 为直角三角形,点E 为AB 的中点, ∴==AE CE EB ,2∠=∠AEC ECB .∵2=AB OA ,∴=AO AE .∴2∠=∠=∠AOE AEO ECB . ∵90∠=︒ACB ,⊥AD x 轴,∴BCx 轴.∴=∠∠ECB EOD .∴2∠=∠AOE EOD . ∵45∠=︒AOD , ∴11451533︒︒∠=∠=⨯=EOD AOD . 19.解:(1)14.(2)折线统计图如图所示,对比前一次测试优秀学生的比例大幅度上升; 对比前一次测试学生的平均成绩有较大提高; 对比前一次测试学生成绩的众数、中位数增大. (3)20,34. (4)14680032050+⨯=. 答:该校800名八年级学生数学成绩优秀的人数是320人.20.解:(1)如图,过点C 作⊥CH DE 于点H .∵80=CD ,60∠=︒CDE ,∴sin 60802︒===CH CH CD ,∴40 1.73269.28=≈⨯≈CH . 作⊥AM DE 于点M ,⊥CN AM 于点N .∴==MN CH 60∠=∠=︒NCD CDE . ∵80∠=︒DCB ,∴180806040∠=︒-︒-︒=︒ACN . ∵sin ∠=ANACN AC,80=AC , ∴80sin 40800.64351.44︒=≈⨯≈AN . ∴51.4469.28120.7=+≈+≈AM AN NM . 答:点A 到直线DE 的距离为120.7mm . (2)解法一:∵AB 绕着点C 逆时针旋转10︒, ∴90∠=︒DCB .如图.连接BD .∵80=DC ,40=CB , ∴40tan 0.580∠===CB CDB CD . ∴26.6∠=︒CDB .∴6026.633.4︒︒︒∠≈-=BDE .答:CD 旋转的度数约为33.4︒.解法二:当点B 落在DE 上时,如图.在∆Rt BCD 中,40=BC ,80=CD .(90∠=︒DCB ,同解法一) ∴40tan 0.580∠===BC BDC CD . ∴26.6∠=︒BDC .∴6026.633.4''︒︒︒∠=∠-∠=-=CDC BDC BDC .答:CD 旋转的度数约为33.4︒.五、21.解:(1)如图1,连接OA ,OB .∵PA ,PB 为O 的切线,∴90∠=∠=︒PAO PBO .∴180∠+∠=︒AOB APB .∵80∠=︒APB ,∴100∠=︒AOB .∴50∠=︒ACB .(2)如图2,当60∠=︒APB 时,四边形APBC 为菱形.连接OA ,OB .由(1)可知180∠+∠=︒AOB APB .∵60∠=︒APB ,∴120∠=︒AOB .∴60∠=︒=∠ACB APB . ∵点C 运动到PC 距离最大,∴PC 经过圆心.∵PA ,PB 为O 的切线,∴四边形APBC 为轴对称图形.∴=PA PB ,=CA CB ,PC 平分∠APB 和∠ACB . ∵60∠=∠=︒APB ACB ,∴30︒∠=∠=∠=∠=APO BPO ACP BCP .∴===PA PB CA CB .∴四边形APBC 为菱形.(3)∵O 的半径为r ,∴=OA r ,2=OP r .∴=AP ,=PD r .∴60∠=︒AOP ,∴601803ππ==AD r l r .∴13阴π⎫=++=+⎪⎭AD C PA PD l r . 22.解:(1)上;直线1=x . (2)由表格可知抛物线过点()0,3-.∴23=+-y ax bx .将点()1,0-,()2,3-代入,得304233--=⎧⎨+-=-⎩a b a b解得12=⎧⎨=-⎩a b ∴223=--y x x . 当2=-x 时,2(2)2(2)35=--⨯--=m ;当1=x 时,212134=-⨯-=-n .(3)如图所示,点'P 所在曲线是抛物线.(4)34121-=A A A A .六、23.解:(1)123+=S S S ;(2)成立;∵123∠=∠=∠,∠=∠=∠D E F ,∴∽∽∆∆∆ABD CAE BCF . ∴2123=S AB S BC ,2223=S AC S BC . ∴221223++=S S AB AC S BC∵∆ABC 为∆Rt ABC ,∴222+=AB AC BC . ∴1231+=S S S .∴123+=S S S . ∴成立.(3)过点A 作⊥AH BP 于点H .∵30∠=︒ABH ,=AB∴=AH 3=BH ,60∠=︒BAH .∵105∠=︒BAP ,∴45∠=︒HAP .∴==PH AH .∴=AP 3=+=+BP BH PH .∴2∆⋅===ABP BP AH S连接PD .∵=PE ,2=ED ,∴3==PE AP ,3==ED AB .∴=PE ED AP AB . 又∵105∠=∠=︒E BAP ,∴∽∆∆ABP EDP .∴45∠=∠=︒EPD APB ,==PD PE BP AP∴90∠=︒BPD ,1=+PD∴23113232∆∆⎛==⋅=⎝⎭⋅ PED ABP S S . 连接BD .∴3)(1322∆⋅+===BPD PB PD S .∵tan 3∠==PD PBD BP ,∴30∠=︒PBD . ∵90∠=︒ABC ,30∠=︒ABP ,∴30∠=︒DBC . ∵105∠=︒C ,∴∽∽∆∆∆ABP EDP CBD .∴2∆∆∆===+BCD ABP EDP S S S . ∴+五边形∆∆∆∆=++ABP EDP BCD BPD ABCDE S S S S S2)3)=++7=。
2020年江西省中考数学试卷和答案解析
2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.解析:根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选:C.点拨:此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.点拨:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:50175亿=5017500000000=5.0175×1012.故选:B.点拨:此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n的值.4.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG解析:依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.点拨:本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.(3分)如图所示,正方体的展开图为()A.B.C.D.解析:根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.点拨:本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt △OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解析:求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x 轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.点拨:本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=a2﹣2a+1.解析:直接利用完全平方公式计算即可解答.【解答】解:(a﹣1)2=a2﹣2a+1.点拨:本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为﹣2.解析:利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.点拨:本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.解析:根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答】解:由题意可得,表示25.故答案为:25.点拨:本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.解析:直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.点拨:本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为82°.解析:证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.点拨:本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米或4厘米或厘米.解析:根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE =30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.点拨:本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:解析:(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当x=时,原式==.点拨:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解析:(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.点拨:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.解析:(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.点拨:本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.解析:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.点拨:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.解析:(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.点拨:本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80解析:(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及点拨:本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)解析:(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.点拨:本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC 为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).解析:(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC =PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x=1;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系A3A4﹣A1A2=1.解析:(1)观察表格中的数据,得到x=0和x=2时,y值相等都为﹣3,且其他y的值比﹣3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a,b,c的值确定出解析式,进而求出m与n的值即可;(3)画出抛物线图象,确定出点P'运动的轨迹即可;(4)根据(3)中图象可得答案.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.点拨:本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC =90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.解析:类比探究(1)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=,BP=BH+PH=3+,可求S△ABP=,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,,S△PDE=,可得∠BPD=90°,PD=1+,可求S△BPD=2+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=+=2+2,即可求解.【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴=,=,∴,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∵△ABP∽△EDP,∴=()2=,∴S△PDE=×=∵tan∠PBD=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=+=2+2,∴五边形ABCDE的面积=++2+2+2+3=6+7.点拨:本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。
2020年江西省中考数学试卷-含详细解析
2020年江西省中考数学试卷一、选择题(本大题共6小题,共18.0分)1.−3的倒数是()A. 3B. −3C. −13D. 132.下列计算正确的是()A. a3+a2=a5B. a3−a2=aC. a3⋅a2=a6D. a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A. 5.0175×1011B. 5.0175×1012C. 0.50175×1013D. 0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A. AB//CDB. ∠B=30°C. ∠C+∠2=∠EFCD. CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()A. y=xB. y=x+1C. y=x+12D. y=x+2二、填空题(本大题共6小题,共18.0分)7.计算:(a−1)2=______.8.若关于x的一元二次方程x2−kx−2=0的一个根为x=1,则这个一元二次方程的另一个根为______.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是______.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下数字0123456789频数881211108981214那么,圆周率的小数点后位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为______.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.三、解答题(本大题共11小题,共84.0分)13.(1)计算:(1−√3)0−|−2|+(12)−2;(2)解不等式组:{3x−2≥1,5−x>2.14.先化简,再求值:(2xx2−1−1x−1)÷xx+1,其中x=√2.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为______;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A′B′C′;(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.17.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.(x>0)的图象18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=kx 上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45°,OA=2√2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=______;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有______人,至多有______人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,√3≈1.732)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.答案和解析1.【答案】C.【解析】解:−3的倒数是−13故选:C.根据倒数的定义即可得出答案.此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】D【解析】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3⋅a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.【答案】B【解析】解:50175亿=5017500000000=5.0175×1012.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵∠1=∠2=65°,∴AB//CD,故A选项正确,又∵∠3=35°,∴∠C=65°−35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.依据平行线的判定与性质,以及三角形外角性质,即可得出结论.本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.【答案】A【解析】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.根据正方体的展开与折叠,正方体展开图的形状进行判断即可.本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提. 6.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B , 令y =0,解得x =−1或3, 令x =0,求得y =−3, ∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1, ∴A′的横坐标为1,设A′(1,n),则B′(4,n +3), ∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2, ∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b , ∴{k +b =24k +b =5,解得{k =1b =1∴直线A′B′的表达式为y =x +1, 故选:B .求得A 、B 的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n +3),把B′(4,n +3)代入抛物线解析式求得n ,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x 轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键. 7.【答案】a 2−2a +1【解析】解:(a −1)2=a 2−2a +1. 直接利用完全平方公式计算即可解答.本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a ±b)2=a 2±2ab +b 2. 8.【答案】−2【解析】解:∵a =1,b =−k ,c =−2, ∴x 1⋅x 2=c a=−2.∵关于x 的一元二次方程x 2−kx −2=0的一个根为x =1, ∴另一个根为−2÷1=−2. 故答案为:−2.利用根与系数的关系可得出方程的两根之积为−2,结合方程的一个根为1,可求出方程的另一个根,此题得解.本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于ca 是解题的关键.9.【答案】25【解析】解:由题意可得,表示25.故答案为:25.根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.【答案】9【解析】解:圆周率的小数点后100位数字的众数为9,故答案为:9.直接根据众数的定义可得答案.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.【答案】82°【解析】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°−∠B−∠ACB−∠CAE=82°,故答案为:82°.证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.13.【答案】解:(1)原式=1−2+4=3;(2)解不等式3x−2≥1,得:x≥1,解不等式5−x>2,得:x<3,则不等式组的解集为1≤x<3.【解析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.【答案】解:原式=[2x(x+1)(x−1)−x+1(x+1)(x−1)]÷xx+1=x−1(x+1)(x−1)⋅x+1x=1x,当x=√2时,原式=1√2=√22.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.【答案】14【解析】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为14,故答案为:14;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P (小志、小晴)=212=16. (1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率. 本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.【答案】解:(1)如图1中,△A′B′C′即为所求. (2)如图2中,△AB′C′即为所求.【解析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可.(2)根据AB =2√5,BC =√5,AC =5,利用数形结合的思想解决问题即可. 本题考查作图−旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.【答案】解:(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元, 依题意,得:{2x +3y =19x +7y =26,解得:{x =5y =3.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元. (2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3−0.5)×10=40(元). ∵47−40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.【答案】解:(1)∵直线AC ⊥x 轴,垂足为D ,∠AOD =45°, ∴△AOD 是等腰直角三角形, ∵OA =2√2, ∴OD =AD =2, ∴A(2,2),∵顶点A 在反比例函数y =kx (x >0)的图象上, ∴k =2×2=4,∴反比例函数的解析式为y=4;x(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC//x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.(x>0),求得k的值,即可求得反比【解析】(1)根据题意求得A(2,2),然后代入y=kx例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.【答案】14 20 34【解析】解:(1)m=(2+8+10+15+10+4+1)−(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6= 20(人),至多有14+6+(15−1)=34(人),故答案为:20,34;(4)800×14+6=320(人),1+3+3+8+15+14+6答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD⋅sin∠CDE=80×√32=40√3(mm)=FM,∠DCN=90°−60°=30°,又∵∠DCB=80°,∴∠BCN=80°−30°=50°,∵AM⊥DE,CN⊥DE,∴AM//CN,∴∠A=∠BCN=50°,∴∠ACF=90°−50°=40°,在Rt△AFC中,AF=AC⋅sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40√3≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D=BCCD =4080=0.500,∴∠D=26.6°,因此旋转的角度为:60°−26.6°=33.4°,答:CD旋转的角度约为33.4°.【解析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.21.【答案】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=√3r,PD=r,∵∠AOP=90°−∠APO=60°,∴AD⏜=60°π⋅r180∘=π3r,∴阴影部分的周长=PA+PD+AD⏜=√3r+r+π3r=(√3+1+π3)r.【解析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC= BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求AD⏜,即可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.【答案】上直线x=1A1A2=A3A4【解析】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(−1,0),(0,−3),(2,−3)代入y =ax 2+bx +c ,得: {a −b +c =0c =−34a +2b +c =−3, 解得:{a =1b =−2c =−3,∴抛物线解析式为y =x 2−2x −3, 当x =−2时,m =4+4−3=5; 当x =1时,n =1−2−3=−4;(3)画出抛物线图象,如图1所示,描出P′的轨迹,是一条抛物线,如备用图中的红线所示,(4)根据题意及(3)中图象可得:A 1A 2=A 3A 4. 故答案为:A 1A 2=A 3A 4.(1)观察表格中的数据,得到x =0和x =2时,y 值相等都为−3,且其他y 的值比−3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a ,b ,c 的值确定出解析式,进而求出m 与n 的值即可;(3)画出抛物线图象,确定出点P′运动的轨迹即可; (4)根据(3)中图象可得答案.本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键. 23.【答案】S 1+S 2=S 3【解析】解:类比探究(1)∵∠1=∠3,∠D =∠F =90°, ∴△ADB∽△BFC , ∴S △ADB S △BFC=(ABBC )2,同理可得:S △AECS△BFC=(ACBC )2,∵AB 2+AC 2=BC 2, ∴S 1S 3+S 2S 3=(AB BC )2+(ACBC )2=AB 2+AC 2BC 2=1,∴S 1+S 2=S 3,故答案为:S 1+S 2=S 3. (2)结论仍然成立,理由如下:∵∠1=∠3,∠D =∠F ,∴△ADB∽△BFC , ∴S △ADB S △BFC=(ABBC )2,同理可得:S △AECS△BFC=(ACBC)2,∵AB 2+AC 2=BC 2, ∴S 1S 3+S 2S 3=(AB BC)2+(AC BC)2=AB 2+AC 2BC 2=1,∴S 1+S 2=S 3,(3)过点A 作AH ⊥BP 于H ,连接PD ,BD ,∵∠ABH =30°,AB =2√3,∴AH =√3,BH =3,∠BAH =60°, ∵∠BAP =105°, ∴∠HAP =45°, ∵AH ⊥BP ,∴∠HAP =∠APH =45°, ∴PH =AH =√3,∴AP =√6,BP =BH +PH =3+√3, ∴S △ABP =BP⋅AH 2=(3+√3)⋅√32=3√3+32, ∵PE =√2,ED =2,AP =√6,AB =2√3, ∴PEAP =√2√6=√33,DE AB=2√3=√33, ∴PE AP =EDAB ,且∠E =∠BAP =105°, ∴△ABP∽△EDP , ∴∠EPD =∠APB =45°,PD BP=PE AP=√33, ∴∠BPD =90°,PD =1+√3, ∴S △BPD =BP⋅PD 2=(3+√3)⋅(1+√3)2=2√3+3,∵△ABP∽△EDP , ∴S △PDE S △ABP=(√33)2=13,∴S △PDE =13×3√3+32=√3+12∵tan∠PBD=PDBP =√33,∴∠PBD=30°,∴∠CBD=∠ABC−∠ABP−∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=3√3+32+√3+12=2√3+2,∴五边形ABCDE的面积=3√3+32+√3+12+2√3+2+2√3+3=6√3+7.类比探究(1)通过证明△ADB∽△BFC,可得S△ADBS△BFC =(ABBC)2,同理可得S△AECS△BFC=(ACBC)2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得S△ADBS△BFC =(ABBC)2,同理可得S△AECS△BFC=(ACBC)2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=√6,BP= BH+PH=3+√3,可求S△ABP=3√3+32,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,PDBP =PEAP=√33,S△PDE=√3+12,可得∠BPD=90°,PD=1+√3,可求S△BPD=2√3+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=3√3+32+√3+12=2√3+2,即可求解.本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。
江西省2020年中考数学试卷含答案解析
江西省2020年中等学校招生考试数学试题一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-3的倒数是( )A .3B .-3C .13-D .132.下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a ⋅=D .32a a a ÷=3.教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( )A .115.017510⨯B .125.017510⨯C .130.5017510⨯D .140.5017510⨯4.如图,1265,335︒︒∠=∠=∠=,则下列结论错误的是( )A .//AB CD B .30B ︒∠= C .2C EFC ∠+∠=∠ D .CG FG >5.如图所示,正方体的展开图为( )6.在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB ∆向右上方平移,得到'''Rt O A B ∆,且点'O ,'A 落在抛物线的对称轴上,点'B 落在抛物线上,则直线''A B 的表达式为( )A .y x =B .1y x =+C .12y x =+D .2y x =+ 二、填空题(本大题共6个小题,每小题3分,共18分)7.计算:2(1)a -= .8.若关于x 的一元二次方程220x kx --=的一个根为1x =,则这个一元二次方程的另一个根为 .9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:那么,圆周率的小数点后100位数字的众数为 .11.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE∠的度数为 .12.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点'A 处,展平后得到折痕BE ,同时得到线段'BA ,'EA ,不再添加其它线段,当图中存在30角时,AE 的长为 厘米.三、解答题:本大题共5个小题,每小题6分,共30分.13.(1)计算:21(1|2|2-⎛⎫---+ ⎪⎝⎭ (2)解不等式组:32152x x -≥⎧⎨->⎩14.先化简,再求值:221111x x x x x ⎛⎫-÷⎪--+⎝⎭,其中x =15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,ABC ∆的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作ABC ∆关于点O 对称的'''A B C ∆;(2)在图2中,作ABC ∆绕点A 顺时针旋转一定角度后,顶点仍在格点上的'''A B C ∆.17. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、本大题共3个小题,每小题8分,共24分.18. 如图,Rt ABC ∆中,90ACB ∠=,顶点A ,B 都在反比例函数(0)ky x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,OA =(1)求反比例函数的解析式;的度数.(2)求EOD19. 为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)复学一个月后,根据第二次测试的数学成绩得到如下统计表:根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)五、本大题共2个小题,每小题9分,共18分.21. 已知MPN ∠的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,80MPN ∠=,求ACB ∠的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,APB ∠的度数应为多少?请说明理由;(3)若PC 交圆O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).22. 已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(1)根据以上信息,可知抛物线开口向 ,对称轴为 ;(2)求抛物线的表达式及,m n 的值;(3)请在图1中画出所求的抛物线,设点P 为抛物线上的动点,OP 的中点为'P ,描出相应的点'P ,再把相应的点'P 用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y m =(2m >-)与抛物线及(3)中的点'P 所在曲线都有两个交点,交点从左到右依次为1A ,2A ,3A ,4A ,请根据图象直接写出线段1A ,2A ,3A ,4A 之间的数量关系 .六、本大题共12分.23. 某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD ∆,Rt ACE ∆,Rt BCF ∆,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为 ;推广验证(2)如图3,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD ∆,ACE ∆,BCF ∆,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,AB =2DE =,点P 在AE 上,30ABP ∠=,PE =,求五边形ABCDE 的面积.江西省2020年中等学校招生考试数学试题卷(参考答案与解析)满分:120分 时间:120分钟一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-3的倒数是( )A .3B .-3C .13-D .13【解析】-3的倒数为31-,故选C2.下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a ⋅=D .32a a a ÷=【解析】由于3a 和2a 不是同类项,故A ,B 选项均错误,同底指数幂相乘,底数不变指数相加,故C 选项正确答案应为52323a a a a ==⋅+,D 选项正确,故答案为D3.教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( )A .115.017510⨯B .125.017510⨯C .130.5017510⨯D .140.5017510⨯【解析】50175亿即为数字5017500000000,根据科学记数法应写为a ×10N ,(1≤|a |<10),N 为小数点移动的位置,可得5.0175×1012.故应选B 4.如图,1265,335︒︒∠=∠=∠=,则下列结论错误的是( )A .//AB CD B .30B ︒∠= C .2C EFC ∠+∠=∠ D .CG FG >【解析】由∠1=∠2=65°,可得内错角相等,两直线平行,故A 选项正确,∠3和∠BFE 互为对顶角,∴∠BFE=35°,∠1为△BEF 的外角,∴∠1=∠BFE+∠B ,可得∠B=30°,故B 选项正确.∠EFC 为△CFG 的外角,∴∠EFC=∠C+∠CGF ,故C 选项错误.因为在△CGF 中,∠CFG >∠C ,∴CG >FG ,故D 选项正确,所以本题答案为C5.如图所示,正方体的展开图为( )【解析】根据平面展开图的定义可得A 选项为正确选项,故选A6.在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB ∆向右上方平移,得到'''Rt O A B ∆,且点'O ,'A 落在抛物线的对称轴上,点'B 落在抛物线上,则直线''A B 的表达式为( ) A .y x = B .1y x =+ C .12y x =+ D .2y x =+ 【解析】将抛物线322--=x x y 配方可得4)1(2--=x y ,∴对称轴为直线1=x ,抛物线与x 轴的两个交点坐标分别为)0,3(),0,1(-,∴B (3,0)与y 轴交点)3,0(-A ,∴OA=3,OB=4根据平移的规律可得3==''OB B O 且1='O x ,∴4='B x ,代入抛物线可得5='B y ,直线AB 的解析式为3-=x y ,根据AB ∥B A ''可得直线B A ''的解析式为m x y +=,再将)5,4(B '代入可得1=m ,∴直线B A ''的解析式为1+=x y ,故选B二、填空题(本大题共6个小题,每小题3分,共18分)7.计算:2(1)a -= . 【解析】根据差的完全平方公式展开得122+-a a ,故答案为122+-a a8.若关于x 的一元二次方程220x kx --=的一个根为1x =,则这个一元二次方程的另一个根为 .【解析】设一元二次方程的两根为21,x x ,并设11=x ,根据ac x x =21,可得212-=⋅x ,∴另外一根为-2,故答案为-2 9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2510.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:那么,圆周率的小数点后100位数字的众数为 .【解析】由于9出现的次数为14次,频数最多,∴众数为9,故答案为911.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为 .【解析】CD=CB ,∠ACD=∠ACB ,CA=CA ,∴△CAD ≌△CAB ,∴∠B=∠D ,设∠ACB=α,∠B=β,则∠ACD=α,∠D=β,∠EAC 为△ACD 的一个外角,∴︒=+49βα,在△ABC 中有内角和为180°,∴︒=∠++180BAC βα,∴∠BAC=131°,∴∠BAE=∠BAC -∠EAC=82°,故答案为82°12.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点'A 处,展平后得到折痕BE ,同时得到线段'BA ,'EA ,不再添加其它线段,当图中存在30角时,AE 的长为 厘米.【解析】当∠ABE=30°时,则∠A EB '=︒='∠30BC A ,在Rt △ABE 中,tan ∠ABE=33=AB AE ,∴此时 33430tan =︒=AB AE . 当∠AEB=30°时,此时在Rt △ABE 中,tan ∠AEB=33=AE AB ,∴34=AE 当∠︒='30ED A 时,过A '作AB 的平行线交AD 于F ,BC 于G ,∵︒='∠=∠90E A B A ,∴230sin =︒'=B A BG ,设x AE =,则x E A =',∴x E A EF 2330cos =︒'= 在矩形ABGF 中,AF=BG ,∴223=+x x ,解得348-=x ,此时348-=AE 故答案为:334或34或348- 三、解答题:本大题共5个小题,每小题6分,共30分.13.(1)计算:201(1|2|2-⎛⎫---+ ⎪⎝⎭ (2)解不等式组:32152x x -≥⎧⎨->⎩【解析】 原式=2)21(121+- 解不等式①,得1≥x =341=+- 解不等式②,得3<x∴原不等式组的解集是31<≤x14.先化简,再求值:221111x x x x x ⎛⎫-÷ ⎪--+⎝⎭,其中x =【解析】原式=xx x x x x x 1)1)(1(1)1)(1(2+⋅⎥⎦⎤⎢⎣⎡-++--+ =x x x x x x 1)1)(1()1(2+⋅-++-=xx x x x x 11)1)(1(1=+⋅-+- ∵2=x ,∴原式=22211==x 15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【解析】(1)41 (2)根据题意画出树状图如下:由树状图可得所有可能出现的结果共有12种,这些结果出现的可能性相等“其中两位同学均来自八年级”的结果共有2种,∴P (两位同学均来自八年级)=61122=16.如图,在正方形网格中,ABC ∆的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作ABC ∆关于点O 对称的'''A B C ∆;(2)在图2中,作ABC ∆绕点A 顺时针旋转一定角度后,顶点仍在格点上的'''A B C ∆.【解析】作图如下:17. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【解析】(1)设笔芯x 元/支,笔记本y 元/本,依题意可得,2671923⎩⎨⎧=+=+y x y x 解得,53⎩⎨⎧==y x 答:笔芯3元/支,笔记本5元/本.(2)方法一:合买笔芯,合算.∵整盒购买比单只购买每支可优惠0.5元∴小贤和小艺可一起购买整盒笔芯∴共可节约:0.5×10=5元.∵小工艺品的单价为3元,5+2>3×2,∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.方法二:合买笔芯,单算.∵整盒购买比单支购买每支可优惠0.5元,∴小贤和小艺可一起购买整盒笔芯.∴小工艺品的单价为3元,小贤:3×0.5+2=3.5>3,小艺:7×0.5=3.5>3∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.四、本大题共3个小题,每小题8分,共24分.18. 如图,Rt ABC ∆中,90ACB ∠=,顶点A ,B 都在反比例函数(0)k y x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,OA =(1)求反比例函数的解析式;(2)求EOD ∠的度数.【解析】:(1)∵AD ⊥x 轴,∠AOD=45°,OA=22,∴2==OD AD .∴A (2,2)∵点A 在反比例函数图象上,∴422=⨯=k ,∴xy 4= (2)∵△ABC 为直角三角形,点E 为AB 的中点,∴AE=CE=EB ,∠AEC=2∠ECB ,∵AB=2OA ,∴AO=AE.∴∠AOE=∠AEO=2∠ECB.∵∠ACB=90°,AD ⊥x 轴,∴BC ∥x 轴.∴∠ECB=∠EOD ,∴∠AOE=2∠EOD.∵∠AOD=45°,∴∠EOD=31∠AOD=︒=︒⨯154531 19. 为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)复学一个月后,根据第二次测试的数学成绩得到如下统计表:根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有人,至多有人;(5)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解析】(1)14.(2)对比前一次测试优秀学生的比例大幅提升;对比前一次测试学生的平均成绩有较大提高;对比前一次测试学生成绩的众数、中位数增大.(3)20,34(4)32050614800=+⨯答:该校800名八年级学生数学成绩优秀得人数是320人20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)【解析】(1)如图1,过点C 作CH ⊥DE 于点H.∵CD80,∠CDE=60°,∴sin60°=2380==CH CD CH , ∴28.69732.140340≈⨯≈=CH作AM ⊥DE 于点M ,CN ⊥AM 于点N.∴MN=CH=340,∠NCD=∠CDE=60°∵∠DCB=80°,∴∠ACN=180°-80°-60°=40°.∵sin ∠ACN=,80,=AC ACAN∴AN=80sin40°≈80×0.643≈51.44. ∴AM=AN+NM ≈51.44+69.28≈120.7mm.(2)解法一:∵AB 绕着点C 逆时针旋转10°,∴∠DCB=90°.如图2,连接BD.∵DC=80,CB=40.∴tan∠CDB=4080BCCD==0.5.∴∠CDB≈26.6°.∴∠BDE≈60°-26.6°=33.4°答:CD旋转的度数约为33.4°解法二:当点B落在DE上时,如图3在Rt△BCD中,BC=40,CD=80(∠DCB=90°,同解法一)∴tan∠CDB=4080BCCD==0.5.∴∠CDB≈26.6∴∠CDC'=∠BDC'-∠BDC=60°-26.6°=33.4°答:CD旋转的度数约为33.4°五、本大题共2个小题,每小题9分,共18分.21. 已知MPN ∠的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,80MPN ∠=,求ACB ∠的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,APB ∠的度数应为多少?请说明理由;(3)若PC 交圆O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).【解析】(1)如图1,连接OA ,OB.∵PA,PB为∴O的切线,∴∠PAO=∠PBO=90°.∴∠AOB+∠APB=180°.∵∠APB=80°∴∠AOB=100°,∴∠ACB=50°(2)如图2,当∠APB=60°时,四边形APBC为菱形.连接OA,OB.由(1)可知∠AOB+∠APB=180°.∵∠APB=60°,∴∠AOB=120°.∴∠ACB=60°=∠APB.∵点C运动到PC距离最大,∴PC经过圆心.∵PA,PB为∴O的切线,∴四边形APBC为轴对称图形.∴PA=PB,CA=CB,PC平分∠APB和∠ACB.∵∠APB=∠ACB=60°,∴∠APO=∠BPO=∠ACP=∠BCP=30°∴PA=PB=CA=CB.∴四边形APBC为菱形(3)∵∴O的半径为r,∴OA=r,OP=2r∴AP =,PD r =,∴∠AOP=60°,∴601803AD r rl ππ==弧∴=1)3AD C PA PD l r π++=+阴影弧22. 已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(1)根据以上信息,可知抛物线开口向 ,对称轴为 ;(2)求抛物线的表达式及,m n 的值;(3)请在图1中画出所求的抛物线,设点P 为抛物线上的动点,OP 的中点为'P ,描出相应的点'P ,再把相应的点'P 用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y m =(2m >-)与抛物线及(3)中的点'P 所在曲线都有两个交点,交点从左到右依次为1A ,2A ,3A ,4A ,请根据图象直接写出线段1A ,2A ,3A ,4A 之间的数量关系 .【解析】(1)上;直线1x =(2)由表格可知抛物线过点(0,-3).∴23y ax bx =+-将点(-1,0),(2,-3)代入,得304233a b a b --=⎧⎨+-=-⎩解得12a b =⎧⎨=-⎩,∴223y x x =--当2x =-时,2(2)2(2)35;m =--⨯--=当1x =时,212134n =-⨯-=-(3)如图所示,点P '所在曲线是抛物线.(4)34121A A A A -=六、本大题共12分.23. 某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD ∆,Rt ACE ∆,Rt BCF ∆,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为 ;推广验证(2)如图3,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD ∆,ACE ∆,BCF ∆,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,AB =2DE =,点P 在AE 上,30ABP ∠=,PE =,求五边形ABCDE 的面积.【解析】(1)123;S S S +=(2)成立;∵∠1=∠2=∠3,∠D=∠E=∠F ,∴△ABD ∽△CAE ∽△BCF.∴22122233,.S S AB AC S BC S BC ==∴221223.S S AB AC S BC ++=∵△ABC 为直角三角形 ∴222AB AC BC +=.∴1231S S S +=,∴123S S S +=,∴成立. (3)过点A 作AH ⊥BP 于点H.∵∠ABH=30°,AB=∴3,60AH BH BAH ==∠=︒.∵∠BAP=105°,∴∠HAP=45°.∴∴AP =,BP=BH+PH=3∴(33222ABP BP AH S ∆⋅+===.连接PD.∵2PE ED ==,∴PE ED AP AB ====. ∴.PE EDAP AB=又∵∠E=∠BAP=105°,△ABP ∽△EDP.∴∠EPD=∠APB=45°,BD PE BP AP ==.∴∠BPD=90°,1PD =+∴213BPD ABP S S ∆∆=⋅==连接BD.∴3)(1322BPD PB PD S ∆⋅+===.∵tan ∠PBD=PD BP =PBD=30°.∵∠ABC=90°,∠ABC=30°,∴∠DBC=30°∵∠C=105°,∴△ABP∽△EDP∽△CBD.=.∴S△BCD=S△ABP+S△EDP2∴S五边形ABCDE=S△ABP+S△EDP+S△BCD+S△BPD+=2)3)7。
2020年江西省中考数学试卷含答案
2020年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)(2020•江西)﹣3的倒数是()A .3B .﹣3C .-13D .132.(3分)(2020•江西)下列计算正确的是()A .a 3+a 2=a5B .a 3﹣a 2=aC .a 3•a 2=a6D .a 3÷a 2=a3.(3分)(2020•江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A .5.0175×1011B .5.0175×1012C .0.50175×1013D .0.50175×10144.(3分)(2020•江西)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A .AB ∥CD B .∠B =30°C .∠C +∠2=∠EF C D .CG >F G5.(3分)(2020•江西)如图所示,正方体的展开图为()A .B .C .D .6.(3分)(2020•江西)在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2﹣2x ﹣3与y 轴交于点A ,与x 轴正半轴交于点B ,连接A B ,将R t △O A B 向右上方平移,得到R t△O 'A 'B ',且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A 'B '的表达式为()A .y =xB .y =x +1C .y =x +12D .y =x +2二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)(2020•江西)计算:(a ﹣1)2=.8.(3分)(2020•江西)若关于x 的一元二次方程x 2﹣k x ﹣2=0的一个根为x =1,则这个一元二次方程的另一个根为.9.(3分)(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.(3分)(2020•江西)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.11.(3分)(2020•江西)如图,A C 平分∠D C B ,C B =C D ,D A 的延长线交B C 于点E ,若∠E A C =49°,则∠B A E 的度数为.12.(3分)(2020•江西)矩形纸片A B C D ,长A D =8c m ,宽A B =4c m ,折叠纸片,使折痕经过点B ,交A D 边于点E ,点A 落在点A '处,展平后得到折痕B E ,同时得到线段B A ',E A ',不再添加其它线段.当图中存在30°角时,A E 的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(2020•江西)(1)计算:(1-3)0﹣|﹣2|+(1 2)﹣2;(2)解不等式组:{3x-2≥1,5-x>2.14.(6分)(2020•江西)先化简,再求值:(2xx2-1-1x-1)÷xx+1,其中x=2.15.(6分)(2020•江西)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.(6分)(2020•江西)如图,在正方形网格中,△A B C的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△A B C关于点O对称的△A'B'C';(2)在图2中,作△A B C绕点A顺时针旋转一定角度后,顶点仍在格点上的△A B'C'.17.(6分)(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.(8分)(2020•江西)如图,R t △A B C 中,∠A C B =90°,顶点A ,B 都在反比例函数y =k x(x >0)的图象上,直线A C ⊥x 轴,垂足为D ,连结O A ,O C ,并延长O C 交A B 于点E ,当A B =2O A 时,点E 恰为A B 的中点,若∠A O D =45°,O A =22.(1)求反比例函数的解析式;(2)求∠E O D 的度数.19.(8分)(2020•江西)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x <4040≤x <5050≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100人数133815m 6根据以上图表信息,完成下列问题:(1)m =;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.(8分)(2020•江西)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长A B=120mm,支撑板长C D=80mm,底座长D E=90mm.托板A B固定在支撑板顶端点C处,且C B=40mm,托板A B可绕点C转动,支撑板C D可绕点D转动.(结果保留小数点后一位)(1)若∠D C B=80°,∠C D E=60°,求点A到直线D E的距离;(2)为了观看舒适,在(1)的情况下,把A B绕点C逆时针旋转10°后,再将C D绕点D顺时针旋转,使点B落在直线D E上即可,求C D旋转的角度.(参考数据:s i n40°≈0.643,c o s40°≈0.766,t a n40°≈0.839,s i n26.6°≈0.448,c o s26.6°≈0.894,t a n26.6°≈0.500,3≈1.732)五、(本大题共2小题,每小题9分,共18分)21.(9分)(2020•江西)已知∠M P N的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠M P N=80°,求∠A C B的度数;(2)如图2,点C在圆上运动,当P C最大时,要使四边形A P B C为菱形,∠A P B的度数应为多少?请说明理由;(3)若P C交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.(9分)(2020•江西)已知抛物线y=a x2+b x+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,O P的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.(12分)(2020•江西)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在R t△A B C中,B C为斜边,分别以A B,A C,B C为斜边向外侧作R t△A B D,R t△A C E,R t△B C F,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在R t△A B C中,B C为斜边,分别以A B,A C,B C为边向外侧作任意△A B D,△A C E,△B C F,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形A B C D E中,∠A=∠E=∠C=105°,∠A B C=90°,A B=23,D E=2,点P在A E上,∠A B P=30°,P E=2,求五边形A B C D E的面积.2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)(2020•江西)﹣3的倒数是()A .3B .﹣3C .-13D .13【解答】解:﹣3的倒数是-13.故选:C .2.(3分)(2020•江西)下列计算正确的是()A .a 3+a 2=a5B .a 3﹣a 2=aC .a 3•a 2=a6D .a 3÷a 2=a【解答】解:A 、a 2与a 3不是同类项,不能合并,故本选项错误;B 、a 3与a 2不是同类项,不能合并,故本选项错误;C 、应为a 3•a 2=a 5,故本选项错误;D 、a 3÷a 2=a ,正确.故选:D .3.(3分)(2020•江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A .5.0175×1011B .5.0175×1012C .0.50175×1013D .0.50175×1014【解答】解:50175亿=5017500000000=5.0175×1012.故选:B .4.(3分)(2020•江西)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A .AB ∥CD B .∠B =30°C .∠C +∠2=∠EF C D .CG >F G【解答】解:∵∠1=∠2=65°,∴A B ∥C D ,故A 选项正确,又∵∠3=35°,∴∠C =65°﹣35°=30°,∴∠B =∠C =30°,故B 选项正确,∵∠E F C 是△C G F 的外角,∴∠E F C =∠C +∠3,故C 选项错误,∵∠3>∠C ,∴C G >F G ,故D 选项正确,故选:C .5.(3分)(2020•江西)如图所示,正方体的展开图为()A .B .C .D .【解答】解:根据“相间、Z 端是对面”可得选项B 不符合题意;再根据“上面∧”符号开口,可以判断选项A 符合题意;选项C 、D 不符合题意;故选:A .6.(3分)(2020•江西)在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2﹣2x ﹣3与y 轴交于点A ,与x 轴正半轴交于点B ,连接A B ,将R t △O A B 向右上方平移,得到R t△O 'A 'B ',且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A 'B '的表达式为()A .y =xB .y =x +1C .y =x +12D .y =x +2【解答】解:如图,∵抛物线y =x 2﹣2x ﹣3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =﹣1或3,令x =0,求得y =﹣3,∴B (3,0),A (0,﹣3),∵抛物线y =x 2﹣2x ﹣3的对称轴为直线x =--22×1=1,∴A ′的横坐标为1,设A ′(1,n ),则B ′(4,n +3),∵点B '落在抛物线上,∴n +3=16﹣8﹣3,解得n =2,∴A ′(1,2),B ′(4,5),设直线A 'B '的表达式为y =k x +b ,∴{k +b =24k +b =5,解得{k =1b =1∴直线A 'B '的表达式为y =x +1,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)(2020•江西)计算:(a ﹣1)2=a 2﹣2a +1.【解答】解:(a ﹣1)2=a 2﹣2a +1.8.(3分)(2020•江西)若关于x 的一元二次方程x 2﹣k x ﹣2=0的一个根为x =1,则这个一元二次方程的另一个根为﹣2.【解答】解:∵a =1,b =﹣k ,c =﹣2,∴x 1•x 2=ca=-2.∵关于x 的一元二次方程x 2﹣k x ﹣2=0的一个根为x =1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.9.(3分)(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.【解答】解:由题意可得,表示25.故答案为:25.10.(3分)(2020•江西)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.11.(3分)(2020•江西)如图,A C平分∠D C B,C B=C D,D A的延长线交B C于点E,若∠E A C=49°,则∠B A E的度数为82°.【解答】解:∵A C平分∠D C B,∴∠B C A=∠D C A,∵C B=C D,∵A C=A C,∴△A B C≌△A D C(S A S),∴∠B =∠D ,∴∠B +∠A C B =∠D +∠A C D ,∵∠C A E =∠D +∠A C D =49°,∴∠B +∠A C B =49°,∴∠B A E =180°﹣∠B ﹣∠A C B ﹣∠C A E =82°,故答案为:82°.12.(3分)(2020•江西)矩形纸片A B C D ,长A D =8c m ,宽A B =4c m ,折叠纸片,使折痕经过点B ,交A D 边于点E ,点A 落在点A '处,展平后得到折痕B E ,同时得到线段B A ',E A ',不再添加其它线段.当图中存在30°角时,A E 的长为433厘米或43厘米或8-43厘米.【解答】解:①当∠A B E =30°时,A E =A B ×t a n 30°=433;②当∠A E B =30°时,A E =A B t a n 30°=433=43;③∠A B E =15°时,∠A B A ′=30°,延长B A ′交A D 于F ,如下图所示,设A E =x ,则E A ′=x ,E F =xs i n 60°=23x 3,∵A F =A E +E F =A B t a n 30°=433,∴x +23x 3=433,∴x =8﹣43,∴A E =8﹣43.故答案为:433厘米或43厘米或8﹣43厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(2020•江西)(1)计算:(1-3)0﹣|﹣2|+(12)﹣2;(2)解不等式组:{3x -2≥1,5-x >2.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x ﹣2≥1,得:x ≥1,解不等式5﹣x >2,得:x <3,则不等式组的解集为1≤x <3.14.(6分)(2020•江西)先化简,再求值:(2x x 2-1-1x -1)÷xx +1,其中x =2.【解答】解:原式=[2x (x +1)(x -1)-x +1(x +1)(x -1)]÷xx +1=x -1(x +1)(x -1)•x +1x =1x,当x =2时,原式=12=22.15.(6分)(2020•江西)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为14;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为14,故答案为:14;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P (小志、小晴)=212=16.16.(6分)(2020•江西)如图,在正方形网格中,△A B C 的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△A B C 关于点O 对称的△A 'B 'C ';(2)在图2中,作△A B C 绕点A 顺时针旋转一定角度后,顶点仍在格点上的△A B 'C '.【解答】解:(1)如图1中,△A 'B 'C '即为所求.(2)如图2中,△A B 'C '即为所求.17.(6分)(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【解答】解:(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26,解得:{x =5y =3.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.四、(本大题共3小题,每小题8分,共24分)18.(8分)(2020•江西)如图,R t △A B C 中,∠A C B =90°,顶点A ,B 都在反比例函数y =kx(x >0)的图象上,直线A C ⊥x 轴,垂足为D ,连结O A ,O C ,并延长O C 交A B 于点E ,当A B =2O A 时,点E 恰为A B 的中点,若∠A O D =45°,O A =22.(1)求反比例函数的解析式;(2)求∠E O D 的度数.【解答】解:(1)∵直线A C ⊥x 轴,垂足为D ,∠A O D =45°,∴△A O D 是等腰直角三角形,∵O A =22,∴O D =A D =2,∴A (2,2),∵顶点A 在反比例函数y =k x(x >0)的图象上,∴k =2×2=4,∴反比例函数的解析式为y =4x;(2)∵A B =2O A ,点E 恰为A B 的中点,∴O A =A E ,∵R t △A B C 中,∠A C B =90°,∴C E =A E =B E ,∴∠A O E =∠A E O ,∠E C B =∠E B C ,∵∠A E O =∠E C B +∠E B C =2∠E B C ,∵B C ∥x 轴,∴∠E O D =∠E C B ,∴∠A O E =2∠E O D ,∵∠A O D =45°,∴∠E O D =15°.19.(8分)(2020•江西)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×14+61+3+3+8+15+14+6=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.20.(8分)(2020•江西)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长A B=120mm,支撑板长C D=80mm,底座长D E=90mm.托板A B固定在支撑板顶端点C处,且C B=40mm,托板A B可绕点C转动,支撑板C D可绕点D转动.(结果保留小数点后一位)(1)若∠D C B=80°,∠C D E=60°,求点A到直线D E的距离;(2)为了观看舒适,在(1)的情况下,把A B绕点C逆时针旋转10°后,再将C D绕点D顺时针旋转,使点B落在直线D E上即可,求C D旋转的角度.(参考数据:s i n40°≈0.643,c o s40°≈0.766,t a n40°≈0.839,s i n26.6°≈0.448,c o s26.6°≈0.894,t a n26.6°≈0.500,3≈1.732)【解答】解:(1)如图2,过A作A M⊥D E,交E D的延长线于点M,过点C作C F⊥A M,垂足为F,过点C作C N⊥D E,垂足为N,由题意可知,A C=80,C D=80,∠D C B=80°,∠C D E=60°,在R t△C D N中,C N=C D•s i n∠C D E=80×32=403(mm)=F M,∠D C N=90°﹣60°=30°,又∵∠D C B=80°,∴∠B C N=80°﹣30°=50°,∵A M⊥D E,C N⊥D E,∴A M∥C N,∴∠A=∠B C N=50°,∴∠A C F=90°﹣50°=40°,在R t △A F C 中,A F =A C •s i n 40°=80×0.643≈51.44,∴A M =A F +F M =51.44+403≈120.7(m m ),答:点A 到直线D E 的距离约为120.7mm ;(2)旋转后,如图3所示,根据题意可知∠D C B =80°+10°=90°,在R t △B C D 中,C D =80,B C =40,∴t a n ∠D =B C C D =4080=0.500,∴∠D =26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:C D 旋转的角度约为33.4°.五、(本大题共2小题,每小题9分,共18分)21.(9分)(2020•江西)已知∠M P N 的两边分别与⊙O 相切于点A ,B ,⊙O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,∠M P N =80°,求∠A C B 的度数;(2)如图2,点C 在圆上运动,当P C 最大时,要使四边形A P B C 为菱形,∠A P B 的度数应为多少?请说明理由;(3)若P C 交⊙O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).【解答】解:(1)如图1,连接O A,O B,∵P A,P B为⊙O的切线,∴∠P A O=∠P B O=90°,∵∠A P B+∠P A O+∠P B O+∠A O B=360°,∴∠A P B+∠A O B=180°,∵∠A P B=80°,∴∠A O B=100°,∴∠A C B=50°;(2)如图2,当∠A P B=60°时,四边形A P B C是菱形,连接O A,O B,由(1)可知,∠A O B+∠A P B=180°,∵∠A P B=60°,∴∠A O B=120°,∴∠A C B=60°=∠A P B,∵点C 运动到P C 距离最大,∴P C 经过圆心,∵P A ,P B 为⊙O 的切线,∴P A =P B ,∠A P C =∠B P C =30°,又∵P C =P C ,∴△A P C ≌△B P C (S A S ),∴∠A C P =∠B C P =30°,A C =B C ,∴∠A P C =∠A C P =30°,∴A P =A C ,∴A P =A C =P B =B C ,∴四边形A P B C 是菱形;(3)∵⊙O 的半径为r ,∴O A =r ,O P =2r ,∴A P =3r ,P D =r ,∵∠A O P =90°﹣∠A P O =60°,∴̂A D=60°π⋅r 180°=π3r ,∴阴影部分的周长=P A +P D +̂A D=3r +r +π3r =(3+1+π3)r .22.(9分)(2020•江西)已知抛物线y =a x 2+b x +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如下表:x…﹣2﹣1012…y …m 0﹣3n ﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x =1;(2)求抛物线的表达式及m ,n 的值;(3)请在图1中画出所求的抛物线.设点P 为抛物线上的动点,O P 的中点为P ',描出相应的点P ',再把相应的点P '用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y =m (m >﹣2)与抛物线及(3)中的点P '所在曲线都有两个交点,交点从左到右依次为A 1,A 2,A 3,A 4,请根据图象直接写出线段A 1A 2,A 3A 4之间的数量关系A3A4﹣A1A2=1.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=a x2+b x+c,得:{a-b+c=0c=-34a+2b+c=-3,解得:{a=1b=-2c=-3,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.六、(本大题共12分)23.(12分)(2020•江西)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在R t△A B C中,B C为斜边,分别以A B,A C,B C为斜边向外侧作R t△A B D,R t△A C E,R t△B C F,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在R t△A B C中,B C为斜边,分别以A B,A C,B C为边向外侧作任意△A B D,△A C E,△B C F,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形A B C D E中,∠A=∠E=∠C=105°,∠A B C=90°,A B=23,D E=2,点P在A E上,∠A B P=30°,P E=2,求五边形A B C D E的面积.【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△A D B∽△B F C,∴S△A D BS△B F C=(A BB C)2,同理可得:S△A E CS△B F C=(A CB C)2,∵A B2+A C2=B C2,∴S1S3+S2S3=(A BB C)2+(A CB C)2=A B2+A C2B C2=1,∴S1+S2=S3,故答案为:S 1+S 2=S 3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D =∠F ,∴△A D B ∽△B F C ,∴S △A D B S △B F C=(A B B C )2,同理可得:S △A E C S △B F C=(A C B C )2,∵A B 2+A C 2=B C 2,∴S 1S 3+S 2S 3=(A B B C )2+(A C B C )2=A B 2+A C 2B C 2=1,∴S 1+S 2=S 3,(3)过点A 作A H ⊥B P 于H ,连接P D ,B D ,∵∠A B H =30°,A B =23,∴A H =3,B H =3,∠B A H =60°,∵∠B A P =105°,∴∠H A P =45°,∵A H ⊥B P ,∴∠H A P =∠A P H =45°,∴P H =A H =3,∴A P =6,B P =B H +P H =3+3,∴S △A B P =B P ⋅A H 2=(3+3)⋅32=33+32,∵P E =2,E D =2,A P =6,A B =23,∴P E A P =26=33,D E A B =223=33,∴P E A P =E D A B,且∠E =∠B A P =105°,∴△A B P ∽△E D P ,∴∠E P D =∠A P B =45°,P D B P =P E A P =33,∴∠B P D =90°,P D =1+3,∴S △B P D =B P ⋅P D 2=(3+3)⋅(1+3)2=23+3,∵△A B P ∽△E D P ,∴S △P D E S △A B P=(33)2=13,∴S △P D E =13×33+32=3+12∵t a n ∠P B D =P D B P =33,∴∠P B D =30°,∴∠C B D =∠A B C ﹣∠A B P ﹣∠C B D =30°,∴∠A B P =∠P D E =∠C B D ,又∵∠A =∠E =∠C =105°,∴△A B P ∽△E D P ∽△C B D ,由(2)的结论可得:S △B C D =S △A B P +S △D P E =33+32+3+12=23+2,∴五边形A B C D E 的面积=33+32+3+12+23+2+23+3=63+7.。
2020年江西省中考数学试题及参考答案(word解析版)
江西省2020年中等学校招生考试数学试题卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC =49°,则∠BAE的度数为.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:14.先化简,再求值:(﹣)÷,其中x=.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …m 0 ﹣3 n ﹣3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE =2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.【知识考点】倒数.【思路分析】根据倒数的定义即可得出答案.【解答过程】解:﹣3的倒数是﹣.故选:C.【总结归纳】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答过程】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.【总结归纳】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:50175亿=5017500000000=5.0175×1012.故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【知识考点】平行线的判定;三角形的外角性质.【思路分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答过程】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.【总结归纳】本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.如图所示,正方体的展开图为()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答过程】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【总结归纳】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2【知识考点】待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点;坐标与图形变化﹣平移.【思路分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答过程】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴A(3,0),B(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.【总结归纳】本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.【知识考点】完全平方公式.【思路分析】直接利用完全平方公式计算即可解答.【解答过程】解:(a﹣1)2=a2﹣2a+1.【总结归纳】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【知识考点】一元二次方程的解;根与系数的关系.【思路分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答过程】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.【总结归纳】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.【知识考点】用数字表示事件.【思路分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答过程】解:由题意可得,表示25.故答案为:25.【总结归纳】本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.【知识考点】近似数和有效数字;数学常识;频数(率)分布表;众数.【思路分析】直接根据众数的定义可得答案.【解答过程】解:圆周率的小数点后100位数字的众数为9,故答案为:9.【总结归纳】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.【知识考点】全等三角形的判定与性质.【思路分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答过程】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.【总结归纳】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB =30°时或当∠ABA′=30°时求AE的长.【解答过程】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.【总结归纳】本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:【知识考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【思路分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=[﹣]÷=•=,当x=时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答过程】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【知识考点】作图﹣旋转变换.【思路分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答过程】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.【总结归纳】本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答过程】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;直角三角形斜边上的中线.【思路分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答过程】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.【总结归纳】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;频数(率)分布折线图.【思路分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答过程】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.【总结归纳】本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【知识考点】解直角三角形的应用.【思路分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答过程】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.【总结归纳】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【知识考点】圆的综合题.【思路分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答过程】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,。
2020年江西省中考数学试卷(附答案解析)
2020年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)-3的倒数是()A.3B.-3C.-D.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3-a2=a C.a3•a2=a6D.a3÷a2=a3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.(3分)如图所示,正方体的展开图为()A.B.C.D.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a-1)2=.8.(3分)若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1-)0-|-2|+()-2;(2)解不等式组:14.(6分)先化简,再求值:(-)÷,其中x=.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x >0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y 的部分对应值如下表:x…-2-1012…y…m0-3n-3…)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>-2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.【试题答案】一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C【解答】解:-3的倒数是-.2.D【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.3.B【解答】解:50175亿=5017500000000=5.0175×1012.4.C【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°-35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确.5.A【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意.6.B【解答】解:如图,∵抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=-1或3,令x=0,求得y=-3,∴B(3,0),A(0,-3),∵抛物线y=x2-2x-3的对称轴为直线x=-=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16-8-3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1.二、填空题(本大题共6小题,每小题3分,共18分)7.a2-2a+1【解答】解:(a-1)2=a2-2a+1.8.-2【解答】解:∵a=1,b=-k,c=-2,∴x1•x2==-2.∵关于x的一元二次方程x2-kx-2=0的一个根为x=1,∴另一个根为-2÷1=-2.9.25【解答】解:由题意可得,表示25.10.9【解答】解:圆周率的小数点后100位数字的众数为9。
2020年江西省中考数学试卷(含解析)打印版
2020年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.(3分)如图所示,正方体的展开图为()A.B.C.D.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:14.(6分)先化简,再求值:(﹣)÷,其中x=.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P 在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.【分析】根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选:C.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:50175亿=5017500000000=5.0175×1012.故选:B.4.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.5.(3分)如图所示,正方体的展开图为()A.B.C.D.【分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2【分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=a2﹣2a+1.【分析】直接利用完全平方公式计算即可解答.【解答】解:(a﹣1)2=a2﹣2a+1.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为﹣2.【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.【分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答】解:由题意可得,表示25.故答案为:25.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.【分析】直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为82°.【分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答】解:∵AC平分∠DCB,∴∠BCA=∠DCA,又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米或4厘米或厘米.【分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=AB tan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:【分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.14.(6分)先化简,再求值:(﹣)÷,其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当x=时,原式==.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【分析】(1)连接OA,OB,由切线的性质可求∠P AO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得P A=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC =PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答】解:(1)如图1,连接OA,OB,∵P A,PB为⊙O的切线,∴∠P AO=∠PBO=90°,∵∠APB+∠P AO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵P A,PB为⊙O的切线,∴P A=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴的长度==,∴阴影部分的周长=P A+PD+=r+r+r=(+1+)r.22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x=1;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系A3A4﹣A1A2=1.【分析】(1)观察表格中的数据,得到x=0和x=2时,y值相等都为﹣3,且其他y的值比﹣3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a,b,c的值确定出解析式,进而求出m与n的值即可;(3)画出抛物线图象,确定出点P'运动的轨迹即可;(4)根据(3)中图象可得答案.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P 在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.【分析】类比探究(1)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=,BP=BH+PH=3+,可求S△ABP=,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,,S△PDE =,可得∠BPD=90°,PD=1+,可求S△BPD=2+3,由(2)的结论可求S△BCD=S△ABP+S=+=2+2,即可求解.△DPE【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴=,=,∴,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∵△ABP∽△EDP,∴=()2=,∴S△PDE=×=∵tan∠PBD=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE =+=2+2,∴五边形ABCDE 的面积=++2+2+2+3=6+7.21。
江西省2020年中考数学试题(含答案与解析)
江西省2020年中等学校招生考试试题卷数 学一、选择题1.-3的倒数是( ) A. 3B. -3C.D.2.下列计算正确的是( ) A.B.C.D.3.教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( ) A.B. C. D.4.如图,,则下列结论错误的是( )A. B. C. D.5.如图所示,正方体的展开图为( )A. B.1313-325a a a +=32a a a -=326a a a ⋅=32a a a ÷=115.017510⨯125.017510⨯130.5017510⨯140.5017510⨯1265,335︒∠=∠=∠=︒//AB CD 30B ∠=︒2C EFC ∠+∠=∠CG FG >C. D.6.在平面直角坐标系中,点为坐标原点,抛物线与轴交于点,与轴正半轴交于点,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为( ) A. B.C. D.二、填空题7.计算:_____.8.若关于一元二次方程的一个根为,则这个一元二次方程的另一个根为_________.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是__________.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计: 数字 0 1 2 3 4 5 6 7 8 9 频数 881211108981214那么,圆周率的小数点后100位数字的众数为__________.11.如图,平分,,的延长线交于点,若,则的度数为__________.的O 223y x x =--y A x B AB Rt OAB V Rt O A B '''△O 'A 'B 'A B ''y x =1y x =+12y x =+2y x =+()21x -=x 220x kx --=1x =AC DCB ∠CB CD =DA BC E 49EAC ∠= BAE ∠12.矩形纸片,长,宽,折叠纸片,使折痕经过点,交边于点,点落在点处,展平后得到折痕,同时得到线段,,不再添加其它线段,当图中存在角时,长为__________厘米.三、解答题13.(1)计算:(2)解不等式组:14.先化简,再求值:,其中15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试. (1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率. 16.如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作关于点对称的;的ABCD 8cm AD =4cm AB =B AD E A A 'BE BA 'EA '30 AE 21(1|2|2-⎛⎫--+ ⎪⎝⎭32152x x -≥⎧⎨->⎩221111xx x x x ⎛⎫-÷⎪--+⎝⎭x =ABC ABC O A B C '''V(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上.17.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元. (1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.18.如图,中,,顶点,都在反比例函数的图象上,直线轴,垂足为,连结,,并延长交于点,当时,点恰为的中点,若,(1)求反比例函数解析式; (2)求的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)的的ABC A A B C '''V Rt ABC 90ACB ∠= A B (0)ky x x=>AC x ⊥D OA OC OC AB E 2AB OA =E AB 45AOD ∠= OA =EOD ∠复学一个月后,根据第二次测试的数学成绩得到如下统计表: 成绩人数 1 338156根据以上图表信息,完成下列问题: (1) ;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有 人,至多有 人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数. 20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长,支撑板长,底座长,托板固定在支撑板顶端点处,且,托板可绕点转动,支撑板可绕点转动.(结果保留小数点后一位)(1)若,,求点到直线的距离;(2)为了观看舒适,在(1)的情况下,把绕点逆时针旋转后,再将绕点顺时针旋转,使点落在直线上即可,求旋转的角度.(参考数据:,,,)3040x ≤<4050x ≤<5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤m m =120mm AB =80mm CD =90mm DE =AB C 40mm CB =AB C CD D 80DCB ︒∠=60CDE ︒∠=A DE AB C 10 CD D B DE CD sin 400.643,cos 400.766︒︒≈≈tan 400.839︒≈sin 26.60.448≈ cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈21.已知的两边分别与圆相切于点,,圆的半径为.(1)如图1,点在点,之间优弧上,,求的度数; (2)如图2,点在圆上运动,当最大时,要使四边形为菱形,的度数应为多少?请说明理由;(3)若交圆于点,求第(2)问中对应的阴影部分的周长(用含的式子表示).22.已知抛物线(,,是常数,)的自变量与函数值的部分对应值如下表:… -2 -1 0 1 2 ……-3-3…(1)根据以上信息,可知抛物线开口向 ,对称轴为 ; (2)求抛物线的表达式及的值;(3)请在图1中画出所求的抛物线,设点为抛物线上的动点,的中点为,描出相的MPN ∠O A B O r C A B 80MPN ∠= ACB ∠C PC APBC APB ∠PC O D r 2y ax bx c =++a b c 0a ≠x y x y m n ,m n P OP P '应的点,再把相应的点用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线()与抛物线及(3)中的点所在曲线都有两个交点,交点从左到右依次为,,,,请根据图象直接写出线段,,,之间的数量关系 .23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积,,之间的关系问题”进行了以下探究:类比探究(1)如图2,在中,为斜边,分别以为斜边向外侧作,,,若,则面积,,之间的关系式为 ; 推广验证(2)如图3,在中,为斜边,分别以为边向外侧作任意,,,满足,,则(1)中所得关P 'P 'y m =2m >-P'1A 2A 3A 4A 1A 2A 3A 4A 1S 2S 3S Rt ABC BC ,,AB AC BC Rt ABD △Rt ACE △Rt BCF 123∠=∠=∠1S 2S 3S Rt ABC BC ,,AB AC BC ABD △ACE △BCF 123∠=∠=∠D E F ∠=∠=∠系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由; 拓展应用(3)如图4,在五边形中,,,,,点在上,,,求五边形的面积.数学参考答案与解析一、选择题1.-3的倒数是( ) A. 3 B. -3C.D.【答案】D 【解析】 【分析】根据倒数的定义求解. 【详解】-3的倒数为. 故选:D .【点睛】本题考查了倒数,分子分母交换位置是求倒数的关键. 2.下列计算正确的是( ) A.B.C.D.【答案】D 【解析】 【分析】ABCDE 105A E C ∠=∠=∠= 90ABC ∠= AB =2DE =P AE 30ABP ∠= PE =ABCDE 1313-13-325a a a +=32a a a -=326a a a ⋅=32a a a ÷=分别利用合并同类项法则以同底数幂的乘除法运算法则计算得出答案. 【详解】解:A 、,不能合并,故此选项错误; B 、,无法计算,故此选项错误; C 、,故此选项错误; D 、,故此选项正确; 故选:D .【点睛】本题考查同底数幂的乘除法运算以及合并同类项,正确掌握运算法则是解题关键.3.教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( ) A.B.C.D.【答案】A 【解析】 【分析】科学记数法的表示形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将数字50175亿用科学记数法表示为故本题选A .【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,n 为整数,表示时关键要正确确定a 与n 的值.4.如图,,则下列结论错误的是( )32a a +32a a -325a a a ⋅=32a a a ÷=115.017510⨯125.017510⨯130.5017510⨯140.5017510⨯10n a ⨯110a ≤<125017500000000 5.017510=⨯10n a ⨯110a ≤<1265,335︒∠=∠=∠=︒A. B. C. D.【答案】C 【解析】 【分析】由可对A 进行判断;根据三角形外角的性质可对B 进行判断;求出∠C,根据大角对大边,小角对小边可对D 进行判断;求出可对C 进行判断. 【详解】,,故选项A 正确;, ,又,,故选项B 正确;,, ,,故选项D 正确; , ,而,故选项C 错误.故选C .【点睛】此题主要考查了平行线的判定与性质,三角形外角的性质等知识,熟练掌握性质与判定是解答此题的关键.//AB CD 30B ∠=︒2C EFC ∠+∠=∠CG FG >12∠=∠C EFC ∠∠,1265∠=∠︒= //AB CD ∴335︒∠= 35EFB ∴∠=︒1EFB B ∠=∠+∠1653530B EFB ∴∠=∠-∠=︒-︒=︒//AB CD 30C B ∴∠=∠=︒3530︒︒> 3C ∴∠>∠CG FG ∴>335︒∠= 3180EFC ∠+∠=︒118035145EF C ︒-︒∴∠==︒2306595145C ∠+∠=+=≠︒︒︒︒2C EFC ∴∠+∠≠∠5.如图所示,正方体的展开图为( )A. B.CD.【答案】A 【解析】 【分析】根据正方体的展开图的性质判断即可; 【详解】A 中展开图正确;B 中对号面和等号面是对面,与题意不符;C 中对号的方向不正确,故不正确;D 中三个符号的方位不相符,故不正确; 故答案选A .【点睛】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键. 6.在平面直角坐标系中,点为坐标原点,抛物线与轴交于点,与轴正半轴交于点,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为( ) A.B.C. D.【答案】B 【解析】.O 223y x x =--y A x B AB Rt OAB V Rt O A B '''△O 'A 'B 'A B ''y x =1y x =+12y x =+2y x =+【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A(0,-3),B (3,0), 对称轴为直线, 经过平移,落在抛物线的对称轴上,点落在抛物线上, ∴三角形向右平移1个单位,即B′横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线的表达式为y=kx+b , 代入A′(1,2),B′(4,5), 可得解得:,故直线的表达式为, 故选:B .【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.二、填空题7.计算:_____. 【答案】 【解析】 【分析】运用完全平方公式展开,即可完成解答.的2230x x --=12bx a=-=A 'B 'Rt OAB V Rt OAB V A B ''254k bk b=+⎧⎨=+⎩11k b =⎧⎨=⎩A B ''1y x =+()21x -=221x x -+【详解】解:【点睛】本题考查了平方差公式,即;灵活运用该公式是解答本题的关键.8.若关于一元二次方程的一个根为,则这个一元二次方程的另一个根为_________. 【答案】-2 【解析】 【分析】由题目已知x =1是方程的根,代入方程后求出k 的值,再利用一元二次方程的求根方法即可答题.【详解】解:将x =1代入一元二次方程有:,k =-1, 方程即方程的另一个根为x =-2 故本题的答案为-2.【点睛】本题主要考查了一元二次方程用已知根求方程未知系数以及利用因式分解法解一元二次方程,其中利用已知根代入方程求出未知系数是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是__________.【答案】25 【解析】 【分析】的()21x -=221x x -+()2a b ±=222a ab b ±+x 220x kx --=1x =220x kx --=120k --=2+20x x -=(2)(1)0x x +-=根据所给图形可以看出左边是2个尖头,表示2个10,右边5个钉头表示5个1,由两位数表示法可得结论.【详解】根据图形可得:两位数十位上数字是2,个位上的数字是5, 因此这个两位数是2×10+5×1=25, 故答案为:25.【点睛】此题考查了有理数的混合运算,弄清题中的数字的表示法是解本题的关键. 10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计: 数字 0 1 2 3 4 5 6 7 8 9 频数 881211108981214那么,圆周率的小数点后100位数字的众数为__________. 【答案】9 【解析】 【分析】众数:众数数样本观测值在频数分布表中频数最多的那一组的组中值,即在一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.【详解】解:由题目的频数分布表可观察到数字9的频数为14,出现次数最多; 故本题答案为9.【点睛】本题主要考查众数的定义,即一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.11.如图,平分,,的延长线交于点,若,则的度数为__________.AC DCB ∠CB CD =DA BC E 49EAC ∠= BAE ∠【答案】 【解析】 【分析】如图,连接,延长与交于点利用等腰三角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案.【详解】解:如图,连接,延长与交于点平分,,是的垂直平分线,故答案为:82.︒BD CA BD ,F CF BD ,AB AD =,DAF BAF ∠=∠BD CA BD ,F AC DCB ∠CB CD =,,CF BD DF BF ∴⊥=CF ∴BD ,AB AD ∴=,DAF BAF ∴∠=∠49,EAC ∠=︒ 49,DAF BAF EAC ∴∠=∠=∠=︒180494982,BAE ∴∠=︒-︒-︒=︒82.︒【点睛】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键. 12.矩形纸片,长,宽,折叠纸片,使折痕经过点,交边于点,点落在点处,展平后得到折痕,同时得到线段,,不再添加其它线段,当图中存在角时,的长为__________厘米.【解析】 【分析】分∠ABE=30°和∠AEB=30°两种情况求解即可. 【详解】当∠ABE=30°时, ∵AB=4cm,∠A=90°,厘米; 当∠AEB=30°时,则∠ABE=60° ∵AB=4cm,∠A=90°,∴AE=AB·tan60°=或ABCD 8cm AD =4cm AB =B AD E A A 'BE BA 'EA '30 AE【点睛】本题考查了折叠的性质,解直角三角形,以及分类讨论的数学思想,分类讨论是解答本题的关键.三、解答题13.(1)计算:(2)解不等式组:【答案】(1)3;(2)1≤x<3. 【解析】 【分析】(1)先根据零次幂、绝对值和负整数次幂化简,然后计算即可; (2)先分别求出各不等式的解集,然后再求不等式组的解集.【详解】解:(1)= =3; (2)由①得:x≥1 由②得:x <3所以该不等式组的解集为:1≤x<3.【点睛】本题考查了实数的运算和不等式组的解法,掌握实数的运算法则和解不等式的方法是解答本题的关键.14.先化简,再求值:,其中【答案】【解析】 【分析】先进行分式减法的计算,在进行除法计算,化简之后带值计算即可;21(1|2|2-⎛⎫--+ ⎪⎝⎭32152x x -≥⎧⎨->⎩21(1|2|2-⎛⎫--+ ⎪⎝⎭124-+32152x x -≥⎧⎨->⎩①②221111xx x x x ⎛⎫-÷ ⎪--+⎝⎭x =1x【详解】原式=, =,==, 把代入上式得,原式. 【点睛】本题主要考查了分式的化简求值,准确进行分式化简是解题的关键.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试. (1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率. 【答案】(1);(2)【解析】 【分析】(1)直接利用概率公式可得答案;(2)分别记小贤、小艺、小志、小晴为,画好树状图,利用概率公式计算即可.【详解】解:(1)由概率公式得:随机抽取一名同学,恰好抽到小艺同学的概率为, 故答案为:(2)分别记小贤、小艺、小志、小晴为, 画树状图如下:()()()()2111111x x xx x x x x ⎡⎤+-÷⎢⎥-+-++⎢⎥⎣⎦()()21111x x x x x x --÷-++()()1111x x x x x -+⨯-+1xx =141.6,,,A B C D 141.4,,,A B C D一共有种等可能的结果,其中两名同学均来自八年级的有种可能, 所以:两名同学均来自八年级的概率 【点睛】本题考查的是简单随机事件的概率,以及利用画树状图求解复杂的随机事件的概率,掌握求概率的基本方法是解题的关键.16.如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作关于点对称的;(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的.【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)分别作出A ,B ,C 三点关于O 点对称的点,,,然后顺次连接即可得;(2)计算得出AB=AC=5,再根据旋转作图即可. 【详解】(1)如图1所示;12221.126P ==ABC ABC O A B C '''V ABC A A B C '''V A 'B 'C 'A B C '''V(2)根据勾股定理可计算出AB=AC=5,再作图,如图2所示.【点睛】本题考查复杂-应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.17.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元. (1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【答案】(1)5元,3元;(2)当两人共同购买笔芯,享受整盒购买的优惠时,能让两人既买到各自的文具又都买到小工艺品.【解析】 【分析】(1)根据小贤买3支笔芯,2本笔记本花费19元,可知等量关系:笔芯的单价×3+笔记本单价×2=小贤花费金额,同样可得小艺的等量关系,这两个等量关系可列方程组解答; (2)小贤买3支笔芯,小艺4支笔芯,凑起来即为一盒,由题目已知整盒买比单支买每支可优惠0.5元,可知优惠5元,再加上小贤剩余两元即可让两人既买到各自的文具,又都买到小工艺品.【详解】(1)设单独购买一支笔芯的价格为x 元,一本笔记本的价格为y 元,有,解得;故笔记本的单价为5元,单独购买一支笔芯的价格为3元. (2)两人共有金额19+26+2=47元,若两人共购买10支笔芯(一盒),3本笔记本,由题目已知整盒买比单支买每支可优惠0.5元,故两人买到各自的文具需要花费10×2.5+3×5=40(元),剩余47-40=7(元),可购买两件单价为3元的小工艺品;故只有当两人一同购买笔芯,享受整盒购买优惠,即可能让他们既买到各自的文具,又都买到小工艺品.【点睛】(1)本题主要考查了二元一次方程组的求解,其中根据题目信息找到等量关系,;列出方程组是解题的关键;(2)本题主要是对题目中关键信息的理解以及应用,其中观察到整盒购买享受优惠是成功让两人既买到各自的文具,又都买到小工艺品的关键.18.如图,中,,顶点,都在反比例函数的图象上,直线轴,垂足为,连结,,并延长交于点,当时,点恰为的中点,若,(1)求反比例函数的解析式; (2)求的度数.3219726x y x y +=⎧⎨+=⎩35x y =⎧⎨=⎩Rt ABC 90ACB ∠= A B (0)ky x x=>AC x ⊥D OA OC OC AB E 2AB OA =E AB 45AOD ∠= OA =EOD ∠【答案】(1);(2) 【解析】 【分析】(1)根据勾股定理求得AD=OD=2,A(2,2),代入函数关系式求解即可;(2)先根据直角三角形斜边的中线等于斜边的一半可得CE=BE ,∠AEC=2∠ECB,又由OA=AE 可得∠AOE=∠AEO=2∠ECB,由平行线的性质可知∠ECB=∠EOD,所以∠EOD=∠AOD,代入求解即可.【详解】(1)∵AD⊥x 轴,∠AOD=45°,OA=, ∴AD=OD=2, ∴A(2,2),∵点A 在反比例函数图象上, ∴k=2×2=4,即反比例函数的解析式为. (2)∵△ABC 为直角三角形,点E 为AB 的中点, ∴AE=CE=EB,∠AEC=2∠ECB, ∵AB=2OA , ∴AO=AE,∴∠AOE=∠AEO=2∠ECB, ∵∠ACB=90°,AD⊥x 轴, ∴BC//x 轴, ∴∠ECB=∠EOD, ∴∠AOE=2∠EOD,4y x=15EOD =︒∠134y x=∵∠AOD=45°,∴∠EOD=∠AOD=.【点睛】本题考查了反比例函数的解析式、含30度角的直角三角形的性质、平行线的性质和等腰三角形的性质等知识点,根据题意找出角之间的关系是解题的关键.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)复学一个月后,根据第二次测试的数学成绩得到如下统计表: 成绩人数 1 338156根据以上图表信息,完成下列问题: (1) ;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有 人,至多有 人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数. 【答案】(1)14;(2)折线图见详解,通过第一次和第二次测试情况发现,复学初线上学习的成绩大部分在70以下,复学后线下学习的成绩大部分在70以上,说明线下上课的情况比线上好;(3)20,34;(4)320人131453⨯︒=15︒3040x ≤<4050x ≤<5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤m m =【解析】 【分析】(1)根据图1求出本次测评的总人数,用总人数减去第二次测评各成绩段的人数可得出m 的值;(2)根据第一次和第二次测试的各分数段人数,可在图2中画出折线图,根据折线图可得出线上教学与线下教学的效果对比;(3)由第二次测试的成绩统计表可判断出分数高于78分的至少有多少人,至多有多少人; (4)样本估计总体,样本中数学成绩优秀的人数占测试人数的 ,因此估计总体800名的是成绩优秀的人数. 【详解】解:(1)由图1可知总人数为:2+8+10+15+10+4+1=50人, 所以m=50-1-3-3-8-15-6=14人; (2)通过第一次和第二次测试情况发现,复学初线上学习的成绩大部分在70分以下,复学后线下学习的成绩大部分在70分以上,说明线下上课的情况比线上好; (3)由统计表可知,至少14+6=20人,至多15+14+6-1=34人; (4)800×(人)答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数为320人. 【点睛】本题考察了条形统计图,折线统计图与统计表,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.252514+6=3202+8+10+15+10+4+120.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长,支撑板长,底座长,托板固定在支撑板顶端点处,且,托板可绕点转动,支撑板可绕点转动.(结果保留小数点后一位)(1)若,,求点到直线的距离;(2)为了观看舒适,在(1)的情况下,把绕点逆时针旋转后,再将绕点顺时针旋转,使点落在直线上即可,求旋转的角度.(参考数据:,,,)【答案】(1);(2) 【解析】 【分析】(1)过点A 作,,,根据已知条件分别求出AP 和PM ,再相加即可;(2)根据已知条件可得,根据三角函数的定义进行判断求解即可得到结论; 【详解】(1)如图所示,过点A 作,,, 则,120mm AB =80mm CD =90mm DE =AB C 40mm CB =AB C CD D 80DCB ︒∠=60CDE ︒∠=A DE AB C 10 CD D B DE CD sin 400.643,cos 400.766︒︒≈≈tan 400.839︒≈sin 26.60.448≈ cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈120.7mm 33.4︒AM DE ⊥CN DE ⊥CP AM ⊥=90B C D ∠︒AM DE ⊥CN DE ⊥CP AM ⊥90C P M C M D C N D ∠=∠=∠=︒∵,, ∴,又∵,, ∴,,∴, ∴, ∴,又∵,, ∴mm , ∴. ∴点到直线的距离是. (2)如图所示,根据题意可得,,,120mm AB =40mm CB =80mm =AC 80DCB ︒∠=60CDE ︒∠=100ACD ∠=︒120CDM ∠=︒360909012060P C D ∠=︒-︒-︒-︒=︒1006040A C P ∠=︒-︒=︒si n 40800.64351.44m m A P A C =︒=⨯= 60C D N =︒80mm CD=si n 608069.28C N C D =︒=⨯=≈ 69.2851.44120.72120.7AM mm =+=≈A DE 120.7mm 90DCE ∠=︒40mm CB =80mm CD =∴, ∴,根据(1)可得,∴旋转的角度=.【点睛】本题主要考查了解直角三角形的应用,准确的构造直角三角形,利用三角函数的定义求解是解题的关键.21.已知的两边分别与圆相切于点,,圆的半径为.(1)如图1,点在点,之间的优弧上,,求的度数; (2)如图2,点在圆上运动,当最大时,要使四边形为菱形,的度数应为多少?请说明理由;(3)若交圆于点,求第(2)问中对应的阴影部分的周长(用含的式子表示).【答案】(1)50°;(2)当∠APB=60°时,四边形APBC 为菱形,理由见解析;(3).【解析】 【分析】(1)连接OA 、OB ,根据切线的性质和多边形内角和定理可得∠AOB+∠APB=180°,然后结合已知求得∠AOB,最后根据圆周角定理即可解答;(2)连接OA 、OB ,先观察发现当∠APB=60°时,四边形APBC 可能为菱形;然后利用∠APB=60°结合(1)的解答过程可得∠ACB=∠APB=60°,再根据点C 运动到PC 距离最大,即PC 经过圆心;再说明四边形APBC 为轴对称图形结合已知条件得到PA =PB=CA =CB,即可401t an 802B C C D B D C ∠===26.6C D B ∠=︒60CDE ︒∠=CD 60-26.6=33.4︒︒︒MPN ∠O A B O r C A B 80MPN ∠= ACB ∠C PC APBC APB ∠PC O Dr 13r π⎫+⎪⎭得到四边形APBC 为菱形;(3)由于⊙O 的半径为r ,则OA=r 、OP=2 r ,再根据勾股定理可得r 、PD=r ,然后根据弧长公式求得的弧长,最后根据周长公式计算即可. 【详解】解:(1)如图1,连接OA 、OB ∵PA,PB 为⊙O 的切线 ∴∠PAO=∠PBO=90° ∴∠AOB+∠MPN=180° ∵∠MPN=80°∴∠AOB=180°-∠MPN=100° ∴∠AOB=100°=∠ACB=50°;(2)当∠APB=60°时,四边形APBC 为菱形,理由如下: 如图2:连接OA 、OB由(1)可知∠AOB+∠APB=180° ∵∠APB=60° ∴∠AOB=120° ∴∠ACB=60°=∠APB ∵点C 运动到PC 距离最大 ∴PC 经过圆心 ∵PA、PB 为⊙O 的切线 ∴四边形APBC 为轴对称图形∵PA=PB,CA=CB ,PC 平分∠APB 和∠ACB.AC l 12∴∠APB=∠ACB=60°∴∠APO=∠BPO=∠ACP=∠BCP=30° ∴PA =PB=CA =CB ∴四边形APBC 为菱形;(3)∵⊙O 的半径为r ∴OA=r,OP=2 rr ,PD=r ∵∠AOP=60° ∴ ∴C 阴影.【点睛】本题考查了圆的切线的性质、圆周角定理、菱形的判定、弧长公式以及有关圆的最值问题,考查知识点较多,灵活应用所学知识是解答本题的关键.22.已知抛物线(,,是常数,)的自变量与函数值的部分对应值如下表:… -2 -1 0 1 2 ……-3-3…(1)根据以上信息,可知抛物线开口向 ,对称轴为 ;601803ADr l r ππ==13D PA PD l r απ⎫=++=++⎪⎭2y ax bx c =++a b c 0a ≠x y x y m n。
2020年江西省中考数学试卷(原卷版+解析版)
江西省2020年中等学校招生考试数学试题卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-3的倒数是( )A .3B .-3C .13-D .132.下列计算正确的是( )A .325a a a +=B .32a a a -= C .326a a a ⋅= D .32a a a ÷=3.教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( )A .115.017510⨯B .125.017510⨯C .130.5017510⨯D .140.5017510⨯ 4.如图,1265,335︒︒∠=∠=∠=,则下列结论错误的是( )A .//AB CD B .30B ︒∠= C .2C EFC ∠+∠=∠ D .CG FG > 5.如图所示,正方体的展开图为( )6.在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB ∆向右上方平移,得到'''Rt O A B ∆,且点'O ,'A 落在抛物线的对称轴上,点'B 落在抛物线上,则直线''A B 的表达式为( ) A .y x = B .1y x =+ C .12y x =+D .2y x =+ 二、填空题(本大题共6个小题,每小题3分,共18分)7.计算:2(1)a -=.8.若关于x 的一元二次方程220x kx --=的一个根为1x =,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:11.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E,若49EAC ∠=,则BAE ∠的度数为.12.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点'A 处,展平后得到折痕BE ,同时得到线段'BA ,'EA ,不再添加其它线段,当图中存在30角时,AE 的长为厘米.三、解答题:本大题共5个小题,每小题6分,共30分.13.(1)计算:21(1|2|2-⎛⎫---+ ⎪⎝⎭(2)解不等式组:32152x x -≥⎧⎨->⎩14.先化简,再求值:221111x x x x x ⎛⎫-÷ ⎪--+⎝⎭,其中x =15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,ABC ∆的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹). (1)在图1中,作ABC ∆关于点O 对称的'''A B C ∆;(2)在图2中,作ABC ∆绕点A 顺时针旋转一定角度后,顶点仍在格点上的'''A B C ∆.17. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、本大题共3个小题,每小题8分,共24分.18. 如图,Rt ABC ∆中,90ACB ∠=,顶点A ,B 都在反比例函数(0)ky x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,OA =(1)求反比例函数的解析式; (2)求EOD ∠的度数.19. 为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)复学一个月后,根据第二次测试的数学成绩得到如下统计表:(1)m =;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述); (3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有人,至多有 人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位) (1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)五、本大题共2个小题,每小题9分,共18分.21. 已知MPN ∠的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,80MPN ∠=,求ACB ∠的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,APB ∠的度数应为多少?请说明理由;(3)若PC 交圆O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).22. 已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(2)求抛物线的表达式及,m n 的值;(3)请在图1中画出所求的抛物线,设点P 为抛物线上的动点,OP 的中点为'P ,描出相应的点'P ,再把相应的点'P 用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y m =(2m >-)与抛物线及(3)中的点'P 所在曲线都有两个交点,交点从左到右依次为1A ,2A ,3A ,4A ,请根据图象直接写出线段1A ,2A ,3A ,4A 之间的数量关系.六、本大题共12分.23. 某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD ∆,Rt ACE ∆,Rt BCF ∆,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为;推广验证(2)如图3,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD ∆,ACE ∆,BCF ∆,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由; 拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,AB =2DE =,点P 在AE 上,30ABP ∠=,PE =,求五边形ABCDE 的面积.江西省2020年中等学校招生考试数学试题卷 (参考答案与解析)满分:120分 时间:120分钟一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-3的倒数是( )A .3B .-3C .13-D .13【解析】-3的倒数为31-,故选C2.下列计算正确的是( )A .325a a a += B .32a a a -= C .326a a a ⋅= D .32a a a ÷=【解析】由于3a 和2a 不是同类项,故A ,B 选项均错误,同底指数幂相乘,底数不变指数相加,故C 选项正确答案应为52323a a a a ==⋅+,D 选项正确,故答案为D3.教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( )A .115.017510⨯B .125.017510⨯C .130.5017510⨯D .140.5017510⨯ 【解析】50175亿即为数字5017500000000,根据科学记数法应写为a ×10N ,(1≤|a |<10),N 为小数点移动的位置,可得5.0175×1012.故应选B4.如图,1265,335︒︒∠=∠=∠=,则下列结论错误的是( )A .//AB CD B .30B ︒∠= C .2C EFC ∠+∠=∠ D .CG FG > 【解析】由∠1=∠2=65°,可得内错角相等,两直线平行,故A 选项正确,∠3和∠BFE 互为对顶角,∴∠BFE=35°,∠1为△BEF 的外角,∴∠1=∠BFE+∠B ,可得∠B=30°,故B 选项正确.∠EFC 为△CFG 的外角,∴∠EFC=∠C+∠CGF ,故C 选项错误.因为在△CGF 中,∠CFG >∠C ,∴CG >FG ,故D 选项正确,所以本题答案为C5.如图所示,正方体的展开图为( )【解析】根据平面展开图的定义可得A 选项为正确选项,故选A6.在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB ∆向右上方平移,得到'''Rt O A B ∆,且点'O ,'A 落在抛物线的对称轴上,点'B 落在抛物线上,则直线''A B 的表达式为( ) A .y x = B .1y x =+ C .12y x =+ D .2y x =+ 【解析】将抛物线322--=x x y 配方可得4)1(2--=x y ,∴对称轴为直线1=x ,抛物线与x 轴的两个交点坐标分别为)0,3(),0,1(-,∴B (3,0)与y 轴交点)3,0(-A ,∴OA=3,OB=4根据平移的规律可得3==''OB B O 且1='O x ,∴4='B x ,代入抛物线可得5='B y ,直线AB 的解析式为3-=x y ,根据AB ∥B A ''可得直线B A ''的解析式为m x y +=,再将)5,4(B '代入可得1=m ,∴直线B A ''的解析式为1+=x y ,故选B二、填空题(本大题共6个小题,每小题3分,共18分)7.计算:2(1)a -=.【解析】根据差的完全平方公式展开得122+-a a ,故答案为122+-a a8.若关于x 的一元二次方程220x kx --=的一个根为1x =,则这个一元二次方程的另一个根为. 【解析】设一元二次方程的两根为21,x x ,并设11=x ,根据acx x =21,可得212-=⋅x ,∴另外一根为-2,故答案为-29.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是.【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2510.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:【解析】由于9出现的次数为14次,频数最多,∴众数为9,故答案为911.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为.【解析】CD=CB ,∠ACD=∠ACB ,CA=CA ,∴△CAD ≌△CAB ,∴∠B=∠D ,设∠ACB=α,∠B=β,则∠ACD=α,∠D=β,∠EAC 为△ACD 的一个外角,∴︒=+49βα,在△ABC 中有内角和为180°,∴︒=∠++180BAC βα,∴∠BAC=131°,∴∠BAE=∠BAC-∠EAC=82°,故答案为82°12.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点'A 处,展平后得到折痕BE ,同时得到线段'BA ,'EA ,不再添加其它线段,当图中存在30角时,AE 的长为厘米.【解析】当∠ABE=30°时,则∠A EB '=︒='∠30BC A ,在Rt △ABE 中,tan ∠ABE=33=AB AE ,∴此时 33430tan =︒=AB AE . 当∠AEB=30°时,此时在Rt △ABE 中,tan ∠AEB=33=AE AB ,∴34=AE 当∠︒='30ED A 时,过A '作AB 的平行线交AD 于F ,BC 于G ,∵︒='∠=∠90E A B A , ∴230sin =︒'=B A BG ,设x AE =,则x E A =',∴x E A EF 2330cos =︒'=在矩形ABGF 中,AF=BG ,∴223=+x x ,解得348-=x ,此时348-=AE 故答案为:334或34或348- 三、解答题:本大题共5个小题,每小题6分,共30分.13.(1)计算:21(1|2|2-⎛⎫---+ ⎪⎝⎭(2)解不等式组:32152x x -≥⎧⎨->⎩【解析】 原式=2)21(121+- 解不等式①,得1≥x =341=+- 解不等式②,得3<x ∴原不等式组的解集是31<≤x14.先化简,再求值:221111x x x x x ⎛⎫-÷ ⎪--+⎝⎭,其中x =【解析】 原式=xx x x x x x 1)1)(1(1)1)(1(2+⋅⎥⎦⎤⎢⎣⎡-++--+ =x x x x x x 1)1)(1()1(2+⋅-++-=xx x x x x 11)1)(1(1=+⋅-+- ∵2=x ,∴原式=22211==x 15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率. 【解析】 (1)41(2)根据题意画出树状图如下:由树状图可得所有可能出现的结果共有12种,这些结果出现的可能性相等“其中两位同学均来自八年级”的结果共有2种,∴P (两位同学均来自八年级)=61122= 16.如图,在正方形网格中,ABC ∆的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹). (1)在图1中,作ABC ∆关于点O 对称的'''A B C ∆;(2)在图2中,作ABC ∆绕点A 顺时针旋转一定角度后,顶点仍在格点上的'''A B C ∆.【解析】作图如下:17. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【解析】(1)设笔芯x 元/支,笔记本y 元/本,依题意可得,2671923⎩⎨⎧=+=+y x y x 解得,53⎩⎨⎧==y x答:笔芯3元/支,笔记本5元/本.(2)方法一:合买笔芯,合算. ∵整盒购买比单只购买每支可优惠0.5元 ∴小贤和小艺可一起购买整盒笔芯 ∴共可节约:0.5×10=5元.∵小工艺品的单价为3元,5+2>3×2,∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品. 方法二:合买笔芯,单算.∵整盒购买比单支购买每支可优惠0.5元,∴小贤和小艺可一起购买整盒笔芯. ∴小工艺品的单价为3元,小贤:3×0.5+2=3.5>3,小艺:7×0.5=3.5>3 ∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.四、本大题共3个小题,每小题8分,共24分.18. 如图,Rt ABC ∆中,90ACB ∠=,顶点A ,B 都在反比例函数(0)ky x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,OA =(1)求反比例函数的解析式; (2)求EOD ∠的度数.【解析】:(1)∵AD ⊥x 轴,∠AOD=45°,OA=22,∴2==OD AD .∴A (2,2) ∵点A 在反比例函数图象上,∴422=⨯=k ,∴xy 4= (2)∵△ABC 为直角三角形,点E 为AB 的中点, ∴AE=CE=EB ,∠AEC=2∠ECB ,∵AB=2OA ,∴AO=AE.∴∠AOE=∠AEO=2∠ECB.∵∠ACB=90°,AD ⊥x 轴,∴BC ∥x 轴. ∴∠ECB=∠EOD ,∴∠AOE=2∠EOD.∵∠AOD=45°, ∴∠EOD=31∠AOD=︒=︒⨯15453119. 为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)复学一个月后,根据第二次测试的数学成绩得到如下统计表:(1)m =;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述); (3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有人,至多有 人;(5)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数. 【解析】(1)14.(2)对比前一次测试优秀学生的比例大幅提升; 对比前一次测试学生的平均成绩有较大提高; 对比前一次测试学生成绩的众数、中位数增大. (3)20,34 (4)32050614800=+⨯答:该校800名八年级学生数学成绩优秀得人数是320人20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位) (1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)【解析】(1)如图1,过点C 作CH ⊥DE 于点H. ∵CD80,∠CDE=60°,∴sin60°=2380==CH CD CH , ∴28.69732.140340≈⨯≈=CH作AM ⊥DE 于点M ,CN ⊥AM 于点N.∴MN=CH=340,∠NCD=∠CDE=60° ∵∠DCB=80°,∴∠ACN=180°-80°-60°=40°. ∵sin ∠ACN=,80,=AC ACAN∴AN=80sin40°≈80×0.643≈51.44. ∴AM=AN+NM≈51.44+69.28≈120.7mm.(2)解法一:∵AB 绕着点C 逆时针旋转10°,∴∠DCB=90°.如图2,连接BD. ∵DC=80,CB=40.∴tan ∠CDB=4080BC CD ==0.5.∴∠CDB≈26.6°.∴∠BDE≈60°-26.6°=33.4° 答:CD 旋转的度数约为33.4°解法二:当点B 落在DE 上时,如图3在Rt △BCD 中,BC=40,CD=80(∠DCB=90°,同解法一) ∴tan ∠CDB=4080BC CD ==0.5.∴∠CDB≈26.6 ∴∠CDC '=∠BDC '-∠BDC=60°-26.6°=33.4° 答:CD 旋转的度数约为33.4°五、本大题共2个小题,每小题9分,共18分.21. 已知MPN ∠的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,80MPN ∠=,求ACB ∠的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,APB ∠的度数应为多少?请说明理由;(3)若PC交圆O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【解析】(1)如图1,连接OA,OB.∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°.∴∠AOB+∠APB=180°.∵∠APB=80°∴∠AOB=100°,∴∠ACB=50°(2)如图2,当∠APB=60°时,四边形APBC为菱形.连接OA,OB.由(1)可知∠AOB+∠APB=180°.∵∠APB=60°,∴∠AOB=120°.∴∠ACB=60°=∠APB.∵点C运动到PC距离最大,∴PC经过圆心.∵PA,PB为⊙O的切线,∴四边形APBC为轴对称图形.∴PA=PB,CA=CB,PC平分∠APB和∠ACB.∵∠APB=∠ACB=60°,∴∠APO=∠BPO=∠ACP=∠BCP=30°∴PA=PB=CA=CB.∴四边形APBC为菱形(3)∵⊙O的半径为r,∴OA=r,OP=2r∴AP =,PD r =,∴∠AOP=60°,∴601803AD r rl ππ==弧∴=1)3AD C PA PD l r π++=+阴影弧22. 已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(2)求抛物线的表达式及,m n 的值;(3)请在图1中画出所求的抛物线,设点P 为抛物线上的动点,OP 的中点为'P ,描出相应的点'P ,再把相应的点'P 用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y m =(2m >-)与抛物线及(3)中的点'P 所在曲线都有两个交点,交点从左到右依次为1A ,2A ,3A ,4A ,请根据图象直接写出线段1A ,2A ,3A ,4A 之间的数量关系.【解析】(1)上;直线1x =(2)由表格可知抛物线过点(0,-3).∴23y ax bx =+-将点(-1,0),(2,-3)代入,得304233a b a b --=⎧⎨+-=-⎩解得12a b =⎧⎨=-⎩,∴223y x x =--当2x =-时,2(2)2(2)35;m =--⨯--=当1x =时,212134n =-⨯-=-(3)如图所示,点P '所在曲线是抛物线. (4)34121A A A A -=六、本大题共12分.23. 某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD ∆,Rt ACE ∆,Rt BCF ∆,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为;推广验证(2)如图3,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD ∆,ACE ∆,BCF ∆,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由; 拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,AB =2DE =,点P 在AE 上,30ABP ∠=,PE =,求五边形ABCDE 的面积.【解析】(1)123;S S S +=(2)成立;∵∠1=∠2=∠3,∠D=∠E=∠F ,∴△ABD ∽△CAE ∽△BCF. ∴22122233,.S S AB AC S BC S BC ==∴221223.S S AB AC S BC++=∵△ABC 为直角三角形 ∴222AB AC BC +=.∴1231S S S +=,∴123S S S +=,∴成立. (3)过点A 作AH ⊥BP 于点H.∵∠ABH=30°,AB=∴3,60AH BH BAH ==∠=︒.∵∠BAP=105°,∴∠HAP=45°.∴∴AP =,BP=BH+PH=3∴(33222ABP BP AH S ∆⋅+===.连接PD.∵2PE ED ==,∴PE ED AP AB ====. ∴.PE ED AP AB=又∵∠E=∠BAP=105°,△ABP ∽△EDP.∴∠EPD=∠APB=45°,BD PE BP AP ==.∴∠BPD=90°,1PD =∴213BPD ABP S S ∆∆=⋅== 连接BD.∴3)(1322BPD PB PD S ∆⋅+===.∵tan ∠PBD=PD BP =PBD=30°.∵∠ABC=90°,∠ABC=30°,∴∠DBC=30° ∵∠C=105°,∴△ABP ∽△EDP ∽△CBD.∴S △BCD =S △ABP +S △EDP =2=. ∴S 五边形ABCDE =S △ABP +S △EDP +S △BCD +S △BPD+=2)3)7。
2020年江西省中考数学试题(含答案)
江西省2020年中等学校招生考试数学试卷(江西 毛庆云)说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .2【答案】 C.【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C .【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的 法则,属于基础题.2.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25B .28,28C .25,28D .28,31【答案】 B .【考点】 众数和中位数.【分析】 根据中位数的定义“将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数”;众数是指一组数据中出现次数最多的那个数。
【解答】 这组数据中28出现4次,最多,所以众数为28。
由小到大排列为:23,25,25,28,28,28,31,所以中位数为28,选B 。
【点评】 本题考查的是统计初步中的基本概念——中位数和众数,要知道什么是中位数、众数.3.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1【答案】 D.【考点】 代数式的运算。
2020年江西中考数学试卷(解析版)
2020年江西中考数学试卷(解析版)一、选择题(本大题共6小题,每小题3分,共18分)1.的倒数是( ).A. B. C. D.2.下列计算正确的是( ).A. B. C. D.3.教育部近日发布了年全国教育经费执行情况统计快报,经初步统计,年全国教育经费总投入为亿元,比上年增长,将亿用科学记数法表示为( ).A. B. C. D.4.如图,, ,则下列结论错误的是( ).A.B.C.D.5.如图所示,正方体的展开图为( ).A.B.C.D.6.在平面直角坐标系中,点为坐标原点,抛物线与轴交于点,与轴正半轴交于点,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为( ).A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.计算: .8.若关于的一元二次方程的一个根为,则这个一元二次方程的另一个根为 .9.公元前年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表,一个尖头形代表,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后位数字进行了如下统计:数字频数那么,圆周率的小数点后位数字的众数为 .11.如图,平分,,的延长线交于点,若,则的度数为 .12.矩形纸片,长,宽.折叠纸片,使折痕经过点,交边于点,点落在点处,展平后得到折痕,同时得到线段,,不再添加其它线段,当图中存在角时,的长为 厘米.三、解答题13.(1)(2)计算:.解不等式组:.14.先化简,再求值:,其中.(1)(2)15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试.若随机抽取一名同学,恰好抽到小艺同学的概率为 .若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.(1)(2)16.如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).图图在图中,作关于点对称的.在图中,作绕点顺时针旋转一定角度后,顶点仍在格点上的.(1)(2)17.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒支,如果整盒买比单支买每支可优惠元,小贤要买支笔芯,本笔记本需花元,小艺要买支笔芯,本笔记本需花费元.求笔记本的单价和单独购买一支笔芯的价格.小贤和小艺都还想再买一件单价为元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.18.如图,中,,顶点,都在反比例函数的图象上,直线轴,垂足为,连结,,并延长交于点,当时,点恰为的中点,若,.(1)(2)求反比例函数的解析式.求的度数.(1)(2)19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图).频数(人数)成绩分图复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩人数根据以上图表信息,完成下列问题: .请在图中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述).(3)(4)第一次测试第二次测试成绩分人数图某同学第二次测试数学成绩为分,这次测试中,分数高于分的至少有 人,至多有 人.请估计复学一个月后该校名八年级学生数学成绩优秀(分及以上)的人数.(1)(2)20.如图是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图是其侧面结构示意图,量得托板长,支撑板长,底座长.托板固定在支撑板项端点处,且,托板可绕点转动,支撑板可绕点转动(结果保留小数点后一位)若,,求点到直线的距离.为了观看舒适,在()的情况下,把绕点逆时针旋转后,再将绕点顺时针旋转,使点落在直线上即可,求旋转的角度.(参考数据:,,,,,,)(1)21.已知的两边分别与圆相切于点,,圆的半径为.如图,点在点,之间的优弧上,,求的度数.(2)(3)图如图,点在圆上运动,当最大时,要使四边形为菱形,的度数应为多少?请说明理由.图若交圆于点,求第()问中对应的阴影部分的周长(用含的式子表示).备用图(1)(2)(3)22.已知抛物线(,,是常数,)的自变量与函数值的部分对应值如下表.根据以上信息,可知抛物线开口向 ,对称轴为 .求抛物线的表达式及,的值.请在图中画出所求的抛物线,设点为抛物线上的动点,的中点为,描出相应的点,再把相应的点用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)x–5–4–3–2–112345y–6–5–4–3–2–112345图x–5–4–3–2–112345y–6–5–4–3–2–112345备用图设直线与抛物线及()中的点所在曲线都有两个交点,交点从左到右依次为,,,,请根据图象直接写出线段,,,,之间的数量关系 .图图(1)(2)23.某数学课外活动小组在学习了勾股定理之后,针对图中所示的“由直角三角形三边向外侧作多边形,它们的面积,,之间的关系问题”进行了以下探究:类比探究如图,在中,为斜边,分别以,,为斜边向外侧作,,,若,则面积,,之间的关系式为 .推广验证如图,在中,为斜边,分别以,,为边向外侧作任意,,,满足,,则()中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由.【答案】解析:的倒数是.故选:.解析:图图(3)拓展应用如图,在五边形中,,,,,点在上,,,求五边形的面积.C1.D2.B3.亿即为数字,根据科学记数法应写为,,为小数点移动的位置,可得.故应选.解析:根据平面展开图的定义可得选项为正确选项.故选.解析:将抛物线配方可得,∴对称轴为直线,抛物线与轴的两个交点坐标分别为,,∴与轴交点,∴,,根据平移的规律可得且,∴,代入抛物线可得,直线的解析式为,根据可得直线的解析式为,再将代入可得,∴直线的解析式为,故选.解析:根据差的完全平方公式展开得:.故答案为.解析:设一元二次方程的两根为,,并设,根据,可得,C 4.A 5.B 6.7.8.∴另外一根为.故答案为:.解析:依题意可得,有两个尖头表示,有个丁头表示,故这个两位数为.解析:由于出现的次数为次,频数最多,∴众数为.故答案为:.解析:∵,,,∴≌,∴,设,,则,,为的一个外角,∴,在中有内角和为,∴,∴,∴.故答案为:.解析:当时,则,在中,,∴此时,9.10.11.或或12.(1)(2)当时,此时在中,,∴,当时,过作的平行线交于,于,∵,∴,设,则,∴,在矩形中,,∴,解得,此时.故答案为:或或.解析:原式.解不等式①,得,解不等式②,得,∴原不等式组的解集是.解析:原式.∵,(1).(2).13.①②.14.(1)(2)(1)(2)∴原式.解析:一共有四名同学,选中每一名的概率均相同,所以抽到小艺的概率为.根据题意画出树状图如下:开始小贤小贤小贤小艺小艺小艺小志小志小志小志小贤小艺小晴小晴小晴小晴由树状图可得所有可能出现的结果共有种,这些结果出现的可能性相等,“其中两位同学均来自八年级”的结果共有种,∴(两位同学均来自八年级).解析:如图,图即为所求.如图,(1)(2)画图见解析,.15.(1)画图见解析.(2)画图见解析.16.(1)(2)图即为所求.解析:设笔芯元/支,笔记本元/本,依题意可得,解得,答:笔芯元/支,笔记本元/本.方法一:合买笔芯,合算.∵整盒购买比单只购买每支可优惠元,∴小贤和小艺可一起购买整盒笔芯,∴共可节约:元,∵小工艺品的单价为元,,∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.方法二:合买笔芯,单算.∵整盒购买比单支购买每支可优惠元,∴小贤和小艺可一起购买整盒笔芯.∴小工艺品的单价为元,小贤:,小艺:,(1)笔记本元/本,笔芯元/支.(2)方法一:合买笔芯,合算,方法二:合买笔芯,单算,证明见解析.17.(1)(2)∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.解析:∵轴,,,∴,∴,∵点在反比例函数图象上,∴,∴.∵为直角三角形,点为的中点,∴,,∵,∴,∴,∵,轴,∴轴,∴,∴,∵,∴.解析:(1).(2).18.(1)(2)画图见解析.对比前一次测试优秀学生的比例大幅提升;对比前一次测试学生的平均成绩有较大提高;对比前一次测试学生成绩的众数、中位数增大.(3) ; (4)人.19.(1)(2)(3)(4)(1)调查总人数人,.第一次测试第二次测试成绩分人数对比前一次测试优秀学生的比例大幅提升;对比前一次测试学生的平均成绩有较大提高;对比前一次测试学生成绩的众数、中位数增大.∵在的有人,在的有人,所以这次测试中,分数高于分的至少有人,至多有人..答:该校名八年级学生数学成绩优秀的人数是人.解析:如图,过点作于点.∵,,∴,∴.作于点,于点,∴,.∵,(1)约为.(2)约为.20.(2)∴.∵,,∴,∴.方法一:∵绕着点逆时针旋转,∴.如图,连接.∵,,∴,∴,∴.答:旋转的度数约为.方法二:当点落在上时,如图.在中,,,(,同解法一)∴,∴,∴.答:旋转的角度约为.(1).(2),证明见解析.21.(1)(2)解析:如图,连接,.图∵,为⊙的切线,∴,∴,∵,∴,∴.如图,当时,四边形为菱形,连接,.图由()可知,∵,∴,∴,∵点运动到距离最大,∴经过圆心.∵,为⊙的切线,∴四边形为轴对称图形,∴,,平分和,(3).(3)(1)(2)(3)∵,∴,∴,∴四边形为菱形.∵⊙的半径为,∴,,∴,,∴,∴,∴.解析:由表格可知,先随的增大而减小,再随的增大而增大.所以开口向上.由表可知,当时,,时,,所以对称轴对,即对称轴对.由表可知函数过,,,三点.设二次函数为,则得.即,把,代可得:,.如图,弧阴影弧(1)上 ; (2),.(3)画图见解析,抛物线.(4)22.(4)x–5–4–3–2–112345y–6–5–4–3–2–112345设,,则,设,则,即.∴该曲线为抛物线.如图,x–5–4–3–2–11234567y–5–4–3–2–112345由分别与两抛物线,联立可得:.,.∴,(1)(2)(3).由得.则,∴,,∴,,∴.解析:∵,,∴,∴,,∴,∵为直角三角形,∴,∴,∴.∵,,∴,∴,,∴,∵为直角三角形,∴,∴,∴,∴成立.过点作于点,∵,,(1)(2)成立,证明见解析.(3).23.∴,,,∵,∴,∴,∴,,∴,连接,∵,,∴,,∴,又∵,,∴,,∴,,∴,连接,∴,∵,∴,∵,,∴,∵,∴,∴,∴五边形.。
2020年江西省中考数学试卷(有详细解析)
2020年江西省中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共6小题,共18.0分)1.−3的倒数是()A. 3B. −3C. −13D. 132.下列计算正确的是()A. a3+a2=a5B. a3−a2=aC. a3⋅a2=a6D. a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A. 5.0175×1011B. 5.0175×1012C. 0.50175×1013D. 0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A. AB//CDB. ∠B=30°C. ∠C+∠2=∠EFCD. CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()A. y=xB. y=x+1C. y=x+12D. y=x+2二、填空题(本大题共6小题,共18.0分)7.计算:(a−1)2=______.8.若关于x的一元二次方程x2−kx−2=0的一个根为x=1,则这个一元二次方程的另一个根为______.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是______.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这100数字0123456789频数881211108981214那么,圆周率的小数点后位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为______.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.三、解答题(本大题共11小题,共84.0分)13.(1)计算:(1−√3)0−|−2|+(12)−2;(2)解不等式组:{3x−2≥1,5−x>2.14.先化简,再求值:(2xx2−1−1x−1)÷xx+1,其中x=√2.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为______;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A′B′C′;(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.17.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=kx(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2√2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=______;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有______人,至多有______人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE= 90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,√3≈1.732)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应x…−2−1012…y…m0−3n−3…(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.答案和解析1.C.解:−3的倒数是−132.D解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3⋅a2=a5,故本选项错误;D、a3÷a2=a,正确.3.B解:50175亿=5017500000000=5.0175×1012.4.C解:∵∠1=∠2=65°,∴AB//CD,故A选项正确,又∵∠3=35°,∴∠C=65°−35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,5.A解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;6.B解:如图,∵抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=−1或3,令x=0,求得y=−3,∴A(3,0),B(0,−3),=1,∵抛物线y=x2−2x−3的对称轴为直线x=−−22×1∴A′的横坐标为1,设A′(1,n),则B′(4,n +3), ∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2, ∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b , ∴{k +b =24k +b =5,解得{k =1b =1∴直线A′B′的表达式为y =x +1,7. a 2−2a +1解:(a −1)2=a 2−2a +1. 8. −2解:∵a =1,b =−k ,c =−2, ∴x 1⋅x 2=c a=−2.∵关于x 的一元二次方程x 2−kx −2=0的一个根为x =1, ∴另一个根为−2÷1=−2. 9. 25解:由题意可得,表示25. 故答案为:25. 10. 9解:圆周率的小数点后100位数字的众数为9, 故答案为:9.11. 82°解:∵AC 平分∠DCB , ∴∠BCA =∠DCA , ∵CB =CD , ∵AC =AC ,∴△ABC≌△ADC(SAS), ∴∠B =∠D ,∴∠B +∠ACB =∠D +∠ACD , ∵∠CAE =∠D +∠ACD =49°, ∴∠B +∠ACB =49°,∴∠BAE =180°−∠B −∠ACB −∠CAE =82°,12.4√33厘米或4√3厘米或8−4√3解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.13.解:(1)原式=1−2+4=3;(2)解不等式3x−2≥1,得:x≥1,解不等式5−x>2,得:x<3,则不等式组的解集为1≤x<3.14.解:原式=[2x(x+1)(x−1)−x+1(x+1)(x−1)]÷xx+1=x−1(x+1)(x−1)⋅x+1x=1x,当x=√2时,原式=√2=√22.15.14解:(1)共有4种可能出现的结果,抽到小艺的只有1种, 因此恰好抽到小艺的概率为14, 故答案为:14;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种, ∴P (小志、小晴)=212=16. 16. 解:(1)如图1中,△A′B′C′即为所求.(2)如图2中,△AB′C′即为所求.17. 解:(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3−0.5)×10=40(元).∵47−40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.18. 解:(1)∵直线AC ⊥x 轴,垂足为D ,∠AOD =45°,∴△AOD 是等腰直角三角形,∵OA =2√2,∴OD =AD =2,∴A(2,2),∵顶点A 在反比例函数y =kx (x >0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=4;x(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC//x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.19.14 20 34解:(1)m=(2+8+10+15+10+4+1)−(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15−1)=34(人),故答案为:20,34;=320(人),(4)800×14+61+3+3+8+15+14+6答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.20.解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,=40√3(mm)=在Rt△CDN中,CN=CD⋅sin∠CDE=80×√32FM,∠DCN=90°−60°=30°,又∵∠DCB=80°,∴∠BCN=80°−30°=50°,∵AM⊥DE,CN⊥DE,∴AM//CN,∴∠A=∠BCN=50°,∴∠ACF=90°−50°=40°,在Rt△AFC中,AF=AC⋅sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40√3≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D=BCCD =4080=0.500,∴∠D=26.6°,因此旋转的角度为:60°−26.6°=33.4°,答:CD旋转的角度约为33.4°.21.解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB =120°,∴∠ACB =60°=∠APB ,∵点C 运动到PC 距离最大,∴PC 经过圆心,∵PA ,PB 为⊙O 的切线,∴PA =PB ,∠APC =∠BPC =30°,又∵PC =PC ,∴△APC≌△BPC(SAS),∴∠ACP =∠BCP =30°,AC =BC ,∴∠APC =∠ACP =30°,∴AP =AC ,∴AP =AC =PB =BC ,∴四边形APBC 是菱形;(3)∵⊙O 的半径为r ,∴OA =r ,OP =2r ,∴AP =√3r ,PD =r ,∵∠AOP =90°−∠APO =60°,∴AD ⏜=60°π⋅r 180∘=π3r , ∴阴影部分的周长=PA +PD +AD ⏜=√3r +r +π3r =(√3+1+π3)r .22. 上 直线x =1 A 1A 2=A 3A 4解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x =1; 故答案为:上,直线x =1;(2)把(−1,0),(0,−3),(2,−3)代入y =ax 2+bx +c ,得: {a −b +c =0c =−34a +2b +c =−3,解得:{a =1b =−2c =−3,∴抛物线解析式为y =x 2−2x −3,当x =−2时,m =4+4−3=5;当x =1时,n =1−2−3=−4;(3)画出抛物线图象,如图1所示,描出P′的轨迹,是一条抛物线,如备用图中的红线所示,(4)根据题意及(3)中图象可得:A1A2=A3A4.故答案为:A1A2=A3A4.23.S1+S2=S3解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴S△ADBS△BFC =(ABBC)2,同理可得:S△AECS△BFC =(ACBC)2,∵AB2+AC2=BC2,∴S1S3+S2S3=(ABBC)2+(ACBC)2=AB2+AC2BC2=1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴S△ADBS△BFC =(ABBC)2,同理可得:S△AECS△BFC =(ACBC)2,∵AB2+AC2=BC2,∴S1S3+S2S3=(ABBC)2+(ACBC)2=AB2+AC2BC2=1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2√3,∴AH=√3,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=√3,∴AP=√6,BP=BH+PH=3+√3,∴S△ABP=BP⋅AH2=(3+√3)⋅√32=3√3+32,∵PE=√2,ED=2,AP=√6,AB=2√3,∴PEAP =√2√6=√33,DEAB=2√3=√33,∴PEAP =EDAB,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,PDBP =PEAP=√33,∴∠BPD=90°,PD=1+√3,∴S△BPD=BP⋅PD2=(3+√3)⋅(1+√3)2=2√3+3,∵△ABP∽△EDP,∴S△PDES△ABP =(√33)2=13,∴S△PDE=13×3√3+32=√3+12∵tan∠PBD=PDBP =√33,∴∠PBD=30°,∴∠CBD=∠ABC−∠ABP−∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=3√3+32+√3+12=2√3+2,∴五边形ABCDE的面积=3√3+32+√3+12+2√3+2+2√3+3=6√3+7.。
2020年江西中考数学试题(含答案)
2020年江西中考数学试题一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-3的倒数是( )A .3B .-3C .13- D .132.下列计算正确的是( )A .325a a a +=B .32a a a -=C .326a a a •=D .32a a a ÷= 3.教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( )A .115.017510⨯ B .125.017510⨯ C .130.5017510⨯ D .140.5017510⨯ 4.如图,1265,335︒︒∠=∠=∠=,则下列结论错误的是( )A .//AB CD B .30B ︒∠=C .2C EFC ∠+∠=∠D .CG FG > 5.如图所示,正方体的展开图为( )A. B.C. D.6.在平面直角坐标系中,点O为坐标原点,抛物线223y x x=--与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt OAB∆向右上方平移,得到'''Rt O A B∆,且点'O,'A落在抛物线的对称轴上,点'B落在抛物线上,则直线''A B的表达式为()A.y x= B.1y x=+ C.12y x=+ D.2y x=+二、填空题(本大题共6个小题,每小题3分,共18分)7.计算:2(1)a-=.8.若关于x的一元二次方程220x kx--=的一个根为1x=,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计: 数字 0 1 2 3 4 5 6 7 8 9 频数881211108981214那么,圆周率的小数点后100位数字的众数为.11.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为.12.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点'A 处,展平后得到折痕BE ,同时得到线段'BA ,'EA ,不再添加其它线段,当图中存在30角时,AE 的长为厘米.三、解答题:本大题共5个小题,每小题6分,共30分.13.(1)计算:21(13)|2|2-⎛⎫--+ ⎪⎝⎭(2)解不等式组:32152x x -≥⎧⎨->⎩14.先化简,再求值:221111x x x x x ⎛⎫-÷⎪--+⎝⎭,其中2x =15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,ABC ∆的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作ABC ∆关于点O 对称的'''A B C ∆;(2)在图2中,作ABC ∆绕点A 顺时针旋转一定角度后,顶点仍在格点上的'''A B C ∆.17. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明. 四、本大题共3个小题,每小题8分,共24分.18. 如图,Rt ABC ∆中,90ACB ∠=,顶点A ,B 都在反比例函数(0)ky x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,22OA =. (1)求反比例函数的解析式; (2)求EOD ∠的度数.19. 为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)复学一个月后,根据第二次测试的数学成绩得到如下统计表:根据以上图表信息,完成下列问题: (1)m =;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有人,至多有 人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位) (1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度. (参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)五、本大题共2个小题,每小题9分,共18分.21. 已知MPN∠的两边分别与圆O相切于点A,B,圆O的半径为r.(1)如图1,点C在点A,B之间的优弧上,80∠=,求ACBMPN∠的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,APB∠的度数应为多少?请说明理由;(3)若PC交圆O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线2=++(a,b,c是常数,0y ax bx ca≠)的自变量x与函数值y的部分对应值如下表:x…-2 -1 0 1 2 …y…m0 -3 n-3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及,m n的值;(3)请在图1中画出所求的抛物线,设点P为抛物线上的动点,OP的中点为'P,描出相应的点'P,再把相应的点'P用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y m=(2m>-)与抛物线及(3)中的点'P所在曲线都有两个交点,交点从左到右依次为A,2A,3A,4A,请根据图象直接写出线段1A,2A,3A,4A1之间的数量关系.六、本大题共12分.23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S,2S,3S之间的关系问题”进行了以下1探究:类比探究(1)如图2,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD ∆,Rt ACE ∆,Rt BCF ∆,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为;推广验证(2)如图3,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD ∆,ACE ∆,BCF ∆,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由; 拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,23AB =,2DE =,点P 在AE 上,30ABP ∠=,2PE =,求五边形ABCDE 的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江西省中考数学试卷一、选择题(本大题共6小题,共18.0分)1.−3的倒数是()A. 3B. −3C. −13D. 132.下列计算正确的是()A. a3+a2=a5B. a3−a2=aC. a3⋅a2=a6D. a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A. 5.0175×1011B. 5.0175×1012C. 0.50175×1013D. 0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A. AB//CDB. ∠B=30°C. ∠C+∠2=∠EFCD. CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()A. y=xB. y=x+1C. y=x+12D. y=x+2二、填空题(本大题共6小题,共18.0分)7.计算:(a−1)2=______.8.若关于x的一元二次方程x2−kx−2=0的一个根为x=1,则这个一元二次方程的另一个根为______.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是______.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下数字0123456789频数881211108981214那么,圆周率的小数点后位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为______.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.三、解答题(本大题共11小题,共84.0分)13.(1)计算:(1−√3)0−|−2|+(12)−2;(2)解不等式组:{3x−2≥1,5−x>2.14.先化简,再求值:(2xx2−1−1x−1)÷xx+1,其中x=√2.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为______;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A′B′C′;(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.17.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.(x>0)的图象18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=kx 上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45°,OA=2√2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=______;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有______人,至多有______人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,√3≈1.732)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.答案和解析1.【答案】C.【解析】解:−3的倒数是−13故选:C.根据倒数的定义即可得出答案.此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】D【解析】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3⋅a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.【答案】B【解析】解:50175亿=5017500000000=5.0175×1012.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵∠1=∠2=65°,∴AB//CD,故A选项正确,又∵∠3=35°,∴∠C=65°−35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.依据平行线的判定与性质,以及三角形外角性质,即可得出结论.本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.【答案】A【解析】解:根据“相间、Z 端是对面”可得选项B 不符合题意;再根据“上面∧”符号开口,可以判断选项A 符合题意;选项C 、D 不符合题意; 故选:A .根据正方体的展开与折叠,正方体展开图的形状进行判断即可.本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B , 令y =0,解得x =−1或3, 令x =0,求得y =−3, ∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1, ∴A′的横坐标为1,设A′(1,n),则B′(4,n +3), ∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2, ∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b , ∴{k +b =24k +b =5,解得{k =1b =1∴直线A′B′的表达式为y =x +1, 故选:B .求得A 、B 的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n +3),把B′(4,n +3)代入抛物线解析式求得n ,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x 轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.7.【答案】a 2−2a +1【解析】解:(a −1)2=a 2−2a +1. 直接利用完全平方公式计算即可解答.本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a ±b)2=a 2±2ab +b 2.8.【答案】−2【解析】解:∵a =1,b =−k ,c =−2, ∴x 1⋅x 2=ca =−2.∵关于x 的一元二次方程x 2−kx −2=0的一个根为x =1, ∴另一个根为−2÷1=−2. 故答案为:−2.利用根与系数的关系可得出方程的两根之积为−2,结合方程的一个根为1,可求出方程的另一个根,此题得解.本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于ca是解题的关键.9.【答案】25【解析】解:由题意可得,表示25.故答案为:25.根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.【答案】9【解析】解:圆周率的小数点后100位数字的众数为9,故答案为:9.直接根据众数的定义可得答案.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.【答案】82°【解析】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°−∠B−∠ACB−∠CAE=82°,故答案为:82°.证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.13.【答案】解:(1)原式=1−2+4=3;(2)解不等式3x−2≥1,得:x≥1,解不等式5−x>2,得:x<3,则不等式组的解集为1≤x<3.【解析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.【答案】解:原式=[2x(x+1)(x−1)−x+1(x+1)(x−1)]÷xx+1=x−1(x+1)(x−1)⋅x+1x=1x,当x=√2时,原式=√2=√22.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.【答案】14【解析】解:(1)共有4种可能出现的结果,抽到小艺的只有1种, 因此恰好抽到小艺的概率为14, 故答案为:14;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种, ∴P (小志、小晴)=212=16. (1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率. 本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.【答案】解:(1)如图1中,△A′B′C′即为所求. (2)如图2中,△AB′C′即为所求.【解析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可.(2)根据AB =2√5,BC =√5,AC =5,利用数形结合的思想解决问题即可. 本题考查作图−旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.【答案】解:(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元, 依题意,得:{2x +3y =19x +7y =26,解得:{x =5y =3.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元. (2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3−0.5)×10=40(元). ∵47−40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.【答案】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2√2,∴OD=AD=2,∴A(2,2),(x>0)的图象上,∵顶点A在反比例函数y=kx∴k=2×2=4,∴反比例函数的解析式为y=4;x(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC//x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.(x>0),求得k的值,即可求得反比【解析】(1)根据题意求得A(2,2),然后代入y=kx例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.【答案】14 20 34【解析】解:(1)m=(2+8+10+15+10+4+1)−(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6= 20(人),至多有14+6+(15−1)=34(人),故答案为:20,34;(4)800×14+61+3+3+8+15+14+6=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD⋅sin∠CDE=80×√32=40√3(mm)=FM,∠DCN=90°−60°=30°,又∵∠DCB=80°,∴∠BCN=80°−30°=50°,∵AM⊥DE,CN⊥DE,∴AM//CN,∴∠A=∠BCN=50°,∴∠ACF=90°−50°=40°,在Rt△AFC中,AF=AC⋅sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40√3≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D=BCCD =4080=0.500,∴∠D=26.6°,因此旋转的角度为:60°−26.6°=33.4°,答:CD旋转的角度约为33.4°.【解析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.21.【答案】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP =AC =PB =BC , ∴四边形APBC 是菱形; (3)∵⊙O 的半径为r , ∴OA =r ,OP =2r , ∴AP =√3r ,PD =r ,∵∠AOP =90°−∠APO =60°,∴AD ⏜=60°π⋅r 180∘=π3r , ∴阴影部分的周长=PA +PD +AD ⏜=√3r +r +π3r =(√3+1+π3)r .【解析】(1)连接OA ,OB ,由切线的性质可求∠PAO =∠PBO =90°,由四边形内角和可求解;(2)当∠APB =60°时,四边形APBC 是菱形,连接OA ,OB ,由切线长定理可得PA =PB ,∠APC =∠BPC =30°,由“SAS ”可证△APC≌△BPC ,可得∠ACP =∠BCP =30°,AC =BC ,可证AP =AC =PB =BC ,可得四边形APBC 是菱形;(3)分别求出AP ,PD 的长,由弧长公式可求AD⏜,即可求解. 本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.【答案】上 直线x =1 A 1A 2=A 3A 4【解析】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x =1; 故答案为:上,直线x =1;(2)把(−1,0),(0,−3),(2,−3)代入y =ax 2+bx +c ,得: {a −b +c =0c =−34a +2b +c =−3, 解得:{a =1b =−2c =−3,∴抛物线解析式为y =x 2−2x −3, 当x =−2时,m =4+4−3=5; 当x =1时,n =1−2−3=−4;(3)画出抛物线图象,如图1所示,描出P′的轨迹,是一条抛物线,如备用图中的红线所示,(4)根据题意及(3)中图象可得:A 1A 2=A 3A 4. 故答案为:A 1A 2=A 3A 4.(1)观察表格中的数据,得到x =0和x =2时,y 值相等都为−3,且其他y 的值比−3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a ,b ,c 的值确定出解析式,进而求出m 与n 的值即可;(3)画出抛物线图象,确定出点P′运动的轨迹即可; (4)根据(3)中图象可得答案.本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.23.【答案】S 1+S 2=S 3【解析】解:类比探究(1)∵∠1=∠3,∠D =∠F =90°, ∴△ADB∽△BFC , ∴S △ADB S △BFC=(ABBC)2, 同理可得:S △AECS△BFC=(ACBC)2,∵AB 2+AC 2=BC 2, ∴S 1S 3+S 2S 3=(AB BC)2+(AC BC)2=AB 2+AC 2BC 2=1,∴S 1+S 2=S 3,故答案为:S 1+S 2=S 3. (2)结论仍然成立,理由如下:∵∠1=∠3,∠D =∠F , ∴△ADB∽△BFC , ∴S △ADB S △BFC=(ABBC)2, 同理可得:S △AECS△BFC=(ACBC )2,∵AB 2+AC 2=BC 2, ∴S 1S 3+S 2S 3=(AB BC )2+(ACBC )2=AB 2+AC 2BC 2=1,∴S 1+S 2=S 3,(3)过点A 作AH ⊥BP 于H ,连接PD ,BD ,∵∠ABH =30°,AB =2√3,∴AH =√3,BH =3,∠BAH =60°, ∵∠BAP =105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=√3,∴AP=√6,BP=BH+PH=3+√3,∴S△ABP=BP⋅AH2=(3+√3)⋅√32=3√3+32,∵PE=√2,ED=2,AP=√6,AB=2√3,∴PEAP =√2√6=√33,DEAB=2√3=√33,∴PEAP =EDAB,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,PDBP =PEAP=√33,∴∠BPD=90°,PD=1+√3,∴S△BPD=BP⋅PD2=(3+√3)⋅(1+√3)2=2√3+3,∵△ABP∽△EDP,∴S△PDES△ABP =(√33)2=13,∴S△PDE=13×3√3+32=√3+12∵tan∠PBD=PDBP =√33,∴∠PBD=30°,∴∠CBD=∠ABC−∠ABP−∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=3√3+32+√3+12=2√3+2,∴五边形ABCDE的面积=3√3+32+√3+12+2√3+2+2√3+3=6√3+7.类比探究(1)通过证明△ADB∽△BFC,可得S△ADBS△BFC =(ABBC)2,同理可得S△AECS△BFC=(ACBC)2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得S△ADBS△BFC =(ABBC)2,同理可得S△AECS△BFC=(ACBC)2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=√6,BP= BH+PH=3+√3,可求S△ABP=3√3+32,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,PDBP =PEAP=√33,S△PDE=√3+12,可得∠BPD=90°,PD=1+√3,可求S△BPD=2√3+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=3√3+32+√3+12=2√3+2,即可求解.本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。