周进周出二沉池设计之探讨

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周进周出二沉池设计之探讨
沉淀池是水处理工程中常用的构筑物,为提高水处理能力、稳定出水水质、降低运行成本和控制基建投资,各种类型的沉淀池都有了较大的改进和革新。

笔者在某污水处理厂工程的设计中,针对出水水质要求高、用地面积少的情况,二沉池选用了圆形周边进水周边出水幅流式沉淀池。

该工程总设计规模17×104m3/d,近期实施10×104m3/d。

4座周进周出的沉淀池作二沉池,单池处理能力Qd=3.25×104m3/d。

下文对周进周出沉淀池的选择及配水系统的设计谈一些具体做法。

1 周进周出与中进周出沉淀池的比较
1.1 沉淀区的流态二次沉淀池进水为活性污泥混合液,悬浮物固体MLSS的质量浓度在3000-4000mg/L 之间,远高于池内的澄清水。

由于二者间的密度差、温度差而存在二次流和异重流现象。

中进周出和周进周出两种不同池型内的混合液流态各不相同,详见图1与图2:
在中进式沉淀池中,活性污泥混合液从池中心进水管以相对较高的流速进入池内,形成涡流,经布水筒逐渐下降到污泥层上,再沿沉淀区中部向池壁方向流动并壅起环流。

分离出的澄清水部分溢流入出水槽,部分在上面从池边向池中心回流;密度大的混合液则在下面从池边向池中心流动,形成了反向流动的环流。

这种环流不利于沉淀,限制了池子的水力负荷。

而在周边进水周边出水的沉淀池中,密度流的方向与中心进水式相反。

混合液经进水槽配水孔管流入导流区后经孔管挡板折流,下降到池底污泥面上并沿泥面向中心流动,汇集后呈一个平面上升,在向池中心汇流和上升过程中分离出澄清水,并反向流到池边的出水槽,形成大环形密度流,污泥则沉降到池底部。

因此,周进周出沉淀池的异重流流态改变了沉淀区的流态,有利于固液分离。

1.2 容积利用率
异重流现象在中进式沉淀池中会形成短流,部分容积没有得到有效利用,池子的实际负荷比设计负荷大得多。

而周进式由于大环形密度流的形成,容积利用率要高得多。

对应进。

出水槽位置的不同,中心进水与周边进水沉淀池的容积利用率各不相同,详见表1。

表1 幅流式沉淀池容积利用率[1]
1.3 导流筒的作用
中进式中心导流商内的流速相对较高,常在0.1m/s以上,水流向下流动的动能大,易冲击底部污泥,活性污泥在其间难以形成絮凝、澄清作用。

而周进式由于池周长,过水断面大,进水流速小得多。

流速小,雷诺数和弗劳德数都比中迸式小,雷诺数小,惯性作用小;弗劳德数小,粘滞力作用大,这些都有效地促进了简内流态向层流发展,产生同向流,促使活性污泥下沉。

同时,由于活性污泥层的吸附澄清作用,混合液中的污泥颗粒不断与悬浮层中的活性污泥碰撞、吸附、结合、絮凝,产生良好的澄清作用,提高了沉淀效果。

2 周进式二沉池配水均匀性分析
沉淀池的处理效果与池表面负荷及水力停留时间有关。

对于周进式二沉池,还有一个关键因素就是配水系统的均匀稳定性,只有沿圆周各点的进、出水量一致,布水均匀,才能充分发挥该池型的优点。

周进式沉淀池环形布水、均匀出流的水力学模型比较复杂,在计算中,因池直径D远大于配水槽槽宽B,圆弧的影响忽略不计,配水槽简化为校柱形水渠,水流为沿程底孔泄流的直线渐变流。

计算示意图见图3。

均匀配水,距进水点L段上对应的流量为:
Q=Q0(1-L/L0)
孔口出流量:
q=μ.ω(2gZ)0.5
配水水头Z=H-H池,为槽内水位与池液位差。

槽内水流能量微分方程为:
dH+(dV2/2g)+idL=0
影响配水系统均匀性q/Q0的因素较多,有进水流量Q0、配水槽槽宽B、槽内水深H、流速厂配水孔径d、孔距l等。

通过对各设计参数的取定,有不同的处理方法,双向对流配水或单向环槽配水,配水槽等竞或变宽,配水孔等间距或变间距,配水槽平坡或变坡等。

种种方法有各自的特点和适用范围,工程中不仅要考虑到工艺的合理性、稳定性,还要便于土建施工、设备安装等,以臻工艺先进、施工便利。

管理维护方便。

目前常用的计算方法有3种:
①等孔距法
配水槽槽内水面为一水平线,水高H不变,各配水孔配水水头Z一致,孔口出流量q相等,配水孔间距ι恒定。

由式(2)可知,槽宽B与槽长L相关,随L的变化而变化,与进水水量从无关。

实际工程中,B、H0的选择取决于进水流量Q0,H0越大,V越小,配水的效果越理想。

等孔距法配水的优点是:配水孔管大小一致,孔距均等,沿池周均布并与池中心对称。

但工程实用性并不理想,槽宽B沿程变化复杂,施工难度大。

②等宽度法
等宽度法即配水槽槽宽B一致,将dB/dL=0代人式(1),得:
由式(3)可知,随槽长L的变化,槽内水深H、水流流速V也相应改变。

H的改变说明各孔口配水水头Z、出流量q各不相同。

由于各配水孔管的直径一致,各孔距ι各不相同。

等宽度法由于同时还存在另一变量:流速V,较适用于恒定流量,即进水水量变化不大的情况。

实际工程中,随进水水量。

污泥回流量的改变,会存在一定的误差。

③等流速法
此方法强调配水槽内水流流速厂恒定,从式(1)可知dH/dL ∝V,当流速V为定值且较小时,V2=O,则:dH =0,H≈H0。

因:
V=(Q0/B0H0)=Q0/BH0(1-L/L0)
得:B=B0(1-L/L0),即槽宽B与槽长L呈线性变化,代入式(1),得:
dH/dL=(HV2/(gH-V2)[-B0/BL0)+[1/(L0-L)-n2g(2/B)+(/H)4/3]
因gH-V2≈gH,得:
dH/dL=-(nV)2[2L0/[(B0(L0-L)+1/H]4/3 (4)
由式(4)可知,H随L顺水流方向逐渐降低,通过确定水深H,各配水孔配水水头Z,进而可得出各配水孔孔距ι。

等流速法的槽宽B随槽长L呈线性关系,变化不复杂,施工可控制。

同时由于流速V不变,受实际进水水量变化的影响并不大。

3 配水计算实例
本文所述工程实例中的周进周出二沉池的池内径45m,池边水深4.60m,总高度5.10m,单池处理能力Qd=3.25×104m3/d,表面负荷q=0.85m3/(m3.d)。

设计计算中,限定工艺边界条件:槽宽不宜小于0.3m;进出水槽槽底为平底;为防止混合液槽内沉淀,环槽流速V不宜低于0.3m/s;配水孔口不宜过小,均采用同一规格φ100,孔深与底板厚度相同。

计算采用了等流速法和等宽度法组合。

①配水槽起端,为满足水量变化要求,采用等流速法计算。

根据最小设计流量Qmin槽内水流流速V=0.3m/s 确定起始槽宽B0及B=B0(1-L/L0);根据平均设计流量Qave水力坡降线△H=0.01m将槽水面曲线划分为几段,按每段平均配水水头确定平均孔距ι。

②配水槽末端,当计算槽宽B<0.3m时,取槽宽B=0.3m,采用等宽度法确定各配水孔孔距ι。

此时因槽内流量小,配水均匀稳定性受流量变化的影响亦较小。

通过以上计算,该沉淀池配水槽宽B=1.1-0.3m,渠内水深H=1.2m,配水水头Z≈0.14m,配水孔管直径100mm,孔距ι为1.014-0.744m。

考虑进水量变化的影响,实际配水效果maxιq-q0ι<2%q0。

出水水质达到排放标准。

4 二沉池其他部件的设置
4.1 单向环流配水
理论上采用双向环槽配水可减少渠道断面,但工程中很难保证双向对称分流,一旦发生偏流,误差会更大,采用单向环流配水更可靠。

另外,配水槽内的刮渣板随吸泥机单向旋转,双向配水不利于配水槽内撇渣。

4.2 配水槽与集水槽
配水槽和集水槽沿池周布置,两槽合建,共底共壁,配水孔管中心。

挡水裙板。

出水堰环与池周同心,保证进出水均匀。

4.3 进水区挡水裙板
挡水裙板延伸至水面下1.5m处以保证良好的澄清絮凝效果。

4.4 除渣
浮渣集中在配水渠道的小块面积上,通过安装在撇渣设备竖臂上的叶片刮集,驱动配水渠末端的浮闸堰门排除。

4.5 排泥
排泥设备选用中心传动单管吸泥机。

吸泥机转动方向与进水形成的水流方向一致,搅动池底污泥和带走轻的活性污泥絮体的可能性亦较小。

吸泥管断面由池边到池中心逐渐放大,可保证污泥在吸泥管内流速均匀,防止孔口堵塞及污泥在管内沉积。

5 结语
周进周出幅流式沉淀池与传统的中心进水式相比,具有较大的有效容积、高溢流率、最佳水力稳定性、最大范围进水面、进水渠道表面撇渣等优点,在保证配水均匀稳定性的前提下,可以得到良好的处理效果。

相关文档
最新文档