实验微分方程(基础实验)
微分方程基础练习题(简易型)含答案解析
微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。
2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。
3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。
4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。
答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。
由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。
2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。
对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。
因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。
由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。
3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。
4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。
对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。
因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。
医用高等数学第五章微分方程基础5.5
试求体内药量随时间的变化规律。
返回
解 把机体设想为一个同质单元,并假
定药物在体内按一级速率过程消除,消除 的速率常数为 k0这样的一室模型如图所示。
k0
k
设静脉滴注时刻 t 体内的药量为 x(t) , 则有以下数学模型:
dx
dt k0 kx
返回
返回
三、流行病数学模型
这里举一个最简单的一类流行病学模型------无移除的流行病模型。这里假定
(1)感染通过一个团体成员之间的接触而传 播,感染者不因死亡、痊愈或隔离而被移除;
(2)团体是封闭的,总人数为N,开始时不 妨只有一个感染者;
(3)团体中各成员之间的接触机会均等,因
此易感者转为感染者的变化率与当时的易感人
解 得x
r
k r kx0 e rt
x0
返回
r
k
t 0时, x r
k
x0
0
t
分析:
上式称为自然生长方程,也称 logistic方程,它 表达自然环境中生物种群的生长有着重要的意义. 式中的图形为S形曲线,称为logistic曲线。
返回
二、药物动力学模型
药物动力学是一门研究药物、毒物及其代 谢物在机体内的吸收、分布、代谢和排谢过程 不定量规律的科学,这里仅以一室模型为例, 说明微分在这方面的应用。
第五节 微分方程在医学上的应用
随着整个科学技术的数学化,现代医学也加 快了向数学化发展的速度。普遍地、有效地应 用数学方法来解决医学科研中的问题,提示其 中的数量规律性,已成为现代医学发展的潮流。 这种提示医学问题中各变量之间关系的解析式, 称为数学模型。而微分方程是建立数学模型时 应用最为广泛的工具之一。下面我们举几个例 子,初步说明现代医学定量分析研究的方法和 一些途径。
《微积分》课程教学大纲.
《微积分》课程教学大纲学 时 数:126学 分 数:7适用专业:经济类本科执 笔:吴赣昌 编写日期:2006年6月课程的性质、目的和任务 本课程是高等学校经济类本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。
是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。
通过本课程的学习,要使学生获得一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程等方面的基本概念、基本理论和基本运算技能,为后续课程的学习奠定必要的数学基础。
为后续课程的学习奠定必要的数学基础。
在课程的教学过程中,要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。
能力以及自学能力。
课程教学的主要内容与基本要求一、函数、极限与连续 主要内容:函数的概念及其表示法,函数的有界性、单调性、周期性和奇偶性;反函数、复合函数和隐函数,基本初等函数的性质及其图形特征,初等函数,简单应用问题的函数关系的建立;常用经济函数;数列极限与函数极限的定义和性质,函数的左、右极限,无穷小与无穷大;无穷小的比较;极限的四则运算;极限存在的两个准则和两个重要极限; 连续函数的概念,函数间断点的分类;初等函数的连续性,闭区间上连续函数的性质(最大值最小值定理和介值定理)。
基本要求:1、理解函数的概念,掌握函数的表示法;、理解函数的概念,掌握函数的表示法;2、了解函数的有界性、单调性、周期性与奇偶性;、了解函数的有界性、单调性、周期性与奇偶性;3、理解复合函数、反函数、隐函数和分段函数的概念;、理解复合函数、反函数、隐函数和分段函数的概念;4、掌握基本初等函数的性质及其图形,理解初等函数的概念;、掌握基本初等函数的性质及其图形,理解初等函数的概念;5、会建立简单应用问题的函数关系,熟悉几种常用经济函数;、会建立简单应用问题的函数关系,熟悉几种常用经济函数;6、了解数列极限和函数极限(包括左、右极限)的概念;、了解数列极限和函数极限(包括左、右极限)的概念;7、了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。
微分方程在日常实际中的应用
微分方程在实际中的应用——以学习物理化学为例函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究,因此如何寻找出所需要的函数关系,在实践中具有重要意义。
在许多问题中,往往不能直接找出所需要的函数关系,但是根据问题所提供的情况,有时可以列出含有未知函数及其导数的关系式,如dy/dx=2x、ds/dt=0.4 ,这样的关系就是所谓微分方程,。
一般的、凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。
如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程。
如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。
70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。
从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解。
常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。
偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。
总之,力学、天文学、几何学等领域的许多问题都导致微分方程。
在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。
因而微分方程的研究是与人类社会密切相关的。
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。
后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。
这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。
2013年下学期数学实验作业
数学实验与数学建模实验报告学院:专业班级:姓名:学号:完成时间:2014 年1 月6日实验一 图形的画法1. 做出下列函数的图像:(1))2sin()(22--=x x x x y ,22≤≤-x (分别用plot 、fplot ) (2)22/9/251x y +=(用参数方程)(3) 在同一图形窗口中,画出四幅不同图形(用subplot 命令):1cos()y x =,2sin(/2)y x pi =-,23cos()y x x pi =-,sin()4x y e =(]2,0[π∈x )2 作出极坐标方程为)cos 1(2t r -=的曲线的图形.3 作出极坐标方程为10/t e r =的对数螺线的图形.4 绘制螺旋线⎪⎩⎪⎨⎧===t z t y t x ,sin 4,cos 4在区间[0,π4]上的图形.在上实验中,显示坐标轴名称。
5 作出函数22y x xye z ---=的图形.6 作出椭球面1194222=++z y x 的图形.(该曲面的参数方程为,cos ,sin sin 3,cos sin 2u z v u y v u x === (ππ20,0≤≤≤≤v u ).)7 作双叶双曲面13.14.15.1222222-=-+z y x 的图形.(曲面的参数方程是,csc 3.1,sin cot 4.1,cos cot 5.1u z v u y v u x ===其中参数πππ<<-≤<v u ,20时对应双叶双曲面的一叶, 参数πππ<<-<≤-v u ,02时对应双叶双曲面的另一叶.)8 作出圆环v z u v y u v x sin 7,sin )cos 38(,cos )cos 38(=+=+=,(πππ22/,2/30≤≤≤≤v u )的图形.9 作出球面22222=++z y x 和柱面1)1(22=+-y x 相交的图形.10 作出锥面222z y x =+和柱面1)1(22=+-y x 相交的图形.11用动画演示由曲线],0[,sin π∈=z z y 绕z 轴旋转产生旋转曲面的过程. (该曲线绕z 轴旋转所得旋转曲面的方程为,sin 222z y x =+ 其参数方程为])2,0[],,0[(,,sin sin ,cos sin ππ∈∈===u z z z u z y u z x ) 12. 画出变上限函数⎰xdt t t 02sin 及其导函数的图形.13.迪卡尔曲线)03(13,1333222=-++=+=axy y x tat y t at x 14.蔓叶线)(1,1322322x a x y tat y t at x -=+=+= 15.摆线)cos 1(),sin (t b y t t a x -=-=16.内摆线(星形线))(sin ,cos 32323233a y x t a y t a x =+==17.圆的渐伸线(渐开线))cos (sin ),sin (cos t t t a y t t t a x -=+=18.空间螺线ct z t b y t a x ===,sin ,cos 19.阿基米德线0,≥=r a r ϕ。
实验2--微分方程(基础实验)
实验2--微分方程(基础实验)119 项目四 无穷级数与微分方程实验2 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用Mathematica 求微分方程及方程组解的常用命令和方法.基本命令1. 求微分方程的解的命令DSolve对于可以用积分方法求解的微分方程和微分方程组,可用Dsolve 命令来求其通解或特解.例如,求方程023=+'+''y y y 的通解, 输入DSolve[y ''[x]+3y '[x]+2y[x]==0,y[x],x]则输出含有两个任意常数C[1]和C[2]的通解:{}{}]2[C e ]1[C e ]x [y x x 2--+→注:在上述命令中,一阶导数符号 ' 是通过键盘上的单引号 ' 输入的,二阶导数符号 '' 要输入两个单引号,而不能输入一个双引号.又如,求解微分方程的初值问题:,10,6,03400='==+'+''==x x y y y y y输入Dsolve[{y''[x]+4 y'[x]+3y[x]==0,y[0]==6, y'[0]==10},y[x],x](*大括号把方程和初始条件放在一起*)则输出{}{}x 2x 3e 148(e ]x [y +-→-2. 求微分方程的数值解的命令NDSolve对于不可以用积分方法求解的微分方程初值问题,可以用NDSolve 命令来求其特解.例如要求方程5.0,032=+='=x y x y y的近似解)5.10(≤≤x , 输入NDSolve[{y'[x]==y[x]^2+x^3,y[0]==0.5},y[x],{x,0,1.5}](*命令中的{x,0,1.5}表示相应的区间*)则输出{{y->InterpolatingFunction[{{0.,1.5}},< >]}}注:因为NDSolve 命令得到的输出是解)(x y y =的近似值. 首先在区间[0,1.5]内插入一系 列点n x x x ,,,21Λ, 计算出在这些点上函数的近似值n y y y ,,,21Λ, 再通过插值方法得到 )(x y y =在区间上的近似解.3. 一阶微分方程的方向场一般地,我们可把一阶微分方程写为),(y x f y ='的形式,其中),(y x f 是已知函数. 上述微分方程表明:未知函数y 在点x 处的斜率等于函数120f 在点),(y x 处的函数值. 因此,可在Oxy 平面上的每一点, 作出过该点的以),(y x f 为斜率 的一条很短的直线(即是未知函数y 的切线). 这样得到的一个图形就是微分方程),(y x f y ='的方向场. 为了便于观察, 实际上只要在Oxy 平面上取适当多的点,作出在这些点的函数的 切线. 顺着斜率的走向画出符合初始条件的解,就可以得到方程),(y x f y ='的近似的积分曲 线.例如, 画出0)0(,12=-=y y dxdy 的方向场. 输入<<Graphics`PlotField`g1=PlotVectorField[{1,1-y^2},{x,-3,3},{y,-2,2}, Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];则输出方向场的图形(图2.1), 从图中可以观察到, 当初始条件为2/10=y 时, 这个微分方程的解介于1-和1之间, 且当x 趋向于-∞或∞时, )(x y 分别趋向于1-与1.-3-2-10123-2-1012 -3-2-10123-2-112下面求解这个微分方程, 并在同一坐标系中画出方程的解与方向场的图解. 输入sol=DSolve[{y'[x]==1-y[x]^2,y[0]==0},y[x],x];g2=Plot[sol[[1,1,2]],{x,-3,3},PlotStyle->{Hue[0.1],Thickness[0.005]}];Show[g2,g1,Axes->None,Frame->True];则输出微分方程的解xxe e x y 2211)(++-=,以及解曲线与方向场的图形(图2.2). 从图中可以看到, 微分方程的解与方向场的箭头方向相吻合.实验内容用Dsolve 命令求解微分方程例2.1 (教材 例2.1) 求微分方程 22x xe xy y -=+'的通解.输入Clear[x,y];DSolve[y '[x]+2x*y[x]==x*Exp[-x^2],y[x],x]或DSolve[D[y[x],x]+2x*y[x]==x*Exp[-x^2],y[x],x]则输出微分方程的通解:121 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→--]1[C e x e 21]x [y 22x 2x 其中C[1]是任意常数.例2.2 (教材 例2.2) 求微分方程0=-+'x e y y x 在初始条件e y x 21==下的特解. 输入Clear[x,y];DSolve[{x*y ' [x]+y[x]-Exp[x]==0,y[1]==2 E},y[x],x]则输出所求特解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→x e e ]x [y x 例2.3 (教材 例2.3) 求微分方程x e y y y x 2cos 52=+'-''的通解.输入DSolve[y ''[x]-2y '[x]+5y[x]==Exp[x]*Cos[2 x],y[x],x]//Simplify则输出所求通解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧-++→])x 2[Sin ])1[c 4x (2]x 2[Cos ])2[c 81((e 81]x [y x 例2.4 (教材 例2.4) 求解微分方程x e x y +=''2, 并作出其积分曲线.输入g1=Table[Plot[E^x+x^3/3+c1+x*c2,{x,-5,5},DisplayFunction->Identity],{c1,-10,10,5},{c2,-5,5,5}];Show[g1,DisplayFunction->$DisplayFunction]; -4-224-40-20204060图2.3例2.5 (教材 例2.5) 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dx t 在初始条件0,100====t t y x 下的特解.输入122Clear[x,y,t];DSolve[{x' [t]+x[t]+2 y[t]==Exp[t], y'[t] -x[t]- y[t]==0,x[0]==1,y[0]==0},{x[t],y[t]},t]则输出所求特解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→→])t [Sin ]t [Cos e (21]t [y ],t [Cos ]t [x t例2.6 验证c y y x =+--)3305(15152是微分方程2)(42-='y x x y 的通解. 输入命令<<Graphics`PlotField`<<Graphics`ImplicitPlot`sol=(-5x^3-30y+3y^5)/15==C;g1=ImplicitPlot[sol/.Table[{C->n},{n,-3,3}],{x,-3,3}];g2=PlotVectorField[{1,x^2/(y^4-2)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];g=Show[g2,g1,Axes->None,Frame->True];Show[GraphicsArray[{g1,g2,g}]];则分别输出积分曲线如图 2.4(a), 微分方程的方向场如图 2.4(b). 以及在同一坐标系中画出积分曲线和方向场的图形如下图2.4 (c).-3-2-1123-2-112-3-2-10123-3-2-10123-3-2-10123-3-2-10123图2.4从图 2.4(c)中可以看出微分方程的积分曲线与方向场的箭头方向吻合, 且当∞→x 时, 无论初始条件是什么, 所有的解都趋向于一条直线方程.例2.7 (教材 例2.6) 求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 输入<<Graphics`PlotField`DSolve[y' [x]-2y[x]/(x+1)==(x+1)^(5/2),y[x],x]则输出所给积分方程的解为 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+++→]1[C )x 1()x 1(32]x [y 22/7123 下面在同一坐标系中作出这个微分方程的方向场和积分曲线(设),3,2,1,0,1,2,3---=C 输入t=Table[2(1+x)^(7/2)/3+(1+x)^2c,{c,-1,1}];g1=Plot[Evaluate[t],{x,-1,1},PlotRange->{{-1,1},{-2,2}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g2=PlotVectorField[{1,-2y/(x+1)+(x+1)^(5/2)},{x,-0.999,1},{y,-4,4},Frame->True,ScaleFunction->(1&), ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出积分曲线的图形(图2.5).-0.75-0.5-0.2500.250.50.751-1.5-1-0.50.511.52图2.5例2.8 求解微分方程,2)21(22-+='-y x y xy 并作出其积分曲线.输入命令<<Graphics`PlotField`DSolve[1-2*x*y[x]*y' [x]==x^2+(y[x])^2-2,y[x],x]则得到微分方程的解为.)2(323C y x x y ++-+= 我们在33≤≤-C 时作出积分曲线, 输入命令t1=Table[(3+Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];t2=Table[(3-Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];gg1=Plot[Evaluate[t1],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];124gg2=Plot[Evaluate[t2],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g1=ContourPlot[y-x^3/3-x*(-2+y^2),{x,-3,3},{y,-3,3},PlotRange->{-3,3},Contours->7,ContourShading->False,PlotPoints->50,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2+y^2-2)/(1-2*x*y)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];Show[gg1,gg2,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出微分方程的向量场与积分曲线, 并输出等值线的图2.6.-3-2-10123-2-10123-2-10123-2-1123图2.6用NDSolve 命令求微积分方程的近似解例2.9 (教材 例2.7) 求初值问题:1,0)1()1(2.1=='-++=x y y xy y xy 在区间[1.2,4]上的近似解并作图.输入fl=NDSolve[{(1+x*y[x])*y[x]+(1-x*y[x])*y'[x]==0,y[1.2]==1},y,{x,1.2,4}]则输出为数值近似解(插值函数)的形式:{{y->InterpolatingFunction[{{1.2,4.}},< >]}}用Plot 命令可以把它的图形画出来.不过还需要先使用强制求值命令Evalu-ate, 输入 Plot[Evaluate[y[x]/.fl],{x,1.2,4}]则输出近似解的图形(图2.7).125 1.5 2.53 3.5410203040图2.7如果要求区间[1.2,4]内某一点的函数的近似值, 例如8.1=x y ,只要输入y[1.8]/.fl则输出所求结果{3.8341}例2.10 (教材 例2.8) 求范德波尔(Van der Pel)方程5.0,0,0)1(002-='==+'-+''==x x y y y y y y在区间[0,20]上的近似解.输入 Clear[x,y];NDSolve[{y''[x]+(y[x]^2-1)*y'[x]+y[x]==0,y[0]==0,y'[0]==-0.5},y,{x,0,20}];Plot[Evaluate[y[x]/.%],{x,0,20}]可以观察到近似解的图形(图2.8).5101520-2-112图2.8126 ⎪⎩⎪⎨⎧==+-'1)1(01sin 2y x y x y x 的数值解, 并作出数值解的图形.输入命令<<Graphics`PlotField`sol=NDSolve[{x*y'[x]-x^2*y[x]*Sin[x]+1==0,y[1]==1},y[x],{x,1,4}];f[x_]=Evaluate[y[x]/.sol];g1=Plot[f[x],{x,1,4},PlotRange->All,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2*y*Sin[x]-1)/x},{x,1,4},{y,-2,9},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];g=Show[g1,g2,Axes->None,Frame->True];Show[GraphicsArray[{g1,g}],DisplayFunction->$DisplayFunction];则输出所给微分方程的数值解及数值解的图2.9.1.522.533.544681 1.52 2.53 3.54-22468例2.11 (教材 例2.9) 求出初值问题⎪⎩⎪⎨⎧='==+'+''0)0(,1)0(cos sin 22y y xy x y y的数值解, 并作出数值解的图形.输入NDSolve[{y''[x]+Sin[x]^2*y'[x]+y[x]==Cos[x]^2,y[0]==1,y'[0]==0},y[x],{x,0,10}]127 Plot[Evaluate[y[x]/.%],{x,0,10}];则输出所求微分方程的数值解及数值解的图形(图2.10).2468100.20.40.60.8图2.10例2.12 (教材 例2.10) 洛伦兹(Lorenz)方程组是由三个一阶微分方程组成的方程组.这三个方程看似简单, 也没有包含复杂的函数, 但它的解却很有趣和耐人寻味. 试求解洛伦兹方程组,0)0(,4)0(,12)0()(4)()()()()(45)()()()(16)(16)(⎪⎪⎩⎪⎪⎨⎧===-='-+-='-='z y x t z t y t x t z t y t x t z t x t y t x t y t x 并画出解曲线的图形.输入Clear[eq,x,y,z]eq=Sequence[x'[t]==16*y[t]-16*x[t],y'[t]==-x[t]*z[t]-y[t]+45x[t],z'[t]==x[t]*y[t]-4z[t]];sol1=NDSolve[{eq,x[0]==12,y[0]==4,z[0]==0},{x[t],y[t],z[t]},{t,0,16},MaxSteps->10000];g1=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol1],{t,0,16},PlotPoints->14400,Boxed->False,Axes->None];则输出所求数值解的图形(图2.11(a)). 从图中可以看出洛伦兹微分方程组具有一个奇异吸引子, 这个吸引子紧紧地把解的图形“吸”在一起. 有趣的是, 无论把解的曲线画得多长, 这些曲线也不相交.128图2.11改变初值为,10)0(,10)0(,6)0(=-==z y x 输入sol2=NDSolve[{eq,x[0]==6,y[0]==-10,z[0]==10}, {x[t],y[t],z[t]},{t,0,24},MaxSteps->10000];g2=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol2],{t,0,24},PlotPoints->14400,Boxed->False,Axes->None];Show[GraphicsArray[{g1,g2}]];则输出所求数值解的图形(图2.11(b)). 从图中可以看出奇异吸引子又出现了, 它把解“吸”在某个区域内, 使得所有的解好象是有规则地依某种模式缠绕.实验习题1. 求下列微分方程的通解:(1) ;0136=+'+''y y y(2) ();024=+''+y y y(3) ;2sin 52x e y y y x =+'-''(4) .)1(963x e x y y y +=+'-''2. 求下列微分方程的特解:(1) ;15,0,029400='==+'+''==x x y y y y y(2) .1,1,02sin ='==++''==ππx x y yx y y 3. 求微分方程0cos 2)1(2=-+'-x xy y x 在初始条件10==x y 下的特解.分别求精确解和数值解)10(≤≤x 并作图.4. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++t t e y x dt dy e y x dt dx 235的通解.129 5. 求微分方程组⎪⎪⎩⎪⎨⎧==+-==-+==4,081,0300t t y y x dt dyxy x dt dx 的特解. 6. 求欧拉方程组324x y y x y x =-'+''的通解.7. 求方程5,0,011='==+'+''==x x y y y y x y 在区间[0,4]上的近似解.。
最新数学实验报告
重庆大学学生实验报告实验课程名称数学实验开课实验室DS1407学院自动化年级2013 专业班自动化02班学生姓名侯刚学号20134615开课时间2014 至2015 学年第二学期数学与统计学院制开课学院、实验室:数统学院DS1407实验时间:2014年4月3日课程名称数学实验实验项目名称种群数量的状态转移——微分方程实验项目类型验证演示综合设计其他指导教师龚劬成绩√实验目的[1] 归纳和学习求解常微分方程(组)的基本原理和方法;[2] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;[3] 熟悉MATLAB软件关于微分方程求解的各种命令;[4] 通过范例学习建立微分方程方面的数学模型以及求解全过程;基础实验一、实验内容1.微分方程及方程组的解析求解法;2.微分方程及方程组的数值求解法——欧拉、欧拉改进算法;3.直接使用MATLAB命令对微分方程(组)进行求解(包括解析解、数值解);4.利用图形对解的特征作定性分析;5.建立微分方程方面的数学模型,并了解建立数学模型的全过程。
二、实验过程1.求微分方程的解析解, 并画出它们的图形,y’= y + 2x, y(0) = 1, 0<x<1;(1)求解:输入:dsolve('Dy=y+2*x','y(0)=1','x')输出:ans=-2*x-2+3*exp(x)(3)作图:输入:>> x=0:0.1:1;>> y2=-2*x-2+3*exp(x);>> plot(x,y2)输出:图表 1 方程特解图形分析:注意dsolve的用法。
2.用向前欧拉公式和改进的欧拉公式求方程y’= y - 2x/y, y(0) = 1 (0≤x≤1,h = 0.1) 的数值解,要求编写程序,并比较两种方法的计算结果,说明了什么问题?(1)求解析解输入: dsolve('Dy=y-2*x/y','y(0)=1','x')输出: ans =(2*x+1)^(1/2)(2)用向前欧拉公式和改进的欧拉公式求方程的数值解并与解析解作图比较程序:x1(1)=0;y1(1)=1;y2(1)=1;h=0.1;for k=1:10x1(k+1)=x1(k)+h;y1(k+1)=y1(k)+h*(y1(k)-2*x1(k)/y1(k));k1=y2(k)-2*x1(k)/y2(k);k2=y2(k)+h*k1-2*x1(k+1)/(y2(k)+h*k1);y2(k+1)=y2(k)+h*(k1+k2)/2;endx1,y1,y2x=0:0.1:1;y=(2*x+1).^(1/2);plot(x,y,x,y1,'o',x,y2,'+')结果:x1 =0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000y1 =1.0000 1.1000 1.1918 1.2774 1.3582 1.4351 1.5090 1.58031.6498 1.7178 1.7848y2 =1.0000 1.0959 1.1841 1.2662 1.3434 1.4164 1.4860 1.55251.6165 1.6782 1.7379图表 2 向前欧拉公式和改进的欧拉公式所求方程数值解与解析解的比较由图可得,改进后的欧拉公式求得的数值解更贴合解析解。
导热基本定律和导热微分方程
2021/3/9
35
材料成型传输原理--热量传输
稳态导热: tw = const
非稳态导热: tw = f ()
例: x 0, t tw1
x , t tw2
tw1 tw2
o
x
2021/3/9
36
材料成型传输原理--热量传输
b.第二类边界条件――给定边界上的热流密度。
q s
qw
f (r, )
4.保温材料:
国家标准规定,温度低于350度时热导率小于 0.12W/(m·K) 的材料(绝热材料)。
2021/3/9
6
材料成型传输原理--热量传输
三、导热的物理本质
1.气体导热――气体分子不规则热运动导致相互碰撞的结果
气体的热导率: 气体 0.006~0.6 W (m C)
0 C : 空气 0.0244W (m C) ; 20 C : 空气 0.026 W (m C)
2021/3/9
9
材料成型传输原理--热量传输
2021/3/9
10
材料成型传输原理--热量传输
2.导电固体导热――自由电子运动、碰撞的结果(与气体类似)
金属 12~418 W (m C)
(1)纯金属的导热:依靠自由电子的迁移和晶格的振动(主 要依靠前者) 金属导热与导电机理一致;良导电体为良导热体:
t i
x
t j
y
t k
z
一维导热:qx
t x
;
qy
t y
;
qz
t z
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
2021/3/9
3
材料成型传输原理--热量传输
MATLAB数学实验100例题解
一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧。
初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势。
解:程序代码:>〉 x=linspace (0,2*pi,600); t=sin (x)。
/(cos (x )+eps );plot(x ,t);title (’tan (x )');axis ([0,2*pi ,-50,50]); 图象:程序代码: 〉〉 x=linspace (0,2*pi,100); ct=cos (x)。
/(sin(x)+eps ); plot(x,ct );title(’cot(x)');axis ([0,2*pi ,—50,50]); 图象:cot(x)4在区间]1,1[-画出函数xy 1sin =的图形。
解:程序代码:>> x=linspace (-1,1,10000);y=sin(1。
/x ); plot (x,y ); axis ([-1,1,—2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>〉 t=linspace(0,2*pi,100); plot(cos(t ).*cos (5*t ),sin(t )。
*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:〉〉 t=0:0.01:2*pi ; r=exp (t/10);polar(log(t+eps ),log (r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形。
数学实验基础 实验报告(1)常微分方程
实验一 常微分方程1. 分别用Euler 法和ode45解下列常微分方程并与解析解比较: (1) ,(0)1,13y x y y x '=+=<<Euler 法:function [t,y]=euler(Fun,tspan,y0,h) t=tspan(1):h:tspan(2); y(1)=y0;for i=1:length(t)-1y(i+1)=y(i)+h.*feval(Fun,t(i),y(i)); end t=t'; y=y';function f=Fun(x,y) % 常微分方程的右端函数 f=x+y;>> [x,y]=euler('Fun',[0,3],1,0.1)>> [x,y] ans =0 1.0000 0.1000 1.1000 0.2000 1.2200 0.3000 1.3620 0.4000 1.5282 0.5000 1.7210 0.6000 1.9431 0.7000 2.1974 0.8000 2.4872 0.9000 2.8159 1.0000 3.1875 1.1000 3.6062 1.2000 4.0769 1.3000 4.6045 1.4000 5.1950 1.5000 5.8545 1.6000 6.5899 1.7000 7.4089 1.8000 8.3198 1.9000 9.3318 2.0000 10.4550 2.1000 11.7005 2.2000 13.0805 2.3000 14.6086 2.4000 16.2995 2.5000 18.1694 2.6000 20.2364 2.7000 22.5200 2.8000 25.0420 2.9000 27.8262 3.0000 30.8988ode45:>> [x,y]=ode45('Fun',[0,3],1) ans =0 1.0000 0.0502 1.0528 0.1005 1.1109 0.1507 1.17460.2010 1.2442 0.2760 1.3596 0.3510 1.4899 0.4260 1.63610.5010 1.7996 0.5760 1.9817 0.6510 2.1838 0.7260 2.4074实验一 常微分方程0.8010 2.6544 0.8760 2.9264 0.9510 3.2254 1.0260 3.55351.1010 3.9131 1.1760 4.3065 1.2510 4.7364 1.3260 5.20561.4010 5.7172 1.4760 6.2744 1.5510 6.8810 1.6260 7.54061.7010 8.2574 1.7760 9.0359 1.8510 9.8808 1.9260 10.79742.0010 11.7912 2.0760 12.8683 2.1510 14.0351 2.2260 15.29862.3010 16.6664 2.3760 18.1466 2.4510 19.7478 2.5260 21.47962.6010 23.3522 2.6760 25.3764 2.7510 27.5641 2.8260 29.92812.9010 32.4820 2.9257 33.3694 2.9505 34.2796 2.9752 35.21343.0000 36.1711解析解:>> y=dsolve('Dy=x+y','y(0)=1','x') y =2*exp(x) - x - 1(2) 20.01()2sin(),(0)0,(0)1,05y y y t y y t ''''-+===<< Euler 法:实验一常微分方程function f=Fun(t,y)% 常微分方程的右端函数f=[y(2);0.01*y(2)^2-2*y(1)+sin(t)];>> [t,y]=euler('Fun',[0,5],[0,1],0.2)ode45:>> [t,y]=ode45('Fun',[0,5],[0,1])t =0 0.0001 0.0001 0.0002 0.0002 0.0005 0.0007 0.0010 0.0012 0.00250.0037 0.0050 0.0062 0.0125 0.0188 0.0251 0.0313 0.0627 0.0941 0.12550.1569 0.2819 0.4069 0.5319 0.6569 0.7819 0.9069 1.0319 1.1569 1.28191.4069 1.5319 1.6569 1.7819 1.90692.0319 2.1569 2.2819 2.4069 2.53192.6569 2.7819 2.90693.0319 3.1569 3.2819 3.4069 3.5319 3.6569 3.78193.90694.0319 4.1569 4.2819 4.4069 4.5319 4.6569 4.7427 4.8285 4.91425.0000y =0 1.0000 0.0001 1.0000 0.0001 1.0000 0.0002 1.0000 0.0002 1.00000.0005 1.0000 0.0007 1.0000 0.0010 1.0000 0.0012 1.0000 0.0025 1.00000.0037 1.0000 0.0050 1.0000 0.0062 1.0000 0.0125 1.0000 0.0188 1.00000.0251 0.9999 0.0313 0.9998 0.0627 0.9987 0.0941 0.9965 0.1253 0.99340.1564 0.9893 0.2786 0.9632 0.3966 0.9220 0.5085 0.8662 0.6126 0.79670.7072 0.7146 0.7908 0.6210 0.8620 0.5176 0.9198 0.4058 0.9632 0.28760.9915 0.1647 1.0043 0.0392 1.0013 -0.0869 0.9826 -0.2117 0.9485 -0.33310.8996 -0.4490 0.8365 -0.5578 0.7605 -0.6577 0.6725 -0.7471 0.5742 -0.8246实验一 常微分方程0.4669 -0.8889 0.3525 -0.9393 0.2327 -0.9748 0.1095 -0.9950 -0.0154 -0.9996-0.1398 -0.9887 -0.2619 -0.9624 -0.3798 -0.9212 -0.4916 -0.8657 -0.5957 -0.7970-0.6904 -0.7161 -0.7742 -0.6242 -0.8460 -0.5228 -0.9046 -0.4134 -0.9491 -0.2978-0.9789 -0.1777 -0.9934 -0.0549 -0.9945 0.0300 -0.9883 0.1146 -0.9748 0.1985-0.9543 0.28092. 求一通过原点的曲线,它在(,)x y 处的切线斜率等于22,0 1.57.x y x +<<若x 上限增为1.58,1.60会发生什么?function f=Fun(x,y) % 常微分方程的右端函数 f=2*x+y.^2;>> [x,y]=ode45('Fun',[0,1.57],0) x =0 0.0393 0.0785 0.1178 0.1570 0.1963 0.2355 0.2748 0.3140 0.3533 0.3925 0.4318 0.4710 0.5103 0.5495 0.5888 0.6280 0.6673 0.7065 0.7458 0.7850 0.8243 0.8635 0.9028 0.9420 0.9813 1.0205 1.0598 1.0990 1.1383 1.1775 1.2168 1.2560 1.2953 1.3345 1.3738 1.4130 1.4248 1.4367 1.4485 1.4604 1.4722 1.4840 1.4959 1.5077 1.5140 1.5203 1.5265 1.5328 1.5376 1.5424 1.5472 1.5519 1.5543 1.5567 1.5591 1.5614 1.5631 1.5647 1.5664 1.5681 1.5685 1.5690 1.5695 1.5700 y =实验一 常微分方程0 0.0015 0.0062 0.0139 0.0247 0.0386 0.0556 0.0758 0.09920.1259 0.1559 0.1895 0.2266 0.2675 0.3124 0.3615 0.4152 0.4738 0.5378 0.6076 0.6841 0.7679 0.8601 0.9620 1.0751 1.2014 1.3434 1.5045 1.6892 1.9037 2.1557 2.4577 2.8282 3.3003 3.9056 4.7317 5.9549 6.4431 7.0116 7.6832 8.4902 9.4821 10.7170 12.3090 14.4551 15.9220 17.7080 19.9390 22.8164 25.6450 29.2282 33.9673 40.5910 44.9434 50.3088 57.1229 66.1087 74.3108 84.7123 98.4901 117.7875 124.9206 132.9699 142.1268 152.641500.20.40.60.81 1.2 1.4 1.6若x 上限增为1.58,1.60,则超出运算的范围,发生溢出。
微分方程练习题基础篇答案
y
2
2
7、(1) f (x) (x 1)2 ;(2) l [ln(s s2 b2 ) ln b] ;(3) 6 ln 3 . g
5、计算题: 求下列方程的通解
1. dy xy dx
分离变量
dy
xdx
,
y
x2
Ce 2
,C
为任意常数
y
2.xydx
1 x2 dy 0 分离变量
dy y
x dx , y Ce 1x2 ,C 任意常数 1 x2
1 4
xe 2 x
;
2、(1)C;(2)B;(3)D;(4)B;3、(1) f (x) ecos x 4(cos x 1) , f (0) 1;(2) x2 (2 y2 ) 1 ,
提示:同乘以 x 化为伯努利方程,再令 z x2 ;(3) y y 2 y ex 2xex ;(4) f (x) 1 sin x x cos x ;
.
问至多需要经过多少年,湖泊中的污染物的含量降至 m0 以内(注:
设湖水中 A 的浓度是均匀的).
参考解析:
1、(1)
Ce
x2
;(2)
(
x
C
)
cos
x
;(3)
x
arctan
x
1 2
ln(1
x2
)
C1
x
C2
;
(4)
C1e x
cos
2x
C2e x
sin
2x
;(5)
y
2
y
2
y
0
;(6)
C1e 2 x
C2e2 x
y x
ln
x
y x
微分方程
2、(目标的跟踪问题)设位于坐标原点的甲舰向位于 轴上点 处的乙舰发射制导导弹,导弹头始终对准乙舰.如果乙舰以最大的速度 ( 是常数)沿平行于 轴的直线行驶,导弹的速度是5 ,求导弹运行的曲线方程及乙舰行驶多远时,它将被导弹击中?
实验步骤与实验结论:
教师评语:
大学数学实验报告
微分方程
班 级_______
姓 名_______
学号_______
指导教师_______
实验时间_______
实验所用软件及版本: 4.1
实验目的:
掌握用 软件求微分方程通解与特解命令和方法。
实验涉及的语句:
语句一: [方程,未知函数,自变量]
---------求微分方程的通解。
语句二: [{微分方程,初始条件},未知函数名称,未知函基础实验:
1.求出下列微分方程的通解,并用 做出下列微分方程的积分曲线。
(1) (2)
2.求微分方程 的通解。
3.求微分方程 的通解。
4.解微分方程 .
实验步骤与实验结论:
综合实验:(二表生两题全作,三表生二选一)
1、小船从河边点 处出发驶向以对岸(两岸为平行直线),设船速为 ,船行方向始终与河岸垂直,又设河宽为 ,河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为 ),求小船的航行路线及船到达对岸的位置。
方程求根与解常微分方程
第6章方程求根与解常微分方程6.1实验目的了解微分方程的通解、特解和近似解的概念。
熟悉方程求根和常微分方程解的概念,熟悉Mathematica软件的方程求根和求常微分方程解的命令,掌握用数学软件处理方程求根和常微分方程解的有关问题.6.2实验准备6.2.1数学概念1.微分方程2.微分方程的通解、特解6.2.2数学软件命令1. Solve[eqn, x]功能:求多项式方程eqn的所有根,当多项式方程的次数n≤4时,给出eqn所有根的准确形式, 当n>4时,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[eqn, x ]]}n次多项式方程的一般形式为:2 012nna a x a x a x++++="式中a0 ,a1, a2,…,a n为常数。
2.Solve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}的所有根, 当其中每个多项式方程的次数n4 时, 给出所有根的准确形式, 否则,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk} ]]} 。
3. NSolve[eqn, x]功能:求多项式方程eqn的所有根的近似形式。
4. NSolve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}所有根的近似形式。
5. FindRoot[eqn, {x, x0}]功能:求方程eqn的在初值x0附近的一个近似根。
6. FindRoot[{eqn1,eqn2, ... }, {x, x0}, {y, y0}, ... ]功能:求方程组{eqn1, eqn2, …}在初值(x0,y0,…)附近的一个近似根。
实验四 种群数量的状态转移——微分方程
实验四种群数量的状态转移——微分方程一、实验目的及意义[1] 归纳和学习求解常微分方程(组)的基本原理和方法;[2] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;[3] 熟悉MATLAB软件关于微分方程求解的各种命令;[4] 通过范例学习建立微分方程方面的数学模型以及求解全过程;通过该实验的学习,使学生掌握微分方程(组)求解方法(解析法、欧拉法、梯度法、改进欧拉法等),对常微分方程的数值解法有一个初步了解,同时学会使用MATLAB软件求解微分方程的基本命令,学会建立微分方程方面的数学模型。
这对于学生深入理解微分、积分的数学概念,掌握数学的分析思维方法,熟悉处理大量的工程计算问题的方法是十分必要的。
二、实验内容1.微分方程及方程组的解析求解法;2.微分方程及方程组的数值求解法——欧拉、欧拉改进算法;3.直接使用MATLAB命令对微分方程(组)进行求解(包括解析解、数值解);4.利用图形对解的特征作定性分析;5.建立微分方程方面的数学模型,并了解建立数学模型的全过程。
三、实验步骤1.开启软件平台——MATLAB,开启MATLAB编辑窗口;2.根据微分方程求解步骤编写M文件3.保存文件并运行;4.观察运行结果(数值或图形);5.根据观察到的结果和体会写出实验报告。
四、实验要求与任务根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论)基础实验1.求微分方程的解析解, 并画出它们的图形,y’= y + 2x, y(0) = 1, 0<x<1;y’’+y cos(x) = 0, y(0)=1, y’(0)=0;2.用向前欧拉公式和改进的欧拉公式求方程y’=y - 2x/y, y(0) = 1 (0≤x≤1,h =0.1) 的数值解,要求编写程序,并比较两种方法的计算结果,说明了什么问题?3.Rossler 微分方程组:当固定参数b=2, c=4时,试讨论随参数a 由小到大变化(如a ∈(0,0.65))而方程解的变化情况,并且画出空间曲线图形,观察空间曲线是否形成混沌状?4.Apollo 卫星的运动轨迹的绘制应用实验 5.盐水的混合问题一个圆柱形的容器,内装350升的均匀混合的盐水溶液。
MATLAB数学实验100例题解
一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧.初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势. 解:程序代码:>> x=linspace(0,2*pi,600); t=sin(x)./(cos(x)+eps);plot(x,t);title('tan(x)');axis ([0,2*pi,-50,50]); 图象:程序代码:>> x=linspace(0,2*pi,100); ct=cos(x)./(sin(x)+eps);plot(x,ct);title('cot(x)');axis ([0,2*pi,-50,50]); 图象:4在区间]1,1[-画出函数xy 1sin =的图形.解:程序代码:>> x=linspace(-1,1,10000);y=sin(1./x); plot(x,y);axis([-1,1,-2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>> t=linspace(0,2*pi,100);plot(cos(t).*cos(5*t),sin(t).*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:>> t=0:0.01:2*pi; r=exp(t/10);polar(log(t+eps),log(r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形. 解:>> x=linspace(-100,100,10000); y=sign(x); plot(x,y);axis([-100 100 -2 2]);函数性质的研究12研究函数)3(log 3)(35x e x x f x -++=在区间]2,2[-上图形的特征.解:程序代码:>> x=linspace(-2,2,10000);y=x.^5+3*exp(x)+log(3-x)/log(3); plot(x,y); 图象:实验2 极限与连续(基础实验)实验目的 通过计算与作图, 从直观上揭示极限的本质,加深对极限概念的理解. 掌握用 Matlab 画散点图, 以及计算极限的方法. 深入理解函数连续的概念,熟悉几种间断点的图形 特征,理解闭区间上连续函数的几个重要性质.作散点图14分别画出坐标为)10,,2,1(),4,(),,(3222 =+i i i i i i 的散点图, 并画出折线图. 解:散点图程序代码:plot(i,i.^2,'.')或:>> x=1:10;y=x.^2;for i=1:10;plot(x(i),y(i),'r')hold onend折线图程序代码:>> i=1:10;plot(i,i.^2,'-x')程序代码: >> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'.')>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'-x')数列极限的概念16通过动画观察当∞→n 时数列21n a n =的变化趋势.解:程序代码: >> n=1:100; an=(n.^2); n=1:100; an=1./(n.^2); n=1:100; an=1./(n.^2); for i=1:100plot(n(1:i),an(1:i)),axis([0,100,0,1]) pause(0.1) end 图象:函数的极限18在区间]4,4[-上作出函数xx xx x f --=339)(的图形, 并研究 )(lim x f x ∞→ 和 ).(lim 1x f x →解:作出函数x x xx x f --=339)(在区间]4,4[-上的图形>> x=-4:0.01:4;y=(x.^3-9*x)./(x.^3-x+eps); plot(x,y)16从图上看,()f x 在x →1与x →∞时极限为0两个重要极限 20计算极限⎪⎭⎫⎝⎛+→x x x x x sin 11sin lim )1(0 x x e x 2lim )2(+∞→30sin tan lim )3(xx x x -→ x x x 0lim )4(+→ x xx ln cot ln lim )5(0+→ x x x ln lim )6(20+→ x x xx x x sin cos sin lim )7(20-→ 125523lim )8(323+++-∞→x x x x x xx x e e x x x sin 2lim )9(0----→ xx x x cos 110sin lim )10(-→⎪⎭⎫ ⎝⎛ 解:(1)>> limit(x*sin(1/x)+1/x*sin(x))ans =1(2) >> limit(x^2/exp(x),inf) ans = 0(3) >> limit((tan(x)-sin(8))/x^3) ans =NaN(4) >> limit(x^x,x,0,'right') ans =1(5) >> limit(log(cot(x))/log(x),x,0,'right') ans =-1(6) >> limit(x^2*log(x),x,0,'right') ans =0(7) >> limit((sin(x)-x.*cos(x))./(x.^2.*sin(x)),x,0) ans =1/3(8) >> limit((3*x.^3-2*x.^2+5)/(5*x.^3+2*+1),x,inf) ans =3/5(9) >> limit((exp(x)-exp(-x)-2*x)./(x-sin(x))) ans =2(10) >> limit((sin(x)/x).^(1/(1-cos(x)))) ans =exp(-1/3)实验3 导数(基础实验)实验目的 深入理解导数与微分的概念, 导数的几何意义. 掌握用Matlab 求导数与高 阶导数的方法. 深入理解和掌握求隐函数的导数, 以及求由参数方程定义的函数的导数的方法. 导数概念与导数的几何意义22作函数71232)(23+-+=x x x x f 的图形和在1-=x 处的切线. 解:作函数71232)(23+-+=x x x x f 的图形程序代码: >> syms x;>> y=2*x^3+3*x^2-12*x+7; >> diff(y) ans =6*x^2+6*x-12 >> syms x;y=2*x^3+3*x^2-12*x+7; >> f=diff(y) f =6*x^2+6*x-12 >> x=-1;f1=6*x^2+6*x-12 f1 = -12>> f2=2*x^3+3*x^2-12*x+7 f2 = 20>> x=linspace(-10,10,1000);y1=2*x.^3+3*x.^2-12*x+7; y2=-12*(x+1)+20; plot(x,y1,'r',x,y2,'g')求函数的导数与微分24求函数bx ax x f cos sin )(=的一阶导数. 并求.1⎪⎭⎫⎝⎛+'b a f解:求函数bx ax x f cos sin )(=的一阶导数程序代码: >> syms a b x y;y= sin(a*x)*cos(b*x); D1=diff(y,x,1) 答案:D1 =cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b求.1⎪⎭⎫ ⎝⎛+'b a f程序代码: >> x=1/(a+b);>> cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b答案:ans =cos(a/(a+b))*a*cos(b/(a+b))-sin(a/(a+b))*sin(b/(a+b))*b 拉格朗日中值定理26对函数),2)(1()(--=x x x x f 观察罗尔定理的几何意义. (1) 画出)(x f y =与)(x f '的图形, 并求出1x 与.2x 解:程序代码:>> syms x;f=x*(x-1)*(x-2); f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) >> solve(f1) ans =1+1/3*3^(1/2) 1-1/3*3^(1/2)>> x=linspace(-10,10,1000); y1=x.*(x-1).*(x-2);y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); plot(x,y1,x,y2)(2)画出)(x f y =及其在点))(,(11x f x 与))(,(22x f x 处的切线. 程序代码:>> syms x; >> f=x*(x-1)*(x-2); >> f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) >> solve(f1) ans =1+1/3*3^(1/2) 1-1/3*3^(1/2)>> x=linspace(-3,3,1000); >> y1=x.*(x-1).*(x-2);>> y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); >> plot(x,y1,x,y2) >> hold on>> x=1+1/3*3^(1/2); >> yx1=x*(x-1)*(x-2) yx1 =-0.3849>> x=1-1/3*3^(1/2); >> yx2=x*(x-1)*(x-2) yx2 =0.3849x=linspace(-3,3,1000); yx1 =-0.3849*x.^0; yx2 =0.3849*x.^0; plot(x,yx1,x,yx2)28求下列函数的导数:(1) 31+=x e y ; 解:程序代码:>> syms x y; y=exp((x+1)^3); D1=diff(y,1) 答案:D1 =3*(x+1)^2*exp((x+1)^3)(2) )]42ln[tan(π+=x y ;解:程序代码:>> syms x;y=log(tan(x/2+pi/4)); D1=diff(y,1) 答案:D1 =(1/2+1/2*tan(1/2*x+1/4*pi)^2)/tan(1/2*x+1/4*pi)(3) x x y sin ln cot 212+=;解:程序代码:>> syms x;y=1/2*(cot(x))^2+log(sin(x)); D1=diff(y,1) 答案:D1 =cot(x)*(-1-cot(x)^2)+cos(x)/sin(x) (4) xy 2arctan21=. 解:程序代码:>> syms x;>> y=sqrt(2)*atan(sqrt(2)/x); >> D1=diff(y,1) 答案:D1 =-2/x^2/(1+2/x^2)一元函数积分学与空间图形的画法实验4 一元函数积分学(基础实验)实验目的 掌握用Matlab 计算不定积分与定积分的方法. 通过作图和观察, 深入理解定积分的概念和思想方法. 初步了解定积分的近似计算方法. 理解变上限积分的概念. 提高应用 定积分解决各种问题的能力.不定积分计算30求.)1(532⎰-dx x x解:程序代码:>> syms x y;>> y=x^2*(1-x^3)^5; >> R=int(y,x) 答案:R =-1/18*x^18+1/3*x^15-5/6*x^12+10/9*x^9-5/6*x^6+1/3*x^332求.arctan 2⎰xdx x解:程序代码:>> syms x y;>> y=x^2*atan(x); >> R=int(y,x) 答案:R =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1)定积分计算34 求.)(102⎰-dx x x解:程序代码:>> syms x y; >> y=x-x^2;>> R=int(y,x,0,1) 答案: R =1/6变上限积分36 画出变上限函数⎰x dt t t 02sin 及其导函数的图形.解:程序代码:>> syms x y t; >> y=t*sin(t^2); >> R=int(y,x,0,x) 答案:R =t*sin(t^2)*x 再求导函数 程序代码:>> DR=diff(R,x,1) 答案:DR =t*sin(t^2)实验5 空间图形的画法(基础实验)实验目的 掌握用Matlab 绘制空间曲面和曲线的方法. 熟悉常用空间曲线和空间曲面 的图形特征,通过作图和观察, 提高空间想像能力. 深入理解二次曲面方程及其图形.一般二元函数作图38作出函数2214y x z ++=的图形.解:程序代码:>> x=linspace(-5,5,500); [x,y]=meshgrid(x); z=4./(1+x.^2+y.^2); mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')40作出函数)94cos(22y x z +=的图形. 解:程序代码:>> x=-10:0.1:10;[x,y]=meshgrid(x);z=cos(4*x.^2+9*y.^2); mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')讨论:坐标轴选取范围不同时,图形差异很大,对本题尤为明显,如右图为坐标轴[-1,1]二次曲面42作出单叶双曲面1941222=-+z y x 的图形.(曲面的参数方程为 ,tan 3,cos sec 2,sin sec u z v u y v u x === (.20,2/2/πππ≤≤<<-v u ))解:程序代码:>> v=0:pi/100:2*pi; >> u=-pi/2:pi/100:pi/2; >> [U,V]=meshgrid(u,v); >> x=sec(U).*sin(V); >> y=2*sec(U).*cos(V); >> z=3*tan(U); >> surf(x,y,z)44 可以证明: 函数xy z =的图形是双曲抛物面. 在区域22,22≤≤-≤≤-y x 上作出它的图形.解:程序代码:>> x=-2:0.01:2;[x,y]=meshgrid(x); >> z=x.*y;>> mesh(x,y,z);46 画出参数曲面]2,001.0[],4,0[)5/2/ln(tan cos sin sin sin cos ∈∈⎪⎩⎪⎨⎧++===v u u v v z vu y v u x π 的图形.解:程序代码:>> v=0.001:0.001:2; >> u=0:pi/100:4*pi;>> [U,V]=meshgrid(u,v); >> x=cos(U).*sin(V); >> y=sin(U).*sin(V);>> z=cos(V)+log(tan(V/2)+U/5); >> mesh(x,y,z);空间曲线48 作出空间曲线)60(2,sin ,cos π≤≤===t t z t t y t t x 的图形. 解:程序代码:>> syms t;ezplot3(t*cos(t),t*sin(t),2*t,[0,6*pi])xx = t cos(t), y = t sin(t), z = 2 tz50绘制参数曲线 ⎪⎪⎩⎪⎪⎨⎧=+==t z t y t x arctan 211cos 2的图形.解:程序代码:>> t=-2*pi:pi/100:2*pi;x=cos(t).*cos(t);y=1./(1+2*t);z=atan(t); plot3(x,y,z);grid;xlabel('x'),ylabel('y'),zlabel('z')xyz多元函数微积分实验6 多元函数微分学(基础实验)实验目的 掌握利用Matlab 计算多元函数偏导数和全微分的方法, 掌握计算二元函数极值和条件极值的方法. 理解和掌握曲面的切平面的作法. 通过作图和观察, 理解二元 函数的性质、方向导数、梯度和等高线的概念.求多元函数的偏导数与全微分 52设),(cos )sin(2xy xy z +=求.,,,222yx z x z y z x z ∂∂∂∂∂∂∂∂∂ 解:程序代码:>> syms x y;S=sin(x*y)+(cos(x*y))^2; D1=diff(S,'x',1); D2=diff(S,'y',1); D3=diff(S,'x',2); D4=diff(S,'y',2); D1,D2,D3,D4答案: D1 = cos(x*y)*y-2*cos(x*y)*sin(x*y)*yD2 = cos(x*y)*x-2*cos(x*y)*sin(x*y)*xD3 =-sin(x*y)*y^2+2*sin(x*y)^2*y^2-2*cos(x*y)^2*y^2 D4 = -sin(x*y)*x^2+2*sin(x*y)^2*x^2-2*cos(x*y)^2*x^2实验7 多元函数积分学(基础实验)实验目的掌握用Matlab 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.计算重积分54计算,2dxdy xy D⎰⎰其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.解:程序代码:>> syms x y;int(int(x*y^2,x,2-y,sqrt(y)),y,1,2) 答案:ans =193/120 重积分的应用56求旋转抛物面224y x z --=在Oxy 平面上部的面积.S 解:程序代码:>> int(2*pi*r,r,0,2) 答案: ans =4*pi无穷级数与微分方程实验8 无穷级数(基础实验) 实验目的观察无穷级数部分和的变化趋势,进一步理解级数的审敛法以及幂级数部分和对函数的 逼近. 掌握用Matlab 求无穷级数的和, 求幂级数的收敛域, 展开函数为幂级数以及展开周期函数为傅里叶级数的方法.数项级数58(1)观察级数∑∞=12 1n n的部分和序列的变化趋势.解:程序代码:for i=1:100 s=0;for n=1:i s=s+1/n^2;endplot(i,s,'.');hold on;end(2) 观察级数∑∞=11n n的部分和序列的变化趋势.>> for i=1:100 s=0; for n=1:i s=s+1/n; endplot(i,s,'.'); hold on; end60 求∑∞=++123841n n n 的值. 解:程序代码:>> syms n;score=symsum(1/(4*n^2+8*n+3),1,inf) 答案: score =1/6函数的幂级数展开62求x arctan 的5阶泰勒展开式. >> syms x;>> T5=taylor(atan(x),6) 答案:T5 =x-1/3*x^3+1/5*x^5实验9 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用 Matlab 求微分方程及方程组解的常用命令和方法.求解微分方程64求微分方程 22x xe xy y -=+'的通解. 解:程序代码:>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') 答案:y =(1/2*x^2+C1)*exp(-x^2)66求微分方程x e y y y x 2cos 52=+'-''的通解. 解:程序代码:>> y=dsolve('D2y-2*Dy+5*y=exp(x)*cos(2*x)','x') 答案: y =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/4*exp(x)*sin(2*x)*x68求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dx t 在初始条件0,100====t t y x 下的特解.解:程序代码:>> [x,y]=dsolve('Dx+x+2*y-exp(t)','Dy-x-y','x(0)=1','y(0)=0','t') 答案: x = cos(t)y = 1/2*sin(t)-1/2*cos(t)+1/2*exp(t)70求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 解:程序代码:>> syms x yy=dsolve('Dy-2*y/(x+1)-(x+1)^(5/2)','x') 答案:y =(2/3*(x+1)^(3/2)+C1)*(x+1)^2 做积分曲线 由>> syms x yx=linspace(-5,5,100); C=input('请输入C 的值:'); y=(2/3*(x+1).^(3/2)+C).*(x+1).^2; plot(x,y)例如对应有: 请输入C 的值:2 请输入C 的值:20矩阵运算与方程组求解实验10 行列式与矩阵实验目的掌握矩阵的输入方法. 掌握利用Matlab 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.矩阵A 的转置函数Transpose[A]72 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛411365243271的转置. 解:程序代码:>> A=[1,7,2;3,4,2;5,6,3;1,1,4]; >> Sove=A' 答案:Sove =1 3 5 1 7 4 6 12 234 矩阵线性运算 73设,291724,624543⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=B A 求.24,A B B A -+ 解:程序代码:>> A=[3,4,5;4,2,6]; B=[4,2,7;1,9,2]; S1=A+B S2=4*B-2*A 答案:S1 =7 6 12 5 11 8 S2 =10 0 18 -4 32 -474设,148530291724,36242543⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=mb ma 求矩阵ma 与mb 的乘积. 解:程序代码:>> ma=[3,4,5,2;4,2,6,3];>> mb=[4,2,7;1,9,2;0,3,5;8,4,1]; >> Sove=ma*mb 答案:Sove =32 65 56 42 56 65 矩阵的乘法运算75设,101,530291724⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A 求AB 与,A B T 并求.3A解:程序代码:>> A=[4 2 7;1 9 2;0 3 5]; B=[1;0;1]; >> AB=A*B AB = 11 3 5 >> BTA=B'*A BTA =4 5 12 >> A3=A^3 A3 =119 660 555 141 932 444 54 477 260 求方阵的逆 76 设,5123641033252312⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 求.1-A 解:程序代码:>> A=[2,1,3,2;5,2,3,3;0,1,4,6;3,2,1,5];Y=inv(A)答案:Y =-1.7500 1.3125 0.5000 -0.6875 5.5000 -3.6250 -2.0000 2.3750 0.5000 -0.1250 0.0000 -0.1250 -1.2500 0.6875 0.5000 -0.3125 77 设,221331317230,5121435133124403⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=B A 求.1B A - 解:程序代码:>> A=[3 0 4 4 ;2 1 3 3 ;1 5 3 4;1 2 1 5]; B=[0 3 2 ;7 1 3;1 3 3 ;1 2 2]; Solve=A'*B 答案:Solve =16 16 17 14 20 22 25 26 28 30 37 3978 解方程组⎪⎩⎪⎨⎧-=-+=+-=++.2442,63,723z y x z y x z y x解:程序代码:>> A=[3 2 1;1 -1 3;2 4 -4]; b=[7 6 -2]; >> A\b' 答案:ans =1.0000 1.00002.0000 求方阵的行列式79 求行列式 .3351110243152113------=D解:程序代码:>> A=[3,1,-1,2;-5,1,3,-4;2,0,1,-1;1,-5,3,-3]; D=det(A) 答案:D =4080求.11111111111122222222ddd d c c c c b b b b a a a a D ++++=解:程序代码:>> syms a b c d;D=[a^2+1/a^2 a 1/a 1;b^2+1/b^2 b 1/b 1;c^2+1/c^2 c 1/c 1;d^2+1/d^2 d 1/d 1]; det(D) 答案:ans =-(-c*d^2*b^3+c^2*d*b^3-c^3*d^2*a+c^3*d*a^2*b^4+c*d^2*a^3-c^3*d^2*a*b^4-c^2*d*a^3-c*d^2*b^3*a^4+c^2*d*b^3*a^4+c^3*d^2*b*a^4-c^3*d*b^2*a^4-c^2*d^3*b*a^4+c*d^3*b^2*a^4+c*d ^2*a^3*b^4-c^2*d*a^3*b^4+c^3*d^2*b-c^3*d*b^2-c^2*d^3*b+c*d^3*b^2+c^3*d*a^2+c^2*d^3*a-c *d^3*a^2-b*d^2*a^3+b^2*d*a^3+b^3*d^2*a-b^3*d*a^2-b^2*d^3*a+b*d^3*a^2+b*c^2*a^3-b^2*c*a ^3-b^3*c^2*a+b^3*c*a^2+b^2*c^3*a-b*c^3*a^2+c^2*d^3*a*b^4-c*d^3*a^2*b^4-b*d^2*a^3*c^4+b ^2*d*a^3*c^4+b^3*d^2*a*c^4-b^3*d*a^2*c^4-b^2*d^3*a*c^4+b*d^3*a^2*c^4+b*c^2*a^3*d^4-b^2*c*a^3*d^4-b^3*c^2*a*d^4+b^3*c*a^2*d^4+b^2*c^3*a*d^4-b*c^3*a^2*d^4)/a^2/c^2/d^2/b^281 计算范德蒙行列式.1111145444342413534333231252423222154321x x x x x x x x x x x x x x x x x x x x 解:程序代码:>> syms x1 x2 x3 x4 x5;>> A=[1,1,1,1,1;x1,x2,x3,x4,x5;x1^2,x2^2,x3^2,x4^2,x5^2; x1^3,x2^3,x3^3,x4^3,x5^3;x1^4,x2^4,x3^4,x4^4,x5^4];>> DC=det(A);>> DS=simple(DC) 答案:DS =(-x5+x4)*(x3-x5)*(x3-x4)*(-x5+x2)*(x2-x4)*(x2-x3)*(-x5+x1)*(x1-x4)*(x1-x3)*(x1-x2) 82 设矩阵 ,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求.),(|,|3A A tr A 解:程序代码:>> A=[3,7,2,6,-4;7,9,4,2,0;11,5,-6,9,3;2,7,-8,3,7;5,7,9,0,-6]; >> D=det(A),T=trace(A),A3=A^3 答案:D =11592 T = 3 A3=726 2062 944 294 -358 1848 3150 26 1516 228 1713 2218 31 1006 404 1743 984 -451 1222 384 801 2666 477 745 -125 向量的内积83 求向量}3,2,1{=u 与}0,1,1{-=v 的内积. 解:程序代码:>> u=[1 2 3]; v=[1 -1 0]; solve=dot(u,v) 答案:solve =-184设,001001⎪⎪⎪⎭⎫ ⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数).解:程序代码:>> syms r;>> A=[r,1,0;0,r,1;0,0,r]; >> A^10 答案:ans =[ r^10, 10*r^9, 45*r^8] [ 0, r^10, 10*r^9] [ 0, 0, r^10]85.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a aa1111111111111111111111111的逆.解:程序代码:>> syms aA=[1+a,1,1,1,1;1,1+a,1,1,1;1,1,1+a,1,1;1,1,1,1+a,1;1,1,1,1,1+a]; solve=inv(A) 答案:solve =[ 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5)] [ -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5)] [ -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5)] [ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5)] [ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5)]实验11 矩阵的秩与向量组的极大无关组实验目的 学习利用Matlab 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 求矩阵的秩86 设,815073*********⎪⎪⎪⎭⎫ ⎝⎛-------=M 求矩阵M 的秩.解:程序代码:>> M=[3,2,-1,-3,-2;2,-1,3,1,-3;7,0,5,-1,-8]; R=rank(M) 答案:R=2 向量组的秩87求向量组)0,3,0,2(),2,5,4,0(),1,1,2,1(231=--=-=ααα的秩. 解:程序代码:>> A=[1,2,-1,1;0,-4,5,-2;2,0,3,0]; R=rank(A) 答案:R =288向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关? 解:由>> A=[1 1 2 3;1 -1 1 1;1 3 4 5;3 1 5 7];rank(A) ans = 3即rank(A)=3 小于阶数489向量组)3,1,1(),2,1,3(),7,2,2(321=-==ααα是否线性相关? 解:由>> A3=[2,2,7;3,-1,2;1,1,3];R=rank(A3) 得 R = 3即rank(A3)=3 等于阶数3 故向量组线性无关。
微分方程基础及应用课程设计 (2)
微分方程基础及应用课程设计前言微分方程是高等数学中的一门基础课程,其涉及的理论和应用广泛,特别是在物理、化学、工程、生命科学等领域中有着重要的作用。
因此,对于大多数理工科学生而言,学习微分方程是必不可少的一部分。
本课程旨在帮助学生建立微分方程的基础知识并掌握应用技能,同时也为开展相关研究提供必要的理论支持。
下面将介绍本课程设计的主要内容。
课程目标1.帮助学生掌握微分方程的基本概念、解法和应用;2.培养学生的数学思维能力,提高其分析问题和解决问题的能力;3.引导学生将微分方程的理论知识应用于具体问题中,培养解决实际问题的能力。
课程大纲第一章微分方程基础知识本章主要介绍微分方程的基本概念和分类、初值问题、一阶线性微分方程以及简单的高阶微分方程。
主要内容1.微分方程的定义和分类;2.初值问题的概念和解法;3.一阶线性微分方程的解法;4.高阶线性微分方程的基本理论。
第二章常系数线性微分方程本章主要介绍常系数线性微分方程的解法,包括一阶和高阶的情况,并介绍应用到物理问题的例子。
主要内容1.一阶常系数线性微分方程的解法;2.高阶常系数线性微分方程的基本理论和解法;3.物理问题中的应用举例。
第三章变系数线性微分方程本章主要介绍变系数线性微分方程的解法,包括一阶和高阶的情况,并介绍应用到生物问题的例子。
主要内容1.一阶变系数线性微分方程的解法;2.高阶变系数线性微分方程的基本理论和解法;3.生物问题中的应用举例。
第四章常微分方程组本章主要介绍常微分方程组的基本概念、解法以及理论和应用方面的例题。
主要内容1.常微分方程组的基本概念和分类;2.常微分方程组的解法和常用技巧;3.应用领域中的例题分析。
教学方法与手段本课程将采用授课、练习、讲座等多种方式和手段进行教学,通过理论讲解和例题分析,引导学生在理论和实践中掌握微分方程的基础知识和应用技能。
课程评分标准课程总评分将由日常成绩和考试成绩两部分组成。
其中,日常成绩所占比例为30%,包括出勤、课堂表现、作业成绩等;考试成绩所占比例为70%,包括期中考试和期末考试两部分。
基础课实践教学项目(3篇)
第1篇一、项目背景随着我国高等教育改革的不断深入,实践教学在培养学生综合素质、提高学生动手能力、创新意识和实践能力方面发挥着越来越重要的作用。
基础课实践教学项目作为高校教育教学的重要组成部分,旨在通过实践环节,使学生将理论知识与实际操作相结合,提高学生的专业技能和综合素质。
本文以化学实验为例,探讨基础课实践教学项目的实施与成效。
二、项目目标1. 掌握基本实验技能:通过实验操作,使学生熟悉化学实验的基本原理、操作步骤和安全规范,掌握实验仪器的使用方法。
2. 提高实验分析能力:培养学生对实验数据的观察、记录、分析和处理能力,提高学生的实验分析水平。
3. 培养创新意识:鼓励学生在实验过程中发现问题、解决问题,培养学生的创新意识和科研能力。
4. 增强团队协作能力:通过实验项目的合作完成,提高学生的团队协作能力和沟通能力。
三、项目内容1. 实验原理讲解:教师对实验原理进行详细讲解,使学生了解实验的目的、原理和操作步骤。
2. 实验操作演示:教师现场演示实验操作过程,强调实验操作的安全规范和注意事项。
3. 分组实验操作:学生分组进行实验操作,教师巡回指导,确保实验过程安全、规范。
4. 实验数据分析:学生根据实验数据,进行数据处理、分析和讨论,得出实验结论。
5. 实验报告撰写:学生根据实验过程和结果,撰写实验报告,提高写作能力。
四、项目实施步骤1. 前期准备:教师制定实验方案,包括实验目的、原理、步骤、注意事项等,并准备好实验所需的仪器和试剂。
2. 实验讲解:教师对实验原理和操作步骤进行详细讲解,确保学生理解实验内容。
3. 分组操作:学生按照实验要求,分组进行实验操作,教师巡回指导。
4. 数据分析:学生根据实验数据,进行数据处理和分析,得出实验结论。
5. 实验报告:学生根据实验过程和结果,撰写实验报告,教师进行批改和反馈。
6. 总结评价:对实验项目进行总结和评价,分析学生在实验过程中的表现,提出改进建议。
五、项目成效1. 提高实验技能:学生通过实验操作,掌握了化学实验的基本技能,为后续学习奠定了基础。
基础偏微分方程 david bleecher
基础偏微分方程 david bleecher基础偏微分方程 David Bleecher偏微分方程是数学中一种重要的研究对象,广泛应用于物理、工程、生物、经济等领域。
其中最重要的一类是基础偏微分方程,它们是研究其他更为复杂、更为抽象的偏微分方程的基础。
本文将讨论基础偏微分方程,并介绍David Bleecher的相关研究。
基础偏微分方程包括常微分方程和偏微分方程两类。
常微分方程是只涉及一个自变量的函数和它的导数的方程,如y' + 2y = 0。
偏微分方程则是涉及多个自变量的函数以及它们各自的偏导数的方程,如u_t = ku_xx (其中u表示温度,t表示时间,x表示空间坐标,k为常数)。
这里的偏导数表示一个自变量变化时,其它自变量保持不变时的导数。
基础偏微分方程的研究主要涉及它们的求解方法。
解的形式通常是一些特殊函数组成的线性组合,如常微分方程的指数函数、三角函数、对数函数等,偏微分方程的常用解法包括分离变量法、变换法、特解法等。
这些方法的具体应用需要考虑方程的形式和边界条件等因素。
David Bleecher是偏微分方程领域的知名研究者,他在基础偏微分方程的求解和应用方面做出了重要贡献。
他的研究包括求解线性和非线性偏微分方程的特殊解、研究生态系统中物种间相互作用的数学模型等。
例如,Bleecher在2007年的一篇论文中,研究了一个描述生态系统中群体增长的非线性偏微分方程,给出了该方程的特殊解,并给出了一些物理解释。
他的研究有助于对生态系统的动态行为进行预测和掌握。
Bleecher的研究还包括常微分方程的应用,如在研究光学中的空间平移效应、电化学中的催化反应等方面提供了重要的数学工具。
他的研究不仅在学术界引起了广泛的兴趣,也对实际问题的解决产生了重要作用。
总之,基础偏微分方程是数学中的重要研究领域,对于物理、工程、生物、经济等各个领域都有重要的应用。
David Bleecher在该领域的研究成果为该领域的发展做出了重要贡献,他的研究不仅有理论意义,同时对实际问题的解决有着重要的启示作用。
微分方程的应用_应用数学基础(经管类)_[共4页]
第3章 积分学及其应用77 ln ln e e d x x x C -⎡⎤=+⎣⎦⎰1d x x C x ⎡⎤=+⎢⎥⎣⎦⎰ []ln x x C =+。
将初始条件11x y ==代入通解,得C =1,所以满足初始条件的特解为(ln 1)y x x =+。
3.6.4 微分方程的应用在实际生产和生活中,微分方程有着十分广泛的应用。
下面仅就几个应用实例来说明如何建立微分方程,并熟悉建立微分方程的基本方法和步骤。
1.放射性元素的衰变问题【例43】已知某放射性材料在任何时刻t 的衰变速度与该时刻的质量成正比,若最初有50克的材料,两小时后减少了10%,求在任何时刻t ,该放射性材料质量的表达式。
解:设时刻t 材料的质量为()M t ,由于材料的衰变速度就是()M t 对时间t 的导数d d M t,由题意得 d d M kM t=-,[其中(0)k k >是比例系数] 这是一个可分离变量的微分方程。
分离变量后积分,得e kt M C -=。
当0t =时,50M =,代入上式得50C =,因此50e kt M -=。
由题意知当2t =,45M =,把它们代入上式得24550e k -=,即145ln 0.053250k =-=。
所以该放射性材料在任何时刻t 的质量为0.05350e t M -=。
2.减肥问题【例44】肥胖的人都想减轻体重,举重运动员也要控制体重。
而许多饲养场却想在限定的时间内使牲畜增肥到一定重量出售,以取得最大利润。
他们应该怎么办?解:用热量平衡的方程来解此问题。
设每天的饮食可产生的热量为A ,用于正常的新陈代谢所消耗的热量为B ,运动消耗的热量为C ⨯体重,并且理想假定增重、减重的热量主要由脂肪提供,每千克脂肪转化的热量为D ,记()W t 为体重,考虑t 到t t +∆时间间隔内,体重增加所需要的热量等于这段时间饮食所摄入的热量减去正常新陈代谢所消耗的热量及运动所消耗的热量,于是有下述热量平衡方程:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验微分方程(基础实验)119 项目四 无穷级数与微分方程实验2 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用Mathematica 求微分方程及方程组解的常用命令和方法.基本命令1. 求微分方程的解的命令DSolve对于可以用积分方法求解的微分方程和微分方程组,可用Dsolve 命令来求其通解或特解.例如,求方程023=+'+''y y y 的通解, 输入DSolve[y ''[x]+3y '[x]+2y[x]==0,y[x],x]则输出含有两个任意常数C[1]和C[2]的通解:{}{}]2[C e ]1[C e ]x [y x x 2--+→注:在上述命令中,一阶导数符号 ' 是通过键盘上的单引号 ' 输入的,二阶导数符号 '' 要输入两个单引号,而不能输入一个双引号.又如,求解微分方程的初值问题:,10,6,03400='==+'+''==x x y y y y y输入Dsolve[{y''[x]+4 y'[x]+3y[x]==0,y[0]==6, y'[0]==10},y[x],x](*大括号把方程和初始条件放在一起*)则输出{}{}x 2x 3e 148(e ]x [y +-→-2. 求微分方程的数值解的命令NDSolve对于不可以用积分方法求解的微分方程初值问题,可以用NDSolve 命令来求其特解.例如要求方程5.0,032=+='=x y x y y的近似解)5.10(≤≤x , 输入NDSolve[{y'[x]==y[x]^2+x^3,y[0]==0.5},y[x],{x,0,1.5}](*命令中的{x,0,1.5}表示相应的区间*)则输出{{y->InterpolatingFunction[{{0.,1.5}},< >]}}注:因为NDSolve 命令得到的输出是解)(x y y =的近似值. 首先在区间[0,1.5]内插入一系 列点n x x x ,,,21Λ, 计算出在这些点上函数的近似值n y y y ,,,21Λ, 再通过插值方法得到 )(x y y =在区间上的近似解.3. 一阶微分方程的方向场一般地,我们可把一阶微分方程写为),(y x f y ='的形式,其中),(y x f 是已知函数. 上述微分方程表明:未知函数y 在点x 处的斜率等于函数120f 在点),(y x 处的函数值. 因此,可在Oxy 平面上的每一点, 作出过该点的以),(y x f 为斜率 的一条很短的直线(即是未知函数y 的切线). 这样得到的一个图形就是微分方程),(y x f y ='的方向场. 为了便于观察, 实际上只要在Oxy 平面上取适当多的点,作出在这些点的函数的 切线. 顺着斜率的走向画出符合初始条件的解,就可以得到方程),(y x f y ='的近似的积分曲 线.例如, 画出0)0(,12=-=y y dxdy 的方向场. 输入<<Graphics`PlotField`g1=PlotVectorField[{1,1-y^2},{x,-3,3},{y,-2,2}, Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];则输出方向场的图形(图2.1), 从图中可以观察到, 当初始条件为2/10=y 时, 这个微分方程的解介于1-和1之间, 且当x 趋向于-∞或∞时, )(x y 分别趋向于1-与1.-3-2-10123-2-1012 -3-2-10123-2-112下面求解这个微分方程, 并在同一坐标系中画出方程的解与方向场的图解. 输入sol=DSolve[{y'[x]==1-y[x]^2,y[0]==0},y[x],x];g2=Plot[sol[[1,1,2]],{x,-3,3},PlotStyle->{Hue[0.1],Thickness[0.005]}];Show[g2,g1,Axes->None,Frame->True];则输出微分方程的解xxe e x y 2211)(++-=,以及解曲线与方向场的图形(图2.2). 从图中可以看到, 微分方程的解与方向场的箭头方向相吻合.实验内容用Dsolve 命令求解微分方程例2.1 (教材 例2.1) 求微分方程 22x xe xy y -=+'的通解.输入Clear[x,y];DSolve[y '[x]+2x*y[x]==x*Exp[-x^2],y[x],x]或DSolve[D[y[x],x]+2x*y[x]==x*Exp[-x^2],y[x],x]则输出微分方程的通解:121 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→--]1[C e x e 21]x [y 22x 2x 其中C[1]是任意常数.例2.2 (教材 例2.2) 求微分方程0=-+'x e y y x 在初始条件e y x 21==下的特解. 输入Clear[x,y];DSolve[{x*y ' [x]+y[x]-Exp[x]==0,y[1]==2 E},y[x],x]则输出所求特解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→x e e ]x [y x 例2.3 (教材 例2.3) 求微分方程x e y y y x 2cos 52=+'-''的通解.输入DSolve[y ''[x]-2y '[x]+5y[x]==Exp[x]*Cos[2 x],y[x],x]//Simplify则输出所求通解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧-++→])x 2[Sin ])1[c 4x (2]x 2[Cos ])2[c 81((e 81]x [y x 例2.4 (教材 例2.4) 求解微分方程x e x y +=''2, 并作出其积分曲线.输入g1=Table[Plot[E^x+x^3/3+c1+x*c2,{x,-5,5},DisplayFunction->Identity],{c1,-10,10,5},{c2,-5,5,5}];Show[g1,DisplayFunction->$DisplayFunction]; -4-224-40-20204060图2.3例2.5 (教材 例2.5) 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dx t 在初始条件0,100====t t y x 下的特解.输入122Clear[x,y,t];DSolve[{x' [t]+x[t]+2 y[t]==Exp[t], y'[t] -x[t]- y[t]==0,x[0]==1,y[0]==0},{x[t],y[t]},t]则输出所求特解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→→])t [Sin ]t [Cos e (21]t [y ],t [Cos ]t [x t例2.6 验证c y y x =+--)3305(15152是微分方程2)(42-='y x x y 的通解. 输入命令<<Graphics`PlotField`<<Graphics`ImplicitPlot`sol=(-5x^3-30y+3y^5)/15==C;g1=ImplicitPlot[sol/.Table[{C->n},{n,-3,3}],{x,-3,3}];g2=PlotVectorField[{1,x^2/(y^4-2)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];g=Show[g2,g1,Axes->None,Frame->True];Show[GraphicsArray[{g1,g2,g}]];则分别输出积分曲线如图 2.4(a), 微分方程的方向场如图 2.4(b). 以及在同一坐标系中画出积分曲线和方向场的图形如下图2.4 (c).-3-2-1123-2-112-3-2-10123-3-2-10123-3-2-10123-3-2-10123图2.4从图 2.4(c)中可以看出微分方程的积分曲线与方向场的箭头方向吻合, 且当∞→x 时, 无论初始条件是什么, 所有的解都趋向于一条直线方程.例2.7 (教材 例2.6) 求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 输入<<Graphics`PlotField`DSolve[y' [x]-2y[x]/(x+1)==(x+1)^(5/2),y[x],x]则输出所给积分方程的解为 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+++→]1[C )x 1()x 1(32]x [y 22/7123 下面在同一坐标系中作出这个微分方程的方向场和积分曲线(设),3,2,1,0,1,2,3---=C 输入t=Table[2(1+x)^(7/2)/3+(1+x)^2c,{c,-1,1}];g1=Plot[Evaluate[t],{x,-1,1},PlotRange->{{-1,1},{-2,2}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g2=PlotVectorField[{1,-2y/(x+1)+(x+1)^(5/2)},{x,-0.999,1},{y,-4,4},Frame->True,ScaleFunction->(1&), ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出积分曲线的图形(图2.5).-0.75-0.5-0.2500.250.50.751-1.5-1-0.50.511.52图2.5例2.8 求解微分方程,2)21(22-+='-y x y xy 并作出其积分曲线.输入命令<<Graphics`PlotField`DSolve[1-2*x*y[x]*y' [x]==x^2+(y[x])^2-2,y[x],x]则得到微分方程的解为.)2(323C y x x y ++-+= 我们在33≤≤-C 时作出积分曲线, 输入命令t1=Table[(3+Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];t2=Table[(3-Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];gg1=Plot[Evaluate[t1],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];124gg2=Plot[Evaluate[t2],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g1=ContourPlot[y-x^3/3-x*(-2+y^2),{x,-3,3},{y,-3,3},PlotRange->{-3,3},Contours->7,ContourShading->False,PlotPoints->50,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2+y^2-2)/(1-2*x*y)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];Show[gg1,gg2,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出微分方程的向量场与积分曲线, 并输出等值线的图2.6.-3-2-10123-2-10123-2-10123-2-1123图2.6用NDSolve 命令求微积分方程的近似解例2.9 (教材 例2.7) 求初值问题:1,0)1()1(2.1=='-++=x y y xy y xy 在区间[1.2,4]上的近似解并作图.输入fl=NDSolve[{(1+x*y[x])*y[x]+(1-x*y[x])*y'[x]==0,y[1.2]==1},y,{x,1.2,4}]则输出为数值近似解(插值函数)的形式:{{y->InterpolatingFunction[{{1.2,4.}},< >]}}用Plot 命令可以把它的图形画出来.不过还需要先使用强制求值命令Evalu-ate, 输入 Plot[Evaluate[y[x]/.fl],{x,1.2,4}]则输出近似解的图形(图2.7).125 1.5 2.53 3.5410203040图2.7如果要求区间[1.2,4]内某一点的函数的近似值, 例如8.1=x y ,只要输入y[1.8]/.fl则输出所求结果{3.8341}例2.10 (教材 例2.8) 求范德波尔(Van der Pel)方程5.0,0,0)1(002-='==+'-+''==x x y y y y y y在区间[0,20]上的近似解.输入 Clear[x,y];NDSolve[{y''[x]+(y[x]^2-1)*y'[x]+y[x]==0,y[0]==0,y'[0]==-0.5},y,{x,0,20}];Plot[Evaluate[y[x]/.%],{x,0,20}]可以观察到近似解的图形(图2.8).5101520-2-112图2.8126 ⎪⎩⎪⎨⎧==+-'1)1(01sin 2y x y x y x的数值解, 并作出数值解的图形.输入命令<<Graphics`PlotField`sol=NDSolve[{x*y'[x]-x^2*y[x]*Sin[x]+1==0,y[1]==1},y[x],{x,1,4}];f[x_]=Evaluate[y[x]/.sol];g1=Plot[f[x],{x,1,4},PlotRange->All,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2*y*Sin[x]-1)/x},{x,1,4},{y,-2,9},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];g=Show[g1,g2,Axes->None,Frame->True];Show[GraphicsArray[{g1,g}],DisplayFunction->$DisplayFunction];则输出所给微分方程的数值解及数值解的图2.9.1.522.533.544681 1.52 2.53 3.54-22468例2.11 (教材 例2.9) 求出初值问题⎪⎩⎪⎨⎧='==+'+''0)0(,1)0(cos sin 22y y xy x y y的数值解, 并作出数值解的图形.输入NDSolve[{y''[x]+Sin[x]^2*y'[x]+y[x]==Cos[x]^2,y[0]==1,y'[0]==0},y[x],{x,0,10}]127 Plot[Evaluate[y[x]/.%],{x,0,10}];则输出所求微分方程的数值解及数值解的图形(图2.10).2468100.20.40.60.8图2.10例2.12 (教材 例2.10) 洛伦兹(Lorenz)方程组是由三个一阶微分方程组成的方程组.这三个方程看似简单, 也没有包含复杂的函数, 但它的解却很有趣和耐人寻味. 试求解洛伦兹方程组,0)0(,4)0(,12)0()(4)()()()()(45)()()()(16)(16)(⎪⎪⎩⎪⎪⎨⎧===-='-+-='-='z y x t z t y t x t z t y t x t z t x t y t x t y t x 并画出解曲线的图形.输入Clear[eq,x,y,z]eq=Sequence[x'[t]==16*y[t]-16*x[t],y'[t]==-x[t]*z[t]-y[t]+45x[t],z'[t]==x[t]*y[t]-4z[t]];sol1=NDSolve[{eq,x[0]==12,y[0]==4,z[0]==0},{x[t],y[t],z[t]},{t,0,16},MaxSteps->10000];g1=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol1],{t,0,16},PlotPoints->14400,Boxed->False,Axes->None];则输出所求数值解的图形(图2.11(a)). 从图中可以看出洛伦兹微分方程组具有一个奇异吸引子, 这个吸引子紧紧地把解的图形“吸”在一起. 有趣的是, 无论把解的曲线画得多长, 这些曲线也不相交.128图2.11改变初值为,10)0(,10)0(,6)0(=-==z y x 输入sol2=NDSolve[{eq,x[0]==6,y[0]==-10,z[0]==10}, {x[t],y[t],z[t]},{t,0,24},MaxSteps->10000];g2=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol2],{t,0,24},PlotPoints->14400,Boxed->False,Axes->None];Show[GraphicsArray[{g1,g2}]];则输出所求数值解的图形(图2.11(b)). 从图中可以看出奇异吸引子又出现了, 它把解“吸”在某个区域内, 使得所有的解好象是有规则地依某种模式缠绕.实验习题1. 求下列微分方程的通解:(1) ;0136=+'+''y y y(2) ();024=+''+y y y(3) ;2sin 52x e y y y x =+'-''(4) .)1(963x e x y y y +=+'-''2. 求下列微分方程的特解:(1) ;15,0,029400='==+'+''==x x y y y y y(2) .1,1,02sin ='==++''==ππx x y yx y y 3. 求微分方程0cos 2)1(2=-+'-x xy y x 在初始条件10==x y 下的特解.分别求精确解和数值解)10(≤≤x 并作图.4. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++t t e y x dt dy e y x dt dx 235的通解.129 5. 求微分方程组⎪⎪⎩⎪⎨⎧==+-==-+==4,081,0300t t y y x dt dyxy x dt dx 的特解. 6. 求欧拉方程组324x y y x y x =-'+''的通解.7. 求方程5,0,011='==+'+''==x x y y y y x y 在区间[0,4]上的近似解.。