综述光子晶体的研究进展

合集下载

光子晶体材料的研究进展及其应用前景

光子晶体材料的研究进展及其应用前景

光子晶体材料的研究进展及其应用前景光子晶体材料(Photonic Crystal Material)是一类具有周期性结构的材料,具有对特定波长的光进行衍射、反射和传播的能力。

近年来,光子晶体材料在光学领域引起了广泛的研究兴趣,并取得了一系列重要的研究进展。

光子晶体材料不仅在基础研究中得到了广泛应用,还在光学器件和光子学技术等领域具有巨大的应用前景。

光子晶体材料的研究进展可以从其制备、性质和应用等方面来介绍。

首先,制备光子晶体材料的方法主要有自组装、溶胶-凝胶法、电子束曝光和纳米加工等多种方法。

其中,自组装是一种简单且高效的方法,可以通过自组装单元的重复结构构建光子晶体材料。

溶胶-凝胶法利用溶胶状态的前驱体通过凝胶化形成光子晶体材料。

电子束曝光和纳米加工则是通过直接调控和排列材料的结构来制备光子晶体材料。

这些制备方法的发展为光子晶体材料的制备提供了多样化的选择,发展出一系列新的光子晶体材料。

其次,光子晶体材料的性质研究主要集中在光子带隙和非线性光学效应等方面。

光子带隙是光子晶体材料的重要性质,它使得光子晶体材料能够选择性地传播特定波长的光,并具有衍射、反射和干涉的能力。

非线性光学效应是指当光场强度达到一定阈值时,光子晶体材料呈现出非线性的光学性质。

这些性质的研究为光子晶体材料的应用提供了理论和实验上的基础。

最后,光子晶体材料的应用前景非常广泛。

首先,光子晶体材料在光学器件方面具有很大的应用潜力。

例如,光子晶体膜可用于制备光子晶体光纤,具有低损耗和高传输带宽的特点,可用于光通信和光信号处理等领域。

其次,在光子学技术方面,光子晶体材料可作为微结构传感器用于生物、化学和环境等领域的检测和传感。

此外,光子晶体材料还可以应用于激光技术、量子通信、太阳能电池等领域,为相关技术的发展提供新的思路和方法。

总而言之,光子晶体材料的研究进展在制备、性质和应用等方面都取得了重要的突破。

光子晶体材料具有选择性传播特定波长光的能力,并在光学器件和光子学技术等领域具有广阔的应用前景。

光子晶体制备技术和应用研究进展

光子晶体制备技术和应用研究进展

光子晶体制备技术和应用研究进展一、本文概述光子晶体,也称为光子带隙材料,是一种具有周期性折射率变化的介质结构,其独特的性质使得光在其中传播时受到调制,类似于电子在晶体中的行为。

因此,光子晶体被视为控制光传播行为的重要工具,具有广阔的应用前景。

随着科学技术的飞速发展,光子晶体的制备技术和应用研究进展日新月异,对推动光子学、光学、材料科学等多个领域的发展起到了重要的推动作用。

本文旨在全面概述光子晶体的制备技术和应用研究进展。

我们将回顾光子晶体的基本概念和特性,阐述其在光学领域的重要性和独特性。

然后,我们将详细介绍各种光子晶体的制备技术,包括微球自组装、激光全息干涉、胶体晶体模板法等,并分析其优缺点。

在此基础上,我们将探讨光子晶体在光子器件、传感器、显示器、太阳能电池等领域的应用研究进展,并展望其未来的发展趋势。

我们将总结当前光子晶体研究的挑战和前景,以期为该领域的研究者提供有益的参考和启示。

通过本文的综述,我们期望能够为读者提供一个全面而深入的了解光子晶体制备技术和应用研究进展的平台,促进相关领域的交流和合作,推动光子晶体技术的进一步发展和应用。

二、光子晶体的制备技术光子晶体的制备技术是实现其独特光学性质和应用的关键。

随着科技的不断进步,光子晶体的制备方法也在持续创新和发展。

目前,主要的制备技术包括微球自组装法、模板法、全息光刻法、激光直写法和溶胶-凝胶法等。

微球自组装法:这是一种基于胶体微球自组装原理的制备方法。

通过精确控制微球的尺寸和排列,可以在溶液中形成有序的三维结构,进而制备出具有特定光学性质的光子晶体。

该方法操作简单,成本低廉,但制备的光子晶体尺寸和形貌控制精度有限。

模板法:模板法是利用已有的模板结构,通过填充、沉积或刻蚀等方式,在模板表面或内部形成光子晶体结构。

这种方法可以实现复杂形状和结构的光子晶体制备,但模板的制作成本较高,且制备过程相对复杂。

全息光刻法:全息光刻法利用干涉光场的空间调制作用,在光刻胶或其他光敏材料中形成三维周期结构,进而制备出光子晶体。

光子晶体材料研究报告

光子晶体材料研究报告

光子晶体材料研究报告摘要:光子晶体材料是一种具有周期性结构的材料,其具有特殊的光学性质和广泛的应用潜力。

本研究报告对光子晶体材料的基本原理、制备方法以及应用领域进行了综述。

通过对光子晶体材料的研究,我们可以深入了解其在光学器件、传感器、光子集成电路等领域的应用前景,为未来的研究和开发提供了有益的参考。

一、引言光子晶体材料是一种具有周期性结构的材料,其周期性结构的尺寸与光波波长相当,从而使得光子晶体材料具有特殊的光学性质。

光子晶体材料的研究起源于20世纪80年代,随着材料科学和纳米技术的发展,光子晶体材料的制备和应用得到了广泛关注。

二、光子晶体材料的原理光子晶体材料的原理基于布拉格衍射和光子禁带的概念。

光子晶体材料的周期性结构使得光子在其中的传播受到限制,从而形成光子禁带。

光子禁带是指某一范围内的光波在光子晶体材料中无法传播的现象。

通过调控光子晶体材料的周期性结构,可以实现对光波的控制和调制,从而实现对光学性质的调控。

三、光子晶体材料的制备方法目前,制备光子晶体材料的方法主要包括自组装法、溶胶-凝胶法、电子束曝光法等。

自组装法是一种常用的制备光子晶体材料的方法,通过控制颗粒的排列方式和尺寸,可以制备出具有特定结构和性质的光子晶体材料。

溶胶-凝胶法则是通过溶胶和凝胶的相变过程来制备光子晶体材料,该方法具有制备工艺简单、成本低廉的优势。

电子束曝光法则是利用电子束在光子晶体材料上进行局部曝光,通过控制曝光剂的剂量和曝光时间,可以制备出具有特定结构和性质的光子晶体材料。

四、光子晶体材料的应用领域光子晶体材料具有广泛的应用潜力,目前已经在光学器件、传感器、光子集成电路等领域得到了应用。

在光学器件方面,光子晶体材料可以用于制备光学滤波器、光学波导、光学反射镜等器件,具有较高的光学性能和调控能力。

在传感器方面,光子晶体材料可以通过改变其周期性结构来实现对特定物质的敏感性,从而实现对物质浓度、温度等参数的测量。

在光子集成电路方面,光子晶体材料可以用于制备高密度的光子芯片,实现光子器件的集成和互连,具有较高的集成度和传输效率。

光子晶体研究进展(资剑)

光子晶体研究进展(资剑)

光子晶体研究进展资剑复旦大学表面物理国家重点实验室,上海200433Jzi@摘要光子晶体是八十年代末提出的新概念和新材料,迄今取得异常迅猛的发展,是一门正在蓬勃发展的有前途的新学科。

光子晶体不仅具有理论价值,更具有非常广阔的应用前景,这个领域已经成为国际学术界的研究热点。

本文回顾光子晶体的发展历史,介绍光子晶体的特性、制作方法、理论研究以及应用前景。

关键词:光子晶体,光子能带,光子带隙,光子局域态,自发辐射,Maxwell方程组我们所处的时代从某种意义上来说是半导体时代。

半导体的出现带来了从日常生活到高科技革命性的影响。

大规模集成电路、计算机、信息高速公路等等这些甚至连小学生都耳熟能详的东西是由半导体带来的。

几乎所有的半导体器件都是围绕如何利用和控制电子的运动,电子在其中起到决定作用。

半导体器件到如今可以说到了登峰造极的地步。

集成的极限在可以看到的将来出现。

这是由电子的特性所决定的。

而光子有着电子所没有的优势:速度快,没有相互作用。

因此,下一代器件扮演主角的将是光子。

光子晶体是1987年才提出的新概念和新材料[1,2]。

这种材料有一个显著的特点是它可以如人所愿地控制光子的运动[3-5]。

由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得无法想象。

1.2. 光子晶体简介3. 众所周知,电子在周期势场中传播时,由于电子波会受到周期势场的布拉格散射,会形成能带结构,带与带之间可能存在带隙。

电子波的能量如果落在带隙中,传播是禁止的。

其实,不管任何波,只要受到周期性调制,都有能带结构,也都有可能出现带隙。

能量落在带隙中的波是不能传播的。

电磁波或者光波也不会例外。

不过人们真正清楚其物理含义已经是八十年代末了。

1987年Y abnolovitch [1]在讨论如何抑制自发辐射时提出了光子晶体这一新概念。

光子晶体材料研究进展及应用前景

光子晶体材料研究进展及应用前景

光子晶体材料研究进展及应用前景随着科学技术的不断进步,人们对于材料的研究也越来越深入。

在新材料领域中,光子晶体材料的研究一直备受关注。

它的出现不仅改变了传统材料的性质,而且在光电子、能源等领域具有广泛的应用前景。

本文将介绍光子晶体材料的研究进展及其应用前景。

一、光子晶体材料的基础概念光子晶体材料,其实就是一种具有光子带隙的晶体材料。

简单来说,就是通过在材料中引入周期性结构,从而达到对于某些频率的光线有选择性的反射或折射,使其不能通过材料的表面,从而形成光子带隙。

光子晶体材料不仅可以对于光线起到滤波器的作用,而且具有传统材料所没有的一些新颖性质,比如能够在材料内部引发较为复杂的相互作用,从而实现信息处理、光学传输等。

二、光子晶体材料的研究进展1. 光子晶体材料的制备光子晶体材料的制备是研究的基础。

传统的光子晶体材料制备方法包括光刻、等离子体刻蚀、溶胶-凝胶法等。

然而,这些方法不仅操作复杂,而且成本较高。

因此,研究人员开始关注通过自组装的方法制备光子晶体材料。

目前,自组装光子晶体材料的制备方法包括: 溶液自组装法、模板法、电沉积法、表面修饰法等。

这些新的制备方法的出现,使得光子晶体材料制备变得更加容易和便捷。

2. 光子晶体材料特殊性质的研究对于光子晶体材料的特殊性质的研究,则是深入理解该材料的关键所在。

目前,研究人员发现,由于光子晶体具有纳米级别的周期性结构,其表现出来的性质和传统材料是不同的,比如光子晶体的多级结构和空洞结构的存在使得材料中存在的能带不止一个,从而能够过滤更宽波长的光线。

此外,研究人员还发现当光子晶体中存在缺陷时,其在光电子学、微波强度识别、传感器等方面的应用具有广泛的前景。

三、光子晶体材料的应用前景1. 光子晶体过滤器由于光子晶体材料能够对于特定波长的光线进行选择性的反射或折射,发挥着像过滤器一样的作用,因此其被广泛地应用于光子晶体过滤器的制造中。

在光纤通讯技术方面,光子晶体过滤器可以滤除带宽噪声,提高信号的传输质量和分辨率;在图像处理方面,它可以过滤掉光干扰,减少图像的噪声和失真,提高图像的清晰度和质量。

光子晶体材料研究进展及应用前景

光子晶体材料研究进展及应用前景

光子晶体材料研究进展及应用前景光子晶体是一种光物理学中的新材料,具有优异的光学性能和应用前景。

近年来,随着科技的不断发展,光子晶体的研究进展也在不断加快,在光子晶体的制备、性能调控和应用方面都取得了一系列重要突破。

光子晶体的制备主要有两种方法:自组装法和纳米加工法。

自组装法利用物质在一定条件下自发形成周期性结构,可以制备出大面积、高品质的光子晶体。

纳米加工法则通过纳米尺度的加工手段实现对材料结构的精确控制,可以制备出更复杂的结构和性能。

这两种方法的结合使得光子晶体的制备更加灵活多样化。

光子晶体具有优异的光学性能,主要体现在三个方面:光子禁带、色散调控和非线性光学效应。

光子禁带是指在光子晶体中存在一定范围内的频率范围,光波无法传播的现象。

光子禁带的宽度和位置可以通过调控光子晶体的周期、孔隙比例和折射率实现。

色散调控则是指调控光子晶体中光波的传播速度和传播方向,可以实现光波的聚焦、解聚和波导等功能。

非线性光学效应是指在强光场作用下,光子晶体中光波的能量转换和非线性响应现象。

这些光学性能使得光子晶体在激光器、光通信、传感器、光电存储等领域具有广泛应用的潜力。

在激光器领域,光子晶体可以作为优质的光学反射镜、激光输出镜和模式选择器,提高激光器的输出功率和谐振器质量因子,实现高性能激光器。

在光通信领域,光子晶体可以用于光合集器、耦合器、滤波器和光学开关等光学器件,提高光路的集成度和性能。

在传感器领域,光子晶体可以用于生物传感器、气体传感器、液体传感器和光子晶体光纤等,实现高灵敏度和快速响应的传感器。

在光电存储领域,光子晶体可以用于光学存储介质和光子晶体薄膜,实现大容量、高速和可重写的光存储。

除此之外,光子晶体还有许多其他的应用前景。

例如,在太阳能领域,光子晶体可以用于制备高效率的光伏材料和光学镜面,提高太阳能电池的能量转换效率。

在生物医学领域,光子晶体可以用于生物分析、药物传输、光热治疗和细胞成像等,实现精确控制和定位的生物操作。

光子晶体的制备和应用研究进展

光子晶体的制备和应用研究进展

光子晶体的制备和应用研究进展一、本文概述光子晶体,也称为光子带隙材料,是一种具有周期性折射率变化的介质结构,其独特的性质使得光波在其中传播时受到调制,类似于电子在晶体中的行为。

自二十世纪末光子晶体概念提出以来,其制备技术和应用研究便成为了科学研究的热点。

本文旨在概述光子晶体的制备方法以及在不同领域中的应用研究进展,以期对光子晶体的未来发展提供全面的视角和深入的理解。

我们将对光子晶体的基本概念和特性进行简要介绍,以便为后续的研究进展提供理论基础。

随后,我们将重点综述目前光子晶体的主要制备方法,包括胶体自组装法、激光全息干涉法、逐层堆积法等,并探讨各种方法的优缺点及其适用范围。

在应用研究方面,我们将关注光子晶体在光子器件、光通信、太阳能电池、传感器以及生物医学等领域的应用进展。

我们将详细分析这些应用背后的原理、技术实现以及取得的成果,并对未来的发展趋势进行展望。

我们将对光子晶体的研究现状进行总结,并指出当前面临的挑战和未来的发展方向。

通过本文的综述,我们期望能够为读者提供一个全面而深入的了解光子晶体制备和应用研究的平台,推动光子晶体在科学技术和工业领域的进一步发展。

二、光子晶体的制备技术光子晶体的制备技术自其概念提出以来,经历了长足的发展和进步。

光子晶体的制备技术主要分为两大类:自上而下(Top-down)和自下而上(Bottom-up)的方法。

自上而下法主要包括机械加工、微影术和激光刻蚀等。

这些方法通常用于制造具有周期性结构的三维光子晶体。

机械加工方法可以通过精确控制机械力,如研磨、切割和雕刻等,来创建具有特定周期性结构的光子晶体。

微影术则利用光化学反应在基材上生成特定的图案,然后通过化学或物理手段进行蚀刻,从而制作出光子晶体。

激光刻蚀则使用激光束直接对材料进行刻蚀,形成光子晶体。

这些方法的主要优点是制造精度高,可以大规模生产,但设备成本较高,且难以制备出具有复杂结构和精细调控的光子晶体。

自下而上法则主要包括胶体自组装、溶胶-凝胶法、气相沉积和生物模板法等。

光子晶体研究及其应用

光子晶体研究及其应用

光子晶体研究及其应用光子晶体是一种周期性介质,在空间上呈现出有序的几何结构,它可以控制光线的传播。

在近年来,光子晶体引起了很大的关注,因为它在光学器件中具有广泛的应用,例如:激光器、光电子器件、传感器和光学通信等领域。

一、光子晶体的研究历史与现状光子晶体概念自从1987年以来由英国牛津大学的尤里·坦普尔和格奥尔格·韦克曼提出,随着材料科学和光学技术的发展,光子晶体的研究不断取得了新突破和发展。

1989年,美国华盛顿大学的理查德·范多默伦等人在实验中首次制造出了光子晶体,表明了光子晶体在光学器件制造领域中的巨大潜力。

此后,众多科学家与研究人员相继开展了有关光子晶体的相关研究,并将它们应用到了各种光电子器件中。

二、光子晶体的性质和应用光子晶体具有两个主要特点:光子带隙和光子反常散射。

其中,光子带隙是指在特定波长范围内,光子无法通过光子晶体传播,这种特性使其在制造光学滤波器、光纤和激光器等领域中应用广泛。

光子晶体的另一项重要特性是光子反常散射。

相比传统的材料,光子晶体中的散射更加地强烈和扩散,这是因为光子晶体中的介电常数具有可调性,散射率因此被调控。

这种性质可以被利用来构建新颖的光学器件,例如光子晶体波导和光子晶体放大器,这些器件能够在新兴的纳米和微尺度光学器件中发挥关键作用。

除了在微型光学器件中的应用,光子晶体在光学成像、传感领域也有广泛的应用。

基于光子晶体的衍射成像技术,科学家可以通过光学显微镜直接观察到生物细胞的内部,掌握更详细的结构信息。

同时,光子晶体也被应用于传感器的研究中,利用其微细结构调节光学信号的特性,提高传感器的灵敏度。

三、光子晶体未来的发展前景随着光学技术的不断创新和完善,对新型材料和器件的研究需求也在加强。

在这样的推动下,光子晶体作为一种优良的周期性介质材料,具有着巨大的发展潜力。

未来,光子晶体的应用可以进一步拓展到可穿戴设备、量子计算、生物医学等领域,应用场景将变得更广泛更细化。

光子晶体材料的研究进展及其应用前景

光子晶体材料的研究进展及其应用前景

光子晶体材料的研究进展及其应用前景随着科学技术的不断进步,人类在材料领域的研究也逐渐深入。

其中,光子晶体材料作为一种前沿材料,受到越来越多的关注和研究。

本文将从定义、研究进展和应用前景三个方面介绍光子晶体材料。

一、定义光子晶体材料是一种新型晶体材料,具有周期性的光学性质,与普通石墨烯等材料不同,它是一种具有光学结构的材料。

所谓光学结构,是指物质的微小结构排列形成的一种如同棋盘格一样的结构,这种结构可以限定光的传播方向和波长范围。

二、研究进展1. 光子晶体材料的制备技术不断提高光子晶体材料的制备技术主要包括自组装、浸渍、拉伸、方法等多种方法。

近年来,制备技术不断提高,材料的质量和稳定性也得到了不断提高。

2. 光子晶体材料的性质研究逐渐深入在光子晶体材料的制备基础上,人们开始对其性质进行深入研究。

例如光子晶体材料的透过光谱、反射谱和色散曲线等性质都成为了研究对象。

通过对这些性质的研究,人们可以了解材料的光学性质,并进一步研究材料的应用前景。

3. 光子晶体材料的应用领域不断扩展光子晶体材料可以应用于电子领域、化学领域、材料研究领域等多个领域,其应用前景越来越广阔。

例如可以应用于储能器件、传感器、太阳能电池等领域。

三、应用前景1. 储能器件光子晶体材料具有高禁带宽度和低折射率等性质,与常规储能材料相比,其储能能力和稳定性得到了良好提升。

因此,光子晶体材料被广泛应用于储能器件领域。

2. 传感器光子晶体材料具有高灵敏度和选择性等性质,这使得光子晶体材料可以应用于传感器领域。

例如可以应用于气体、水质、温度传感等领域,使得传感器的快速响应和灵敏度得到了良好提高。

3. 太阳能电池光子晶体材料可以制备成具有不同孔径和结构的二维和三维结构,这使得其可以作为高效太阳能电池的构建单元。

例如可以制备成具有周期性微纳结构的薄膜,该薄膜具有较高的吸收率和低反射率,因此被广泛应用于太阳能电池领域。

综上所述,光子晶体材料作为一种新型晶体材料,具有众多优良的性质,并且在应用领域上具有广泛的发展前景。

光子晶体技术的研究进展与应用前景

光子晶体技术的研究进展与应用前景

光子晶体技术的研究进展与应用前景光子晶体是指在纳米尺度的范围内,通过控制材料的晶格结构使得电磁波的传输特性发生改变的一种新型材料。

随着纳米技术的不断发展和进步,光子晶体技术也在不断地被研究和应用。

其应用领域包括光电子学、光信息处理、基础研究等众多领域,其前景非常广阔。

一、光子晶体的基本原理光子晶体是由空气或其他物质的等间距排列的球形或柱形结构组成。

其特点是具有周期性结构,制备时要求每个元部件的大小和位置要满足一定的限制。

在光子晶体中,当光子的波长和晶格常数具有相同的数量级时,发生Bragg衍射。

由于光子晶体的等间距排列结构和Bragg衍射的原理,使得其具有优异的光学性能。

因此,光子晶体被应用在许多领域中,如光电子材料、光信息处理、生物医学等领域。

二、光子晶体的应用1.光子晶体的应用于太阳能电池光子晶体能够有效地控制光子的传输,这使其成为一个理想的材料用来提高太阳能电池的效率。

通过将光子晶体嵌入到太阳能电池中,可以增强太阳能电池的吸收效率,提高太阳能电池的转换效率。

事实上,研究发现,将光子晶体嵌入到太阳能电池中,其转换效率可以提高约30%。

因此,光子晶体在太阳能电池中的应用是非常有前途的。

2. 光子晶体的应用于生物医学光子晶体能够通过改变光子的波长,来识别某种特定的生物大分子,例如蛋白质和DNA等。

这一特点使得光子晶体在生物医学领域中的应用具有很大的潜力。

例如,可以使用光子晶体来制备高灵敏的生物传感器,以检测某种特定的生物分子。

此外,光子晶体还可以用于制备药物传输系统,以实现精准治疗。

由于其在生物医学领域的广泛应用,光子晶体技术已经逐渐成为了当今生物医学领域的热门研究课题。

3.光子晶体的应用于光纤通信光子晶体能够通过调整光子的传输效应来控制光纤中的波导,并且能够使波导具有更好的光学性能。

这使光子晶体成为一种理想的材料,用于光纤通信中的波导制备。

实际上,光子晶体在现代光纤通信网络中已经开始得到广泛的应用。

光子晶体结构颜色生成机制研究进展

光子晶体结构颜色生成机制研究进展

光子晶体结构颜色生成机制研究进展光子晶体是一种具有周期性结构的材料,其结构中的孔隙或周期的变化可以导致可见光的某些波长受到选择性的散射,从而产生特定颜色。

光子晶体的独特的颜色效应使得它们在材料科学、光电子学、光子学和色彩工程等领域具有重要的应用潜力。

随着对光子晶体结构颜色生成机制的深入研究,人们对其物理原理和应用方面的理解也得到了显著的进展。

光子晶体结构颜色生成机制主要包括布拉格衍射、布里渊散射和光子带隙效应。

布拉格衍射是一种基于结构周期性的散射现象,通过光的干涉效应来产生颜色。

当入射光的波长与光子晶体的结构周期相匹配时,发生布拉格衍射,只有特定波长的光得到增强散射,其他波长的光则被抑制。

这种颜色效应可以通过调整光子晶体的孔隙大小和形状来调控,进而实现对颜色的精确控制。

布里渊散射是光子晶体中的非弹性散射过程,它通过晶格中存在的声音波来散射入射光,产生颜色效应。

布里渊散射的颜色效应取决于入射光的波长和声音波的频率,通过控制晶格的特定参数,如孔隙大小、晶格常数等,可以调节布里渊散射的颜色。

光子带隙效应是最主要的光子晶体颜色生成机制之一。

光子带隙是能量在晶格中传播的带隙,类似于电子在半导体中的禁带。

当光的波长与光子带隙的范围相匹配时,光子晶体中的特定波长的光被带隙所抑制,其他波长的光透过光子晶体散射出来。

这种效应使得光子晶体呈现出明亮的结构颜色。

通过调控光子晶体的结构参数、孔隙大小和晶格常数等,可以实现对光子带隙的调控,从而获得不同范围和强度的结构颜色。

在光子晶体结构颜色生成机制的研究中,人们还发现了一些其他的影响因素,如晶格的对称性、孔隙的分布、材料的折射率等。

这些因素都可以对光子晶体的颜色效应产生重要影响。

因此,研究人员通过设计和合成具有特定结构和特性的光子晶体材料,以探索更丰富的颜色效应和应用。

光子晶体结构颜色生成机制的研究进展不仅扩展了我们对光的理解,也促进了光子晶体领域的应用。

光子晶体的独特颜色效应使其在信息存储、显示技术、传感器、生物医学等领域有着广泛的应用前景。

光子晶体的拓扑效应与边缘态研究进展

光子晶体的拓扑效应与边缘态研究进展

光子晶体的拓扑效应与边缘态研究进展光子晶体作为一种具有周期性调控光传播的材料,在过去几十年里受到了广泛的研究和应用。

随着研究的深入,人们发现光子晶体中存在一种特殊的现象,被称为拓扑效应。

这一效应不仅在物理学领域引起了广泛的兴趣,还开辟了在光学通信、能源转换等方面的新应用。

本文将介绍光子晶体的拓扑效应与边缘态的研究进展。

一、光子晶体的基本原理光子晶体是一种具有周期性折射率分布的材料,其周期性结构可以通过周期性排列的介质材料或微纳米结构实现。

与电子晶体类似,光子晶体可以通过禁带结构来控制光的传播特性,从而实现对光的频率、波长等参数的调控。

二、光子晶体的拓扑效应在传统的光子晶体中,光的传播方式被认为是平庸的,没有什么特殊性质。

然而,随着对拓扑的研究深入,人们意识到光子晶体中存在着一种特殊的拓扑效应。

拓扑效应是指一种物理体系在局部微观尺度上的拓扑不变性,在全局宏观尺度上会表现出一些奇特的性质。

光子晶体的拓扑效应主要体现在其能带结构中。

在光子晶体的禁带中,存在一些能带的拓扑不变量,如陈数、托普拉索不变量等。

这些不变量可以描述能带之间的拓扑性质,如拓扑绝缘体、拓扑半金属等。

通过调控光子晶体的结构参数,可以实现这些拓扑性质在光子晶体中的展示。

三、光子晶体的边缘态光子晶体中特殊的拓扑性质不仅体现在其内部的能带结构中,还表现在边界上的边缘态。

边缘态是指光子晶体中由于拓扑不变性引起的特殊能带,其能谱在边缘或缺陷处出现。

边缘态在光子晶体中的出现,使得光子晶体在边缘上能够实现单向传输,而在体态中保持传统的双向传输。

这一特性可以被应用在光学器件中,如光波导、光隔离器等,提高其传输效率和性能。

四、典型的光子晶体拓扑效应研究在过去的研究中,人们发现了一系列具有典型拓扑效应的光子晶体。

例如,三维光子晶体中的“倍频超导体”效应,可以实现光子的倍频传输。

二维拓扑绝缘体则具有边缘态的扩展面积,使光的传输更加稳定。

此外,还有一些研究关注光子晶体的拓扑等效理论,将其与其他光学系统进行比较与分析。

光子晶体材料的研究进展与应用前景

光子晶体材料的研究进展与应用前景

光子晶体材料的研究进展与应用前景随着人们对新材料研究的日益深入,光子晶体材料引人注目。

光子晶体材料是一种新型的功能材料,它能够对光波进行控制,达到调控光波传播和辐射的效果。

在光通信、光储存、光显示、光传感和光催化等领域都有广泛的应用。

本文将重点介绍光子晶体材料的研究进展和应用前景。

一、光子晶体材料的基础光子晶体材料是一种具有定向光子禁带结构的材料。

它的特点是光子禁带具有宽带、光学性质可调和灵活可控。

光子晶体材料通常由光波导层、光子晶体层和边缘层组成,光子晶体层是由周期性高、低折射率的介质构成的。

通过光子晶体层对光波进行调制和控制,可以达到控制光波在材料内传播和发散的效果。

二、光子晶体材料的研究进展1.光子晶体材料的合成技术光子晶体材料的合成技术是光子晶体材料研究的关键。

通过不同的合成技术可以得到不同结构的光子晶体材料。

目前主要的光子晶体材料合成技术有自组装法、溶胶凝胶法、激光制造法、等离子体蚀刻法等。

2.光子晶体材料的光控制效应光子晶体材料的物理效应主要包括Fabry-Perot腔效应、布拉格反射、全反射和禁带效应等。

禁带效应是光子晶体材料的核心功能,是光子晶体材料吸收或反射光波的效应。

禁带的位置和宽度与材料周期、介电常数有关。

3.光子晶体材料的应用目前,光子晶体材料已经在各个领域有着广泛应用。

在光通信领域,利用光子晶体材料的禁带效应可以制造出高效的光耦合器和复用器。

在光存储领域,利用光子晶体材料的周期性结构可以提高光储存密度和稳定性。

在光传感领域,光子晶体材料可以用于制造高灵敏的光扩散传感器和光子晶体波导传感器。

此外,在光催化领域,光子晶体材料可以用于制造高效的催化剂和光催化反应器。

三、光子晶体材料的应用前景作为一种新型的功能材料,光子晶体材料具有广阔的应用前景。

随着人们对新材料需求的不断提高,光子晶体材料将在未来的应用领域中发挥更大的作用。

特别是在光通信、光储存等领域,光子晶体材料有着巨大的潜力。

光子晶体的研究进展与应用前景

光子晶体的研究进展与应用前景

光子晶体的研究进展与应用前景光子晶体,是一种新型的微结构体系,它的特殊结构可以通过控制光的传播来实现光学调控,这种调控效果不同于常规的材料吸收和散射,而是通过物质本身对光的反射、干涉和色散等效应来实现。

近年来,光子晶体在材料科学、光电子学、能源科学等领域的研究和应用,引起了广泛的关注。

第一部分:探究光子晶体的结构和特性光子晶体的结构具有层次性、周期性和晶格对称性等特点。

它通常由两种或以上的介质组成,其中一种介质的折射率高于另一种介质,两种介质的排列是周期性的。

这种结构可以形成“禁带”,即某一波长的光在晶体内无法传播,这种现象称为光子禁带带隙。

而在禁带带隙之外,光子晶体的折射率会出现突变,产生反射、衍射等现象,这些现象可以通过改变光子晶体的结构实现光学调控效果。

光子晶体的调控效果在不同的波长范围内有着不同的应用。

例如,在可见光范围内的调控效果被广泛应用于颜色滤光片、人造宝石、彩色涂层等领域;而在紫外和红外波段,则被应用于太阳能电池、激光器、光波导等领域。

此外,光子晶体还可以用于制备柔性光子晶体、聚合物光子晶体、介孔光子晶体等新型材料。

第二部分:探讨光子晶体在材料科学中的应用光子晶体在材料科学中具有广泛的应用前景。

例如,在纳米电子学中,光子晶体可以用于制备微型光学器件,例如微型激光器、微型光学谐振腔等。

这些器件的尺度可达到纳米级别,并具有较高的品质因子和精确的光学调控性能,这对于提高微型器件的性能和减小尺寸有着重要的意义。

另一方面,光子晶体在能量领域也有着广泛的应用,例如在太阳能电池中,光子晶体可以用于提高光吸收率和防反射效果,从而提高电池的能量转换效率。

同时,在固体氧化物燃料电池中,光子晶体也可以用于提高电化学反应的速率和效率。

这些应用不仅有助于促进新型能源的开发和利用,还可以优化能源的转化效率和节约能源的消耗。

第三部分:探讨光子晶体在光电子学中的应用光子晶体在光电子学领域中也有着重要的应用,例如在激光器中,光子晶体可以用于产生单模激光和增强激光的单模稳定性;在纳米光学中,光子晶体可以用于制备超材料、太赫兹系统等微型器件,对于实现纳米级别的光探测和信息传输具有重要的作用。

综述光子晶体的研究进展

综述光子晶体的研究进展

光子晶体的最新研究进展(学号:SA12231016 姓名:陈飞虎)摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。

在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。

本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。

关键词:光子晶体研究进展1 引言自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。

光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。

电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙,频率处在光子带隙中的光被禁止进入光子晶体。

若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。

采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。

因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领域[3-4]有着广泛应用。

当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。

因此可调控的光子晶体成为各个应用领域的研究热点和方向。

2 光通信技术方向的研究进展传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。

而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。

光子晶体技术的进展与应用

光子晶体技术的进展与应用

光子晶体技术的进展与应用科技的发展永远都是一步步地向前推进,而光子晶体技术也是其中的一种重要的技术手段。

这种技术的广泛应用已经改变了人们的生活和工作方式,并在许多领域取得了突破性的进展。

本文将探讨光子晶体技术的进展和应用。

一、光子晶体技术的原理光子晶体是一个具有周期性折射率的结构,它能够限制和控制光的行为。

光子晶体在物理学和光学领域中已经得到广泛的应用。

这种具有周期性结构的材料可以产生光的布拉格散射,这种散射能够在光子带隙处强化;同时,光子晶体还可以产生多种光学现象,如干涉、透射、折射等等。

因此,光子晶体得到了人们的广泛关注和研究。

二、光子晶体技术的应用1. 光子晶体在光通信领域的应用光子晶体的优秀光学性能使得它在光通信领域中得到了广泛的应用。

在通信领域,光子晶体可以用作滤波器、耦合器、反射器等组件。

同时,光子晶体还可以用来提高光学器件的性能、降低光损耗和提高通信带宽等。

因此,光子晶体的应用将会在光通信领域产生革命性的变化。

2. 光子晶体在生物医学领域的应用光子晶体可调谐滤波器和传感器的特性使其在生物医学领域中得到了广泛的应用。

它可以用来测量细胞、组织和器官等的光学性质,以便更好地了解这些物质的特性。

此外,光子晶体还可以用作生物标记物的检测和分析。

这些应用对于生物医学研究和医学诊断有重要的意义。

3. 光子晶体在环境检测领域的应用光子晶体的多种光学性质使其在环境检测领域中成为了一个重要的工具。

光子晶体可以敏感地反应环境的化学、物理和生物变化,例如温度、湿度、PH值、体积等。

这些测量可以用来监测环境污染、气候变化和天然灾害等,以控制和保护我们的环境。

4. 光子晶体在能源领域的应用光子晶体在太阳能电池、LED等能源应用领域中有着广泛的应用。

通过调节光子晶体材料的结构,可以控制能源材料中光的散射和吸收,从而提高能源的转化效率和功能。

此外,光子晶体还可以用作高效的光电器件,包括太阳能器件和LED。

三、光子晶体技术的发展前景光子晶体技术的应用范围越来越广泛,未来光子晶体技术也将会在各个领域取得更大的进展。

综述光子晶体的研究进展

综述光子晶体的研究进展

综述光子晶体的研究进展光子晶体(Photonic crystal)是一种具有周期性的折射率分布的人工光学材料,其在电磁波的传播中发挥着重要作用。

光子晶体可以通过控制光的传播行为实现对光波的调控和控制,具有广泛的应用潜力。

本文将综述光子晶体的研究进展。

光子晶体的发展可以追溯到1987年,当时Yablonovitch等人首次提出了光子禁带(Photonic bandgap)的概念,即在一些频率范围内,光子晶体可以完全排除特定方向上的电磁波的传播。

这一概念引发了光子晶体研究的热潮。

在光子晶体的研究中,设计和制备光子晶体材料是关键环节。

研究人员通过改变光子晶体的周期、形状和尺寸等参数,来调控光的传播特性。

常用的制备方法包括自组装法、溶胶凝胶法、光刻法和自旋镀膜法等。

随着技术的发展,研究人员可以制备出具有二维和三维周期结构的光子晶体材料。

光子晶体的研究进展可以总结为以下几个方面。

首先,光子晶体在光学器件中的应用取得了重要进展。

例如,在光纤通信中,光子晶体光纤可以提供低损耗和低色散的传输特性,进一步提高了通信带宽和传输距离。

此外,光子晶体在激光器、太阳能电池和光学传感器等领域也有广泛应用。

其次,光子晶体的表面等离子体共振研究也取得了重要进展。

通过将金属等离子体纳米颗粒引入光子晶体中,可以产生局域表面等离子体共振效应,从而实现对光的超聚焦和局域增强效应。

这对于提高光学器件的分辨率和灵敏度具有重要意义。

另外,光子晶体在光学传感器和生物医学领域的应用也受到了广泛的关注。

光子晶体结构可以通过改变其反射光的特性对环境中的物质进行探测和识别。

例如,通过改变光子晶体的折射率,可以实现对环境中的气体和化学物质的检测。

此外,光子晶体还可以用于生物成像和癌症治疗等生物医学应用。

最后,光子晶体的研究也涉及到新型材料的开发。

近年来,研究人员通过结合光子晶体结构和具有特定光学性质的材料,如非线性光学材料和拓扑绝缘体材料,实现了更多样化和功能化的光子晶体器件。

光子晶体光纤的原理、应用和研究进展

光子晶体光纤的原理、应用和研究进展

光子晶体光纤的原理、应用和研究进展一、本文概述光子晶体光纤,作为一种具有独特光学性质的新型光纤,近年来在光通信、光电子、生物医学等领域引起了广泛关注。

本文旨在全面介绍光子晶体光纤的原理、应用以及研究进展,以期为读者提供深入的理解和前沿的科研动态。

我们将概述光子晶体光纤的基本结构和光学特性,阐述其与传统光纤的区别和优势。

我们将详细介绍光子晶体光纤在光通信、光电子器件、生物医学成像等领域的应用实例,展示其在这些领域的独特作用和价值。

我们将总结当前光子晶体光纤研究的热点问题和发展趋势,以期为相关领域的研究者提供有价值的参考。

二、光子晶体光纤的基本原理光子晶体光纤,也被称为微结构光纤或空芯光纤,其基本原理主要基于光子带隙效应和光子局域化。

这种光纤的核心结构由周期性排列的空气孔组成,形成了一种类似于晶体的结构,因此得名光子晶体。

光子带隙效应是指,在特定频率范围内,光波在光子晶体中传播时,由于受到晶体结构的影响,某些频率的光波被禁止传播,形成所谓的“光子带隙”。

这种效应使得光子晶体光纤具有独特的传输特性,例如低损耗、高带宽等。

光子局域化则是指,当光波在光子晶体中传播时,受到晶体结构的影响,光波的能量被局限在某一特定区域内,形成所谓的“光子局域态”。

这种效应使得光子晶体光纤能够实现光波的高效传输和控制。

在光子晶体光纤中,光波主要在空气孔中传播,而非传统的光纤中的玻璃介质。

这种特殊的传输方式使得光子晶体光纤具有许多独特的性质,例如低损耗、高带宽、抗弯曲、耐高温等。

由于光子晶体光纤的结构灵活性,可以通过改变空气孔的大小、形状和排列方式等,实现对光波传输特性的精确调控,进一步拓展其应用范围。

光子晶体光纤的基本原理是基于光子带隙效应和光子局域化,通过特殊的结构设计实现光波的高效传输和控制。

这种光纤具有许多独特的性质和应用前景,是光通信领域的重要研究方向之一。

三、光子晶体光纤的应用领域光子晶体光纤作为一种独特的光传输媒介,其应用领域广泛而深远。

光子晶体的研究进展

光子晶体的研究进展

第39卷第12期激光与红外V o.l39,N o.12 2009年12月LA SER&I NFRARED D ece mber,2009文章编号:1001-5078(2009)12-1257-06#综述与评论#光子晶体的研究进展艾桃桃(陕西理工学院材料科学与工程学院,陕西汉中723003)摘要:光子晶体是一种具有光子带隙的周期性电介质结构,落在光子带隙中的光不能传播。

由于其独特的调节光子传播状态的功能,成为实现光通讯和光子计算机的基础。

光子晶体的制备是发展光子晶体的关键,而可见光和近红外波段光子晶体的制备更是难点。

本文阐述了光子晶体的概念及其特性后,分别介绍了光子晶体的实验研究和应用研究。

实验研究重点介绍了光子晶体的制备方法。

应用研究重点介绍了单模发光二极管光、光波导器件和微波天线等。

关键词:光子晶体;光子带隙;制备技术中图分类号:O73文献标识码:AProgress in t he st udy of photonic cryst alsA I Tao-tao(D epart m ent o fM ater ials Sc i ence and Eng i nee ri ng,Shaanx iU n i ve rsity o f T echno l ogy,H anzhong723003,Ch i na)A bstrac t:Photonic cry sta ls are ma teria l s w ith regular periodicity of d i e lectr i c structures,wh ich can create a range o fforb i dden frequenc i es call ed pho ton ic bandgap.Photons w it h energ ies l y i ng i n the bandgap canno t propaga te t hrought he m ed i u m.M o reover,photon i c crystals have the ab ilit y to m an i pu l a te,confi ne and contro l li ght,thus prov ide t he op-portun i ties to shape andm ould the fl ow o f light for photon i c comm un i cation technology and pho ton ic co m puter.In pres-ent,the preparati on of pho t on i c c rysta l s,espec i a lly those i n visi b le or near-infrared reg i on,is the key to t he develop-m ent of photonic c rysta l s.In t h is paper,the concepti on and charac teristi cs of photonic crysta l are descr i bed at first,andt hen the research i n experi m ent and appli ca tion are i n troduced respec ti ve l y.In exper i m ent research,fabricati on m et hodo f photon ic cry sta ls is dep i cted.In appli ca tion,si ng l e-m ode li ght-em itti ng di ode,optical w avegu i de dev ice and m icro-w ave antenna are descri bed.K ey word s:photonic crystals;pho ton ic band gap;preparation techn ic1引言1987年,Yab l o novitch[1]在讨论如何抑制自发辐射和John[2]在讨论光子局域时各自独立地提出了光子晶体(Photonic Crystals)的概念。

超材料和光子晶体的新进展

超材料和光子晶体的新进展

超材料和光子晶体的新进展光子晶体和超材料是当前研究光子学和电磁学的两个重要领域。

光子晶体是一种具有规则周期结构的材料,它可以控制、操纵和调节光线,具有多种应用前景。

而超材料则是一种具有负折射率、负折射率等特殊光学性质的人工材料,是制备光子晶体和纳米光学器件的重要基础。

最近,超材料和光子晶体的研究取得了新的进展,包括制备方法、性能调控、应用等方面的创新。

下面,我们将就其中几个方面进行介绍。

一、制备方法的创新超材料的制备方法通常包括自组装法、纳米压印法、溶胶-凝胶法等。

然而,这些方法受到了材料表面质量和制备成本等方面的限制,难以实现大规模生产和实际应用。

因此,研究人员对制备方法的创新进行了尝试。

一种新方法是基于多光子聚合技术的非线性光刻法。

多光子聚合技术是利用高能量激光在特定条件下将光敏材料中的单体进行聚合,形成纳米结构。

与传统的光刻技术相比,多光子聚合技术具有更高的分辨率和制备精度。

应用多光子聚合技术可以制备出高精度的微纳米结构,从而实现新型的超材料的制备。

光子晶体的制备也是一个难题。

目前,比较常使用的方法是利用自组装法和光刻技术。

但是自组装法制备出的光子晶体质量欠佳,而光刻技术则需要昂贵的设备和高昂的成本。

为了解决这个问题,研究人员尝试了新的制备方法。

一种新方法是基于共聚合反应的模板法。

该方法可以利用模板孔道进行共聚合反应,导致聚合物自组装形成三维排列相互垂直的微孔结构,形成独特的光子晶体。

这种方法可以避免传统的自组装法的缺陷,并且具有较高的制备效率和成本优势。

二、性能调控的新发现超材料和光子晶体的性能在不同的应用场景中有很大的差异,需要进行调控。

近年来,研究人员在超材料和光子晶体的性能调控方面取得了新的发现。

对于超材料,研究人员发现,通过调整其组分和结构,可以实现材料的“负折射率”特性。

这一特性让超材料具有了许多新的应用,例如全息成像、多波长过滤器、高精度波导等。

对于光子晶体,研究人员发现一种新的调控方法,即通过溶解法实现光子晶体的调控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光子晶体的最新研究进展(学号:SA12231016 姓名:陈飞虎)摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。

在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。

本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。

关键词:光子晶体研究进展1 引言自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。

光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。

电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。

若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。

采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。

因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领域[3-4]有着广泛应用。

当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。

因此可调控的光子晶体成为各个应用领域的研究热点和方向。

2 光通信技术方向的研究进展传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。

而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。

理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。

另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。

光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。

目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。

PCF的大负色散实现了-55000 ps·(km/nm)-1的高阶模色散值、-36000 ps·(km/nm)-1的基模色散值。

对光子带隙型PCF的带隙与模式研究,有助于解决光波的非线性传输控制和光与物质的非线性相互作用等问题。

利用PCF及其非线性效应,实现了波长可调节且高效的频率变换、可见光波段平坦超连续谱(SC)和高效宽带切伦科夫辐射(CR)的产生等。

3在材料科学方面的应用光子晶体的禁带特性最先被用来做成完美的反射镜和天线。

随着光子晶体研究的热门兴起,近来经研究发现,将磁光材料嵌于光子晶体中可构成一种新型的光子带隙材料——磁性光子晶体[6-7]。

磁性光子晶体具有宽的和可逆的调谐性,能对磁场产生瞬间响应,在磁场下对近红外和可见光区域波长的光及微波都能产生响应,在可见光区域表现为在磁场下能显示不同的颜色(磁致变色),在光子晶体结构单元中加入磁性成分后,可通过外加直流磁场来调整自身的光学性质,使得组分中含有磁性材料的光子晶体具有巨大的应用前景。

这样的磁性光子晶体特别是胶态磁性光子晶体在相关文献中都有其制备方法,磁性光子晶体目前已经应用在磁光隔离器、磁光环行器及微波频率多路选择等方面,未来的胶态磁性晶体因主要成分是磁性颗粒[8]并有光子晶体的性质,因此有望广泛应用于医学、生化工程及光学器件等领域。

4在激光与光电子学上取得的成果光子晶体在激光与光电子学上所取得的成就主要有光子晶体光纤飞秒激光技术的实验研究和光纤传感器的最新进展,尤其是高功率、高能量飞秒激光系统的研究现状和发展方向。

目前应用于飞秒激光技术领域的PCF分为“非增益型”和“增益型”两大类,所谓“非增益型”就是没有掺杂激活离子的PCF。

该类PCF在飞秒激光技术领域的应用主要是作为色散补偿和频率变换器件。

高非线性PCF(HNL-PCF)是利用大空气填充率包层加小芯径纤芯(微米量级)的结构。

该类PCF在飞秒激光技术领域的主要应用是非线性频率变换,比如可以直接产生高亮度的超快超连续谱,并作为超连续源应用于生物医学、光纤通信、光学频率梳与计量、激光光谱学等领域;这种技术也在飞秒光参量振荡(OPO)、光参量放大(OPA)和啁啾放大(OPCPA)中广泛使用;或者直接用于对飞秒激光脉冲的光谱展宽,再进行啁啾脉冲压缩,以获得极限脉冲宽度;此外利用该类PCF中的非线性效应[13],如四波混频(FWM)、受激拉曼散射(SRS)等,可实现频率变换,例如利用FWM效应的高非线性PCF已经成为产生纠缠光子对的技术手段之一。

另外,最近一些基于光子晶体纤维(PCF)的光纤环境(FLM)被提出并广泛应用于多种光纤传感器中。

主要有多种基于高双折射[9-10](HiBi)光子晶体光纤环镜(PCF FLM)和低双折射(LoBi)PCF FLM的光纤传感器,包括应力、气压、温度、微弯和扭曲等光纤传感器,PCF具有较好的温度稳定性,在传感检测中可有效排除多个被测物理量之间的交叉影响[11-12],使传感器结构简化,因此PCF FLM已经在很多传感领域得到应用。

对于目前需求较大的用于高温环境的传感器件,基于PCF FLM的传感器也将具有较大应用潜力。

参考文献[1] Yablonovitch E. Inhibited spontaneous emission insolidstatephysics and electronics[J]. Phys Rev Lett,1987,58:2059[2] John S. Strong localization of photons in certaindisordereddielectric superlattices[J]. Phys Rev Lett,1987,58:2486[3] Berr Moshe M, Alexeev V L, et al. High ionic strengthglucosesensing photonic crystal[J]. Anal Chem,2006,78:5149 [4] Li J, et al. F2-laser digital etching of colloidal photoniccrystals[J]. Opt Express,2005,13:6454[5] 赵勇,赵华伟,张馨元,等.慢光产生的新机理及其应用 [J].光学精密工程,2009,17(2):237-245.[6] Kato H, Inoue M. Reflectionmode operation ofone-dimensional magneto-photonic crystals for use infilm-based magneto-optical isolator devices [J]. J Appl Phys,2002,91(10):7017[7] Takeda E, Todoroki N, Kitamoto Y, et al. Faradayeffectenhancement in Co-ferrie layer incorporated into one-dimensional photonic crystal working as Fabry-Perot resonator[J]. J Appl Phys,2000,87(9):6782[8] Wang L, Yang Z H, Zhang Y H,et al. Bifunctionalnanoparticles with magnetization and luminescence[J]. J PhysChem C,2009,113(10):3955[9] RAJAN G, RAMAKRISHNAN M, SEMENOVA Y, et al. Aphotoniccrystal fiber and fiber Bragg grating based hybrid fiber optic sensor system[J].Sensors Journal, 2011, pp(99):1.[10] DONG B, HAO J, XU Z, Temperature insensitive curvaturemeasurement with a core-offset polarization maintaining photonic crystal fiberbased interferometer [J].Optical Fiber Technology, 2011, 17(3): 233-235.[11] LU P, MEN L, CHEN Q. Polymer-coated fiber Bragg gratingsensorsfor simultaneous monitoring of soluble analytes and temperature [J]. Sensors Journal,2009, 9(4):340-345. [12] WU C, FU H Y, AU H Y, et al. High-sensitivity salinitysensor realizedwith photonic crystal fiber Sagnacinterferometer [C]. Proc SPIE, 2011,7753.[13] X.H.Fang,M.L.Hu,L.L.Huang etal..Multiwattoctave-spanning supercontinuum generation in multicore photonic-crystal fiber[J].Opt.Lett.,2012,37(12):2292~2294。

相关文档
最新文档