(完整版)高等数学(同济大学第七版)第一章函数与极限课后答案
高等数学第一章课后习题答案
高等数学(本)第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤[]ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a ax a a x a x班级 姓名 学号3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()x e x g =,求()[]x g f 和()[]x f g ,并做出这两个函数的图形。
⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}n x 有界, 又,0lim =∞→n n y 证明: .0lim =∞→n n n y x{}结论成立。
高等数学同济第七版上册课后习题答案
高等数学同济第七版上册课后习题答案高等数学作为大学理工科专业的重要基础课程,对于学生的数学素养和后续专业课程的学习都具有至关重要的作用。
而同济大学出版的《高等数学》第七版上册更是被广泛采用的教材之一。
课后习题是巩固知识、检验学习效果的重要手段,因此,准确的课后习题答案对于学生的学习帮助极大。
在这本教材的上册中,涵盖了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用等重要章节。
每一章的课后习题都经过精心设计,旨在帮助学生深入理解和掌握所学的知识点。
对于函数与极限这一章节,课后习题主要围绕函数的概念、性质、极限的定义、计算方法等展开。
例如,求某些复杂函数的极限可能需要运用到极限的四则运算法则、等价无穷小替换、洛必达法则等方法。
在解答这些习题时,需要学生对这些方法有清晰的理解和熟练的运用。
答案中应该详细说明每一步的计算过程和依据,让学生能够明白解题的思路。
导数与微分这部分的习题则侧重于导数的定义、求导法则以及微分的计算。
像复合函数求导、隐函数求导等都是常见的题型。
在给出答案时,要着重解释求导的步骤和关键要点,帮助学生掌握求导的技巧。
微分中值定理与导数的应用这一章节的习题相对较难,需要学生能够灵活运用中值定理解决问题,并且能够运用导数判断函数的单调性、极值和凹凸性等。
答案中应该清晰地展示如何运用定理进行推理和计算,以及如何根据导数的性质得出函数的相关性质。
不定积分的习题主要考查积分公式的运用和积分方法的选择,如换元积分法、分部积分法等。
答案中要详细说明积分的思路和方法,帮助学生理解不同积分方法的适用情况。
定积分及其应用部分的习题涉及定积分的计算、定积分的几何应用和物理应用等。
在答案中,不仅要给出定积分的计算过程,还要清晰地展示如何将定积分应用于求解面积、体积、做功等实际问题。
在提供课后习题答案时,要注重答案的规范性和准确性。
每一道题的答案都应该有清晰的步骤和逻辑,避免跳跃性的思维和不严谨的表述。
同济大学版高等数学课后习题答案第1章
习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x x x x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学《高等数学》第七版上、下册答案(详解),DOC
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.
同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 函数与极限(圣才出品
(2)有界性
如果数列{xn}收敛,则数列{xn}一定有界。
①有界数列:存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
②无界数列:不存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
(3)保号性
如果
lim
n
xn
a
,且
a>0(或
a<0),则存在正整数
N>0,当
n>N
时,都有
xn>0
(4)初等函数
5 类基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
二、数列的极限
1.数列极限的定义
数列{xn}收敛于
a⇔
lim
n
xn
a
⇔∀ε>0,∃正整数
N,当
n>N
时,有|xn-a|<ε。
数列{xn}是发散⇔
lim
n
xn
不存在。
2.收敛数列的性质
(1)唯一性
如果数列{xn}收敛,则它的极限唯一。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 1 章 函数与极限
1.1 复习笔记
一、映射与函数 1.函数 (1)函数的性质(见表 1-1)
表 1-1 函数的性质
(2)反函数与复合函数 ①反函数的特点 a.函数 f 和反函数 f-1 的单调性一致。 b.f 的图像和 f-1 的图像关于直线 y=x 对称。 ②复合函数 g 与 f 能构成复合函数 f°g 的条件是:f 的定义域与 g 的值域的交集不能为空集。 (3)函数的运算 设函数 f(x),g(x)的定义域为 Df,Dg,且定义域有交集为 D,则可定义这两个函
②如果数列{xn}有两个子数列收敛于不同的极限,则数列{xn}是发散的。
高等数学同济第七版上册课后答案
高等数学同济第七版上册课后习题答案L 求下列函数的自然定义域: ⑴ y = J3K +2; ⑶ y =—Vi- x 2;X (5) y=sin(7)y = arcsin(x-3); (9)jV = ln(x + l);解:(1)3AI + 2>0=>X >-23(2)1 -厂工 0 = JCH ±1, 即定义域为(-8, -1) U (-1/)D (1, +8) (3)/ = 0且1一/之0=4工0且产仔1 即定义域为[-1R)D(0,1](2)y = 1 - JC (4);y -1 , A /4-JT (6)y = tan(x +1); (8)J=V3-x + arctanJL; x(10)y = e e\,即定义域为「一 2,+0?(4)4-犬>。
二>卜|<2即定义域为(—2,2)(5)x2 0,即定义域为[0, +oc)71(6)x +1 / kjr + 一 (% £Z), \ 2 1即定义域为x xe R^x^(k+ )兀一1k eZ(7)|x-3|< 1= 2 WxW 4,即定义域为[2,4](8)3—冗2 0且4工0,即定义域为(一8,0) u(0,3](9)x + 1 >0=>x> -1 即定义域为(-1,+8) (10)工工0,即定义域为(一双0) u (0, +oo)2,下列各题中,函数/(x)和g(x)是否相同?为什么?(1)/U) = 1g g(x) =21gx(2)/U) = x, g(x)=岳(3)/(%) = #(f-丁), g(x) =(4)/(x) = l,g(x) =sec'x — tarrx解;(1)不同,因为定义域不同((2)不同,因为对应法则不同,g(M= 1—= x.x>0< 0(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同匹斗|斗<3 .设a“)=\ 兀3州花一11 3求0(二),夕(巴),旗一土),0(-2),并指出函数y = Q(x)的图形6 4 41 /乃、, 7T yfl二?,以 4)= sin 耳=~^,0(_Z)= sin(--)l = =0,44 | 2(l)y=(2)y = x + In x,(0, +oo)证明:,匹、 .匹%)=sm%解:4 .试证下列函数在指定区间内的单调X \-xx 1⑴尸/W = ---- -- = T+ -- --- ,(一00』)1-x 1-x设X] <工2 < 1,因为/%)—/区)=“七方 ,〉0 (—Xi) >U1 2所以/(X2 )> /(&),即/(X)在(一8,1)内单调增加(2) y - /(x) = x + In x,(0, +8)设0<»<彳2,因为 /U) -/u) = X - x+ In 当二。
同济大学《高等数学》第七版上、下册答案(详解)
练习7-6
总习题七
练习8-1
练习8-2
>
练习8-3
练习8-4
练习8-5
练习8-6
练习8-7
练习8-8
总习题八
练习9-1
练习9-2
>>
<<>>
<<
练习9-3
练习9-4
总习题九
练习10-1
练习10-2
练习10-3
练习10-4
练习10-5
练习10-6
练习10-7
总习题十
练习111
练习112
-
0
+
无
-
-
yf(x)
1
极小值
↗
无
↗
0
拐点
↗
无
↗
-1
极大值
练习3-7
总习题三
x
(, 0)
0
f(x)
+
不存在
-
0
+
f(x)
↗
2
极大值
↘
极小值
↗
练习4-2
练习4-3
练习4-4
>>>
总习题四
练习5-1
练习5-2
练习5-3
练习5-4
总习题五
练习6-2
练习6-3
总习题六
练习7-1
练习7-2
练习7-3
练习7-4
↘
17/5
极小值
↗
6/5
拐点
↗
2
拐点
↗
x
0
(01)
1
y
+
+
高等数学同济第七版上册课后习题答案
高等数学同济第七版上册课后习题答案高等数学作为大学理工科专业的重要基础课程,对于学生的逻辑思维和数学素养的培养起着至关重要的作用。
而《高等数学》同济第七版上册更是众多高校选用的经典教材。
课后习题作为巩固和深化知识的重要手段,其答案的准确性和完整性对于学生的学习效果有着直接的影响。
在学习高等数学的过程中,很多同学都会遇到各种各样的问题,尤其是在课后习题的解答上。
有时候,即使认真听讲、仔细阅读教材,也可能会在解题时感到困惑。
这时候,一份详细准确的课后习题答案就显得尤为重要。
首先,我们来看第一章函数与极限。
这一章的习题主要围绕函数的概念、性质以及极限的计算展开。
对于函数的定义域、值域、奇偶性等问题,需要同学们对函数的定义有清晰的理解。
而极限的计算则是这一章的重点和难点,包括利用极限的四则运算法则、两个重要极限、等价无穷小替换等方法求极限。
以习题 1-1 中的第 5 题为例:求函数\(f(x) =\sqrt{x^2 4}\)的定义域。
要解决这个问题,我们需要令\(x^2 4 \geq 0\),即\((x 2)(x + 2) \geq 0\)。
解得\(x \leq -2\)或\(x \geq2\),所以函数的定义域为\((\infty, -2 \cup 2, +\infty)\)。
再比如第一章的习题 1-5 中的第 2 题:计算\(\lim_{x \to 0}\frac{\sin 3x}{x}\)。
这道题可以利用重要极限\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)来求解。
将原式变形为\(3 \times\lim_{x \to 0} \frac{\sin 3x}{3x}\),结果为\(3\)。
第二章导数与微分的习题则侧重于导数的定义、求导法则以及微分的计算。
对于复合函数的求导,需要同学们熟练掌握链式法则。
比如习题 2-2 中的第 7 题:设\(y =\ln \sqrt{\frac{1 x}{1+ x}}\),求\(y'\)。
高等数学同济第七版上册课后习题答案
高等数学同济第七版上册课后习题答案高等数学作为理工科学生的重要基础课程,其学习过程中课后习题的练习和答案的参考至关重要。
对于使用同济第七版上册教材的同学们来说,课后习题答案的准确性和详细程度直接影响着对知识的掌握和理解。
在这本书的课后习题中,涵盖了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用等多个重要章节的内容。
每一道习题都是对所学知识的巩固和拓展,而正确的答案则是检验学习成果和纠正错误的关键。
以函数与极限这一章节为例,其中的习题涉及到函数的概念、性质、运算,以及极限的定义、计算方法等知识点。
对于初学者来说,可能会在一些概念的理解和计算方法的运用上遇到困难。
比如,求一些复杂函数的极限时,可能需要运用到等价无穷小替换、洛必达法则等方法。
而通过查看课后习题答案,我们可以清晰地看到每一步的计算过程和思路,从而更好地掌握这些方法的应用。
再来看导数与微分这一部分,习题主要围绕导数的定义、求导法则、高阶导数以及微分的概念和运算展开。
在求解导数问题时,需要准确地运用各种基本函数的求导公式,并能够熟练地进行复合函数求导。
对于一些复杂的函数,可能需要多次运用求导法则才能得到最终的结果。
答案中的详细步骤可以帮助我们发现自己在求导过程中容易出现的错误,加深对导数概念的理解。
微分中值定理与导数的应用这一章节的习题则更加注重对定理的理解和应用。
拉格朗日中值定理、柯西中值定理等在证明和求解一些问题时具有重要的作用。
通过课后习题的练习和答案的参考,我们可以学会如何灵活运用这些定理来解决实际问题,例如判断函数的单调性、求函数的极值和最值等。
不定积分的习题主要是考察各种积分方法的运用,如换元积分法、分部积分法等。
在求解不定积分时,需要根据被积函数的特点选择合适的积分方法。
答案中会给出详细的积分步骤和思路,帮助我们掌握不同积分方法的技巧和要点。
定积分及其应用这部分的习题涉及到定积分的计算、定积分的几何意义、物理应用等方面。
高等数学(同济第七版)课后答案解析
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.
放
/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;