插值方法比较Word版
数值分析论文 ――几种插值方法的比较课程论文8(学院+专业+学号)

数值分析论文——几种插值方法的比较1.插值法概述插值法是函数逼近的重要方法之一,有着广泛的应用 。
在生产和实验中,函数或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函()x f 数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数,使()x ϕ其近似的代替,有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿()x f (Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermite 插值,分段插值和样条插值.这里主要介绍拉格朗日(Lagrange)插值和牛顿(Newton)插值和埃尔米特插值(Hermite 插值)。
2.插值方法的比较2.1拉格朗日插值2.1.1基本原理构造次多项式,这是n ()()()()()x l y x l y x l y x l y x P n n k nk k n +⋅⋅⋅++==∑=11000不超过次的多项式,其中基函数:n()x l k =)...()()...()(()...()()...()(()1110)1110n k k k k k k k n k k x x x x x x x x x x x x x x x x x x x x ----------+-+-显然满足 =()x l k ()i k x l ⎩⎨⎧≠=)(0)(1k i k i 此时,误差()()x f x P n ≈()()()=-=x P x f x R n n (x))!1()(1)1(+++n n n f ωξ其中∈且依赖于,.ξ()b a ,x ()()()()n n x x x x x x x -⋅⋅⋅--=+101ω很显然,当,插值节点只有两个,时1=n k x 1+k x ()()()x l y x l y x P k k k k i 11+++=其中基函数 = , =()x l k 11++--k k k x x x x ()x l k 1+kk kx x x x --+12.1.2优缺点可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,故常选用代数多项式作为插值函数。
空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)
[转载]插值算法(一):各种插值方法比较
![[转载]插值算法(一):各种插值方法比较](https://img.taocdn.com/s3/m/807a27741fd9ad51f01dc281e53a580216fc500f.png)
[转载]插值算法(⼀):各种插值⽅法⽐较原⽂地址:插值算法(⼀):各种插值⽅法⽐较作者:稻草⼈确定性随机性确定性随机性趋势⾯(⾮精确)回归(⾮精确)泰森(精确)克⾥⾦(精确)密度估算(⾮精确)反距离权重(精确)薄板样条(精确)整体拟合利⽤现有的所有已知点来估算未知点的值。
局部插值使⽤已知点的样本来估算位置点的值。
确定性插值⽅法不提供预测值的误差检验。
随机性插值⽅法则⽤估计变异提供预测误差的评价。
对于某个数据已知的点,精确插值法在该点位置的估算值与该点已知值相同。
也就是,精确插值所⽣成的⾯通过所有控制点,⽽⾮精确插值或叫做近似插值,估算的点值与该点已知值不同。
1、反距离加权法(Inverse Distance Weighted)反距离加权法是⼀种常⽤⽽简单的空间插值⽅法,IDW是基于“地理第⼀定律”的基本假设:即两个物体相似性随他们见的距离增⼤⽽减少。
它以插值点与样本点间的距离为权重进⾏加权平均,离插值点越近的样本赋予的权重越⼤,此种⽅法简单易⾏,直观并且效率⾼,在已知点分布均匀的情况下插值效果好,插值结果在⽤于插值数据的最⼤值和最⼩值之间,但缺点是易受极值的影响。
2、样条插值法(Spline)样条插值是使⽤⼀种数学函数,对⼀些限定的点值,通过控制估计⽅差,利⽤⼀些特征节点,⽤多项式拟合的⽅法来产⽣平滑的插值曲线。
这种⽅法适⽤于逐渐变化的曲⾯,如温度、⾼程、地下⽔位⾼度或污染浓度等。
该⽅法优点是易操作,计算量不⼤,缺点是难以对误差进⾏估计,采样点稀少时效果不好。
样条插值法⼜分为张⼒样条插值法(Spline with Tension)规则样条插值法(Regularized Spline)薄板样条插值法 (Thin-Plate Splin)3、克⾥⾦法(Kriging)克⾥⾦⽅法最早是由法国地理学家Matheron和南⾮矿⼭⼯程师Krige提出的,⽤于矿⼭勘探。
这种⽅法认为在空间连续变化的属性是⾮常不规则的,⽤简单的平滑函数进⾏模拟将出现误差,⽤随机表⾯函数给予描述会⽐较恰当。
(完整版)几种插值法比较与应用

多种插值法比较与应用(一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式∏≠=--=nkj j j kjk x xx x x l 0)( n k ,,1,0 =称为Lagrange 插值基函数 2. Lagrange 插值多项式设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件)()(k k n x f x L =,n k ,,1,0 =的n 次多项式∏∏∏=≠==--==nk nkj j jk j k k nk k n x x x x x f x l x f x L 000))(()()()(为Lagrange 插值多项式,称∏=+-+=-=nj j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商)(][i i x f x f = )(x f 关于i x ,j x 的一阶差商ij i j j i x x x f x f x x f --=][][],[依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商ik i k i i k i i k i i i x x x x f x x f x x x f --=+-+++++],,[],,[],,,[1112. Newton 插值多项式设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件)()(k k n x f x N =,n k ,,1,0 =的n 次多项式)()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N为Newton 插值多项式,称],[,)(],,,[)()()(010b a x x x x x x f x N x f x E nj j n n ∈-=-=∏=为插值余项。
插值方法比较范文

插值方法比较范文插值方法是数值计算中常用的一种数值逼近技术,用于通过已知数据点之间的关系来估计未知数据点的值。
在插值过程中,根据不同的插值方法,可以得到不同的近似函数,从而得到不同的结果。
常见的插值方法包括拉格朗日插值、牛顿插值、埃尔米特插值和样条插值等。
下面将对这些插值方法进行比较,包括优缺点。
首先是拉格朗日插值法,它是通过使用已知数据点的函数值来构建一个多项式,再利用这个多项式来估算未知数据点的函数值。
拉格朗日插值法的优点是简单易懂、计算简便,而且在已知数据点分布较为均匀的情况下效果较好。
然而,拉格朗日插值法的缺点是对于较多数据点的情况,构建的多项式会非常复杂,容易导致插值结果的振荡。
此外,拉格朗日插值法对于增加或减少一个数据点都需要重新计算,不够灵活。
其次是牛顿插值法,它也是通过已知数据点的函数值来构建一个多项式,但是与拉格朗日插值法不同,牛顿插值法利用差商的概念来简化多项式的计算。
牛顿插值法的优点是可以递推计算差商,避免了重复计算,因此对于增加或减少一个数据点时比较方便。
此外,牛顿插值法的插值多项式在已知数据点分布较为稀疏的情况下效果较好。
缺点是对于较多数据点的情况,插值多项式同样会变得复杂,容易导致插值结果的振荡。
再者是埃尔米特插值法,它是拉格朗日插值法的一种改进方法。
埃尔米特插值法不仅利用已知数据点的函数值,还利用已知数据点的导数值来构建插值函数,从而提高了插值的精度。
埃尔米特插值法的优点是可以通过已知数据点的导数值来更好地拟合函数的特点,从而得到更准确的插值结果。
缺点是在计算过程中需要求解一系列线性方程组,计算量较大。
最后是样条插值法,它是常用的插值方法之一、样条插值法通过将插值区间划分为若干小区间,在每个小区间上构建一个低次多项式,通过满足一定的光滑性条件来保证插值函数的平滑性。
样条插值法的优点是插值函数的平滑性较好,能够解决拉格朗日插值法和牛顿插值法的振荡问题。
缺点是在计算过程中需要求解大规模的线性方程组,计算量较大。
(完整word版)几种插值法的应用和比较

(完整word版)⼏种插值法的应⽤和⽐较插值法的应⽤与⽐较信科1302 万贤浩 132710381格朗⽇插值法在数值分析中,拉格朗⽇插值法是以法国⼗⼋世纪数学家约瑟夫·路易斯·拉格朗⽇命名的⼀种多项式插值⽅法.许多实际问题中都⽤函数来表⽰某种内在联系或规律,⽽不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进⾏观测,在若⼲个不同的地⽅得到相应的观测值,拉格朗⽇插值法可以找到⼀个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗⽇(插值)多项式.数学上来说,拉格朗⽇插值法可以给出⼀个恰好穿过⼆维平⾯上若⼲个已知点的多项式函数.拉格朗⽇插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗⽇在其著作《师范学校数学基础教程》中发表了这个插值⽅法,从此他的名字就和这个⽅法联系在⼀起.1.1拉格朗⽇插值多项式图1已知平⾯上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗⽇多项式:)(x L (⿊⾊)穿过所有点.⽽每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的⼀点,并在其它的三个点的x 值上取零.对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗⽇多项式L 只有⼀个.如果计⼊次数更⾼的多项式,则有⽆穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满⾜条件.对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x ,其中i x 对应着⾃变量的位置,⽽i y 对应着函数在这个位置的取值.假设任意两个不同的i x 都互不相同,那么应⽤拉格朗⽇插值公式所得到的拉格朗⽇插值多项式为:)()(0x l y x L j kj j ∑==,其中每个)(x l j 为拉格朗⽇基本多项式(或称插值基函数),其表达式为:)()()()()()()()()(111100,0k j k j j j j j j j kj i i ij i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏ΛΛ,拉格朗⽇基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0. 例:设有某个多项式函数f ,已知它在三个点上的取值为:10)4(=f , ? 25.5)5(=f , ?1)6(=f ,要求)18(f 的值.⾸先写出每个拉格朗⽇基本多项式:())64)(54()6)(5(0----=x x x l ;())65)(45()6)(4(1----=x x x l ;())56)(46()5)(4(2----=x x x l ;然后应⽤拉格朗⽇插值法,就可以得到p 的表达式(p 为函数f 的插值函数):)()6()()5()()4()(210x l f x l f x l f x p ++=)56)(46()5)(4(1)65)(45()6)(4(25.5)64)(54()6)(5(10----?+----?+----?=x x x x x x)13628(412+-=x x ,此时数值18就可以求出所需之值:11)18()18(-==p f .1.2插值多项式的存在性与唯⼀性存在性对于给定的1+k 个点:),(),,(00k k y x y x K 拉格朗⽇插值法的思路是找到⼀个在⼀点j x 取值为1,⽽在其他点取值都是0的多项式)(x l j .这样,多项式)(x l y j j 在点j x 取值为j y ,⽽在其他点取值都是0.⽽多项式()∑==kj jj x ly x L 0)(就可以满⾜∑==++++==ki j j j i y y x l y x L 0000)()(ΛΛ,在其它点取值为0的多项式容易找到,例如:)())(()(110k j j x x x x x x x x ----+-ΛΛ,它在点j x 取值为:)()()(10k j j j i x x x x x x ---+ΛΛ.由于已经假定i x 两两互不相同,因此上⾯的取值不等于0.于是,将多项式除以这个取值,就得到⼀个满⾜“在j x 取值为1,⽽在其他点取值都是0的多项式”:)()()()()()()()(111100k j k j j j j j j j i j j x x x x x x x x x x x x x x x x x x xx l --------=--=++--∏ΛΛ,这就是拉格朗⽇基本多项式. 唯⼀性次数不超过k 的拉格朗⽇多项式⾄多只有⼀个,因为对任意两个次数不超过k 的拉格朗⽇多项式:1p 和2p ,它们的差21p p -在所有1+k 个点上取值都是0,因此必然是多项式)())((10k x x x x x x ---Λ的倍数.因此,如果这个差21p p -不等于0,次数就⼀定不⼩于1+k .但是21p p -是两个次数不超过k 的多项式之差,它的次数也不超过k ,所以021=-p p 也就是说21p p =.这样就证明了唯⼀性.1.3性质拉格朗⽇插值法中⽤到的拉格朗⽇基本多项式n l l l ,,,10Λ(由某⼀组n x x x <<<Λ10 确定)可以看做是由次数不超过n 的多项式所组成的线性空间:[]X n K 的⼀组基底.⾸先,如果存在⼀组系数:n λλλ,,,10Λ使得,01100=+++=n n l l l P λλλΛ,那么,⼀⽅⾯多项式p 是满⾜n n x P x P x P λλλ===)(,,)(,)(1100Λ的拉格朗⽇插值多项式,另⼀⽅⾯p 是零多项式,所以取值永远是0.所以010====n λλλΛ,这证明了n l l l ,,,10Λ是线性⽆关的.同时它⼀共包含1+n 个多项式,恰好等于[]X n K 的维数.所以n l l l ,,,10Λ构成了[]X n K 的⼀组基底.拉格朗⽇基本多项式作为基底的好处是所有的多项式都是齐次的(都是n 次多项式).1.4优点与缺点拉格朗⽇插值法的公式结构整齐紧凑,在理论分析中⼗分⽅便,然⽽在计算中,当插值点增加或减少⼀个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,⾮常繁琐.这时可以⽤重⼼拉格朗⽇插值法或⽜顿插值法来代替.此外,当插值点⽐较多的时候,拉格朗⽇插值多项式的次数可能会很⾼,因此具有数值不稳定的特点,也就是说尽管在已知的⼏个点取到给定的数值,但在附近却会和“实际上”的值之间有很⼤的偏差.这类现象也被称为龙格现象,解决的办法是分段⽤较低次数的插值多项式.2 重⼼拉格朗⽇插值法重⼼拉格朗⽇插值法是拉格朗⽇插值法的⼀种改进.在拉格朗⽇插值法中,运⽤多项式)())(()(10k x x x x x x x l ---=Λ,图(2)拉格朗⽇插值法的数值稳定性:如图(2),⽤于模拟⼀个⼗分平稳的函数时,插值多项式的取值可能会突然出现⼀个⼤的偏差(图中的14⾄15中间)可以将拉格朗⽇基本多项式重新写为:∏≠=--=kji i i j jj x x x x x l x l ,0)(1)()(,定义重⼼权∏≠=-=k ji i i j j x x ,0)(1ω,上⾯的表达式可以简化为:jjj x x x l x l -=ω)()(,于是拉格朗⽇插值多项式变为:j kj jjy xx x l x L ∑=-=0)()(ω,(1)即所谓的重⼼拉格朗⽇插值公式(第⼀型)或改进拉格朗⽇插值公式.它的优点是当插值点的个数增加⼀个时,将每个j ω都除以)(1+-k j x x ,就可以得到新的重⼼权1+k ω,计算复杂度为)(n O ,⽐重新计算每个基本多项式所需要的复杂度)(2n O 降了⼀个量级.将以上的拉格朗⽇插值多项式⽤来对函数1)(≡x g 插值,可以得到:∑=-=?kj jjx x x l x g x 0)()(,ω,因为1)(≡x g 是⼀个多项式. 因此,将)(x L 除以)(x g 后可得到:∑∑==--=k j jjk j jjx x x x x L 00)(ωω,(2)这个公式被称为重⼼拉格朗⽇插值公式(第⼆型)或真正的重⼼拉格朗⽇插值公式.它继承了(1)式容易计算的特点,并且在代⼊x 值计算)(x L 的时候不必计算多项式)(x l 它的另⼀个优点是,结合切⽐雪夫节点进⾏插值的话,可以很好地模拟给定的函数,使得插值点个数趋于⽆穷时,最⼤偏差趋于零.同时,重⼼拉格朗⽇插值结合切⽐雪夫节点进⾏插值可以达到极佳的数值稳定性.第⼀型拉格朗⽇插值是向后稳定的,⽽第⼆型拉格朗⽇插值是向前稳定的,并且勒贝格常数很⼩.3.分段线性插值对于分段线性插值,我们看⼀下下⾯的情况.3.1问题的重诉已知211)(xx g +=,66≤≤-x ⽤分段线性插值法求插值,绘出插值结果图形,并观察插值误差.1.在[-6,6]中平均选取5个点作插值;2.在[-6,6]中平均选取11个点作插值;3.在[-6,6]中平均选取21个点作插值;4.在[-6,6]中平均选取41个点作插值.3.2问题的分析在数值计算中,已知数据通常是离散的,如果要得到这些离散点以外的其他点的函数值,就需要根据这些已知数据进⾏插值.⽽本题只提供了取样点和原函数)(x g .分析问题求解⽅法如下:(1)利⽤已知函数式211)(xx g +=计算取样点X 对应的函数值Y ;将Y X ,作为两个等长的已知向量,分别描述采样点和样本值.因此被插值函数是⼀个单变量函数,可利⽤⼀维插值处理该数据插值问题.⼀维插值采⽤的⽅法通常有拉格朗⽇多项式插值(本题采⽤3次多项式插值),3次样条插值法和分段线性插值.(2)分别利⽤以上插值⽅法求插值.以0.5个单位为步长划分区间[-6,6],并将每⼀点作为插值函数的取样点.再根据插值函数计算所选取样点的函数值.最后再利⽤所得函数值画出相应的函数图象,并与原函数)(x g 的图象进⾏对⽐.3.3问题的假设为了解决上述分析所提到的问题,本题可以作出如下假设:(1)假设原函数)(x g 仅作为求解取样点对应的样点值的函数关系式.⽽其他各点的函数值都是未知量,叙⽤插值函数计算.(2)为了得到理想的对⽐函数图象,假设)(x g 为已知的标准函数.可以选取0.5个单位为步长划分区间[-6,6],分别计算插值函数和标准函数)(x g 在该区间的取样点的函数值.画出函数图象进⾏对⽐.3.4分段线性插值原理给定区间[]b a ,, 将其分割成b x x x a n =<<<=Λ10,已知函数)(x f y =在这些插值结点的函数值为),1,0)((n k x f y k k Λ==;求⼀个分段函数)(x I k ,使其满⾜:(1) k k h y x I =)(,),1,0(n k Λ=;(2) 在每个区间[]1,+k k x x 上, )(x I h 是个⼀次函数.易知,)(x I h 是个折线函数, 在每个区间[]1,+k k x x 上,),1,0(n k Λ=1111)(++++--+--=k kk kk k k k k h y x x x x y x x x x x I ,于是, )(x I h 在[]b a ,上是连续的,但其⼀阶导数是不连续的. 于是即可得到如下分段线性插值函数:)()(0x l y x I ni i i n ∑==,其中=≤≤--=≤≤--=+++---.,0;,;0,111111其他时舍去时,且当时舍去时,且当n i x x x x x x x i x x x xx x x l i i i i i i i i ii i3.5问题的求解在MATLAB 中实现分段线性插值,最近点插值,3次多项式插值,3次样条插值的命令为interp 1,其调⽤格式为: Y 1=interp 1(X ,Y ,X 1,’method ’)函数根据X ,Y 的值,计算函数在X 1处的值.X ,Y 是两个等长的已知向量,分别描述采样点和样本值,X 1是⼀个向量或标量,描述欲插值点,Y 1是⼀个与X 1等长的插值结果.method 是插值⽅法,包括:linear :分段线性插值.它是把与插值点靠近的两个数据点⽤直线连接,然后在直线让选取对应插值点的数.nearest :近点插值法.根据已知两点间的插值点与这两点间的位置远近插值.当插值点距离前点远时,取前点的值,否则取后点的值.cubic :3次多项式插值.根据已知数据求出⼀个3次多项式,然后根据多项式进⾏插值. spline :3次样条插值.在每个分段(⼦区间)内构造⼀个3次多项式,使其插值函数除满⾜插值条件外,还要求个节点处具有光滑条件.再根据已知数据求出样条函数后,按照样条函数插值.运⽤Matlab ⼯具软件编写代码,并分别画出图形如下: (⼀)在[-6,6]中平均选取5个点作插值:-10-5051000.20.40.60.81分段线性插值g(x)y1-10-50510-0.500.513次样条插值g(x)y2-10-5051000.20.40.60.81最近点插值g(x)y3-10-5051000.20.40.60.813次多项式插值g(x)y4(⼆)在[-6,6]中平均选取11个点作插值:-10-5051000.20.40.60.81-10-5051000.20.40.60.81-10-5051000.20.40.60.81最近点插值-10-5051000.20.40.60.813次多项式插值g(x )y1g(x )y2g(x )y3g(x )y4(三)在[-6,6]中平均选取21个点作插值:-10-5051000.20.40.60.81分段线性插值-10-551000.20.40.60.813次样条插值-10-551000.20.40.60.81最近点插值-10-551000.20.40.60.813次多项式插值g(x )y1g(x )y2g(x )y3g(x )y4(四)在[-6,6]中平均选取41个点作插值-10-5051000.20.40.60.81g(x )y1-10-5051000.20.40.60.81g(x )y2-10-5051000.20.40.60.81最近点插值g(x )y3-10-5051000.20.40.60.813次多项式插值g(x )y43.6 分段插值⽅法的优劣性分析从以上对⽐函数图象可以看出,分段线性插值其总体光滑程度不够.在数学上,光滑程度的定量描述是函数(曲线) 的k 阶导数存在且连续,则称该曲线具有k 阶光滑性.⼀般情况下,阶数越⾼光滑程度越好.分段线性插值具有零阶光滑性,也就是不光滑.3次样条插值就是较低次数的多项式⽽达到较⾼阶光滑性的⽅法.总体上分段线性插值具有以下特点:优点: 1.分段线性插值在计算上具有简洁⽅便的特点.2.分段线性插值与3次多项式插值函数在每个⼩区间上相对于原函数都有很强的收敛性,(舍⼊误差影响不⼤),数值稳定性好且容易在计算机上编程实现等优点缺点: 分段线性插值在节点处具有不光滑性的缺点(不能保证节点处插值函数的导数连续),从⽽不能满⾜某些⼯程技术上的要求.⽽3次样条插值却具有在节点处光滑的特点.。
插值方法比较

1. 克里金法(Kriging)克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。
与其他插值方法不同,选择用于生成输出表面的最佳估算方法之前应对由z 值表示的现象的空间行为进行全面研究。
克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。
它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。
对于这种方法,原始的输入点可能会发生变化.在数据点多时,结果更加可靠。
该方法通常用在土壤科学和地质中。
2. 反距离权重法(Inverse Distance Weighted,IDW)反距离权重法(反距离权重法)工具所使用的插值方法可通过对各个待处理像元邻域中的样本数据点取平均值来估计像元值。
点到要估计的像元的中心越近,则其在平均过程中的影响或权重越大.此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。
例如,为分析零售网点而对购电消费者的表面进行插值处理时,在较远位置购电影响较小,这是因为人们更倾向于在家附近购物.反距离权重法主要依赖于反距离的幂值。
幂参数可基于距输出点的距离来控制已知点对内插值的影响。
幂参数是一个正实数,默认值为2。
通过定义更高的幂值,可进一步强调最近点.因此,邻近数据将受到最大影响,表面会变得更加详细(更不平滑)。
随着幂数的增大,内插值将逐渐接近最近采样点的值。
指定较小的幂值将对距离较远的周围点产生更大影响,从而导致更加平滑的表面。
由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。
作为常规准则,认为值为30 的幂是超大幂,因此不建议使用.此外还需牢记一点,如果距离或幂值较大,则可能生成错误结果。
3。
含障碍的样条函数(Spline with Barriers)含障碍的样条函数工具使用的方法类似于样条函数法工具中使用的技术,其主要差异是此工具兼顾在输入障碍和输入点数据中编码的不连续性.含障碍的样条函数工具应用了最小曲率方法,其实现方式为通过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。
常见插值方法及其介绍

常见插值方法及其介绍常见的插值方法有最邻近插值、双线性插值、双三次插值和基于样条的插值方法。
下面将对这些方法进行介绍。
1.最邻近插值:最邻近插值是最简单也是最直观的插值方法之一、该方法的原理是将待插值点附近最近的一个已知像素的灰度值赋给待插值点。
这种插值方法的优点是计算简单且实时性好,但缺点是结果较为粗糙,会出现明显的锯齿状边缘。
2.双线性插值:双线性插值是一种基于线性插值的方法,它考虑了待插值点附近四个已知像素的灰度值来生成新的像素值。
具体而言,对于一个待插值点,首先在水平方向上计算它上下两个已知像素的插值,然后在竖直方向上计算其左右两个已知像素的插值,最后再在这两次插值的基础上进行一次线性插值。
这种插值方法的优点是计算相对简单,效果较好,但仍然会存在锯齿状边缘。
3.双三次插值:双三次插值是一种更为复杂的插值方法,它通过分析待插值点周围的16个已知像素的灰度值来生成新的像素值。
具体而言,双三次插值首先根据已知像素的位置与待插值点的距离计算出一个权重系数矩阵,然后将这个系数矩阵与对应的已知像素灰度值相乘并相加。
这种插值方法的优点是结果较为平滑,点缺失问题较少,但计算量较大。
4.基于样条的插值方法:基于样条的插值方法主要包括线性样条插值、三次样条插值和B样条插值。
这些方法是基于插值函数的一种改进,通过选取合适的插值函数形式来拟合已知像素点,从而实现待插值点的灰度值推测。
这些方法计算量较大,但插值效果相对较好,具有高度灵活性。
总结:常见的插值方法包括最邻近插值、双线性插值、双三次插值和基于样条的插值方法。
最邻近插值计算简单且实时性好,但结果较为粗糙;双线性插值效果较好,但仍然存在锯齿状边缘;双三次插值平滑度较高,但计算量较大;基于样条的插值方法具有高度灵活性,但计算量较大。
选择适合的插值方法需根据具体需求考虑。
数值计算中多项式插值方法比较分析

1 引言..................................................................................................................................... 1 1.1 什么是插值............................................................................................................. 2 1.2 插值的起源及意义................................................................................................. 2 2 插值方法的原理及定义.................................................................................................... 3 2.1 插值问题的提法..................................................................................................... 4 2.2 插值多项式的存在唯一性..................................................................................... 4 2.3 插值多项式的截断误差......................................................................................... 6 2.4 几种插值方法原理................................................................................................. 7 2.4.1 线性插值...................................................................................................... 7 2.4.2 抛物线插值.................................................................................................. 8 2.4.3 拉格朗日插值.............................................................................................. 9 2.4.4 埃特金插值................................................................................................ 10 2.4.5 牛顿插值.................................................................................................... 11 2.4.6 差分与等距节点插值................................................................................ 12 2.4.7 其它插值方法............................................................................................ 13 2.4.8 插值多项式的收敛性与稳定性................................................................ 15 2.4.9 插值与反插值............................................................................................ 16 2.5 几种插值方法应用对比....................................................................................... 17 3 结语.................................................................................................................................. 22 参考文献.............................................................................................................................. 24 致 谢.................................................................................................................................. 25
(完整word版)空间内插方法比较

一、空间数据的插值用各种方法采集的空间数据往往是按用户自己的要求获取的采样观测值,亦既数据集合是由感兴趣的区 域内的随机点或规则网点上的观测值组成的。
但有时用户却需要获取未观测点上的数据,而已观测点上的数 据的空间分布使我们有可能从已知点的数据推算岀未知点的数据值。
在已观测点的区域内估算未观测点的数据的过程称为内插;在已观测点的区域外估算未观测点的数据的 过程称为外推。
空间数据的内插和外推在 GIS 中使用十分普遍。
一般情况下,空间位置越靠近的点越有可能获得与 实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。
下面介绍一些常用的内 插方法。
1、边界内插使用边界内插法时,首先要假定任何重要的变化都发生在区域的边界上,边界内的变化则是均匀的、同质的。
边界内插的方法之一是泰森多边形法。
泰森多边形法的基本原理是,未知点的最佳值由最邻近的观测值产生。
如图4-6-1所示。
泰森多边形的生成算法见§ 5.7。
2、趋势面分析趋势面分析是一种多项式回归分析技术。
多项式回归的基本思想是用多项式表示线或面,按最小二乘法原理对数据点进行拟合, 拟合时假定数据点的空间坐标 X 、Y 为独立变量,而表示特征值的Z 坐标为因变 量。
当数据为一维时,可用回归线近似表示为:-其中,Sb 、a i 为多项式的系数。
当n 个采样点方差和为最小时,则认为线性回归方程与被拟合曲线达工(N -乳〕之-min到了最佳配准,如图4-6-2左图所示,即: 一当数据以更为复杂的方式变化时,如图 4-6-2右图所示。
在这种情况下,需要用到二次或高次多项式:在GIS 中,数据往往是二维的,在这种情况下,需要用到二元二次或高次多项式:£ 二 % + a x X + a^X(二次曲线)7 1= +O,JV 2 +a 4J¥y4多项式的次数并非越高越好,超过 3次的多元多项式往往会导致奇异解,因此,通常使用二次多项 式。
插值方法比较

x0
)
+
f[x0 ,
x0
,
x1 ](x −
x0
)2
+
+
f[x0 , x0 , x1, x1,, xn , xn ](x− x0 )2 (x− x1)2 (x− xn−1)2 (x− xn )
其中,
f[x0 ,
x0
]
=
limf[x
x → x0
0
,
x]
f[x0 ,
x0,
x1 ]
=
f[x 0
,
x1 ] x1
相应的插值基函数为:
因此,三次 Hermite 插值多项式为:
H3 (x ) =yk αk (x) + yk+1 αk+1(x) + mk βk (x) + mk+1 βk+1(x)
ⅱ)Newton 形式的 Hermite 插值多项式
N 2 n +1 (x=)
f(x 0
)
+
f[x0 ,
x0 ](x−
分段三次hermite插值解决了分段线性插值节点处不光滑的缺点整条插值曲线可以一次连续可微次只能保证整个区间上插值多项式有连续的一阶导数而且构造的插值公式需要用到被插值函数在节点处的导数值的信息而实际中导数值比较难给出仅给出函数值较为一般
插值方法
1 插值的定义 设函数 f (x) 在区间[a,b]上有定义,并在 n+1 的不同节点 xi ∈[a, b] 上已知函
基函数。
3) Hermite 插值
Hermite 插值的定义:插值多项式要求被插值函数在插值节点上的取值相等,除此之外
若要求在节点上它们的导数值,甚至于高阶导数值都相等,满足这种条件的插值多项式称为
空间插值方法对比整理版

优点
能够处理非线性数据,对局部变化敏 感且具有较好的平滑效果。
缺点
计算复杂度较高,需要选择合适的核 函数和参数。
03
全局插值方法对比
线性插值
01
02
03
定义
线性插值是利用两点之间 的直线关系来估计未知点 的值。
公式
$z(x) = z(x_0) + frac{(x x_0) times (z(x_1) z(x_0))}{x_1 - x_0}$
06
各种方法的优缺点比较
计算复杂度
全局插值方法
计算复杂度较低,适用于大规模数据集,但牺牲了局部拟合 精度。
局部插值方法
计算复杂度较高,适用于小规模数据集,能更好地拟合局部 变化。
预测精度
全局插值方法
预测精度相对较低,适用于对全局趋 势的预测。
局部插值方法
预测精度较高,适用于对局部细节的 预测。
存在问题
尽管现有的空间插值方法取得了一定的成果,但在实际应用中仍存在一些问题。例如,对于复杂地形 和地貌的插值效果不够理想,插值结果的稳定性和可靠性有待提高。此外,现有方法在处理大规模数 据时效率较低,不能满足实时性要求。
未来研究方向与展望
研究方向
为了解决现有问题,未来的研究可以从以下几个方面展开:一是开发更为智能、自适应的插值算法,以提高 插值结果的稳定性和可靠性;二是研究如何将机器学习、深度学习等先进技术应用于空间插值中,以提高插 值的精度和效率;三是探索如何利用高性能计算技术,如并行计算、云计算等,实现大规模数据的快速处理。
适用于各种类型的空间数据,尤其适 用于具有空间结构性和随机性的数据。
特点
考虑了空间数据的结构性和随机性, 能够较好地反映空间数据的变异特征, 插值结果较为准确。
五种插值法的比较毕业论文

五种插值法的比较毕业论文装订线本科生毕业论文(设计)题目:五种插值法的比较系部数学系学科门类理学专业数学与应用数学学号姓名指导教师2022年某月某日五种插值法的比较摘要插值法是数值计算中一种重要的方法,在实际生活中有很多函数我们是求不出来的,但我们可以通过该函数在有限点处的取值,用某一函数来逼近它,然后估计出该函数在其他点的函数值.从古代就已经使用二次等距插值用于天文计算了,到现代用于工程计算、算法理论等方面.插值方法有很多种,这篇文章主要介绍了一般常用的五种插值法,并讨论了五种插值法在理论中的区别与在实际中应用.本文先从五种插值法的定义,通过它们的定义在形式上的差异来做简单比较;再结合相应的例题归纳总结五种插值法的特点,使我们清楚的知道哪种类型的插值法更适合解决哪一种类型的问题;最后通过实际应用来分析比较Lagrange插值、Newton插值、三次样条插值和分段插值各自在解决相应问题之间的差异.关键词:多项式;插值函数;interpolationfunction;interpolation目录摘要IABSTRACTII1引言12五种插值法22.1Lagrange插值22.2Newton插值32.3Hermite插值32.4分段插值42.5三次样条插值53五种插值法的解题分析比较74五种差值的实际应用145小结17参考文献181引言插值方法是数值计算中的最基本方法,是一种古老的数学方法.在中国古代就开始用二次插值法来推算天文历法,其中在《周髀》和《九章》中就已经使用到一次插值法.现代插值法的应用也十分广泛.主要解决如信息技术中的图象重建、图像放大过程中为避免图象失真、建筑工程的外观设计、天文观测数据、物理学中的应用等方面的问题.函数插值法,简称插值法.在许多实际问题中,有的函数虽然有解析式,但计算起来很复杂而且使用起来也不方便.所以我们通过函数给出某些点上的函数值,构造一个既能反映函数特征又便于计算的简单函数来逼近原函数.这就是我们所说的函数逼近.逼近函数的类型有多种选择方法,但其基本上是代数多项式应用最为广泛.建立代数多项式也有多种方法,像本文介绍的Lagrange插值多项式就便于理论推导和形式地描述算法,它在理论上十分重要.Newton插值的方法具有递推性,其组成很有规律,方便于实际计算.Hermite插值多项式是在插值节点有导函数限制的情况下使用.分段插值与三次样条插的逼近效果是其他插值法难以达到的.本文则主要介绍这五种插值法之间的区别,通过理论与实际的比较使读者更清楚的认识和了解这五种插值法.2五种插值法对于一个插值问题来说,如果已知条件就是个互异的插值节点点处的函数值,构造插值函数是一般不超过次的多项式,则称为是一般的个基点的多项式插值问题.Lagrange插值、Newton插值、Hermite插值、三次样条插值、分段插值五种插值法在定际运用中的都有各自不同的特点,下面就首先从定义上做简单的比较.2.1Lagrange插值此时我们习惯将插值节点和相应的函数值采用下表1的形式列出,并简称由表1给出的插值问题.表1……Lagrange插值是次多项式插值,其成功地用构造插值基函数的方法解决了求n次多项式插值函数问题.表(1)的n次Lagrange插值多项式的数学式:其中(i=0,1,2,…,n)是插值基函数,且.Lagrange插值多项式的余项其中,;不难发现Lagrange插值多项式便于理论推导和形式地描述算法,它在理论上十分重要,但是不便于计算函数值,因为用Lagrange插值多项式计算函数近似值,如果精度不满足,要增加节点,原来计算的数据均不能用.为了克服这个缺点下面介绍另外一种插值法Newton插值法.2.2Newton 插值Newton插值也是次多项式插值,其基本思路是将待求的次差值多项式改写成能逐次生成的形式,然后用插值条件求待定系数.由表(1)构造的Newton插值多项式为.用它插值时,首先要计算各阶差商,而各阶差商的计算可归结为一阶差商的逐次计算.一般地,;上面给出的插值多项式是节点任意分布的情况,但实际应用时经常遇到等距节点,即的情况,这里称为步长.设点的函数值为,称为处以为步长的一阶差分.一般的称为处的阶差分.所以Newton前插公式为.与Lagrange插值相比,Newton插值具有承袭性和易于变动节点的特点.Newton插值在计算插值多项式及求解函数近似值都比较方便且计算量相对较小.从公式看每增加一个节点,插值多项式只增加一项,因此便于计算,所以具有灵活增加节点的特点.Newton插值仅对节点处的函数做了约束,但是如果插值条件增加的是节点处导数的条件话,我们就需要下面的插值法—Hermite插值.2.3Hermite插值插值多项式要求在插值节点上函数值相等,有的实际问题还要求在节点上导数值相等,甚至高阶导数值也要相等,满足这种要求的插值多项式称为Hermite插值多项式.表2………如上表,设则满足条件,的次Hermite插值多项式为其中称为Hermite插值基函数,是Lagrange插值基函数.适当的提高插值多项式的次数,有可能会提高计算结果的准确度.但绝不能认为插值多项式次数越高越好,利用被插值函数节点信息越多,误差越小.由插值多项式的截断误差公式可见:若,插值误差为.截断误差与与有关,但其绝对值不一定随增加而减小.所以由于高次插值的不稳定性,一般实际计算时很少使用高次插值.2.4分段插值Lagrange插值方法根据区间上给出节点构造插值多项式的,而一般以为次数逼近原函数,但其实并非如此,分段插值就是通过在每个小区间逼近原函数.构造分段插值多项式的方法仍然是基函数法.常见的主要有分段线性插值和分段三次埃米特插值.1.分段线性插值就是通过在每一个区间用折线段连接每个插值点来逼近.设已知插值节点和相应的函数值,记求一折线函数满足:(1);(2);(3)在每个小区间上是线性函数.则称称为分段线性插值函数.,,.其误差估计可利用插值余项得到,其中.可见,分段线性插值的余项只依赖于二次导数的界.这说明只要小区间长度足够小,便可保证充分靠近,即分段线性插值函数收敛于.2.三次Hermite插值是在节点上除已知函数值外还给出导数值,这样就有,它满足条件:(1);(2)(3)在每个小区间上是三次多项式.则.上式对于成立.误差估计为:,其中分段三次Hermite值比分段线性插值效果明显改善,但是这种插值要求给出节点上的导数值,所要提供的信息太多,其光滑度也不高(只有一阶导数连续),所以要改进这种插值和克服其缺点下面提出三次样条插值.2.5三次样条插值三次样条插值法是一种分段插值法,其基本思想是将插值区间等分,再在每个区间上求插值函数.设在区间上取个节点,给定这些点的函数值.如果存在分段函数:且函数满足条件:(1)在每个区间上是不高于3次多项式;(2)在区间上连续;(3)称为三次样条插值函数.由于插值节点处具有二阶导数连续,所以三次样条插值法具有更好的光滑性.从上面的一一介绍中我们可以看出:Lagrange插值有着形式上对称,在理论上十分重要的有点,但是计算复杂.因为每增加一个节点,对前面的插值基函数值就作废了.而Newton插值每增加一个节点,插值多项式只增加一项,因此便于递推运算,所以具有灵活增加节点的优点.但是Newton插值仅对节点处的函数作了约束,如果插值条件再增加节点处对导函数的限制的话,就要用到Hermite插值多项式.但一般很少用这种高次插值法,因为其不稳定性的缘故,更多使用分段插值来实现.虽然插值曲线的各个分段是衔接的,但在节点处不能保证整个曲线的光滑性.而三次样条不但与被插值函数很接近,而且导数值也很接近,这样逼近效果是其他插值法所难以达到的.从Lagrange插值到三次样条插值法,层层递进来解决问题,使的插值函数与被插值函数越来越逼近.下面就上面的五种插值法来给出他们各自适合解决哪些类型的题目的例子,通过例子更能清楚的理解和认识五种插值法的各自特征.3五种插值法的解题分析比较下面主要从例子来比较这五种插值法之间在运算上的不同;例1已知插值条件如下表所示:求的二次插值多项式.解若用单项式基底来解,则可设,由插值条件,解得,,,故.若用Lagrange插值基函数,则故.若用Newton插值法,则故.整理可知三种方法得到的是同一个多项式.通过上面的例子的解题我们不难看出,在求解二次插值多项式来说Newton插值法最为简单,而Lagrange插值法计算最为复杂,对于用单项式基底了来说,如果次数高的话未知数的个数也越多,求解也越复杂.所以在解这类题的话,用Newton插值法更为方便简洁.而如果插值节点不仅对应的有函数值还有导函数值,那么就要用到Hermite插值,例如下面的题目.例2求次数小于等于3的多项式,使其满足:.解本题标准的是应用Hermite插值问题,所以可以用公式直接来计算.记由题意可知利用两点的Hermite值公式,有其中是Hermite插值基函数,即,所以.Newton插值仅对节点处的函数作了约束,如果插值条件再增加节点处对导函数的限制的话,就要用到Hermite插值多项式.上面的例子就是很好的应用.我们在看一个关于三次样条插值的例子,看看它在解决问题时有哪些特点.例3给定数据表如下:0.250.300.390.450.530.50000.54770.62450.67080.7280试求三次样条插值,并满足条件:(1)(2)解由给定数据知由有均差(1)若边界条件,则由此得矩阵形式的三弯矩方程为解得利用三次样条表达式将代入整得(2)若边界条件为,则三弯矩方程为解得.代入三次样条表达式并整理,得由于其解得存在唯一性,求解插值函数的线性方程组的系数矩阵为三对角方程组,所以算法具有较好的计算复杂性和稳定性以及插值函数具有一定的光滑性等优点.所以三次样条插值应用也比较广泛.例4已知函数,在区间上的等距节点时的函数值,求分段线性插值函数.再计算的近似值,节点处的函数值如下:0解由上面节中的分段插值公式知:,,所以分段插值函数为.与原函数值比较,我们可以发现分段插值函数来逼近原函数时,还是比较准确的,就是用分段线性插值法逼近原函数他们的误差很小.例5给出在处的函数值.(1)用次Lagrange插值多项式求在的近似值,并与准确值进行比较.(2)用次Newton插值多项式求在的近似值,并与准确值作比较.(3)用次线性插值多项式求在的近似值.解(1)由上面节Lagrange插值公式可知:所以四次Lagrange插值多项式为.则实际值为..(2)用Newton前插公式,先构造如下表的查分表并用Newton前插公式(前面2.2介绍的)取,,.与实际值误差较小.(3)由上面节中的分段插值公式知:,,,所以这与实际值误差就很小了.从上面的例子看出对于Lagrange插值法求解的公式很有对称性,很容易观察出来.但有个缺点就是计算太复杂,麻烦,误差值大.对于Newton插值法而言他的形式简单,计算方便,而且误差比Lagrange小.线性插值多项式求解的误差值最小,最精确.所以我们一般如果想求解简单计算方便最好用Newton插值法来求解,而如果要求计算精确最好用线性插值,对于Lagrange插值我们一般只在于研究其性质,对于应用部是很好.下面来看插值法在实际生活中的应用.不同的插值对于同一个问题的解决他们的方法和误差都不同,我们来比较他们的区别.4五种插值的实际应用例1闸阀的局部阻力系数和闸阀的关闭度有关(为管内径,为开度),其的函数表如下01/82/83/84/85/86/87/80.000.070.200.812.065.5217.6097.80如果将闸阀控制在时,求其局部阻力系数的值解该函数表是等距节点排序,故应用牛顿插值公式,挑选出=0.15附近的三个节点进行二次插值,列于下表,并将其一阶和二阶差分经算出列于该表的右侧各列00.001/80.070.072/80.200.130.063/80.810.610.480.42若按三次插值,则应挑选4个节点,即再添一个的节点,此时可在表上添一行一列(用虚线框在最后的行与列),其这样,由三次插值所得的值为:由此可以看出,如需要再取较高次的插值时,只需再添一项对应的节点及其计算,而前面的计算仍保持有效.这是Newton插值法的优点.例2某地区冬天的一天从上午九点到下午三点的气温变化如下数据:求这段时间温度与时间的关系.解方法一用拉格朗日插值法解,某=[9:1:15];y=1./(1+某.^2);某0=[9:0.1:15];y0=lagrange(某,y,某0);y1=1./(1+某0.^2);plot(某0,y0,'--r')holdonplot(某0,y1,'-b')legend('拉格朗日插值曲线','原曲线')Runge现象的产生原曲线lagrange插值曲线方法二用分段插值曲线解某=[9:1:15];y=1./(1+某.^2);某0=[9:0.1:15];y0=lagrange(某,y,某0);y1=1./(1+某0.^2);y2=interpl(某,y,某0,'pline');plot(某0,y1,'-b',某0,y0,'--r',某0,y2,'某k');legend(‘原曲线’,’拉格朗日插值曲线’,’分段插值曲线’)原曲线lagrange插值曲线分段插值曲线方法三是用三次样条插值法解某=[9:1:15];y=1./(1+某.^2);某0=[9:0.1:15];y0=lagrange(某,y,某0);y1=1./(1+某0.^2);y2=interpl(某,y,某0,'pline');y3=interpl(某,y,某0);plot(某0,y1,'-b',某0.y0,'--r',某0,y2,'某k'某0,y3,'-y');legend(’原曲线’,’拉格朗日插值曲线’,’三次样条插值曲线’,’分段线性插值曲线’)原曲线lagrange插值曲线三次样条插值曲线分段线性插值曲线从上面三种方法可以看出拉格朗日插值法来做,图像明显与原函数偏差较大,而分段插值克服了高次拉格朗日插值的缺点,故可通过增加插值基点提高其插值精度,但在插值节点处不光滑,不精确.而三次插值则是光滑而且插值点连续,故其精确度高,与原函数逼近最好.5小结本文在分析讨论五种插值的基础上,给出了相应的例题作为比较,在解题中通过应用不同的插值方法而得出相应比较.他们之间的区别在上面介绍的很清楚了,而且在给出的例题中又很好的得到体现.最后给出了插值法在生活实践中的应用,在实际应用中又一次的进行了比较,得出他们在解决实际问题中五种插值法之间的区别.由上可知,插值方法是近似计算和逼近函数的有效方法,不同的插值法有着不同的应用,在其他领域还有着广泛的应用,像在计算机程序、渔业、冶金工程技术等.无论是应用在哪个领域其解决的方法都一样,都是应用到上面介绍的五种插值法中的某个来解决问题,用一个函数多项式来逼近原函数,来计算我们需要得出的信息和数据.以上就是我的论文为大家五种插值法的比较研究.参考文献[1]赵景军,吴勃英.关于《数值分析》教学的几点探讨[J].大学数学,2005,21(3):28-30.[2]宋瑞霞.样条函数的多节点技术[J].北方工业大学学报,2003,1:56-58.[3]吴才斌.插值方法[J].湖北大学成人教育学院学报,1999(5).[4]赵前进,关于数值分析中插值法的研究[J].安徽科技学院学报,2007,21(3):34-36.[5]李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,1982.[6]钟尔杰,黄延祝.数值分析[M].北京高等教育出版社,2004,103-133.[7]王仁宏.数值逼近[M].北京:高等出版社,1999.[8]齐东旭,李华山.数据逼近的多结点样条技术[J].中国科学(E辑),1999,4:46-48.[9]徐翠微,孙绳武.计算方法引论[M].高等教育出版社,2002.[10]刘长河,汪元伦.用插值法求拟三对角方程组的数值解[J].北京建筑工程学院学报,2004,2:57-59.[11]MooreRE.Intervalanalyi[M].NewJerey:Prentice-Hall,1966.。
插值方法比较

Lagrange 插值虽然易算,但若要增加一个节点时,全部基函数li(x) 都需重新算过,这就大大地增大了计算量。
优点:结构紧凑、思想清晰、显式表示、公式对称,与插值节点的编号无关,适合理论分析。
缺点:没有承袭性。
埃尔米特插值优缺点优点:1) 显式算法,算法简单,收敛性、稳定性好。
只要结点间距充分小,分段插值总能获得所要求的精度,而不会出现Rung现象。
2) 局部性。
如果要修改某个数据,插值曲线仅仅在某个局部范围内受到影响;而代数插值却会影响到整个插值区间。
缺点:光滑度不高。
若要提高光滑度,必须提供较多的信息才能达到。
分段线性插值优缺点分段三次埃尔米特插值比分段线性插值效果明显改善。
但分段三次埃尔米特插值要求给出节点上的导数值,所要提供的信息太多,其光滑度也不高,只有一阶导数连续。
三次样条插值的优缺点•三次样条插值具有良好的收敛性与稳定性,又有二阶光滑性,理论上和实际应用上都有重要意义,在计算机图形学中有重要应用。
插值法小结(1)拉格朗日插值拉格朗日插值多项式在理论分析中非常方便,因为它的结构紧凑,利用基函数很容易推导和形象的描述算法,但是也有一些缺点,当插值节点增加、减少或其位置变化时,整个插值多项式的结构都会改变,这就不利于实际计算,增加了算法复杂度,此时我们通常采用牛顿插值多项式算法(2)牛顿插值多项式用它插值时,首先要计算各阶差商,而各高阶差商可归结为一阶差商的逐次计算。
一般情况讨论的插值多项式的节点都是任意分布的,但是在实际应用中,出现了很多等距节点的情形,这时的插值公式可以进一步简化,在牛顿均差插值多项式中各阶均差用相应的差分代替,就得到了各种形式的等距节点插值公式,常用的是牛顿前插与后插公式。
(3)分段插值在整个插值区间上,随着插值节点的增多,插值多项式的次数必然增高,而高次插值会产生Runge现象,不能有效的逼近被插函数,人们提出用分段的低次多项式分段近似被插函数,这就是分段插值法。
几种常用高程插值方法的比较 数学模型

几种常用高程插值方法的比较数学模型
高程插值是通过已知的高程数据点来预测未知点的高程。
一种好的插值方法应该能够准确地预测出未知点的高程,同时也要考虑到计算的复杂度和数据的可用性。
以下是几种常用的高程插值方法的比较。
1.线性插值法:线性插值法是一种简单的插值方法,它基于两点之间的线性关系进行插值。
这种方法适用于数据点分布均匀且密集的情况下,但在数据点分布不均的情况下,插值精度可能会受到影响。
2.克里金插值法:克里金插值法是一种基于地质统计学的插值方法,它考虑了空间自相关性和变异性,通过权重系数来计算未知点的高程。
这种方法适用于数据点分布不均的情况下,但计算复杂度相对较高。
3.径向基函数插值法:径向基函数插值法是一种通过构建径向基函数来对数据进行插值的方法。
它具有较高的插值精度和较好的稳定性,但计算复杂度也相对较高。
4.样条插值法:样条插值法是一种通过构建样条函数来对数据进行插值的方法。
它具有较好的连续性和平滑性,但可能会受到边界效应的影响。
综上所述,不同的高程插值方法各有优缺点,应根据具体情况选择适合的插值方法。
(完整版)几种插值法比较与应用

多种插值法比较与应用(一) Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式nx x jj 0X k X j j k称为Lagrange 插值基函数 2. Lagrange 插值多项式足插值条件的n 次多项式nf(xj k (x)k 0nxf (X k )(k 0j 0X kj k为Lagrange 插值多项式,称(n 1)为插值余项,其中x (x) (a,b)(二) Newton 插值 1 .差商的定义f(x)关于X i 的零阶差商f[xjf(xjf(x)关于X i , X j 的一阶差商f[X j ] f[X i ]E(x) f(X) L n (x)(n 1)T j o(X X j)l k (x)0,1, ,n设给定n+1个互异点(x k , f(x k )) , k 0,1,,n ,X i X j , i j ,满L n (X k )f(X k ),0,1,L n (X )|)X j X i依次类推,f(x)关于X i , X i 1 , .................... , X i k 的k 阶差商f[X i 1,, X i k ] f [X i ,,X i k 1]f[X i ,X i 1,, X i k ]X i k X i2. Newton 插值多项式设给定的n+1个互异点(X k , f (X k )) , k 0,1,,n , X i X j , ij ,称满足条件N n (X k )f(X k ) , k0,1,,n的n 次多项式N n (x)f[X 。
]f[X 0,X 1](X X 。
)f[X o ,X 1,,X n ]( x X 。
)(X X n 1)为Newton 插值多项式,称E(x) f(x) N n (x) f [X o ,X 1,,X n ]j n(X X j ),x [a,b]为插值余项。
(三) Hermite 插值设f(x) C 1[a,b],已知互异点X 0 , X 1,…,x n [a,b]及所对应的函 数值为f o , f 1,…,f n ,导数值为f o',(,…,f n',贝U满足条件H2n1(X i ) f i ,H 2n 1 ( X i ) f i', ' 0,1, ,n的2n 1次Hermite 插值多项式为nnH 2n1(X )f i j (x)f j' j (X)jj 0其中j(x) [1 2(x X j )l j (X j )]l j 2, j (x)(x X j )l j 2(x)称为Hermite 插值基函数,i j (x )是Lagrange 插值基函数,若f C 2n 2[a,b ],插值误差为(四) 分段插值设在区间[a,b ]上给定n+1个插值节点a x 0 x 1x n b和相应的函数值y o , y i ,…,y n ,求作一个插值函数(x),具有性质① (x) y i (i 0,1,2, ,n )。
几种常用高程插值方法的比较 数学模型

几种常用高程插值方法的比较数学模型【最新版3篇】目录(篇1)1.引言2.常用高程插值方法介绍2.1 反距离权重法2.2 普通克里金插值法2.3 普通最小二乘法2.4 残差最小二乘法2.5 线性回归法2.6 多项式回归法3.各方法的优缺点比较4.结论正文(篇1)高程插值是在地理信息系统 (GIS) 和遥感技术中常用的数据处理方法,目的是根据已知的高程点数据,估算出其他地点的高程值。
高程插值的方法有很多种,下面将对几种常用的高程插值方法进行介绍和比较。
2.1 反距离权重法反距离权重法是一种基于距离的插值方法,其基本思想是根据距离衰减权重,对各个高程点进行加权平均。
该方法的优点是简单易行,计算速度快,但是缺点是插值结果受距离衰减系数的选择影响较大,且不能很好地处理数据中的噪声。
2.2 普通克里金插值法普通克里金插值法是一种基于网格的插值方法,其基本思想是利用周围的已知高程点,通过插值函数估算待求点的高程值。
该方法的优点是插值精度高,能够很好地处理数据中的噪声,但是缺点是计算量较大,需要进行多次迭代计算。
2.3 普通最小二乘法普通最小二乘法是一种基于最小二乘原理的插值方法,其基本思想是通过最小化误差的平方和来估算待求点的高程值。
该方法的优点是简单易行,插值精度较高,但是缺点是需要选择合适的基函数,且计算量较大。
2.4 残差最小二乘法残差最小二乘法是一种改进的普通最小二乘法,其基本思想是将待求点的残差作为基函数,通过最小化残差的平方和来估算待求点的高程值。
该方法的优点是插值精度更高,能够更好地处理数据中的噪声,但是缺点是计算量较大,需要进行多次迭代计算。
2.5 线性回归法线性回归法是一种基于线性回归模型的插值方法,其基本思想是通过线性回归模型估算待求点的高程值。
该方法的优点是简单易行,计算速度快,但是缺点是插值精度较低,不能很好地处理非线性关系。
2.6 多项式回归法多项式回归法是一种基于多项式回归模型的插值方法,其基本思想是通过多项式回归模型估算待求点的高程值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 克里金法(Kriging)
克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。
与其他插值方法不同,选择用于生成输出表面的最佳估算方法之前应对由z 值表示的现象的空间行为进行全面研究。
克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。
它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。
对于这种方法,原始的输入点可能会发生变化。
在数据点多时,结果更加可靠。
该方法通常用在土壤科学和地质中。
2. 反距离权重法(Inverse Distance Weighted,IDW)
反距离权重法(反距离权重法)工具所使用的插值方法可通过对各个待处理像元邻域中的样本数据点取平均值来估计像元值。
点到要估计的像元的中心越近,则其在平均过程中的影响或权重越大。
此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。
例如,为分析零售网点而对购电消费者的表面进行插值处理时,在较远位置购电影响较小,这是因为人们更倾向于在家附近购物。
反距离权重法主要依赖于反距离的幂值。
幂参数可基于距输出点的距离来控制已知点对内插值的影响。
幂参数是一个正实数,默认值为2。
通过定义更高的幂值,可进一步强调最近点。
因此,邻近数据将受到最大影响,表面会变得更加详细(更不平滑)。
随着幂数的增大,内插值将逐渐接近最近采样点的值。
指定较小的幂值将对距离较远的周围点产生更大影响,从而导致更加平滑的表面。
由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。
作为常规准则,认为值为30 的幂是超大幂,因此不建议使用。
此外还需牢记一点,如果距离或幂值较大,则可能生成错误结果。
3. 含障碍的样条函数(Spline with Barriers)
含障碍的样条函数工具使用的方法类似于样条函数法工具中使用的技术,其主要差异是此工具兼顾在输入障碍和输入点数据中编码的不连续性。
含障碍的样条函数工具应用了最小曲率方法,其实现方式为通过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。
4. 地形转栅格(Topo to Raster)
地形转栅格和依据文件实现地形转栅格工具所使用插值技术是旨在用于创建可更准确地表示自然水系表面的表面,而且通过这种技术创建的表面可更好的保留输入等值线数据中的山脊线和河流网络。
5. 样条函数(Spline)
样条函数法工具所使用的插值方法使用可最小化整体表面曲率的数学函数来估计值,以生成恰好经过输入点的平滑表面。
从概念上讲,采样点被拉伸到它们数量上的高度;样条函数折弯一个橡皮页,该橡皮页在最小化表面总曲率的同时穿过这些输入点。
在穿过采样点时,它将一个数学函数与指定数量的最近输入点进行拟合。
此方法最适合生成平缓变化的表面,例如高程、地下水位高度或污染程度。
IDW 插值主要受幂指数和各采样点属性值变化情况的影响,幂指数越高,其局部影响的程度越高,在IDW搜索半径内,若各个采样点属性值变化较小时,内插结果受幂指数的影响较小;Spline 插值主要受插值类型(Regularized 或Tension)和weight 值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;总体来看,IDW和SPLINE 插值受采样点范围、采样点密度、采样点属性取值变化以及各自的参数影响,当采样点足够密时,使用IDW 插值可以取得良好效果,SPLINE插值则适合那些空间连续变化且光滑的表面的生成。
6. 自然邻域法(Natural Neighbor)
自然邻域法插值可找到距查询点最近的输入样本子集,并基于区域大小按比例对这些样本应用权重来进行插值(Sibson,1981)。
该插值也称为Sibson 或“区域占用(area-stealing)”插值。
该插值方法的基本属性是它具有局部性,仅使用查询点周围的样本子集,且保证插值高度在所使用的样本范围之内。
该插值方法不会推断趋势且不会生成输入样本尚未表示的山峰、凹地、山脊或山谷。
该表面将通过输入样本且在除输入样本位置之外的其他所有位置均是平滑的。
原理是构建voronoi多边形,也就是泰森多边形。
首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。
7. 趋势(trend)
趋势面法是一种可将由数学函数(多项式)定义的平滑表面与输入样本点进行拟合的全局多项式插值法。
趋势表面会逐渐变化,并捕捉数据中的粗尺度模式。
使用趋势插值法可获得表示感兴趣区域表面渐进趋势的平滑表面。
此种插值法适用于以下几种情况
(1)感兴趣区域的表面在各位置间出现渐变时,可将该表面与采样点拟合,例如,工业区的污染情况。
(2)检查或排除长期趋势或全局趋势的影响。
此类情况下,采用的方法通常为趋势面分析。