2019山东省莱芜中考数学真题及答案
山东莱芜2019中考试题精品解析-数学
山东莱芜2019中考试题精品解析-数学【一】选择题〔本大题共12小题,每题3分,总分值36分〕 1、如图,在数轴上的点M 表示的数可能是【】A 、1.5B 、-1.5C 、-2.4D 、2.42、四名运动员参加了射击预选赛,他们的成绩的平均环数错误!未找到引用源。
A 、甲B 、乙C 、丙D 、丁3、大量事实证明,环境污染治理刻不容缓、据统计,全球每秒钟约有14.2万吨污水排入江河湖海、把14.2万用科学记数法表示为【】A 、1.42×105B 、1.42×104C 、142×103D 、0.142×1064、如下图是由假设干个相同的小立方体搭成的几何体的俯视图和左视图,那么小立方体的个数不可能是【】A 、6个B 、7个C 、8个D 、9个5、以下图形中,既是轴对称图形又是中心对称图形的共有【】A 、1个B 、2个C 、3个D 、4个6、对于非零的实数A 、B ,规定A ⊕B = 1 b - 1a 、假设2⊕(2X -1)=1,那么X=【】A 、5 6B 、 5 4C 、 3 2D 、- 167、M 、N 是方程X2+22X +1=0的两根,那么代数式m2+n2+3mn 的值为【】 A 、9B 、±3C 、3D 、58、从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是【】A 、1 4B 、 1 3C 、 5 12D 、2 39、以下四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序【】①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系) ②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系) ④一杯越来越凉的水(水温与时间的关系)A 、①②③④B 、③④②①C 、①④②③D 、③②④①10、假设一个圆锥的底面积为错误!未找到引用源。
山东省莱芜市2019-2020学年中考中招适应性测试卷数学试题(5)含解析
山东省莱芜市2019-2020学年中考中招适应性测试卷数学试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩2.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A.259×104B.25.9×105C.2.59×106D.0.259×1073.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.4.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.2B.2C.2D.25.下列运算正确的是()A.a12÷a4=a3B.a4•a2=a8C.(﹣a2)3=a6D.a•(a3)2=a76.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=1 27.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-68.﹣22×3的结果是()A.﹣5 B.﹣12 C.﹣6 D.129.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查10.在实数0,2-,1,5中,其中最小的实数是()A.0B.2-C.1D.511.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩12.如图,在平面直角坐标系中,ABC∆位于第二象限,点A的坐标是(2,3)-,先把ABC∆向右平移3个单位长度得到111A B C∆,再把111A B C∆绕点1C顺时针旋转90︒得到221A B C∆,则点A的对应点2A的坐标是()A.(2,2)-B.(6,0)-C.(0,0)D.(4,2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.比较大小:512-_____1(填“<”或“>”或“=”). 14.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.15.如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为_____.16.点(-1,a )、(-2,b )是抛物线2y x 2x 3=+-上的两个点,那么a 和b 的大小关系是a_______b (填“>”或“<”或“=”).17.已知函数y=1x-1,给出一下结论: ①y 的值随x 的增大而减小②此函数的图形与x 轴的交点为(1,0)③当x>0时,y 的值随x 的增大而越来越接近-1④当x≤12时,y 的取值范围是y≥1 以上结论正确的是_________(填序号)18.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x )+[x )=6;②当x=﹣1.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上.(1)给出以下条件;①OB =OD ,②∠1=∠2,③OE =OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE =CF ,求证:四边形ABCD 是平行四边形.20.(6分)如图,在△ABC 中,AB=AC ,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.21.(6分)解不等式组210 2323xx x+>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集.22.(8分)(1)计算:|﹣3|﹣16﹣2sin30°+(﹣12)﹣2(2)化简:22222()x x y x yx y x y x y+--÷++-.23.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.24.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.25.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD 为直径的圆经过点C .①求抛物线的函数关系式;②如图2,点E 是y 轴负半轴上一点,连接BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1:2,求点M 、N 的坐标;③点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相切,如图3,求点Q 的坐标.26.(12分)如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(m ,n)(m <0, n >0),E 点在边BC 上,F 点在边OA 上.将矩形OABC 沿EF 折叠,点B 正好与点O 重合,双曲线过点E.(1) 若m =-8,n =4,直接写出E 、F 的坐标;(2) 若直线EF 的解析式为,求k 的值; (3) 若双曲线过EF 的中点,直接写出tan ∠EFO 的值.27.(12分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤ ),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:E 类学生有 人,补全条形统计图;D 类学生人数占被调查总人数的 %;从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤ 中的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.2.C【解析】【分析】绝对值大于1的正数可以科学计数法,a×10n ,即可得出答案. 【详解】n 由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【点睛】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系4.A【解析】【分析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=224=82 22+4×2所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.5.D【解析】【分析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【详解】解:A、a12÷a4=a8,此选项错误;B、a4•a2=a6,此选项错误;C、(-a2)3=-a6,此选项错误;D、a•(a3)2=a•a6=a7,此选项正确;故选D.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键. 7.B【解析】【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-1,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-1,∴p=1,q=-1.故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.8.B【解析】【分析】先算乘方,再算乘法即可.【详解】解:﹣22×3=﹣4×3=﹣1.故选:B.【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.9.D【解析】【分析】【详解】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.10.B【解析】【分析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【详解】解:∵0,-2,1-2<0<1,∴其中最小的实数为-2;故选:B.【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.11.B【解析】【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.12.D【解析】【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.<【解析】【详解】∵512≈0.62,0.62<1,∴512<1;故答案为<.14.40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.15.85【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长: 根据勾股定理得:22345AC =+=,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.16.<【解析】把点(-1,a )、(-2,b )分别代入抛物线223y x x =+-,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b ,故答案为<.17.②③【解析】(1)因为函数11y x =-的图象有两个分支,在每个分支上y 随x 的增大而减小,所以结论①错误; (2)由110x -=解得:1x =, ∴11y x=-的图象与x 轴的交点为(1,0),故②中结论正确; (3)由11y x=-可知当x>0时,y 的值随x 的增大而越来越接近-1,故③中结论正确; (4)因为在11y x=-中,当=-1x 时,2y =-,故④中结论错误;综上所述,正确的结论是②③.故答案为:②③.18.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.20.(1)作图见解析(2)∠BDC=72°【解析】解:(1)作图如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分线,∴∠ABD=12∠ABC=12×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,大于12EF为半径画圆,两圆相较于点G,连接BG交AC于点D.(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.21.﹣12<x≤0,不等式组的解集表示在数轴上见解析.【解析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x+1>0,得:x>﹣12,解不等式2323x x-+≥,得:x≤0,则不等式组的解集为﹣12<x≤0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.22.(1)2;(2) x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.(1)不可能事件;(2).【解析】【详解】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为21 126.考点:列表法与树状图法.24.(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理25.(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(52,74)、N(32,154);③点Q的坐标为(1,﹣6)或(1,﹣4﹣6).【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD 为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.详解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE 绕平面内某一点旋转180°得到△PMN ,∴PM ∥x 轴,且PM=OB=1;设M (x ,﹣x 2+2x+3),则OF=x ,MF=﹣x 2+2x+3,BF=OF+OB=x+1;∵BF=2MF ,∴x+1=2(﹣x 2+2x+3),化简,得:2x 2﹣3x ﹣5=0解得:x 1=﹣1(舍去)、x 2=52. ∴M (52,74)、N (32,154). ③设⊙Q 与直线CD 的切点为G ,连接QG ,过C 作CH ⊥QD 于H ,如下图:∵C (0,3)、D (1,4),∴CH=DH=1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2;设Q (1,b ),则QD=4﹣b ,QG 2=QB 2=b 2+4;得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b=﹣4±26; 即点Q 的坐标为(1,426-+)或(1,426--).点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD 和⊙Q 半径间的数量关系是解题题目的关键.26.(1)E(-3,4)、F(-5,0);(2);(3).【解析】【分析】(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E 的坐标,同理求出点F 的坐标.(2) 连接BF 、OE ,连接BO 交EF 于G 由翻折可知:GO =GB ,BE =OE ,证明△BGE ≌△OGF ,证明四边形OEBF为菱形,令y=0,则,解得,根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得则CE=,在Rt△COE中,根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2即可求出tan∠EFO=.【详解】解:(1)如图:连接OE,BF,E(-3,4)、F(-5,0)(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE可证:△BGE≌△OGF(ASA)∴BE=OF∴四边形OEBF为菱形令y=0,则,解得,∴OF=OE=BE=BF=令y=n,则,解得∴CE=在Rt△COE中,,解得∴E()∴(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得∴E()、F()∴EF的中点为()将E()、()代入中,得,得m2=2n2∴tan∠EFO=【点睛】考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.27.(1)5;(2)36%;(3)3 10.【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=该组频数数据总数,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D 类:18÷50×100%=36%,故答案为:36%; (3)设这5人为12123A A B B B ,,,,有以下10种情况:12111213212223121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A B A B A B A B A B A B B B B B B B 其中,两人都在24t <≤ 的概率是:310P = .。
2019年山东省济南市莱芜区中考数学复习试卷(附答案)
2019年山东省济南市莱芜区中考数学复习试卷(附答案)副标题一、选择题(本大题共12小题,共36.0分) 1. 在下列四个实数中,最大的数是( )A. B.C.D.2. 港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为( )A. B. C. D. 3. 下列运算正确的是( )A.B.C.D.4. 下列图形中,既是中心对称,又是轴对称的是( )A.B.C.D.5. 如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G ,若∠1=65°,则∠2的度数是( )A. B. C. D.6. 某企业为了推选代表队参加市职业技能大赛,对甲、乙两个车间进行了五次测试,其中甲车间五次成绩的平均数是90分,中位数是91分,方差是2.4;乙车间五次成绩的平均数是90分,中位数是89分,方差是4.4.下列说法正确的是( ) A. 甲车间成绩的平均水平高于乙车间 B. 甲、乙两车间成绩一样稳定C. 甲车间成绩优秀的次数少于乙车间 成绩不低于90分为优秀D. 若选派甲车间去参加比赛,取得好成绩的可能性更大7. 如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是( )A. 10B. 11C. 12D. 138. 为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A 型“共享单车”,因为单车需求量增加,计划继续投放B 型单车,B 型单车的投放数量与A 型单车的投放数量相同,投资总费用减少20%,购买B 型单车的单价比购买A 型单车的单价少50元,则A 型单车每辆车的价格是多少元?设A 型单车每辆车的价格为x 元,根据题意,列方程正确的是( )A.B.C.D.9.如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()A. 1B. 2C. 3D. 410.如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是()A.B.C.D.11.将二次函数y=x2-5x-6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A. 或B. 或2C. 或2D. 或12.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF、有以下结论:①AN=EN②当AE=AF时,=2-③BE+DF=EF④存在点E、F,使得NF>DF其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,共20.0分)13.计算:(-)-1++|1-π|=______.14.已知x1,x2是方程x2-x-3=0的两根,则+=______.15.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是______cm.16.如图,在矩形ABCD中,AB=4,BC=,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=,则CE=______.17.定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[-1.2]=-2;②[a-1]=[a]-1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(a-1)÷(a+-2),其中a=-1.四、解答题(本大题共6小题,共58.0分)19.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:()在此次调查中,该校一共调查了名学生;(2)a=______;b=______;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.20.公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线AB与AC的夹角为124°,凉亭顶盖边缘B、C到地面的距离为2.4米,石桌的高度DE为0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(A、E、D三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:si n62°≈0.88,tan42°≈0.90)21.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.22.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?23.如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.24.如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O 为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:∵-<-1<<,∴四个实数中,最大的数是.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】B【解析】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:∵a2•a3=a5,∴选项A不符合题意;∵a3-a2≠a,∴选项B不符合题意;∵(a2)3=a6,∴选项C不符合题意;∵a3÷a2=a,∴选项D符合题意.故选:D.根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.此题主要考查了同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,要熟练掌握.4.【答案】B【解析】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:B.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】A【解析】解:∵∠1=65°,∴∠BEF=180°-65°=115°,∵EG平分∠BEF,∴∠BEG=∠BEF=57.5°,∵AB∥CD,∴∠2+∠BEG=180°,∴∠2=180°-57.5°=122.5°,故选:A.求出∠BEG,再利用平行线的性质即可解决问题.本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】D【解析】解:A、甲车间成绩的平均水平和乙车间相同,故本选项错误;B、因为甲车间的方差是2.4,乙车间的方差是4.4,所以甲车间成绩比较稳定,故本选项错误;C、因为甲车间的中位数是91分,乙车间的中位数是89分,所以甲车间成绩优秀的次数多于乙车间(成绩不低于90分为优秀),故本选项错误;D、选派甲车间去参加比赛,取得好成绩的可能性更大,正确;故选:D.根据平均数、中位数以及方差的意义分别对每一项进行分析即可得出答案.此题考查了平均数、中位数以及方差的意义,解题的关键是熟练掌握基本知识,属于中考基础题.7.【答案】C【解析】解:设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=12.故选:C.根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.8.【答案】A【解析】解:设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x-50)元,根据题意,得=故选:A.设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x-50)元,依据“B型单车的投放数量与A型单车的投放数量相同”列出关于x的方程.考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.9.【答案】D【解析】解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA=,∵CD∥OB,AB=BC,∴OD=OA=,CD=2OB=2a,∴C(,2a),∵反比例函数y=(x>0)的图象经过点C,∴k=×2a=4.故选:D.作CD⊥x轴于D,设OB=a(a>0).由S△AOB=S△BOC,根据三角形的面积公式得出AB=BC.根据相似三角形性质即可表示出点C的坐标,把点C坐标代入反比例函数即可求得k.此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.10.【答案】B【解析】解:如图所示,连接BC、OD、OB,∵∠A=40°,AB=AC,∴∠ACB=70°,∵BD∥AC,∴∠ABD=∠A=40°,∴∠ACD=∠ABD=40°,∴∠BCD=30°,则∠BOD=2∠BCD=60°,又OD=OB,∴△BOD是等边三角形,-S△BOD则图中阴影部分的面积是S扇形BOD=-×22=π-,故选:B.连接BC、OD、OB,先证△BOD是等边三角形,再根据阴影部分的面积是S扇-S△BOD计算可得.形BOD本题主要考查扇形面积的计算,解题的关键是掌握等腰三角形和等边三角形的判定与性质、圆周角定理、扇形的面积公式等知识点.11.【答案】A【解析】解:如图所示,过点B的直线y=2x+b与新抛物线有三个公共点,将直线向下平移到恰在点C处相切,此时与新抛物线也有三个公共点,令y=x2-5x-6=0,解得:x=-1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2-5x-6=2x+b,整理得:x2-7x-6-b=0,△=49+4(-6-b)=0,解得:b=-,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=-12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为-12或-;故选:A.如图所示,过点B作直线y=2x+b,将直线向下平移到恰在点C处相切,则一次函数y=2x+b在这两个位置时,两个图象有3个交点,即可求解.本题考查的是二次函数与坐标轴的交点,涉及到一次函数、根的判别式、翻折的性质等知识点,本题的关键通过画图,确定临界点图象的位置关系.12.【答案】B【解析】解:①如图1,∵四边形ABCD是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1-x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt△CEF中,OC=EF=x,△EAF中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE,∵AE=AE,∴Rt△ABE≌Rt△AOE(HL),∴AO=AB=1,∴AC==AO+OC,∴1+x=,x=2-,∴===;故②不正确;③如图3,∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,∵∠EAF=45°=∠DAF+∠BAE=∠HAE,∵∠ABE=∠ABH=90°,∴H、B、E三点共线,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF,故③正确;④△ADN中,∠FND=∠ADN+∠NAD>45°,∠FDN=45°,∴DF>FN,故存在点E、F,使得NF>DF,故④不正确;故选:B.①如图1,证明△AMN∽△BME和△AMB∽△NME,可得∠NAE=∠AEN=45°,则△AEN是等腰直角三角形可作判断;②先证明CE=CF,假设正方形边长为1,设CE=x,则BE=1-x,表示AC的长为AO+OC可作判断;③如图3,将△ADF绕点A顺时针旋转90°得到△ABH,证明△AEF≌△AEH (SAS),则EF=EH=BE+BH=BE+DF,可作判断;④在△ADN中根据比较对角的大小来比较边的大小.本题考查正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形,属于中考压轴题.13.【答案】π【解析】解:原式=-3+4+π-1=π.故答案为:π.直接利用负指数幂的性质以及立方根的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.14.【答案】-【解析】解:∵x1,x2是方程x2-x-3=0的两根,∴x1+x2=1,x1•x2=-3,∴+===-.故答案为:-.利用根与系数的关系可得出x1+x2=1,x1•x2=-3,将其代入+=中即可得出结论.本题考查了根与系数的关系,牢记“两根之和等于-,两根之积等于”是解题的关键.15.【答案】10【解析】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10求得圆锥的母线的长利用勾股定理求得圆锥的高即可.考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.16.【答案】【解析】解:过点F作MN∥AD,交AB、CD分别于点M、N,则MN⊥AB,MN⊥CD,由折叠得:EC=EF,BC=BF=,∠C=∠BFE=90°,∵sin∠BAF==,设FM=x,则AM=2x,BM=4-2x,在Rt△BFM中,由勾股定理得:x2+(4-2x)2=()2,解得:x1=1,x2=>2舍去,∴FM=1,AM=BM=2,∴FN=-1,易证△BMF∽△FNE,∴,即:,解得:EF==EC.故答案为:.已知tan∠BAF=,可作辅助线构造直角三角形,设未知数,利用勾股定理可求出FM、BM,进而求出FN,再利用三角形相似和折叠的性质求出EC.考查矩形的性质、直角三角形的边角关系、轴对称的性质以及相似三角形的性质等知识,作合适的辅助线,恰当的利用题目中的已知条件,是解决问题的关键.17.【答案】①②③【解析】解:①[-1.2]=-2,故①正确;②[a-1]=[a]-1,故②正确;③[2a]<[2a]+1,故③正确;④当a=0时,a2=2[a]=0;当a=时,a2=2[a]=2;原题说法是错误的.故答案为:①②③.根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.18.【答案】解:(a-1)÷(a+-2)=(a-1)÷=(a-1)=,当a=-1时,原式=.【解析】根据分式的加减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.【答案】50 8 5【解析】解:(1)12÷24%=50人故答案为50.(2)a=50×16%=8人,b=50-15-8-12-10=5人,故答案为:8,5.(3)360°×=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.20.【答案】解:如图,连接BC、AE,交于点O,则AE⊥BC.由题意,可知OE=2.4-0.6=1.8,∠OBE=42°,∠BAO=∠BAC=62°.在Rt△OBD中,∵tan∠OBE=,∴OB=≈=2.在Rt△OAB中,∵sin∠OAB=,∴AB=≈≈2.3(m).答:圆锥形顶盖母线AB的长度约为2.3米.【解析】连接BC、AE,交于点O,则AE⊥BC.解Rt△OBD,求出OB=≈=2.解Rt△OAB中,即可求出AB=.本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数定义,作出辅助线构造直角三角形是解题的关键.21.【答案】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠FAC=90°∴∠FAB=∠FAC-∠BAC=30°∴∠FAB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG【解析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.本题考查了全等三角形的判定和性质,等边三角形的判定和性质,三角形中位线定理,熟练运用三角形中位线定理是本题的关键.22.【答案】解:(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:,解得:.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)设改造m个甲种型号大棚,则改造(8-m)个乙种型号大棚,依题意,得:,解得:≤m≤.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.【解析】(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,根据“改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设改造m个甲种型号大棚,则改造(8-m)个乙种型号大棚,根据改造时间不超过35天且改造费用不超过128万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各改造方案,再利用总价=单价×数量分别求出三种方案所需改造费用,比较后即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.【答案】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()-4=0,解得=或(舍弃),∵CK∥AD,∴===.【解析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()-4=0,解得=或(舍弃),由此即可解决问题.本题考查切线的判定,平行线的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,题目有一定难度.24.【答案】解:(1)把A(-3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c得,解得,所以抛物线的函数表达式为y=-x2-2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(-3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,-x2-2x+3.),则Q点坐标为(x,x+3),∴PQ=-x2-2x+3-(x+3)=-x2-3x.∴S△PAC=,∴,解得:x1=-1,x2=-2.当x=-1时,P点坐标为(-1,4),当x=-2时,P点坐标为(-2,3),综上所述:若△PAC面积为3,点P的坐标为(-1,4)或(-2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,∵D为抛物线y=-x2-2x+3的顶点,∴D点坐标为(-1,4),又∵A(-3,0),∴直线AC为y=2x+4,AF=2,DF=4,tan∠PAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直线BC解析式为y=-3x+3.∵AC=4,∴AE=AC•sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠PAB=2,∴∠ACB=∠PAB,∴使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM=∠CAB=45°时,△ABC∽△OMA,即OM为y=-x,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(,).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直线BC解析式为y=-3x+3.∴直线OM为y=-3x,设直线OM与AD的交点M(x,y).则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与△ABC相似的点M,其坐标为(,)或(,).【解析】(1)利用待定系数法,然后将A、B、C的坐标代入解析式即可求得二次函数的解析式;(2))过P点作PQ垂直x轴,交AC于Q,把△APC分成两个△APQ与△CPQ,把PQ作为两个三角形的底,通过点A,C的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB,使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,∠AOM=∠CAB=45°,即OM为y=-x,若∠AOM=∠CBA,则OM为y=-3x+3,然后由直线解析式可求OM与AD的交点M.本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
山东省莱芜市2019-2020学年中考第三次大联考数学试卷含解析
山东省莱芜市2019-2020学年中考第三次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,BD 是∠ABC 的角平分线,DC ∥AB ,下列说法正确的是( )A .BC=CDB .AD ∥BC C .AD=BCD .点A 与点C 关于BD 对称2.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A .B .C .D .3.tan30°的值为( )A .B .C .D .4.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根 5.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 7 8 9 10次数 1 4 3 2A.8、8 B.8、8.5 C.8、9 D.8、106.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A.B.C.D.7.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是()A.a≥1B.a>1 C.a≥1且a≠4D.a>1且a≠48.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.59.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106B.1.23×107C.0.123×107D.12.3×10510.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤311.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD12.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A.B.C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不相等的实根,则实数k 的取值范围是_____. 14.不等式5x ﹣3<3x+5的非负整数解是_____.15.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y 米与他们从学校出发的时间x 分钟的函数关系图,则甲的家和乙的家相距_____米.16.估计无理数11在连续整数___与____之间.17.用配方法解方程3x 2﹣6x+1=0,则方程可变形为(x ﹣__)2=__.18.若关于x 的一元二次方程(a ﹣1)x 2﹣x+1=0有实数根,则a 的取值范围为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?20.(6分)如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .求证:四边形DBEC 是平行四边形.若120ABC ∠=︒,4AB BC ==,则在点E的运动过程中:①当BE =______时,四边形BECD 是矩形;②当BE =______时,四边形BECD 是菱形.21.(6分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.22.(8分)某农场要建一个长方形ABCD 的养鸡场,鸡场的一边靠墙,(墙长25m )另外三边用木栏围成,木栏长40m .(1)若养鸡场面积为168m 2,求鸡场垂直于墙的一边AB 的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?23.(8分)某水果批发市场香蕉的价格如下表购买香蕉数(千克)不超过20千克 20千克以上但不超过40千克 40千克以上 每千克的价格 6元 5元 4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?24.(10分)对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M(-1,1),点N(2,-2),则点M 与点N 的“折线距离”为:()(),1212336d M N =--+--=+=.根据以上定义,解决下列问题:已知点P(3,-2). ①若点A(-2,-1),则d(P ,A)= ;②若点B(b ,2),且d(P ,B)=5,则b= ;③已知点C (m,n )是直线y x =-上的一个动点,且d(P ,C)<3,求m 的取值范围.⊙F 的半径为1,圆心F 的坐标为(0,t),若⊙F 上存在点E ,使d(E ,O)=2,直接写出t 的取值范围.25.(10分)在⊙O 中,弦AB 与弦CD 相交于点G ,OA ⊥CD 于点E ,过点B 作⊙O 的切线BF 交CD 的延长线于点F .(I )如图①,若∠F=50°,求∠BGF 的大小;(II )如图②,连接BD ,AC ,若∠F=36°,AC ∥BF ,求∠BDG 的大小.26.(12分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭. 27.(12分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.2.D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.3.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.4.C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.5.B【解析】【分析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892+=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.7.C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=223a-,由题意得:223a-≥1且223a-≠2,解得:a≥1且a≠4,故选C.点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.8.C【解析】【详解】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.9.A【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1230000这个数用科学记数法可以表示为61.2310.⨯故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.10.D【解析】分析:先解第一个不等式得到x >3,由于不等式组的解集为x >3,则利用同大取大可得到a 的范围. 详解:解不等式2(x-1)>4,得:x >3,解不等式a-x <0,得:x >a ,∵不等式组的解集为x >3,∴a≤3,故选D .点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.11.D【解析】【详解】解:∵∠ADC=∠ADB ,∠ACD=∠DAB ,∴△ADC ∽△BDA ,故A 选项正确;∵AD=DE ,∴»»AD DE= , ∴∠DAE=∠B ,∴△ADC ∽△BDA ,∴故B 选项正确;∵AD 2=BD•CD ,∴AD :BD=CD :AD ,∴△ADC ∽△BDA ,故C 选项正确;∵CD•AB=AC•BD ,∴CD :AC=BD :AB ,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定12.C【解析】【分析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.k>3 4【解析】【分析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>34,故答案为k>34.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.14.0,1,2,1【解析】5x﹣1<1x+5,移项得,5x﹣1x<5+1,合并同类项得,2x<8,系数化为1得,x <4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1.【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.15.5200【解析】设甲到学校的距离为x 米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:7033900420y x y x⨯=+⎧⎨⨯=⎩ 解得240030x y =⎧⎨=⎩所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息. 16.3 4【解析】【分析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】<<,∴34<,在连续整数3与4之间.【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17.123 【解析】原方程为3x 2−6x+1=0,二次项系数化为1,得x 2−2x=−13, 即x 2−2x+1=−13+1,所以(x−1)2= 23. 故答案为:1,23.18.a≤54且a≠1. 【解析】【分析】根据一元二次方程有实数根的条件列出关于a 的不等式组,求出a 的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤54, 又a-1≠0,∴a≤54且a≠1. 故答案为a≤54且a≠1. 点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a 的不等式组是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.20.(1)、证明过程见解析;(2)、①、2;②、1.【解析】【分析】(1)、首先证明△BEF和△DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE是等边三角形,从而得出答案.【详解】(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,∴△EBF≌△DCF(AAS),∴DC=BE,∴四边形BECD是平行四边形;(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=12BC=2,②BE=1,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=1.【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.21.(1)50,30%;(2)不能,理由见解析;(3)P=2 3【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可. 【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=812=23.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22.(1)鸡场垂直于墙的一边AB的长为2米;(1)鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.【解析】试题分析:(1)首先设鸡场垂直于墙的一边AB的长为x 米,然后根据题意可得方程x(40-1x)=168,即可求得x的值,又由墙长15m,可得x=2,则问题得解;(1)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案;解:(1)设鸡场垂直于墙的一边AB的长为x米,则x(40﹣1x)=168,整理得:x1﹣10x+84=0,解得:x1=2,x1=6,∵墙长15m,∴0≤BC≤15,即0≤40﹣1x≤15,解得:7.5≤x≤10,∴x=2.答:鸡场垂直于墙的一边AB的长为2米.(1)围成养鸡场面积为S米1,则S=x(40﹣1x)=﹣1x1+40x=﹣1(x1﹣10x)=﹣1(x1﹣10x+101)+1×101=﹣1(x﹣10)1+100,∵﹣1(x﹣10)1≤0,∴当x=10时,S有最大值100.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.23.第一次买14千克香蕉,第二次买36千克香蕉【解析】【分析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <3时,则3<y <2.【详解】设张强第一次购买香蕉xkg ,第二次购买香蕉ykg ,由题意可得0<x <3.则①当0<x≤20,y≤40,则题意可得5065264x y x y +⎧⎨+⎩==. 解得1436x y ⎧⎨⎩==. ②当0<x ≤20,y >40时,由题意可得5064264x y x y +⎧⎨+⎩==. 解得3218x y ⎧⎨⎩==.(不合题意,舍去) ③当20<x <3时,则3<y <2,此时张强用去的款项为5x+5y=5(x+y )=5×50=30<1(不合题意,舍去);④当20<x≤40 y >40时,总质量将大于60kg ,不符合题意,答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg .【点睛】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.24.(1)① 6,② 2或4,③ 1<m <4;(2)23t -≤≤或32t -≤≤.【解析】【分析】(1)①根据“折线距离”的定义直接列式计算;②根据“折线距离”的定义列出方程,求解即可;③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知2x y +=,根据图像易得t 的取值范围.【详解】解:(1) ①d(P, A)=|3-(-2)|+|(-2)-(-1)|=6② (,)3(2)2345d P B b b =-+--=-+=∴ 31b -=∴ b=2或4③ (,)3(2)32323d P C m n m m m m =-+--=-+-+=-+-<,即数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m <4 (2)设E (x,y ),则2x y +=,如图,若点E 在⊙F 上,则223322t t -≤≤-≤≤-或.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键. 25.(I )65°;(II )72°【解析】【分析】(I )如图①,连接OB ,先利用切线的性质得∠OBF=90°,而OA ⊥CD ,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF 的度数;(II )如图②,连接OB ,BO 的延长线交AC 于H ,利用切线的性质得OB ⊥BF ,再利用AC ∥BF 得到BH ⊥AC ,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG 的度数.【详解】解:(I )如图①,连接OB ,∵BF 为⊙O 的切线,∴OB ⊥BF ,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=12(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=12(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.26.83【解析】【分析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【详解】原式=9﹣2+1﹣8-【点睛】本题考查了实数运算,正确化简各数是解题的关键.27.(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】(1)设温情提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,2x+3×3x=550, ∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y 个(y 为正整数),则垃圾箱为(100﹣y )个,根据题意得,意,()100485015010010000.y y y -≥⎧⎨+-≤⎩∴5052y ≤≤,∵y 为正整数,∴y 为50,51,52,共3中方案;有三种方案:①温馨提示牌50个,垃圾箱50个,②温馨提示牌51个,垃圾箱49个,③温馨提示牌52个,垃圾箱48个,设总费用为w 元W=50y+150(100﹣y )=﹣100y+15000,∵k=-1000<,∴w 随y 的增大而减小∴当y=52时,所需资金最少,最少是9800元.【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.。
山东省莱芜市2019-2020学年中考中招适应性测试卷数学试题(1)含解析
山东省莱芜市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=kx(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是()A.﹣8 B.﹣4 C.4 D.82.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°3.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.34.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.154B.14C.1515D.417175.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90o D.绕原点顺时针旋转90o6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°7.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( ) A .30°B .60°C .120°D .180°8.将1、2、3、6按如图方式排列,若规定(m 、n )表示第m 排从左向右第n 个数,则(6,5)与(13,6)表示的两数之积是( )A .6B .6C .2D .39.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =kx的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .310.-3的相反数是( ) A .13B .3C .13-D .-311.运用乘法公式计算(3﹣a )(a+3)的结果是( ) A .a 2﹣6a+9B .a 2﹣9C .9﹣a 2D .a 2﹣3a+912.如图,在ABC ∆中,,4,AB AC BC ==面积是16,AC 的垂直平分线EF 分别交,AC AB 边于,E F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( )A.6 B.8 C.10 D.12 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.14.不等式组2x+1x{4x3x+2>≤的解集是▲ .15.如图,点A(3,n)在双曲线y=3x上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是.16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.17.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则ba=_____.18.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000 发芽种子粒数85 318 652 793 1 604 4 005 发芽频率0.850 0.795 0.815 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:|﹣1|+9﹣(1﹣3)0﹣(12)﹣1. 20.(6分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了A B 、两种玩具,其中A 类玩具的金价比B 玩具的进价每个多3元.经调查发现:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同.求A B 、的进价分别是每个多少元?该玩具店共购进A B 、了两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得的利润不少于1080元,则该淘宝专卖店至少购进A 类玩具多少个?21.(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22.(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A 测得潜艇C 的俯角为30°.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)23.(8分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 24.(10分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?25.(10分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.26.(12分)综合与实践﹣猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG 的度数,并直接写出结果(用含α的式子表示).27.(12分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a 1、a 2、a 3、a 4、a 5、a 6,“新顾客”为c 1、c 2、c 3、c 4….窗口开始工作记为0时刻.a 1a 2 a 3 a 4 a 5 a 6 c 1 c 2 c 3 c 4 … 到达窗口时刻 0 0 0 0 0 0 1 6 11 16 … 服务开始时刻 0 2 4 6 8 10 12 14 16 18 … 每人服务时长 2 2 2 2 2 2 2 2 2 2 … 服务结束时刻2468101214161820…根据上述表格,则第 位,“新顾客”是第一个不需要排队的.(2)若其他条件不变,若窗口每a 分钟办理一个客户(a 为正整数),则当a 最小取什么值时,窗口排队现象不可能消失.分析:第n 个“新顾客”到达窗口时刻为 ,第(n ﹣1)个“新顾客”服务结束的时刻为 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】根据反比例函数的图象和性质结合矩形和三角形面积解答. 【详解】解:作EH OA H 于⊥,连接AE .22ABE BDE BD AD S S =∴==V V Q∵四边形AHEB ,四边形ECOH 都是矩形,BE =EC , ∴ABEH ECOH S S 矩形矩形==24ABE S ∆=||4,04k k k ∴=<∴=-Q 故选B . 【点睛】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键. 2.A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°, ∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC , ∴∠BAE=25°, ∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°, ∴∠EAD+∠ACD=5°+70°=75°, 故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用. 3.B 【解析】 【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形. 【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个. 故选:B . 【点睛】此题考查由三视图判断几何体,解题关键在于识别图形 4.A∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC=2241=15,则cosB=BCAB=154,故选A5.C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.6.C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.7.C【解析】【分析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键 8.B 【解析】 【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数, 根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5个数是6,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1, 第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是6, 则(1,5)与(13,1)表示的两数之积是1. 故选B . 9.C 【解析】 【分析】设B (2k,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC =13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k .【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°, ∴OC由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CDOA OC=, ∴AE=2k CD OA OC ⨯⋅,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°, ∴∠OAE =∠OCD , ∴sin ∠OAE =EF ODAE OC==sin ∠OCD , ∴EF=313OD AE k OC ⋅==, ∵cos ∠OAE =AF CDAE OC==cos ∠OCD ,∴213CD AF AE k OC =⋅==, ∵EF ⊥x 轴,A′G ⊥x 轴, ∴EF ∥A′G ,∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==,∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ),∴562613k k k ⋅=, ∵k≠0, ∴169=15k , 故选C . 【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B 的坐标,表示出点A′的坐标. 10.B 【解析】【分析】根据相反数的定义与方法解答.【详解】解:-3的相反数为()33--=.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.11.C【解析】【分析】根据平方差公式计算可得.【详解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故选C.【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.12.C【解析】【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故AD BC⊥,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA MC=,推出MC DM MA DM AD+=+≥,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA∵△ABC是等腰三角形,点D是BC边上的中点∴AD BC⊥∴1141622S ABC BC AD AD==⨯⨯=g△解得8AD=∵EF是线段AC的垂直平分线∴点A关于直线EF的对称点为点C ∴MA MC=∵AD AM MD ≤+∴AD 的长为BM+MD 的最小值∴△CDM 的周长最短()CM MD CD =++ 12AD BC =+ 1842=+⨯ 10=故选:C .【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1.【解析】 过点B 作BE ⊥x 轴于点E ,根据D 为OB 的中点可知CD 是△OBE 的中位线,即CD=BE ,设A (x ,),则B (2x ,),故CD=,AD=﹣,再由△ADO 的面积为1求出k 的值即可得出结论.解:如图所示,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE . 设A (x ,),则B (2x ,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.14.﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.15.2.【解析】【分析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.【详解】由点A(3,n)在双曲线y=3x上得,n=2.∴A(3,2).∵线段OA的垂直平分线交OC于点B,∴OB=AB.则在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周长的值是2.16.3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.17.1 2【解析】【分析】因为方程有实根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非负性求出a,b的值即可. 【详解】∵方程有实根,∴△≥0,即△=4(1+a )2﹣4(3a 2+4ab+4b 2+2)≥0,化简得:2a 2+4ab+4b 2﹣2a+1≤0,∴(a+2b )2+(a ﹣1)2≤0,而(a+2b )2+(a ﹣1)2≥0,∴a+2b=0,a ﹣1=0,解得a=1,b=﹣12, ∴b a =﹣12. 故答案为﹣12. 18.1.2【解析】【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1【解析】试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.试题解析:解:|﹣1|10﹣(12)﹣1 =1+3﹣1﹣2=1.点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.20.(1)A 的进价是18元,B 的进价是15元;(2)至少购进A 类玩具40个.【解析】【分析】(1)设B 的进价为x 元,则A 的进价为()3x +元,根据用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同这个等量关系列出方程即可;(2)设A 玩具a 个,则B 玩具()100a -个,结合“玩具点将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答.【详解】解:(1)设B 的进价为x 元,则A 的进价为()3x +元 由题意得9007503x x=+, 解得15x =,经检验15x =是原方程的解.所以15318+=(元)答:A 的进价是18元,B 的进价是15元;(2)设A 玩具a 个,则B 玩具()100a -个由题意得:()12101001080a a +-≥解得40a ≥.答:至少购进A 类玩具40个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.21.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.22.潜艇C 离开海平面的下潜深度约为308米【解析】试题分析:过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度,用锐角三角函数分别在Rt △ACD 中表示出CD 和在Rt △BCD 中表示出BD ,利用BD=AD+AB 二者之间的关系列出方程求解.试题解析:过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x ,则BD=BA+AD=1000+x ,在Rt △ACD 中,CD=tan AD ACD ∠ =0tan30x =在Rt △BCD 中,BD=CD•tan68°,∴325+x= •tan68°解得:x≈100米,∴潜艇C 离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解. 视频23.11a -,22. 【解析】【分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式()()()()()()21231,1111a a a a a a a ⎡⎤--=-⋅+⎢⎥+-+-⎢⎥⎣⎦()()()22231,11a a a a a --+=⋅++- 1,1a =- 当2sin45tan45a =︒+︒22121,2=⨯+=时 原式222112===+- 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.24.(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解析】【分析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解; (2)把每月的生产量加起来即可,然后与计划相比较.(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.25.AED ACB ∠=∠.【解析】【分析】首先判断∠AED 与∠ACB 是一对同位角,然后根据已知条件推出DE ∥BC ,得出两角相等.【详解】解:∠AED=∠ACB .理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF ∥AB (内错角相等,两直线平行).∴∠3=∠ADE (两直线平行,内错角相等).∵∠3=∠B (已知),∴∠B=∠ADE (等量代换).∴DE ∥BC (同位角相等,两直线平行).∴∠AED=∠ACB (两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.26. (1) GF=GD ,GF ⊥GD;(2)见解析;(3)见解析;(4) 90°﹣2α. 【解析】(1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;(2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;(4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=12α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+12α)+12α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【详解】解:(1)GF=GD,GF⊥GD,理由:∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴点F,A,D在同一条线上,∵∠F=∠ADB,∴GF=GD,故答案为GF=GD,GF⊥GD;(2)连接AF,∵点D关于直线AE的对称点为点F,∴直线AE是线段DF的垂直平分线,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,设∠BAF=n,∴∠FAD=90°+n ,∵AF=AD=AB ,∴∠FAD=∠ABF ,∴∠AFB+∠ABF=180°﹣n ,∴∠AFB+∠ADG=180°﹣n ,∴∠FGD=360°﹣∠FAD ﹣∠AFG ﹣∠ADG=360°﹣(90°+n )﹣(180°﹣n )=90°, ∴GF ⊥DG ,(3)如图2,连接BD ,由(2)知,FG=DG ,FG ⊥DG , ∴∠GFD=∠GD F=12(180°﹣∠FGD )=45°, ∵四边形ABCD 是正方形,∴BC=CD ,∠BCD=90°,∴∠BDC=∠DBC=12(180°﹣∠BCD )=45°, ∴∠FDG=∠BDC ,∴∠FDG ﹣∠BDG=∠BDC ﹣∠BDG ,∴∠FDB=∠GDC ,在Rt △BDC 中,sin ∠DFG=DG DF =sin45°=22, 在Rt △BDC 中,sin ∠DBC=DC DB =sin45°=22, ∴DG DC DF DB=, ∴DG DF DC DB =, ∴△BDF ∽△CDG ,∵∠FDB=∠GDC ,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG ,∴CG ∥DF ;(4)90°﹣2α,理由:如图3,连接AF ,BD , ∵点D 与点F 关于AE 对称,∴AE 是线段DF 的垂直平分线,∴AD=AF ,∠1=∠2,∠AMD=90°,∠DAM=∠FAM , ∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四边形ABCD 是菱形,∴AB=AD ,∴∠AFB=∠ABF=∠DFG+∠1,∵BD 是菱形的对角线,∴∠ADB=∠ABD=12α, 在四边形ADBF 中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+12α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣2.【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.27.(1)5;(2)5n ﹣4,na+6a .【解析】【分析】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n 个“新顾客”到达窗口时刻为5n ﹣4,由表格可知,“新顾客”服务开始的时间为6a ,7a ,8a ,…,第n ﹣1个“新顾客”服务开始的时间为(6+n ﹣1)a=(5+n)a ,第n ﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a .【详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,∴第n 个“新顾客”到达窗口时刻为5n ﹣4,由表格可知,“新顾客”服务开始的时间为6a ,7a ,8a ,…,∴第n个“新顾客”服务开始的时间为(6+n)a,∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,∵每a分钟办理一个客户,∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n﹣4,na+6a.【点睛】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.。
2019年山东省莱芜市中考数学试题(含分析解答)
一、选择题(共 12 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确 选项的代码涂写在答题卡上,每小题选对得 3 分,选错、不选或选出的答案超过一 个均记 0 分,共 36 分) 1.(3 分)(2018•莱芜)﹣2 的绝对值是( ) A.﹣2 B.﹣ C. D.2 2.(3 分)(2018•莱芜)经中国旅游研究院综合测算,今年“五一”假日期间全国接待 国内游客 1.47 亿人次,1.47 亿用科学记数法表示为( ) A.14.7×107 B.1.47×107 C.1.47×108 D.0.147×109 3.(3 分)(2018•莱芜)无理数 2 ﹣3 在( ) A.2 和 3 之间 B.3 和 4 之间 C.4 和 5 之间 D.5 和 6 之间 4.(3 分)(2018•莱芜)下列图形中,既是中心对称,又是轴对称的是( )
形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是 2 和 2,则图中
阴影部分的面积是
.
第 3 页(共 48 页)
16.(4 分)(2018•莱芜)如图,正方形 ABCD 的边长为 2a,E 为 BC 边的中点, 、 的
圆心分别在边 AB、CD 上,这两段圆弧在正方形内交于点 F,则 E、F 间的距离
A.149°B.149.5° C.150° D.150.5° 10.(3 分)(2018•莱芜)函数 y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值 y<0 成立的 x 的取值范围是( ) A.x<﹣4 或 x>2 B.﹣4<x<2 C.x<0 或 x>2D.0<x<2 11.(3 分)(2018•莱芜)如图,边长为 2 的正△ABC 的边 BC 在直线 l 上,两条距离为 1 的平行直线 a 和 b 垂直于直线 l,a 和 b 同时向右移动(a 的起始位置在 B 点),速度 均为每秒 1 个单位,运动时间为 t(秒),直到 b 到达 C 点停止,在 a 和 b 向右移动的过 程中,记△ABC 夹在 a 和 b 之间的部分的面积为 s,则 s 关于 t 的函数图象大致为 ()
【2019年整理】山东省莱芜市中考数学试卷含答案
绝密★启用前试卷类型A莱芜市中等学校招生考试数学试题注意事项:1.答卷前考生务必在规定位置将姓名、准考证号等内容填写准确。
2.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分。
考试时间为120分钟。
3.请将第Ⅰ卷选择题答案填写在第Ⅱ卷首答案栏内,填在其它位置不得分。
4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷一并收回。
第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答案栏的相应位置上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.31的倒数是A .3B .31C .31D .32.下列计算结果正确的是A .923)(aa B .632aaa C .22)21(21D .1)2160(cos 03.在下列四个图案中既是轴对称图形,又是中心对称图形的是A .B .C .D .4.4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为A .3.1×106元B .3.11×104元C .3.1×104元D .3.10×105元5.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0abB .0b aC .ba D .0||||b a 6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是1 0 -1 a b B A (第5题图)(第6题图)A.B. C. D.7.已知反比例函数xy2,下列结论不正确的是A .图象必经过点(-1,2) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-28.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A .2.5 B .5C .10D .159.二次函数c bx axy 2的图象如图所示,则一次函数a bx y 的图象不经过A .第一象限B .第二象限C .第三象限D .第四象限10.已知12yx 是二元一次方程组18my nx ny mx 的解,则n m 2的算术平方根为A .4B .2C . 2D .±2 11.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米绝密★启用前试卷类型x(第9题图)yOO14 12 1096 86 66 30 x/分y/千米AB C D(第12题图)乙甲A莱芜市中等学校招生考试数学试题第Ⅱ卷(非选择题共84分)注意事项:第II 卷共6页,用钢笔或圆珠笔直接答在本试卷上。
山东省莱芜市2019-2020学年中考第三次质量检测数学试题含解析
山东省莱芜市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形2. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( ) A .0.8×1011B .8×1010C .80×109D .800×1083.已知一元二次方程x 2-8x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13B .11或13C .11D .124.如图,在已知的△ ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 、N ;②作直线MN 交AB 于点D ,连接CD ,则下列结论正确的是( )A .CD+DB=AB B .CD+AD=ABC .CD+AC=ABD .AD+AC=AB5.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,3]=1,[﹣2.5]=﹣3.现对82进行如下操作:821第次−−−−−→ [82⎡⎤]=92第次−−−−−→ [93]=33第次−−−−−→ 3]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( ) A .1B .2C .3D .46.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<27.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.7108.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个9.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.6710.已知常数k<0,b>0,则函数y=kx+b,kyx的图象大致是下图中的()A.B.C.D.11.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣212.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.14.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S 阴影=_____.15.关于x的分式方程211x a ax x++--=2的解为正实数,则实数a的取值范围为_____.16.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.17.225abπ-的系数是_____,次数是_____.18.如图,在△OAB中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x的值可以为7吗?为什么?20.(6分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.21.(6分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).22.(8分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.23.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)24.(10分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC 边上,BP=1.①特殊情形:若MP过点A,NP过点D,则PAPD=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时ECFC的值.25.(10分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m的值为____,表示“D 等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.26.(12分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.27.(12分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6 7 8y/cm 0 1.6 2.5 3.3 4.0 4.7 5.8 5.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将800亿用科学记数法表示为:8×1.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】试题解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,综上,△ABC的周长为11或1.故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.4.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB. 【点睛】了解中垂线的作图规则是解题的关键.5.C【解析】分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.详解:1211211[]11233111=== u u u u u x u u u u u u x u u u u u u x第次第次第次∴对121只需进行3次操作后变为1.故选C.点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解. 6.C【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况, 因此两个球中至少有一个红球的概率是:710. 故选:D . 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 8.B 【解析】 【分析】通过图象得到a 、b 、c 符号和抛物线对称轴,将方程24ax bx c ++=转化为函数图象交点问题,利用抛物线顶点证明()+x ax b a b ≤+. 【详解】由图象可知,抛物线开口向下,则0a <,0c >,Q 抛物线的顶点坐标是()1,4A ,∴抛物线对称轴为直线12bx a=-=, ∴2b a =-,∴0b >,则①错误,②正确;方程24ax bx c ++=的解,可以看做直线4y =与抛物线2y ax bx c =++的交点的横坐标, 由图象可知,直线4y =经过抛物线顶点,则直线4y =与抛物线有且只有一个交点, 则方程24ax bx c ++=有两个相等的实数根,③正确;由抛物线对称性,抛物线与x 轴的另一个交点是()1,0-,则④错误; 不等式()x ax b a b +≤+可以化为2ax bx c a b c ++≤++,Q 抛物线顶点为()1,4,∴当1x =时,y a b c =++最大, ∴2ax bx c a b c ++≤++故⑤正确.故选:B . 【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.9.B【解析】【分析】【详解】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF 再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以DE AD AE DF BF BD==,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以332x a a x y a y a-==-整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,4455x ay a==,即45 CE CF=故选B.【点睛】本题考查相似三角形的判定及性质.10.D【解析】【分析】当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.11.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(-2,7).【解析】【详解】解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣14x①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则b=6-4k+b=8⎧⎨⎩解得:1k=-2b=6⎧⎪⎨⎪⎩∴直线BC的解析式为:y=﹣12x+6②,联立①②得:x=-2y=7⎧⎨⎩或x=14y=-1⎧⎨⎩(舍去),∴点E的坐标为:(﹣2,7).故答案为(﹣2,7).14.【解析】【分析】根据垂径定理求得然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.【详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴又∵∴∴∴S 阴影=S 扇形ODB −S △DOE +S △BEC故答案为:.【点睛】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.15.a <2且a≠1【解析】【分析】将a 看做已知数,表示出分式方程的解,根据解为非负数列出关于a 的不等式,求出不等式的解集即可得到a 的范围.【详解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a ,∵分式方程的解为正实数,∴2-a>0,且2-a≠1,解得:a <2且a≠1.故答案为:a <2且a≠1.【点睛】分式方程的解.16.1【解析】【分析】根据题意设小明的速度为akm/h ,小亮的速度为bkm/h ,求出a,b 的值,再代入方程即可解答.【详解】设小明的速度为akm/h ,小亮的速度为bkm/h ,2 3.5 2.5(3.52)(3.5 2.5)210b a b a ⎧=-⎪⎨⎪-+-=⎩ , 解得,12060a b =⎧⎨=⎩ , 当小明到达B 地时,小亮距离A 地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米), 故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.17.25π- 1 【解析】【分析】根据单项式系数及次数的定义进行解答即可.【详解】根据单项式系数和次数的定义可知,﹣225ab π的系数是25π-,次数是1. 【点睛】本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.18.4【解析】【分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB V 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图Q 点C 为AB 的中点,∴CN 为AMB V 的中位线,∴MN NB a ==,CN b =,2AM b =,Q OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==V ,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【点睛】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)出现“和为8”的概率是0.33;(2)x 的值不能为7.【解析】【分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案. 【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x 的值不能为7.理由:假设x =7,则P(和为9)=16≠13,所以x 的值不能为7. 【点睛】 此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.20. (1);(2)【解析】【分析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.见解析【解析】【分析】根据题意作∠CBA=∠CAP即可使得△ABC~△PAC.【详解】如图,作∠CBA=∠CAP,P点为所求.【点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.22.(1)证明见解析;(2)证明见解析;(3253.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HC EM OE=,由此即可解决问题; 试题解析:(1)证明:如图1.∵AC ∥EG ,∴∠G=∠ACG ,∵AB ⊥CD ,∴»»AD AC =,∴∠CEF=∠ACD ,∴∠G=∠CEF ,∵∠ECF=∠ECG ,∴△ECF ∽△GCE .(2)证明:如图2中,连接OE .∵GF=GE ,∴∠GFE=∠GEF=∠AFH ,∵OA=OE ,∴∠OAE=∠OEA ,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE ⊥OE ,∴EG 是⊙O 的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH=tan ∠G=AH HC =34,∵AH=33HC=3Rt △HOC 中,∵OC=r ,OH=r ﹣33HC=43222(33)(43)r r -+=,∴r=36,∵GM ∥AC ,∴∠CAH=∠M ,∵∠OEM=∠AHC ,∴△AHC ∽△MEO ,∴AH HC EM OE =,∴3343253EM =,∴EM=2538. 点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.23.(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1为所作; (2)利用网格特定和旋转的性质画出A 、B 、C 的对应点A 2、B 2、C 2,从而得到△A 2B 2C 2, (3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA 1224117+=A 12253+34即OB 2+OA 12=A 1B 2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24. (1) ①特殊情形:12;②类比探究: 12PE PF = 是定值,理由见解析;(2) EC 4FC =或31 【解析】【分析】(1)证明Rt ABP Rt CDP V V ∽,即可求解;(2)点E 与点B 重合时,四边形EBFA 为矩形,即可求解;(3)分AEB 90∠︒=时、EAB 90∠︒=时,两种情况分别求解即可.【详解】解:(1)APB DPC 90DPC PDC 90Q =,=∠∠∠∠+︒+︒,APB PDC ∠∠∴=,Rt ABP Rt CDP ∴V V ∽, 21512PA AB PD CP ∴===-, 故答案为12;(2)点E与点B重合时,四边形EBFA为矩形,则PE1PF2=为定值;(3)①当AEB90∠︒=时,如图3,过点E、F分别作直线BC的垂线交于点G,H,由(1)知:ECB CFHα==∠∠,AB2AE1ABE30∠︒=,=,则=,EB ABcos303︒则==,3cos602GB EB︒==,同理32EG=,322cos cos2GCECFH ABαα+====.则FH2cos cosFCαα==,则314ECFC=+;②当EAB90∠︒=时,如图4,GB EA1EG FH AB2==,===,则BE5GC3=,=,22EG G13EC C=+=,EG 2tan tan GC 3EGC α∠===,则3cos 13α=, FH 13cos 4FC α==, 则4EC FC= , 故EC 4FC =或314+ . 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.25.(1)20;(2)40,1;(3)23. 【解析】试题分析:(1)根据等级为A 的人数除以所占的百分比求出总人数;(2)根据D 级的人数求得D 等级扇形圆心角的度数和m 的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.试题解析:解:(1)根据题意得:3÷15%=20(人),故答案为20;(2)C 级所占的百分比为820×100%=40%,表示“D 等级”的扇形的圆心角为420×360°=1°; 故答案为40、1.(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P 恰好是一名男生和一名女生=46 =23. 26.⑴; ⑵答案不唯一.如; ⑶.【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.27.(1)5.3(2)见解析(3)2.5或6.9【解析】【分析】(1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE 为非负数,函数为分段函数.【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y=()()28048248x xx x⎧-+≤≤⎪⎨-≤≤⎪⎩与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE.故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.。
山东省莱芜市2019-2020学年中考第五次大联考数学试卷含解析
山东省莱芜市2019-2020学年中考第五次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o2.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m+n )C .4nD .4m3.下列事件中,属于不确定事件的是( )A .科学实验,前100次实验都失败了,第101次实验会成功B .投掷一枚骰子,朝上面出现的点数是7点C .太阳从西边升起来了D .用长度分别是3cm ,4cm ,5cm 的细木条首尾顺次相连可组成一个直角三角形 4.一元二次方程x 2﹣2x =0的根是( ) A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=﹣25.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A.73 B.81 C.91 D.1096.下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a67.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm8.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A9.下列各点中,在二次函数2y x=-的图象上的是()A.()1,1B.()2,2-C.()2,4D.()2,4--10.如果关于x的分式方程1311a xx x--=++有负数解,且关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩…无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.311.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k 的值是( )A .92B .74C .245D .1212.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为( )A .16B .15C .13D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 是半径为2的⊙O 的弦,将»AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的»AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)14.一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.15.已知n >1,M =1n n -,N =1n n-,P =1nn +,则M 、N 、P 的大小关系为 . 16.要使分式51x -有意义,则x 的取值范围为_________. 17.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°18.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:sin30°•ta n60°+cos30cot 45cos 60︒-︒︒..20.(6分)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .求∠CDE 的度数;求证:DF 是⊙O 的切线;若AC=25DE ,求tan ∠ABD 的值.21.(6分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)22.(8分)如图,AB 为O e 的直径,4AB =,P 为AB 上一点,过点P 作O e 的弦CD ,设BCD m ACD ∠=∠.(1)若2m =时,求BCD ∠、ACD ∠的度数各是多少? (2)当2323AP PB -=+时,是否存在正实数m ,使弦CD 最短?如果存在,求出m 的值,如果不存在,说明理由;(3)在(1)的条件下,且12APPB,求弦CD的长.23.(8分)如图,已知与抛物线C1过A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1的解析式.(2)设抛物线的对称轴与x 轴交于点P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出D 点坐标.24.(10分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.25.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为»BD的中点,且BD=8,AC=9,sinC=13,求⊙O的半径.26.(12分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?27.(12分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 2.D【解析】【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.3.A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【解析】【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故选C.【点睛】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.C 【解析】试题解析:第①个图形中一共有3个菱形,3=12+2; 第②个图形中共有7个菱形,7=22+3; 第③个图形中共有13个菱形,13=32+4; …,第n 个图形中菱形的个数为:n 2+n+1; 第⑨个图形中菱形的个数92+9+1=1. 故选C .考点:图形的变化规律. 6.B 【解析】 【分析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可. 【详解】A. a 3+a 4≠a 7 ,不是同类项,不能合并,本选项错误;B. a 4÷a 3=a 4-3=a;,本选项正确;C. a 3•a 2=a 5;,本选项错误;D.(a 3)3=a 9,本选项错误. 故选B 【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单. 7.B 【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===, 设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯,解得24.5h = 即菱形的高为245cm . 故选B . 8.B 【解析】 【分析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可. 【详解】∵AB =BC =CD =1,∴当点A 为原点时,|a|+|b|>2,不合题意; 当点B 为原点时,|a|+|b|=2,符合题意; 当点C 为原点时,|a|+|b|=2,符合题意; 当点D 为原点时,|a|+|b|>2,不合题意; 故选:B . 【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值. 9.D 【解析】 【分析】将各选项的点逐一代入即可判断. 【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象; 当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D . 【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式. 10.B 【解析】 【分析】解关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩„,结合解集无解,确定a 的范围,再由分式方程1311a x x x --=++有负数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求所有符合条件的值之和即可. 【详解】由关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩„,可整理得242y a y +⎧⎨<-⎩… ∵该不等式组解集无解, ∴2a+4≥﹣2 即a≥﹣3又∵1311a x x x --=++得x =42a - 而关于x 的分式方程1311a x x x --=++有负数解 ∴a ﹣4<1 ∴a <4于是﹣3≤a <4,且a 为整数 ∴a =﹣3、﹣2、﹣1、1、1、2、3 则符合条件的所有整数a 的和为1. 故选B . 【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键. 11.C 【解析】 【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA-S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形, ∴AB=OC ,OA=BC , 设B 点的坐标为(a ,b ), ∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.12.D【解析】【分析】连接CD ,再利用勾股定理分别计算出AD 、AC 、BD 的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.【详解】连接CD ,如图:22222AD =+=22112+=223110+=.∵22222210+=()()(),∴∠ADC=90°,∴tan ∠BAC=222CD AD ==12. 故选D .【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②【解析】【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.【详解】如图1,连接OA和OB,作OF⊥AB.由题知:»AB沿着弦AB折叠,正好经过圆心O∴OF=OA=12OB∴∠AOF=∠BOF=60°∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)故,①②正确下面研究问题EO的最小值是否是1如图2,连接AE和EF∵△ACD是等边三角形,E是CD中点∴AE⊥BD(三线合一)又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF即,E 点在以AB 为直径的圆上运动.所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小此时,AE=EF ,AE ⊥EF∵⊙O 的半径是2,即OA=2,OF=1∴(勾股定理)∴所以,③不正确综上所述:①②正确,③不正确.故答案是:①②.【点睛】考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理. 14.x>1【解析】分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x 的取值范围.详解:∵kx+b>0,∴一次函数的图像在x 轴上方时,∴x 的取值范围为:x>1.故答案为x>1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.15.M >P >N【解析】∵n >1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M 最大;()11011n n P N n n n n --=-=>++Q ,>,∴P N∴M>P>N.点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b; 如果a-b=0,那么a=b; 如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.16.x≠1【解析】由题意得x-1≠0,∴x≠1.故答案为x≠1.17.57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.18.360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.-192【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=1122122--.20.(1)90°;(1)证明见解析;(3)1.【解析】【分析】(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(1)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DE AD DC=,∴DC1=AD•DE∵,∴设DE=x,则,则AC1﹣AD1=AD•DE,期(15x)1﹣AD1=AD•x,整理得:AD1+AD•x﹣10x1=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=22(25)(4)2x x x-=,故tan∠ABD=tan∠ACD=422AD xDC x==.21.凉亭P到公路l的距离为273.2m.【解析】【分析】分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【详解】详解:作PD⊥AB于D.设BD=x,则AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD,即DB=PD=tan30°•AD=x=33(1+x),解得:x≈273.2,∴PD=273.2.答:凉亭P 到公路l 的距离为273.2m .【点睛】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.22.(1)30ACD ∠=︒,60BCD ∠=︒ ;(2)见解析;(3)107DC =. 【解析】【分析】(1)连结AD 、BD,利用m 求出角的关系进而求出∠BCD 、∠ACD 的度数;(2)连结OD ,由所给关系式结合直径求出AP ,OP ,根据弦CD 最短,求出∠BCD 、∠ACD 的度数,即可求出m 的值.(3)连结AD 、BD ,先求出AD ,BD ,AP ,BP 的长度,利用△APC ∽△DPB 和△CPB ∽△APD 得出比例关系式,得出比例关系式结合勾股定理求出CP ,PD ,即可求出CD .【详解】解:(1)如图1,连结AD 、BD .AB Q 是O e 的直径90ACB ∴∠=︒,90ADB ∠=︒又2BCD ACD ∠=∠Q ,ACB BCD ACD ∠=∠+∠30ACD ∴∠=︒,60BCD ∠=︒(2)如图2,连结OD .2323AP PB -=+Q ,4AB =, 23423AP AP -∴=-+,则()()()2342323AP AP +=---, 解得23AP a =-023P AP ∴=-=要使CD 最短,则CD AB ⊥于P3cos 2OP POD OD ∴∠==, 30POD ∴∠=︒15ACD ∴∠=︒,75BCD ∠=︒5BCD ACD ∴∠=∠5m ∴=,故存在这样的m 值,且5m =;(3)如图3,连结AD 、BD .由(1)可得30ABD ACD ∠=∠=︒,4AB =2AD ∴=,23BD =12AP PB =Q , 43AP ∴=,83BP =, APC DPB ∠=∠Q ,ACD ABD ∠=∠APC DPB ∴∆∆∽AC AP PC DB DP BP∴==, 483233AC DP AP DB ∴⋅=⋅=⋅= 4832339PC DP AP BP ⋅=⋅=⋅=② 同理CPB APD ∆∆∽BP BC DP AD∴=, 816233BC DP BP AD ∴⋅=⋅=⋅=③,由①得AC =,由③得163BC DP =16:3:32AC BC ∴==, 在ABC ∆中,4AB =,2221643DP ⎛⎫∴+= ⎪⎝⎭⎝⎭,DP ∴=由②329PC DP PC ⋅==,得PC =,DC CP PD ∴=+=. 【点睛】本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键.23.(1)y = x 2-2x-3,(2)D 1(4,-1),D 2(3,- 4),D 3 ( 2,- 2 )【解析】【分析】(1)设解析式为y=a(x-3)(x+1),把点C (0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【详解】(1)设解析式为y=a(x-3)(x+1),把点C (0,-3)代入得-3=a×(-3)×1 解得a=1,∴解析式为y= x 2-2x-3,(2)如图所示,对称轴为x=1,过D 1作D 1H ⊥x 轴,∵△CPD 为等腰直角三角形,∴△OPC ≌△HD 1P ,∴PH=OC=3,HD 1=OP=1,∴D1(4,-1)过点D 2F ⊥y 轴,同理△OPC ≌△FCD 2,∴FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PC=2213=10,∴PD3=CD3=5故D3 ( 2,- 2 )∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.24.解:(1)AF与圆O的相切.理由为:如图,连接OC,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF为圆O的切线,即AF与⊙O的位置关系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E为AC中点,即AE=CE=12AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.∵S△AOF=12•OA•AF=12•OF•AE,∴AE=245.∴AC=2AE=.【解析】试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.试题解析:(1)连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,{32OA OCOF OF=∠=∠=,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴222234OF OA+=+∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=12AF•OA=12OF•AE,∴3×4=1×AE,解得:AE=125,∴AC=2AE=245.考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.25.⊙O的半径为256.【解析】【分析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
2019莱芜数学中考题真题(解析版)
2019莱芜数学中考题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.在下列四个实数中,最大的数是()A.﹣1 B.﹣C.D.2.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.下列运算正确的是()A.a2•a3=a6B.a3﹣a2=a C.(a2)3=a5D.a3÷a2=a4.下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.5.如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=65°,则∠2的度数是()A.122.5°B.123°C.123.5°D.124°6.某企业为了推选代表队参加市职业技能大赛,对甲、乙两个车间进行了五次测试,其中甲车间五次成绩的平均数是90分,中位数是91分,方差是2.4;乙车间五次成绩的平均数是90分,中位数是89分,方差是4.4.下列说法正确的是()A.甲车间成绩的平均水平高于乙车间B.甲、乙两车间成绩一样稳定C.甲车间成绩优秀的次数少于乙车间(成绩不低于90分为优秀)D.若选派甲车间去参加比赛,取得好成绩的可能性更大7.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.138.为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A型“共享单车”,因为单车需求量增加,计划继续投放B型单车,B型单车的投放数量与A 型单车的投放数量相同,投资总费用减少20%,购买B型单车的单价比购买A型单车的单价少50元,则A型单车每辆车的价格是多少元?设A型单车每辆车的价格为x元,根据题意,列方程正确的是()A.=B.=C.=D.=9.如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△=S△BOC=1,则k=()AOBA.1 B.2 C.3 D.410.如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣11.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12 B.﹣或2 C.﹣12或2 D.﹣或﹣1212.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF、有以下结论:①AN=EN②当AE=AF时,=2﹣③BE+DF=EF④存在点E、F,使得NF>DF其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共5小题)13.计算:(﹣)﹣1++|1﹣π|=.14.已知x1,x2是方程x2﹣x﹣3=0的两根,则+=﹣.15.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.16.如图,在矩形ABCD中,AB=4,BC=,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=,则CE=.17.定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是.(写出所有正确结论的序号)三、解答题(共7小题)18.先化简,再求值:(a﹣1)÷(a+﹣2),其中a=﹣1.19.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.20.公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线AB与AC的夹角为124°,凉亭顶盖边缘B、C到地面的距离为2.4米,石桌的高度DE为0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(A、E、D三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:sin62°≈0.88,tan42°≈0.90)21.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.22.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?23.如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.24.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△P AC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.2019莱芜数学中考题(解析版)参考答案一、单选题(共12小题)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵﹣<﹣1<<,∴四个实数中,最大的数是.故选:C.【知识点】算术平方根、实数大小比较2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.【知识点】科学记数法—表示较大的数3.【分析】根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵a3﹣a2≠a,∴选项B不符合题意;∵(a2)3=a6,∴选项C不符合题意;∵a3÷a2=a,∴选项D符合题意.故选:D.【知识点】同底数幂的除法、幂的乘方与积的乘方、合并同类项、同底数幂的乘法4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:B.【知识点】轴对称图形、中心对称图形5.【分析】求出∠BEG,再利用平行线的性质即可解决问题.【解答】解:∵∠1=65°,∴∠BEF=180°﹣65°=115°,∵EG平分∠BEF,∴∠BEG=∠BEF=57.5°,∵AB∥CD,∴∠2+∠BEG=180°,∴∠2=180°﹣57.5°=122.5°,故选:A.【知识点】平行线的性质6.【分析】根据平均数、中位数以及方差的意义分别对每一项进行分析即可得出答案.【解答】解:A、甲车间成绩的平均水平和乙车间相同,故本选项错误;B、因为甲车间的方差是2.4,乙车间的方差是4.4,所以甲车间成绩比较稳定,故本选项错误;C、因为甲车间的中位数是91分,乙车间的中位数是89分,所以甲车间成绩优秀的次数多于乙车间(成绩不低于90分为优秀),故本选项错误;D、选派甲车间去参加比赛,取得好成绩的可能性更大,正确;故选:D.【知识点】中位数、算术平均数、方差、可能性的大小7.【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,然后求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故选:C.【知识点】多边形内角与外角8.【分析】设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x﹣50)元,依据“B型单车的投放数量与A型单车的投放数量相同”列出关于x的方程.【解答】解:设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x﹣50)元,根据题意,得=故选:A.【知识点】由实际问题抽象出分式方程9.【分析】作CD⊥x轴于D,设OB=a(a>0).由S△AOB=S△BOC,根据三角形的面积公式得出AB=BC.根据相似三角形性质即可表示出点C的坐标,把点C坐标代入反比例函数即可求得k.【解答】解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA=,∵CD∥OB,AB=BC,∴OD=OA=,CD=2OB=2a,∴C(,2a),∵反比例函数y=(x>0)的图象经过点C,∴k=×2a=4.故选:D.【知识点】反比例函数与一次函数的交点问题10.【分析】连接BC、OD、OB,先证△BOD是等边三角形,再根据阴影部分的面积是S扇形BOD﹣S△BOD计算可得.【解答】解:如图所示,连接BC、OD、OB,∵∠A=40°,AB=AC,∴∠ACB=70°,∵BD∥AC,∴∠ABD=∠A=40°,∴∠ACD=∠ABD=40°,∴∠BCD=30°,则∠BOD=2∠BCD=60°,又OD=OB,∴△BOD是等边三角形,则图中阴影部分的面积是S扇形BOD﹣S△BOD=﹣×22=π﹣,故选:B.【知识点】勾股定理、垂径定理、圆内接四边形的性质、扇形面积的计算、圆周角定理11.【分析】如图所示,过点B作直线y=2x+b,将直线向下平移到恰在点C处相切,则一次函数y=2x+b在这两个位置时,两个图象有3个交点,即可求解.【解答】解:如图所示,过点B的直线y=2x+b与新抛物线有三个公共点,将直线向下平移到恰在点C处相切,此时与新抛物线也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,△=49+4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.【知识点】一次函数的性质、抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、二次函数图象与几何变换12.【分析】①如图1,证明△AMN∽△BME和△AMB∽△NME,可得∠NAE=∠AEN=45°,则△AEN是等腰直角三角形可作判断;②先证明CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,表示AC的长为AO+OC可作判断;③如图3,将△ADF绕点A顺时针旋转90°得到△ABH,证明△AEF≌△AEH(SAS),则EF=EH=BE+BH=BE+DF,可作判断;④在△ADN中根据比较对角的大小来比较边的大小.【解答】解:①如图1,∵四边形ABCD是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt△CEF中,OC=EF=x,△EAF中,∠EAO=∠F AO=22.5°=∠BAE=22.5°,∴OE=BE,∵AE=AE,∴Rt△ABE≌Rt△AOE(HL),∴AO=AB=1,∴AC==AO+OC,∴1+x=,x=2﹣,∴===;故②不正确;③如图3,∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,∵∠EAF=45°=∠DAF+∠BAE=∠HAE,∵∠ABE=∠ABH=90°,∴H、B、E三点共线,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF,故③正确;④△ADN中,∠FND=∠ADN+∠NAD>45°,∠FDN=45°,∴DF>FN,故存在点E、F,使得NF>DF,故④不正确;故选:B.【知识点】全等三角形的判定与性质、正方形的性质二、填空题(共5小题)13.【分析】直接利用负指数幂的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=﹣3+4+π﹣1=π.故答案为:π.【知识点】负整数指数幂、实数的运算14.【分析】利用根与系数的关系可得出x1+x2=1,x1•x2=﹣3,将其代入+=中即可得出结论.【解答】解:∵x1,x2是方程x2﹣x﹣3=0的两根,∴x1+x2=1,x1•x2=﹣3,∴+===﹣.故答案为:﹣.【知识点】根与系数的关系15.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【知识点】圆锥的计算16.【分析】已知tan∠BAF=,可作辅助线构造直角三角形,设未知数,利用勾股定理可求出FM、BM,进而求出FN,再利用三角形相似和折叠的性质求出EC.【解答】解:过点F作MN∥AD,交AB、CD分别于点M、N,则MN⊥AB,MN⊥CD,由折叠得:EC=EF,BC=BF=,∠C=∠BFE=90°,∵sin∠BAF==,设FM=x,则AM=2x,BM=4﹣2x,在Rt△BFM中,由勾股定理得:x2+(4﹣2x)2=()2,解得:x1=1,x2=>2舍去,∴FM=1,AM=BM=2,∴FN=﹣1,易证△BMF∽△FNE,∴,即:,解得:EF==EC.故答案为:.【知识点】矩形的判定与性质、翻折变换(折叠问题)、解直角三角形17.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.【解答】解:①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a=2时,a2=2[a]=2;当a=时,a2=2[a]=2;原题说法是错误的.故答案为:①②③.【知识点】解一元一次不等式组三、解答题(共7小题)18.【分析】根据分式的加减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(a﹣1)÷(a+﹣2)=(a﹣1)÷=(a﹣1)=,当a=﹣1时,原式=.【知识点】分式的化简求值19.【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【解答】解:(1)12÷24%=50人故答案为50.(2)a=50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【知识点】统计表、扇形统计图、用样本估计总体20.【分析】连接BC、AE,交于点O,则AE⊥BC.解Rt△OBD,求出OB=≈=2.解Rt△OAB中,即可求出AB=.【解答】解:如图,连接BC、AE,交于点O,则AE⊥BC.由题意,可知OE=2.4﹣0.6=1.8,∠OBE=42°,∠BAO=∠BAC=62°.在Rt△OBD中,∵tan∠OBE=,∴OB=≈=2.在Rt△OAB中,∵sin∠OAB=,∴AB=≈≈2.3(m).答:圆锥形顶盖母线AB的长度约为2.3米.【知识点】解直角三角形的应用-坡度坡角问题21.【分析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠F AC=90°∴∠F AB=∠F AC﹣∠BAC=30°∴∠F AB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG【知识点】等边三角形的性质、全等三角形的判定与性质22.【分析】(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,根据“改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,根据改造时间不超过35天且改造费用不超过128万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各改造方案,再利用总价=单价×数量分别求出三种方案所需改造费用,比较后即可得出结论.【解答】解:(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:,解得:.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,依题意,得:,解得:≤m≤.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.【知识点】二元一次方程组的应用、一元一次不等式组的应用23.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.【知识点】相似三角形的判定与性质、圆周角定理、切线的判定与性质24.【分析】(1)利用待定系数法,然后将A、B、C的坐标代入解析式即可求得二次函数的解析式;(2))过P点作PQ垂直x轴,交AC于Q,把△APC分成两个△APQ与△CPQ,把PQ作为两个三角形的底,通过点A,C的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB,使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,∠AOM=∠CAB=45°,即OM为y=﹣x,若∠AOM=∠CBA,则OM为y=﹣3x+3,然后由直线解析式可求OM与AD的交点M.【解答】解:(1)把A(﹣3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c得,解得,所以抛物线的函数表达式为y=﹣x2﹣2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,﹣x2﹣2x+3.),则Q点坐标为(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△P AC=,∴,解得:x1=﹣1,x2=﹣2.当x=﹣1时,P点坐标为(﹣1,4),当x=﹣2时,P点坐标为(﹣2,3),综上所述:若△P AC面积为3,点P的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,∵D为抛物线y=﹣x2﹣2x+3的顶点,∴D点坐标为(﹣1,4),又∵A(﹣3,0),∴直线AD为y=2x+6,AF=2,DF=4,tan∠DAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直线BC解析式为y=﹣3x+3.∵AB=4,∴AE=AB•sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠P AB=2,∴∠ACB=∠P AB,∴使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM=∠CAB=45°时,△ABC∽△OMA,即OM为y=﹣x,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(﹣2,2).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直线BC解析式为y=﹣3x+3.∴直线OM为y=﹣3x,设直线OM与AD的交点M(x,y).则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与△ABC相似的点M,其坐标为(﹣2,2)或(,),【知识点】二次函数综合题。
2019年山东省莱芜市中考数学模拟试卷及答案
2019年山东省莱芜市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36分)1.2018的绝对值是( )A. 2018B. −2018C. 12018D. −120182.据报道2019年前3月,某市土地出让金达到11.9亿,比2018年同期的7.984亿上涨幅度达到48.8%.其中数值11.9亿可用科学记数法表示为( )A. 1.19×109B. 11.9×108C. 1.19×1010D. 11.9×10103.我们知道√6是一个无理数,那么√6+1在整数()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间4.下列图形中,是轴对称图形不是中心对称图形的是()A. B. C. D.5.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. 2+xx−y B. 2yx2C. 2y33x2D. 2y2(x−y)26.某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A. 众数为14B. 极差为3C. 中位数为13D. 平均数为147.如图,△ABC是以圆锥的左视图,若BC=50,cosB=512,则该圆锥的侧面积为( )A. 1500πB. 3000πC. 750πD. 2000π8.如图,已知△ABC中,∠ABC=90∘,AB=BC,过△ABC的顶点B作直线l,且点A到l的距离为2,点C到l的距离为3,则AC的长是( )A. √13B. √20C. √26D. 59.如图所示,已知AD//BC,∠C=30∘,∠ADB:∠BDC=1:2,那么∠ADB等于()A. 45∘B. 30∘C. 50∘D. 36∘10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(−3,0),对称轴为直线x=−1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(−5,y1)、C(−1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A. ②④B. ①③④C. ①④D. ②③11.如图①,在长方形ABCD中,已知动点P从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x(cm),△PAB的面积为y(cm2),若y关于x的函数图象如图②所示,则图②中线段OE所在直线对应的函数表达式为()A. y=xB. y=32x C. y=23x D. y=2x12.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A. 2B. 3C. 4D. 5二、填空题(本大题共5小题,共20分)13.计算:4cos60∘−√83+(3−π)0=______.14.若方程x2+2x−13=0的两根分别为m、n,则mn(m+n)=______.15.三角形的三边长分别是√20、√40、√45,这个三角形的周长是______16.已知如图,正方形ABCD的对角线AC、BD交于O,点E、F分别是AD、AB边的中点,连接DF、CE交于点G,连接AG、OG.若AD=2,则OG=______ .17.如图,△ABC中,AB=AC,∠A=36∘,BD是∠ABC的平分线,若BC=5cm,则AB=________cm;三、计算题(本大题共1小题,共6分)18.先化简,再求值:a−1a+2÷(aa+2+1a2−4),其中a=√2+1四、解答题(本大题共6小题,共58分)19.我市公共自行车服务公司调查某中学学生对公共自行车的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了______名学生,扇形统计图中m=______.(2)请根据数据信息补全条形统计图.并求扇形统计图中“D类型”所对应的圆心角.(3)若该校有1000名学生,估计选择“非常了解”“比较了解”共约有多少人?20.如图,为了测量旗杆的高度BC,在距旗杆底部B点10米的A处,用高1.5米的测角仪DA测得旗杆顶端C的仰角∠CDE为52∘,求旗杆BC的高度.(结果精确到0.1米)【参考数据sin52∘=0.79,cos52∘=0.62,tan52∘=1.28】21.如图1,点G是正方形ABCD的对角线AC上的一点,过点G作GE//AB交BC于点E,作GF//AD交CD于点F.(1)计算(BEAG )2+(DFAG)2的值.(2)如图2,将图1中得到的四边形CFGE绕点C按顺时针方向旋转α(0∘<α<45∘)角,连接DF、BE、AG.②证:BE=DF.②求(BEAG )2+(DFAG)2的值.22.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?23. 如图,线段AB 为⊙O 的直径,点C ,E 在⊙O 上,BC⏜=CE ⏜,CD ⊥AB ,垂足为点D ,连接BE ,弦BE 与线段CD 相交于点F .(1)求证:CF =BF ;(2)若cos∠ABE =45,在AB 的延长线上取一点M ,使BM =4,⊙O 的半径为6.求证:直线CM 是⊙O 的切线.24. 如图,抛物线y =14x 2+bx +c 与x 轴交于A 、B 两点,其中点B(2,0),交y轴于点C(0,−52).直线y =mx +32过点B 与y 轴交于点N ,与抛物线的另一个交点是D ,点P 是直线BD 下方的抛物线上一动点(不与点B 、D 重合),过点P 作y 轴的平行线,交直线BD 于点E ,过点D 作DM ⊥y 轴于点M . (1)求抛物线y =14x 2+bx +c 的表达式及点D 的坐标;(2)若四边形PEMN 是平行四边形?请求出点P 的坐标;(3)过点P 作PF ⊥BD 于点F ,设△PEF 的周长为C ,点P 的横坐标为a ,求C 与a 的函数关系式,并求出C 的最大值.2019年山东省莱芜市中考数学模拟试卷答案1. A2. A3. C4. B5. D6. A7. A8. C9. C10. C11. B12. A13. 114. 2615. 5√5+2√1016. √10517. 5√5+5218. 解:当a=√2+1时,原式=a−1a+2÷a2−2a+1(a+2)=a−1a+2÷(a+2)(a−2)(a−1)2=a−2a−1=√2−1√2=2−√2219. 50;3220. 解:过点D作DE⊥BC交BC于E,在△CDE中,有CE=tan52∘×DE=1.28×10≈12.8,故BC=BE+CE=1.5+12.8≈14.3,答:旗杆的高度为14.3米.21. (1)解:∵GE//AB,GF//AD,∴△CEG∽△CBA,△CFG∽△CDA,∴CECG =BCAC=√22,CFCG=CDCA=√22∴BEAG=DFAG=√22∴(BEAG )2+(DFAG)2=1;(2)①证明:由(1)中GE//AB,GF//AD易知四边形CFGE是正方形∴BC=CD,CE=CF又∵∠BCE=∠DCF=α∴△BCE≌△DCF∴BE=DF;②解:如图,连接CG,由正方形ABCD,CEGF的性质,得BC AC =ECGC=√22∠ACB=∠GCE=45∘∴∠ACB−∠ACE=∠GCE−∠ACE 即∠BCE=∠ACG∴△BCE∼△ACG∴BEAG=ECGC=√22∴DFAG=√22∴(BEAG )2+(DFAG)2=1.22. 解:(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据题意得{2x+3y=24x+2y=14解这个方程组得:{y=4x=6答:甲、乙两种型号的机器人每台价格分别是6万元、4万元(2)设该公可购买甲型机器人a台,乙型机器人(8−a)台,根据题意得{1200a+1000(8−a)≥83006a+4(8−a)≤41解这个不等式组得3 2≤a≤92∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台设该公司的购买费用为w万元,则w=6a+4(8−a)=2a+32∵k=2>0∴w随a的增大而增大当a =2时,w 最小,w 最小=2×2+32=36(万元)∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元. 23. 证明:(1)延长CD 交⊙O 于G ,如图, ∵CD ⊥AB , ∴BC⏜=BG ⏜, ∵BC⏜=CE ⏜, ∴CE⏜=BG ⏜, ∴∠CBE =∠GCB , ∴CF =BF ;(2)连接OC 交BE 于H ,如图, ∵BC⏜=CE ⏜, ∴OC ⊥BE ,在Rt △OBH 中,cos∠OBH =BHOB =45, ∴BH =45×6=245,∴OH =√62−(245)2=185,∵OH OC =1856=35,OBOM =66+4=35,∴OH OC=OBOM ,而∠HOB =∠COM , ∴△OHB∽△OCM ,∴∠OCM =∠OHB =90∘, ∴OC ⊥CM ,∴直线CM 是⊙O 的切线.24. 解:(1)将B ,C 点坐标代入函数解析式,得{14×4+2b +c =0c =−52, 解得{b =34c =−52,抛物线的解析式为y =14x 2+34x −52. ∵直线y =mx +32过点B(2,0), ∴2m +32=0, 解得m =−34,直线的解析式为y =−34x +32.联立直线与抛物线,得{y =14x 2+34x −52y =−34x +32∴14x 2+34x −52=−34x +32, 解得x 1=−8,x 2=2(舍), ∴D(−8,712);(2)∵DM ⊥y 轴, ∴M(0,712),N(0,32) ∴MN =712−32=6.设P 的坐标为(x,14x 2+34x −52),E 的坐标则是(x,−34x +32) PE =−34x +32−(14x 2+34x −52)=−14x 2−32x +4,∵PE//y 轴,要使四边形PEMN 是平行四边形,必有PE =MN , 即−14x 2−32x +4=6,解得x 1=−2,x 2=−4, 当x =−2时,y =−3,即P(−2,−3), 当x =−4时,y =−32,即P(−4,−32),综上所述:点P 的坐标是(−2,−3)和)(−4,−32);(3)在Rt △DMN 中,DM =8,MN =6, 由勾股定理,得DN =√DM 2+MN 2=10, ∴△DMN 的周长是24. ∵PE//y 轴,∴∠PEN =∠DNM ,又∵∠PFE =∠DMN =90∘, ∴△PEF∽△DMN , ∴C △DMN C △PEF=DN PE,由(2)知PE =−14a 2−32a +4, ∴24C=10−14a 2−32a+4, ∴C =−35a 2−185a +485,C =−35(a +3)2+15,C与a的函数关系式为C=−35a2−185a+485,当x=−3时,C的最大值是15.。
2019年山东省莱芜市中考数学试卷解析
2019年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,每小题3分)1.(3分)(2019?衢州)﹣3的相反数是()A. 3 B.﹣3 C.D.﹣3化为小数是()2.(3分)(2019?莱芜)将数字 2.03×10﹣A.0.203 B.0.0203 C.0.00203 D.0.0002033.(3分)(2019?莱芜)下列运算正确的是()A.(﹣a2)?a3=﹣a6 B.a6÷a3=a2 C.a2+a3=a5 D.(a3)2=a64.(3分)(2019?莱芜)要使二次根式有意义,则x的取值范围是()A.x B.x C.x D.x5.(3分)(2019?莱芜)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFG的度数为()A.35° B.40° C.70° D.140°6.(3分)(2019?莱芜)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.7.(3分)(2019?莱芜)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣ 18.(3分)(2019?莱芜)下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.9.(3分)(2019?莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.5410.(3分)(2019?莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与速度v有关11.(3分)(2019?莱芜)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.12.(3分)(2019?莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB?CD=;(4)∠ABE=∠DCE.A. 1 B. 2 C. 3 D. 4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2019?莱芜)计算:﹣|﹣2|+(﹣1)3+2﹣1=.14.(4分)(2019?莱芜)已知m+n=3,m﹣n=2,则m 2﹣n2=.15.(4分)(2019?莱芜)不等式组的解集为.16.(4分)(2019?莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.17.(4分)(2019?莱芜)如图,反比例函数y=(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x 轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)(2019?莱芜)先化简,再求值:(1﹣),其中x=3.19.(8分)(2019?莱芜)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.20.(9分)(2019?莱芜)为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)21.(9分)(2019?莱芜)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.22.(10分)(2019?莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?23.(10分)(2019?莱芜)如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD 于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.24.(12分)(2019?莱芜)如图,已知抛物线y=ax 2+bx+c(a≠0)经过点A(﹣3,2),B(0,﹣2),其对称轴为直线x=,C(0,)为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.2019年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分)1.(3分)(2019?衢州)﹣3的相反数是()A. 3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3化为小数是()2.(3分)(2019?莱芜)将数字 2.03×10﹣A.0.203 B.0.0203 C.0.00203 D.0.000203考点:科学记数法—原数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:2.03×10﹣3化为小数是0.00203.故选C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2019?莱芜)下列运算正确的是()A.(﹣a2)?a3=﹣a6 B.a6÷a3=a2 C.a2+a3=a5 D.(a3)2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A 、(﹣a 2)?a 3=﹣a 5,故错误;B 、a 6÷a 3=a 3,故错误;C 、a 2?a 3=a 5,故错误;D 、正确;故选:D .点评:本题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(2019?莱芜)要使二次根式有意义,则x 的取值范围是()A .xB .xC .xD .x考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:依题意得3﹣2x ≥0,解得x ≤.故选:B .点评:本题考查了二次根式的意义和性质.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2019?莱芜)如图,AB ∥CD ,EF 平分∠AEG ,若∠FGE=40°,那么∠EFG 的度数为()A.35° B.40° C.70° D.140°考点:平行线的性质.分析:先根据两直线平行同旁内角互补,求出∠AEG的度数,然后根据角平分线的定义求出∠AEF的度数,然后根据两直线平行内错角相等,即可求出∠EFG的度数.解答:解:∵AB∥CD,∠FGE=40°,∴∠AEG+∠FGE=180°,∴∠AEG=140°,∵EF平分∠AEG,∴∠AEF=∠AEG=70°,∵AB∥CD,∴∠EFG=∠AEF=70°.故选C.点评:此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.6.(3分)(2019?莱芜)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.解答:解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2019?莱芜)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣ 1考点:方差;算术平均数;中位数;众数;极差.分析:分别计算该组数据的平均数,众数,极差及方差后找到正确的答案即可.解答:解:根据题意可知x=﹣1,平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1,∵数据﹣1出现两次最多,∴众数为﹣1,极差=3﹣(﹣6)=9,方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9.故选A.点评:此题考查了方差、极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.8.(3分)(2019?莱芜)下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.考点:简单几何体的三视图.分析:分别写出各几何体的主视图和左视图,然后进行判断.解答:解:A、主视图和左视图都为圆,所以A选项错误;B、主视图和左视图都为矩形的,所以B选项正确;C、主视图和左视图都为等腰三角形,所以C选项错误;D、主视图为矩形,左视图为圆,所以D选项错误.故选B.点评:本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.记住常见的几何体的三视图.9.(3分)(2019?莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54考点:多边形内角与外角.分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为x,边数为n,∴(n﹣2)×180°﹣x=1510,180n=1870+x,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.10.(3分)(2019?莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与速度v有关考点:列代数式(分式).分析:设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A地到B地所用时间,然后比较大小即可判定选择项.解答:解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.点评:此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.11.(3分)(2019?莱芜)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题意,分三种情况:(1)当0≤t≤2a时;(2)当2a<t≤3a时;(3)当3a<t≤5a时;然后根据直角三角形中三边的关系,判断出y关于x的函数解析式,进而判断出y与x的函数关系的图象是哪个即可.解答:解:(1)当0≤t≤2a时,∵PD2=AD2+AP2,AP=x,∴y=x2+a2.(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵PD2=CD2+CP2,∴y=(3a﹣x)2+(2a)2=x2﹣6ax+13a2.(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵PD2=y,∴y=(5a﹣x)2=(x﹣5a)2,综上,可得y=∴能大致反映y与x的函数关系的图象是选项D中的图象.故选:D.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.12.(3分)(2019?莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB?CD=;(4)∠ABE=∠DCE.A. 1 B. 2 C. 3 D. 4考点:圆的综合题.分析:设DC和半圆⊙O相切的切点为F,连接OF,根据切线长定理以及相似三角形的判定和性质逐项分析即可.解答:解:设DC和半圆⊙O相切的切点为F,∵在直角梯形ABCD中AB∥CD,AB⊥BC,∴∠ABC=∠DCB=90°,∵AB为直径,∴AB,CD是圆的切线,∵AD与以AB为直径的⊙O相切,∴AB=AF,CD=DF,∴AD=AE+DE=AB+CD,故①正确;如图1,连接OE,∵AE=DE,BO=CO,∴OE∥AB∥CD,OE=(AB+CD),∴OE⊥BC,∴S△BCE=BC?OE=(AB+CD)=(AB+CD)?BC==S△ABE+S△DCE,故②正确;如图2,连接AO,OD,∵AB∥CD,∴∠BAD+∠ADC=180°,∵AB,CD,AD是⊙O的切线,∴∠OAD+∠EDO=(∠BAD+∠ADC)=90°,∴∠AOD=90°,∴∠AOB+∠DOC=∠AOB+∠BAO=90°,∴∠BAO=∠DOC,∴△ABO∽△CDO,∴,∴AB?CD=OB?OC=BC BC=BC2,故③正确,如图1,∵OB=OC,OE⊥BC,∴BE=CE,∴∠BEO=∠CEO,∵AB∥OE∥CD,∴∠ABE=∠BEO,∠DCE=∠OEC,∴∠ABE=∠DCE,故④正确,综上可知正确的个数有4个,故选D.点评:本题考查了切线的判定和性质、相似三角形的判定与性质、直角三角形的判定与性质.解决本题的关键是熟练掌握相似三角形的判定定理、性质定理,做到灵活运用.二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2019?莱芜)计算:﹣|﹣2|+(﹣1)3+2﹣1=.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,第三项利用乘方的意义化简,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=3﹣2﹣1+=,故答案为:点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(4分)(2019?莱芜)已知m+n=3,m﹣n=2,则m 2﹣n2=6.考点:平方差公式.分析:根据平方差公式,即可解答.解答:解:m2﹣n2=(m+n)(m﹣n)=3×2=6.故答案为:6.点评:本题考查了平方差公式,解决本题的关键是熟记平方差公式.15.(4分)(2019?莱芜)不等式组的解集为﹣1≤x<2.考点:解一元一次不等式组.分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.解答:解:∵由①得:x≥﹣1,由②得:x<2,∴不等式组的解集是﹣1≤x<2,故答案为﹣1≤x<2.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.16.(4分)(2019?莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.考点:垂径定理;弧长的计算;解直角三角形.分析:由OC=r,点C在上,CD⊥OA,利用勾股定理可得DC的长,求出OD=时△OCD的面积最大,∠COA=45°时,利用弧长公示得到答案.解答:解:∵OC=r,点C在上,CD⊥OA,∴DC==,∴S△OCD=OD?,∴S△OCD2=OD2?(r2﹣OD2)=﹣OD4+r2OD2=﹣(OD2﹣)2+∴当OD2=,即OD=r时△OCD的面积最大,∴∠OCD=45°,∴∠COA=45°,∴的长为:=πr,故答案为:.点评:本题主要考查了扇形的面积,勾股定理,求出OD=时△OCD的面积最大,∠COA=45°是解答此题的关键.17.(4分)(2019?莱芜)如图,反比例函数y=(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x 轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=.考点:反比例函数图象上点的坐标特征;坐标与图形变化-对称.分析:根据反比例函数图象上点的坐标特征由点A坐标为(1,﹣1)得到k=﹣1,即反比例函数解析式为y=﹣,且ON=MN=1,则可判断△OMN为等腰直角三角形,知∠MON=45°,再利用PQ⊥OM可得到∠OPQ=45°,然后轴对称的性质得PN=PN′,NN′⊥PQ,所以∠NPQ=∠N′PQ=45°,于是得到N′P⊥x轴,则点n′的坐标可表示为(t,﹣),于是利用Pn=Pn′得t﹣1=|﹣|=,然后解方程可得到满足条件的t的值.解答:解:如图,∵点A坐标为(1,﹣1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵ON=MN=1,∴△OMN为等腰直角三角形,∴∠MON=45°,∵直线l⊥OM,∴∠OPQ=45°,∵点N和点N′关于直线l对称,∴PN=PN′,NN′⊥PQ,∴∠N′PQ=∠OPQ=45°,∠N′PN=90°,∴N′P⊥x轴,∴点N′的坐标为(t,﹣),∵PN=PN′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故答案为:.点评:本题考查了反比例函数的综合题,涉及知识点有反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质和用求根公式法解一元二次方程等.利用对称的性质得到关于t的方程是解题的关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)(2019?莱芜)先化简,再求值:(1﹣),其中x=3.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=?=?=,当x=3时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2019?莱芜)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.考点:列表法与树状图法;频数(率)分布表;条形统计图.分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.解答:解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.点评:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.20.(9分)(2019?莱芜)为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)考点:解直角三角形的应用-方向角问题.分析:先解Rt△ADC,求出CD=AC?sin∠DAC≈350×0.6=210海里,AD==280海里,那么渔船到的避风港D处所用时间:210÷18=11小时.再解Rt△ADB,求出BD=AD?tan∠BAD≈280×2.4=672海里,那么BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据追及问题的等量关系列出方程(40﹣18)x=462﹣200,解方程求出x=11,由于11<11,所以渔船能顺利躲避本次台风的影响.解答:解:由题意可知∠BAD=67.5°,∠CAD=36.9°,AC=350海里.在Rt△ADC中,∵∠ADC=90°,∠DAC=36.9°,AC=350海里,∴CD=AC?sin∠DAC≈350×0.6=210海里,AD==280海里.∴渔船到的避风港D处所用时间:210÷18=11小时.在Rt△ADB中,∵∠ADB=90°,∠BAD=67.5°,∴BD=AD?tan∠BAD≈280×2.4=672海里,∴BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据题意得(40﹣18)x=462﹣200,解得x=11,∵11<11,∴渔船能顺利躲避本次台风的影响.点评:本题考查了解直角三角形的应用﹣方向角问题,难度中等,求出强台风移动到渔船C后面200海里时所需时间是解题的关键.21.(9分)(2019?莱芜)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.考点:全等三角形的判定与性质;等腰直角三角形;平行四边形的判定.专题:证明题.分析:(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.解答:(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AB=BC,∵△ABD和△ACE均为等腰直角三角形,∴BD==BC=2BC,∵G为BD的中点,∴BG=BD=BC,∴△CBG为等腰直角三角形,∴∠CGB=45°,∵∠ADB=45°,AD∥CG,∵∠ABD=45°,∠ABC=45°∴∠CBD=90°,∵∠ACB=90°,∴∠CBD+∠ACB=180°,∴AC∥BD,∴四边形ACGD为平行四边形;(2)证明:∵∠EAB=∠EAC+∠CAB=90°+45°=135°,∠CAD=∠DAB+∠BAC=90°+45°=135°,∴∠EAB=∠CAD,在△DAC与△BAE中,,∴△DAC≌△BAE,∴BE=CD;∵∠EAC=∠BCA=90°,EA=AC=BC,∴四边形ABCE为平行四边形,∴CE=AB=AD,在△BCE与△CAD中,,∴△BCE≌△CAD,∴∠CBE=∠ACD,∵∠ACD+∠BCD=90°,∴∠CBE+∠BCD=90°,∴∠CFB=90°,即BE⊥CD.点评:本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.22.(10分)(2019?莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?考点:一元一次不等式组的应用;分式方程的应用.分析:(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.解答:解:(1)设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600(300﹣m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.点评:本题考查了分式方程和一元一次不等式耳朵应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.23.(10分)(2019?莱芜)如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD 于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.考点:圆的综合题.专题:计算题.分析:(1)首先根据OF∥AC,OA=OC,判断出∠BOF=∠COF;然后根据全等三角形判定的方法,判断出△BOF≌△COF,推得∠OCF=∠OBF=90°,再根据点C在⊙O上,即可判断出FC是⊙O的切线.(2)延长AC、BF交点为M.由△BOF≌△COF可知:BF=CF然后再证明:FM=CF,从而得到BF=MF,因为DC∥BM,所以△AEG∽△ABF,△AGC∽△AFM,然后依据相似三角形的性质可证GC=GE;(3)因为cos∠AOC=,OE=,AE=.由勾股定理可求得EC=.AC=.因为EG=GC,所以EG=.由(2)可知△AEG∽△ABF,可求得CF=BF=.在Rt△ABF中,由勾股定理可求得AF=3r.然后再证明△CFH∽△AFC,由相似三角形的性质可求得CH的长.解答:(1)证明:∵OF∥AC,∴∠BOF=∠OAC,∠COF=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF和△COF中,,∴△BOF≌△COF,∴∠OCF=∠OBF=90°,又∵点C在⊙O上,∴FC是⊙O的切线.(2)如下图:延长AC、BF交点为M.由(1)可知:△BOF≌△COF,∴∠OFB=∠CFO,BF=CF.∵AC∥OF,∴∠M=∠OFB,∠MCF=∠CFO.∴∠M=∠MCF.∴CF=MF.∴BF=FM.∵DC∥BM,∴△AEG∽△ABF,△AGC∽△AFM.∴,.∴又∵BF=FM,∴EG=GC.(3)如下图所示:∵cos∠AOC=,∴OE=,AE=.在Rt△GOC中,EC==.在Rt△AEC中,AC==.∵EG=GC,∴EG=.∵△AEG∽△ABF,∴,即.∴BF=.∴CF=.在Rt△ABF中,AF===3r.∵CF是⊙O的切线,AC为弦,∴∠HCF=∠HAC.又∵∠CFH=∠AFC,∴△CFH∽△AFC.∴,即:.∴CH=.点评:本题主要考查的是圆的综合应用,同时还涉及了勾股定理,锐角三角形函数,相似三角形的性质和判定,全等三角形的性质和判定,证得BF=FM是解答本题的关键.24.(12分)(2019?莱芜)如图,已知抛物线y=ax 2+bx+c(a≠0)经过点A(﹣3,2),B(0,﹣2),其对称轴为直线x=,C(0,)为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)利用待定系数法求抛物线解析式;(2)作EP∥y轴交AD于P,如图1,先利用待定系数法求出直线AD的解析式为y=﹣x+,再通过解方程组得D(5,﹣2),设E(x,x2﹣x﹣2)(﹣3<x<5),则P(x,﹣x+),所以PE=﹣x 2+x+,根据三角形面积公式和S△AED=S△AEP+S△DEP可得S△AED=﹣(x﹣1)2+,然后根据二次函数的最值问题求出△ADE的面积最大,且求出对应的E点坐标;。
莱芜市2019年中考数学模拟试卷及答案
莱芜市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
2019年山东省莱芜市中考数学试题(含答案)
2013 年山东莱芜市中考试题数学(满分 120 分,考试时间 120 分钟)第一部分(选择题 共 36 分)一、选择题(本大题共 12 个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分,共 36 分).1.(2013 山东莱芜,1,3 分)如在 1 , 1 ,﹣2,﹣1 这四个数中,最大的数是( ) 23A. 1 2B. 1 3C. ﹣2D.﹣1【答案】B2. (2013 山东莱芜,2,3 分)在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为 45100000,这个数用科学记数法表示为( )A. 451×105 【答案】CB. 45.1×106 C. 4.51×107 D. 0.451×103. (2013 山东莱芜,3,3 分)下面四个几何体中,左视图是四边形的几何体共有( )球体 A.1 个 B. 2 个 【答案】B圆锥 C. 3 个正方体 D.4 个圆柱4. (2013 山东莱芜,4,3 分)方程 x2 4 =0 的解为()x2A. ﹣2 B. 2 C. ±2 D. 1 2【答案】A5. (2013 山东莱芜,5,3 分)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是( ) A. 10,10 B. 10, 12.5 C. 11,12.5 D. 11,10 【答案】D6. (2013 山东莱芜,6,3 分)如图所示,将含有 30°角的三角板的直角顶点放在相互平行的两条直线其 中一条上,若∠1=35°,则∠2 的度数为( )A. 10° B. 20° C. 25° D.30° 【答案】C 7. (2013 山东莱芜,7,3 分)将半径为 3cm 的圆形纸片沿 AB 折叠后,圆弧恰好能经过圆心 O,用图中阴 影部分的扇形围成一个圆锥的侧面,则这个圆柱的高为( )A. 2 2 B. 2 【答案】AC. 10 D. 3 28. (2013 山东莱芜,8,3 分)下列图形中,既是轴对称图形,又是中心对称图形的个数是( ) ①等边三角形;②矩形;③等腰梯形;④菱形;⑤正八边形;⑥圆 A. 2 B. 3 C. 4 D.5 【答案】C9. (2013 山东莱芜,9,3 分)如图,在⊙O 中,已知∠OAB=22.5°,则∠C 的度数为( )A. 135° B. 122.5° C. 115.5° D.112.5° 【答案】D10. (2013 山东莱芜,10,3 分)下列说法错误的是( ) A.若两圆相交,则它们公共弦的垂直平分吧必过两圆的圆心 B.2+ 3 与 2- 3 互为倒数 C.若 a> b ,则 a>bD.梯形的面积等于梯形的中位线与高的乘积的一半 【答案】D11. (2013 山东莱芜,11,3 分)在平面直角坐标系中,O 为坐标原点,点 A 的坐标为(1 3 ),M 为坐标 轴上一点,且使得△MOA 为等腰三角形,则满足条件的点 M 的个数为( ) A.4 B. 5 C. 6 D.8 【答案】C12. (2013 山东莱芜,12,3 分)如图,等边三角形 ABC 的边长为 3,N 为 AC 的三等分点,三角形边上的 动点 M 从点 A 出发,沿 A→B→C 的方向运动,到达点 C 时停止.设点 M 运动的路程为 x,MN2=y,则 y 关于 x 的函数图象大致为( )【答案】B二、填空题(本大题共 5 小题,只要求填写最后结果,每小题填对得 4 分,共 20 分).13. (2013 山东莱芜,13,4 分)分解因式:2m3-8m=.【答案】2m(m+2)(m-2)14. (2013 山东莱芜,14,4 分)正十二边形每个内角的度数为.【答案】150°15. (2013 山东莱芜,15,4 分)M(1,a)是一次函数 y=3x+2 与反比例函数 y k 图象的公共点,若将x一次函数 y=3x+2 的图象向下平移 4 个单位,则它与反比例函数图象的交点坐标为.【答案】(-1,-5),( 5 , 3 ) 316. (2013 山东莱芜,16,4 分)如图,矩形 ABCD 中,AB=1,E、F 分别为 AD、CD 的中点,沿 BE 将△ABE折叠,若点 A 恰好落在 BF 上,则 AD=.【答案】 217. (2013 山东莱芜,17,4 分)已知 123456789101112…997998999 是由连续整数 1 至 999 排列组成的一个数,在该数种从左往右数第 2013 位上的数字为.【答案】7三、解答题(本大题共 7 小题,共 64 分,解得要写出必要的文字说明、证明过程或推演步骤)18. (2013 山东莱芜,18,9 分)先化简,再求值: a 2 (a 4 ) ,其中 a= 3 +2.a4a4解: a 2 (a 4 ) a 2 a2 4a 4a4a4 a4 a4 a2 a4 a 4 (a 2)21. a2当 a= 3 2 时,原式 1 1 1 3 .a2 322 3 319.(2013 山东莱芜,19,8 分)在学校开展的“学习交通安全知识,争做文明中学生”主题活动月中, 学校德工处随机选取了该校部分学生,对闯红灯情况进行了一次调查,调查结果有三种情况:A.从不闯红灯;B.偶尔闯红灯;C 经常闯红灯.德工处将调查的数据进行了整理,并绘制了尚不完整 的统计图如下,请根据相关信息,解答下列问题. (1)求本次活动共调查了多少名学生; (2)请补全(图二),并求(图一)种 B 区域的圆心角的度数; (3)若该校有 240 名学生,请估算该校不严格遵守信号灯指示的人数.解:(1) 20 36 20 1 200.36010本次活动共调查了 200 名学生.(2)补全图二200-120-20=60.360 60 108. 200B 区域的圆心角的度数是 108°.(3) 2400 60 20 2400 2 960.2005估计该校不严格遵守信号等指示的人数为 960 人.20. (2013 山东莱芜,20,9 分)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附 近两个小岛 A、B 上的观测点进行观测,从 A 岛测得渔船在南偏东 37°方向 C 处,B 岛在南偏东 66°方向, 从 B 岛测得渔船在正西方向,已知两个小岛间的距离是 72 海里,A 岛上维修船的速度为每小时 20 海里,B 岛上维修船的速度为每小时 28.8 海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船? (参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)解:作 AD⊥BC 的延长线于点 D,在 Rt△ADB 中, AD=AB·cos∠BAD=72×cos66°=72×0.4=28.8(海里) BD=AB·sin∠BAD=72×sin66°=72×0.9=64.8(海里).在 Rt△ADC 中, AC AD 28.8 28.8 36 (海里). cos DAC cos 37 0.8CD=AC·sin∠CAD=36×sin37°=36×0.6=21.6(海里).BC=BD-CD=64.8-21.6=43.2(海里).A岛上维修船需要时间 tAAC 2036 20 1.8 (小时).B岛上维修船需要时间 tBBC 28.843.2 28.8 1.5 (小时).∵ tA < tB ,∴调度中心应该派遣 B 岛上的维修船.21. (2013 山东莱芜,21,9 分)在 Rt△ABC 中,∠C=90°,以 AC 为一边向外作等边三角形 ACD,点 E 为 AB 的中点,连结 DE. (1)证明 DE∥CB; (2)探索 AC 与 AB 满足怎样的数量关系时,四边形 DCBE 是平行四边形.解:(1)证明:连结 CE.∵点 E 为 Rt△ACB 的斜边 AB 的中点,1∴CE= AB=AE.2∵△ACD 是等边三角形,∴AD=CD.在△ADE 与△CDE 中,AD=CD,DE=DE,AE=CE,∴△ADE≌△CDE.∴∠ADE=∠CDE=30°. ∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥CB. (2)∵∠DCB=150°,若四边形 DCBE 是平行四边形,则 DC∥BE, ∠DCB+∠B=180°.∴∠B=30°.在 Rt△ACB 中,sinB= AC ,sin30°= AC 1 ,AC= 1 AB 或 AB=2AC.BCBC 22∴当 AC= 1 AB 或 AB=2AC 时,四边形 DCBE 是平行四边形. 222. (2013 山东莱芜,22,10 分)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、 短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多 4 元,且购买 2 条长跳绳与购买 5 条短跳绳的 费用相同. (1)两种跳绳的单价各是多少元?(2)若学校准备用不超过 2000 元的现金购买 200 条长、短跳绳,且短跳绳的条数不超过长跳绳的 6 倍,问 学校有几种购买方案可供选择? 解:(1)设长跳绳的单价是 x 元,短跳绳的单价为 y 元.x 2y 4由题意得: 2x 5y.x 20解得: y8.所以长跳绳单价是20元,短跳绳的单价是8元. 200 a 6a (2)设学校购买 a 条长跳绳,由题意得: 20a 8(200 a) 2000 .解得: 28 4 a 33 1 .73∵a 为正整数,∴a 的整数值为 29,,3,31,32,33.所以学校共有 5 种购买方案可供选择.23. (2013 山东莱芜,23,10 分)如图,⊙O 的半径为 1,直线 CD 经过圆心 O,交⊙O 于 C、D 两点,直 径 AB⊥CD,点 M 是直线 CD 上异于点 C、O、D 的一个动点,AM 所在的直线交于⊙O 于点 N,点 P 是直线 CD 上另一点,且 PM=PN. (1)当点 M 在⊙O 内部,如图一,试判断 PN 与⊙O 的关系,并写出证明过程; (2)当点 M 在⊙O 外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由; (3)当点 M 在⊙O 外部,如图三,∠AMO=15°,求图中阴影部分的面积.解:(1)PN 与⊙O 相切. 证明:连结 ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN. ∵∠AMO=∠PMN,∴∠PNM=∠AMO. ∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°. 即 PN 与⊙O 相切. (2)成立. 证明:连结 ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN. 在 Rt△AOM 中, ∴∠OMA+∠OAM=90°, ∴∠PNM+∠ONA=90°. ∴∠PNO=180°-90°=90°. 即 PN 与⊙O 相切. (3)连结 ON,由(2)可知∠ONP=90°.∵∠AMO=15°,PM=PN,∴∠PNM=15°, ∠OPN=30°, ∵∠PON=60°,∠AON=30°.33作 NE⊥OD,垂足为点 E,则 NE=ON·sin60°=1× = .22S阴影SA AOCS扇形AONSA CON=1 2OC·OA+30 360121 2CO·NE= 1 11 1 1 131 1 3.212 2 2 2 12 424. (2013 山东莱芜,24,12 分)如图,抛物线 y=ax2+bx+c(a≠0)经过点 A(-3,0)、B(1,0)、 C(-2,1),交 y 轴于点 M. (1)求抛物线的表达式; (2)D 为抛物线在第二象限部分上的一点,作 DE 垂直 x 轴于点 E,交线段 AM 于点 F,求线段 DF 长度的最大 值,并求此时点 D 的坐标; (3)抛物线上是否存在一点 P,作 PN 垂直 x 轴于点 N,使得以点 P、A、N 为顶点的三角形与△MAO 相似?若 存在,求点 P 的坐标;若不存在,请说明理由.9a 3b c 0 a1 3解:由题意可知 a 4abc 2b 0 c 1.解得b 2 3 c 1.∴抛物线的表达式为 y= 1 x2 2 x 1. 33(2)将 x=0 代入抛物线表达式,得 y=1.∴点 M 的坐标为(0,1). 设直线 MA 的表达式为 y=kx+b,则k 1 b 111 b3 1.3kb0.解得k=3,b=1.∴直线MA的表达式为y=3x+1.设点D的坐标为(x0,1 3x022 3x01),则点F的坐标为(x0 ,1 3x0 1 ).DF=1 3x022 3x01(1 3x0 1)=1 3x02x01 3( x03)2 23 4.当x03 2时,DF的最大值为3 4.此时1 3x022 3x015 4,即点D的坐标为(3 2,5 4).(3)存在点 P,使得以点 P、A、N 为顶点的三角形与△MAO 相似.在 Rt△MAO 中,AO=3MO,要使两个三角形相似,由题意可知,点 P 不可能在第一象限.① 设点 P 在第二象限时,∵点 P 不可能在直线 MN 上,∴只能 PN=3NM,∴ 1 m2 2 m 1 3(m 3) ,即 m2 11m 24 0 . 33解得 m=-3(舍去)或 m=-8.又-3<M<0,故此时满足条件的点不存在.② 当点 P 在第三象限时,∵点 P 不可能在直线 MN 上,∴只能 PN=3NM,∴ 1 m2 2 m 1 3(m 3) ,即 m2 11m 24 0 . 33解得 m=-3 或 m=8.此时点 P 的坐标为(-8,,15).③ 当点 P 在第四象限时,若 AN=3PN 时,则-3 ( 1 m2 2 m 1) m 3 ,即 m2 m 6 0 . 33解得 m=-3(舍去)或 m=2.当m=2时,1 3x022 3x015 3.此时点P的坐标为(2,-5 3).若 PN=3NA,则- ( 1 m2 2 m 1) 3(m 3) ,即 m2 7m 30 0 . 33解得m=-3(舍去)或m=10,此时点P 的坐标为(10,,39).综上所述,满足条件的点P 的坐标为(-8,,15)、(2,-)、(10,,39).53。
2019年山东省莱芜市中考数学模拟试卷(4月份)(解析版)
2019年山东省莱芜市中考数学模拟试卷(4月份)一、选择题(本大题共12小题,共36.0分)1.-8的立方根与4的平方根的和是()A. 0B. 0或4C. 4D. 0或2.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为()A. 亿元B. 亿元C. 亿元D. 亿元3.无理数介于那两个相邻的整数之间()A. 4和5之间B. 2和3之间C. 3和4之间D. 1和2之间4.在下列图形中,是中心对称图形的是()A.B.C.D.5.分式-可变形为()A. B. C. D.6.某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款情况如下(单位:元):10,8,12,15,10,12,11,9,13,10.则这组数据的()A. 众数是B. 方差是C. 极差是8D. 中位数是107.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()A. 1B.C.D.8.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来方向相反,那么这两次拐变的角度是()A. 第一次向右拐,第二次左拐B. 第一次向左拐,第二次右拐C. 第一次向左拐,第二次左拐D. 第一次向右拐,第二次右拐9.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A. 1B. 2C. 3D. 410.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A. B. C. D.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给下以下结论:①2a-b=0;②9a+3b+c<0;③关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根;④8a+c<0.其中正确的个数是()A. 2B. 3C. 4D. 512.如图,在▱ABCD中,∠DAB=60°,AB=10,AD=6.⊙O分别切边AB,AD于点E,F,且圆心O恰好落在DE上.现将⊙O沿AB方向滚动到与边BC相切(点O在□ABCD的内部),则圆心O移动的路径长为()A. 4B. 6C.D.二、填空题(本大题共5小题,共15.0分)13.计算:(3-π)0-|-|+()-2=______.14.若x1,x2是一元二次方程x2-3x-4=0的两根,则x1+x2=______.15.如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是______.16.△ABC三边长分别为2,3,,则△ABC的面积为______.17.如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为______.(结果保留π)三、计算题(本大题共1小题,共10.0分)18.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号).四、解答题(本大题共6小题,共59.0分)19.计算:cot30°-sin60°+.20.在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有______人;2()请根据上述图表对这次竞赛成绩进行分析,写出两个结论.21.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.22.如图,在⊙O中,AB是直径,点D是⊙O上的一点,点C是的中点,弦CM垂直AB于点F,连接AD,交CF于点P,连接BC,∠DAB=30°.(1)求∠ABC的度数;(2)若CM=4,求的长度.(结果保留π)23.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.24.如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),B(5,0)两点,直线y=-x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.故选:D.根据立方根的定义求出-8的立方根,根据平方根的定义求出4的平方根,然后即可解决问题.本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.【答案】B【解析】解:按照科学记数法的形式8500亿元应该写成8.5×103亿元.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.【答案】B【解析】解:∵8<21<27,∴2<<3,则无理数介于2和3之间,故选:B.估算确定出所求范围即可.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.4.【答案】C【解析】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.根据中心对称图形的定义和图形的特点即可求解.本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5.【答案】D【解析】解:-=-=,故选:D.先提取-1,再根据分式的符号变化规律得出即可.本题考查了分式的基本性质的应用,能正确根据分式的基本性质进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变.6.【答案】B【解析】解:这组数据10,8,12,15,10,12,11,9,13,10中,10出现了3次,出现的次数最多,则众数是10;平均数是(10+8+12+15+10+12+11+9+13+10)÷10=11,则方差=[3×(10-11)2+(8-11)2+2×(12-11)2+(15-11)2+(11-11)2+(9-11)2+(13-11)2]=3.8;极差是:15-8=7;把这组数据从小到大排列为:8,9,10,10,10,11,12,12,13,15,最中间两个数的平均数是(10+11)÷2=10.5;故选:B.根据众数、方差、极差、中位数的定义和公式分别进行计算,即可得出答案.此题考查了众数、方差、极差、中位数,方差公式S2=[(x1-)2+(x2-)2+…+(x n -)2],中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数.7.【答案】C【解析】解:根据题意得:,解得r=,故选:C.根据展开的半圆就是底面周长列出方程.本题的关键是明白展开的半圆就是底面周长.8.【答案】C【解析】解:因为两次拐弯后,按原来的相反方向前进,所以两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:C.根据平行线的性质分别判断得出即可.此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.9.【答案】D【解析】解:∵△ABC为等边三角形,∴AB=BC,∵等边△ABC沿射线BC向右平移到△DCE的位置,∴AB=DC,AB∥DC,∴四边形ABCD为平行四边形,而AB=BC,∴四边形ABCD为菱形,∴AD=BC,BD、AC互相平分,所以①②正确;同理可得四边形ACED为菱形,所以③正确;∵BD⊥AC,AC∥DE,∴BD⊥DE,所以④正确.故选:D.根据等边三角形的性质得AB=BC,再根据平移的性质得AB=DC,AB∥DC,则可判断四边形ABCD为菱形,根据菱形的性质得AD=BC,BD、AC互相平分;同理可得四边形ACED为菱形;由于BD⊥AC,AC∥DE,易得BD⊥DE.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了等边三角形的性质和菱形的判定与性质.10.【答案】C【解析】解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x-1)2+2.故选:C.先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x-k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x-k-m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.11.【答案】A【解析】解:①∵抛物线的对称轴为x=-=1,∴b=-2a,∴2a-b=4a≠0,结论①不正确;②∵抛物线的对称轴为x=1,当x=-1时,y=ax2+bx+c<0,∴当x=3时,y=ax2+bx+c=9a+3b+c<0,结论②正确;③∵二次函数y=ax2+bx+c的图象的顶点坐标为(1,-3),∴将二次函数y=ax2+bx+c图象沿y轴正方向平移3个单位长度得到y=ax2+bx+c+3,且二次函数y=ax2+bx+c+3的图象与x轴只有一个交点,∴关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根,结论③正确;④当x=-2时,y=ax2+bx+c=4a-2b+c>0,∵b=-2a,∴4a-2×(-2a)+c=8a+c>0,结论④不正确.综上所述:正确的结论有②③.故选:A.①根据抛物线的对称轴为x=-=1,可得出2a-b=4a≠0,结论①不正确;②根据二次函数的对称性,可得出当x=3时,y=ax2+bx+c=9a+3b+c<0,结论②正确;③将二次y=ax2+bx+c图象沿y 轴正方向平移3个单位长度,可得出二次函数y=ax2+bx+c+3的图象与x轴只有一个交点,即关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根,结论③正确;④将x=-2代入二次函数解析式中,可得出y=4a-2b+c>0,再结合b=-2a即可得出8a+c>0,结论④不正确.综上即可得出结论.本题考查了抛物线与x轴的交点、二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.12.【答案】B【解析】解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=6,∠ADE=30°,∴AE=AD=3,∴OE=AE=∵AD∥BC,∠DAB=60°,∴∠ABC=120°.设当运动停止时,⊙O与BC,AB分别相切于点M,N,连接ON,OM.同理可得,∠BON为30°,且ON为,∴BN=ON•tan30°=1cm,EN=AB-AE-BN=10-3-1=6.∴⊙O滚过的路程为6.故选:B.图所示,⊙O滚过的路程即线段EN的长度.EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别根据AE和BN所在的直角三角形利用三角函数进行计算即可此题考查了切线的性质、平行四边形的性质及解直角三角形等知识点,关键时计算出AE和BN的长度.13.【答案】5-【解析】解:(3-π)0-|-|+()-2=1-+4=5-.故答案为:5-.直接利用零指数幂的性质以及绝对值的性质和负整数指数幂的性质化简求出答案.此题主要考查了实数运算,正确化简各数是解题关键.14.【答案】3【解析】解:根据题意得x1+x2=3.故答案为3.利用根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.15.【答案】2【解析】解:设正三角形的边长为a,则a2×=2,解得a=2.则图中阴影部分的面积=2×-2=2.故答案是:2.由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.16.【答案】3【解析】解:∵22+32=()2,∴△ABC是直角三角形,∴S△ABC =×2×3=3.故答案为:3.先判断出三角形的形状,再根据三角形的面积公式即可得出结论.本题考查的是勾股定理,先根据题意判断出三角形△ABC是直角三角形是解答此题的关键.17.【答案】+2【解析】解:如图所示:∵斜边与半圆相切,点B是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=4,∴OC=OB=2,BC=2.∴S阴影=S扇形BOD+S△BOC =+×2×2=+2.故答案为:+2.求出OC=OB=2,BC=2,图中阴影部分的面积=扇形BOD的面积+△BOC的面积.本题考查了切线的性质,扇形面积的计算.此题利用了“分割法”求得阴影部分的面积.18.【答案】解:作BG⊥AD于G,作EF⊥AD于F,则在Rt△ABG中,∠BAD=60°,AB=40,所以就有BG=AB•Sin60°=20,AG=AB•Cos60°=20,同理在Rt△AEF中,∠EAD=45°,则有AF=EF=BG=20,所以BE=FG=AF-AG=20(-1)米.故BE至少是20(-1)米.【解析】BE=FG,应根据三角函数值先求得斜坡的高度,再得到AF、AG的值,进而求解.本题考查锐角三角函数的应用.需注意构造直角三角形是常用的辅助线方法.19.【答案】解:原式====.【解析】直接利用特殊角的三角函数值代入求出答案.此题主要考查了特殊角三角函数值,正确记忆相关数据是解题关键.20.【答案】21 80 77.6 70【解析】解:(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);中位数:70(分);众数:80(分).(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.故答案为:21;80,77.6,70.(1)根据条形统计图得到参赛人数,然后根据每个级别所占比例求出成绩在70分以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求平均数、中位数、众数;(3)根据其成绩,作出合理的分析即可.本题考查了各种统计图之间的相互转化的知识,在解决本题时关键的地方是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.21.【答案】解:(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据题意得:,解得:;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12-t)千克,根据题意得:12-t≥2t,∴t≤4,∵W=15t+20(12-t)=-5t+240,k=-5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12-4=8;答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【解析】(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12-t)千克,根据题意得出12-t≥2t,得出t≤4,由题意得出W=-5t+240,由一次函数的性质得出W随t的增大而减小,得出当t=4时,W的最小值=220(元),求出12-4=8即可.本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.22.【答案】解:(1)如图,连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,∴∠ABD=90°-30°=60°.∵C是的中点,∴∠ABC=∠DBC=∠ABD=30°.(2)如图,连接OC,则∠AOC=2∠ABC=60°,∵CM⊥直径AB于点F,∴CF=CM=2.∴在Rt△COF中,CO=CF=×2=4,∴的长度为=.【解析】(1)连接BD,根据AB为⊙O的直径,求出∠ADB=90°,得到∠ABD=60°,再根据C 是的中点,求出∠ABC的度数;(2)连接OC,则∠AOC=2∠ABC=60°,求出CO的长,即可求出的长度.本题考查了圆周角定理,作出辅助线,根据同弧所对的圆周角是圆心角的一半解答.23.【答案】解:(1)连接OD,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DG⊥AC,∴OD⊥FG,∴直线FG与⊙O相切;(2)连接BE.∵BD=2,∴,∵CF=2,∴DF==4,∵AB是直径,∴∠AEB=∠CEB=90°,∴BE⊥AC,∵DF⊥AC,∴DF∥BE,∴EF=FC,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴=,∴=,∴AB=10,∴AE==6,∵BE⊥AC,DF⊥AC,∴BE∥GF,∴△AEB∽△AFG,∴=,∴=,∴BG=.【解析】(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;(2)连接BE.BE∥GF,推出△AEB∽△AFG ,可得=,由此构建方程即可解决问题;本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及中位线定理等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.24.【答案】方法一:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=-x2+4x+5.(2)∵点P的横坐标为m,∴P(m,-m2+4m+5),E(m,-m+3),F(m,0).∴PE=|y P-y E|=|(-m2+4m+5)-(-m+3)|=|-m2+m+2|,EF=|y E-y F|=|(-m+3)-0|=|-m+3|.由题意,PE=5EF,即:|-m2+m+2|=5|-m+3|=|m+15|①若-m2+m+2=m+15,整理得:2m2-17m+26=0,解得:m=2或m=;②若-m2+m+2=-(m+15),整理得:m2-m-17=0,解得:m=或m=.由题意,m的取值范围为:-1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=-x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|-m2+m+2|∴|-m2+m+2|=|m|.①若-m2+m+2=m,整理得:2m2-7m-4=0,解得m=4或m=-;②若-m2+m+2=-m,整理得:m2-6m-2=0,解得m1=3+,m2=3-.由题意,m的取值范围为:-1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(-,),(4,5),(3-,2-3)方法二:(1)略.(2)略.(3)若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC轴对称.∴点D关于直线PC的对称点D′也在y轴上,∴DD′⊥CP,∵y=-x+3,∴D(4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,-t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴K PC×K DD′=-1,∴,∴2t2-7t-4=0,∴t1=4,t2=-,②当OD′=2时,D′(0,-2),设P(t,-t2+4t+5),∵PC⊥DD′,∴K PC×K DD′=-1,∴=-1,∴t1=3+,t2=3-,∵点P是x轴上方的抛物线上一动点,∴-1<t<5,∴点P的坐标为(-,),(4,5),(3-,2-3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(-,),(4,5),(3-,2-3)【解析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.。
山东省莱芜市2019-2020学年中考第四次大联考数学试卷含解析
山东省莱芜市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关2.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积( )A .65πB .90πC .25πD .85π3.下列调查中适宜采用抽样方式的是( )A .了解某班每个学生家庭用电数量B .调查你所在学校数学教师的年龄状况C .调查神舟飞船各零件的质量D .调查一批显像管的使用寿命 4.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,则有( ) A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<05.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表: 文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( ) A .众数是20B .中位数是17C .平均数是12D .方差是266.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成 一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.35cm C.8cm D.53cm7.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE 的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S28.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步9.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.10.如图,矩形ABCD中,AB=3,AD=3,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()A.12B.1 C.2D.311.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.10912.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为_____.14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.15.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.17.,A B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有____________千米.18.抛物线y=2x2+4x﹣2的顶点坐标是_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.20.(6分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为()76(120)2030mx m x x n x x -≤<⎧⎪⎨≤≤⎪⎩,为整数,为整数 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).m=,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?21.(6分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.22.(8分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题: 成绩 频数 频率 优秀 45 b 良好 a 0.3 合格 105 0.35 不合格60c(1)该校初三学生共有多少人?求表中a ,b ,c 的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.23.(8分)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0ny n x=≠的图象经过点M ,求反比例函数的解析式;(3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.24.(10分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到 万人次,比2017年春节假日增加 万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二) 2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.5682.83119.5184.38103.2151.55这组数据的中位数是 万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为 ,理由是 .(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.25.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.26.(12分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=513,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.(1)求∠EAD的余切值;(2)求BFCF的值.27.(12分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:连接AR,根据勾股定理得出AR=22AD DR的长不变,根据三角形的中位线定理得出EF=12AR,即可得出线段EF的长始终不变,故选C.考点:1、矩形性质,2、勾股定理,3、三角形的中位线2.B【解析】【分析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可. 【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长, 所以圆锥的表面积=π×52+12×2π×5×13=90π. 故选B . 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图. 3.D 【解析】 【分析】根据全面调查与抽样调查的特点对各选项进行判断. 【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查. 故选:D . 【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度. 4.D 【解析】当k 1,k 2同号时,正比例函数y =k 1x 与反比例函数y =2k x的图象有交点;当k 1,k 2异号时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,即可得当k 1k 2<0时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,故选D. 5.C 【解析】 【分析】根据众数、中位数、平均数以及方差的概念求解. 【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误. 故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.6.B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去13圆周的一个扇形,∴留下的扇形的弧长=()2293π⨯=12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r=122ππ=6cm,∴圆锥的高为2296-=35cm故选B.考点: 圆锥的计算.7.D【解析】【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【详解】∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴2112BDES ADS S S AB=++V(),∴若1AD>AB,即12ADAB>时,11214BDESS S S++V>,此时3S 1>S 1+S △BDE ,而S 1+S △BDE <1S 1.但是不能确定3S 1与1S 1的大小,故选项A 不符合题意,选项B 不符合题意.若1AD <AB ,即12AD AB <时,11214BDE S S S S ++V <, 此时3S 1<S 1+S △BDE <1S 1,故选项C 不符合题意,选项D 符合题意.故选D .【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.8.C【解析】试题解析:根据勾股定理得:斜边为2281517+=,则该直角三角形能容纳的圆形(内切圆)半径8151732r +-== (步),即直径为6步, 故选C9.B【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B .10.D【解析】【分析】由旋转的性质得到AB=BE ,根据菱形的性质得到AE=AB ,推出△ABE 是等边三角形,得到AB=3,3BAC=30°,求得AC ⊥BE ,推出C 在对角线AH 上,得到A ,C ,H 共线,于是得到结论.【详解】如图,连接AC 交BE 于点O ,∵将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形EBGF ,∴AB=BE ,∵四边形AEHB 为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=3,AD=3,∴tan∠CAB=33 BCAB,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=32AB=332,∵O C=12BC=32,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=3,∴HM=OH﹣OM=3,故选D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.11.C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C .考点:图形的变化规律.12.C【解析】在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF 为线段AB 的垂直平分线,在Rt △ABC 中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB ,所以△ACD 的周长为AC+CD+AD=AC+AB=5+13=18.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】 由∠ACD=∠B 结合公共角∠A=∠A ,即可证出△ACD ∽△ABC ,根据相似三角形的性质可得出ACD ABCS S ∆∆=(AD AC )2=14,结合△ADC 的面积为1,即可求出△BCD 的面积. 【详解】∵∠ACD =∠B ,∠DAC =∠CAB ,∴△ACD ∽△ABC , ∴ACD ABC S S ∆∆=(AD AC )2=(12)2=14, ∴S △ABC =4S △ACD =4,∴S △BCD =S △ABC ﹣S △ACD =4﹣1=1.故答案为1.【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.14.22°【解析】【分析】由AE ∥BD ,根据平行线的性质求得∠CBD 的度数,再由对顶角相等求得∠CDB 的度数,继而利用三角形的内角和等于180°求得∠C 的度数.【详解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为22°【点睛】本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.15.②③.【解析】试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①错误;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=,∴,∴,∴cosα=,∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴∴BD=1.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC=,∴CD=.∵BC=24,∴BD=24-=即当△DCE为直角三角形时,BD=1或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴, ∴,整理得:y 2-24y+144=144-15x ,即(y-1)2=144-15x ,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.16.4π 【解析】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =2901360π⨯=4π.故答案为4π. 17.90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.18.(﹣1,﹣1)【解析】【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【详解】 x=-422⨯=-1, 把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【点睛】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1)y 1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k 的取值范围是16≤k≤12或k =﹣1. 【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C 1:y 1=ax 2+2ax+a ﹣1即可求得a 的值;②根据对称的性质得出B 的坐标,然后分两种情况讨论即可求得;【详解】(1)y 1=ax 2+2ax+a ﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C 1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a =12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.20.(1)m=﹣12,n=25;(2)18,W最大=968;(3)12天.【解析】【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m,解得m=12 -,当第26天的售价为25元/千克时,代入y=n,则n=25,故答案为m=12-,n=25;(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,当1≤x<20时,W=(4x+16)(12-x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,∴当x=18时,W最大=968,当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,∵28>0,∴W随x的增大而增大,∴当x=30时,W最大=952,∵968>952,∴当x=18时,W最大=968;(3)当1≤x<20时,令﹣2x2+72x+320=870,解得x1=25,x2=11,∵抛物线W=﹣2x2+72x+320的开口向下,∴11≤x≤25时,W≥870,∴11≤x<20,∵x为正整数,∴有9天利润不低于870元,当20≤x≤30时,令28x+112≥870,解得x≥271 14,∴27114≤x≤30∵x为正整数,∴有3天利润不低于870元,∴综上所述,当天利润不低于870元的天数共有12天.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.21.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则22.(1)300人(2)b=0.15,c=0.2;(3)16【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15, c==0.2; 如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P (抽到甲和乙)==.点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.23.(1)2k =,()1,0A -;(2)4y x =;t 的取值范围是:02t <≤. 【解析】【分析】(1)把()0,2代入得出k 的值,进而得出A 点坐标;(2)当4t =时,将4y =代入22y x =+,进而得出x 的值,求出M 点坐标得出反比例函数的解析式;(3)可得2CD =,当y t =向下运动但是不超过x 轴时,符合要求,进而得出t 的取值范围.【详解】解:(1)∵直线l :y kx k =+ 经过点()0,2B ,∴2k =,∴22y x =+,∴()1,0A -;(2)当4t =时,将4y =代入22y x =+,得,1x =,∴()1,4M 代入n y x =得,4n =, ∴4y x=; (3)当2t =时,()0,2B 即()0,2C ,而()2,2D ,如图,2CD =,当y t =向下运动但是不超过x 轴时,符合要求,∴t 的取值范围是:02t <≤.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.24.(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)12【解析】【分析】(1)由图1可得答案;(2)根据中位数的定义求解可得;(3)由近3年平均涨幅在30%左右即可做出估计;(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.故答案为:1365.45、414.4;(2)这组数据的中位数是84.38+103.22=93.79万人次,故答案为:93.79;(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.(4)画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.25.(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴当a=67时,w最小=﹣50×67+30000=26650(元),此时200﹣67=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.26.(1)∠EAD的余切值为56;(2)BFCF=58.【解析】【分析】(1)在Rt△ADB中,根据AB=13,cos∠BAC=513,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=5 13,∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴ED=6,∴∠EAD的余切==56;(2)过D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=35,设CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==5 8 .【点睛】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.27.(1)证明见解析;(2)当t=3时,△AEQ的面积最大为93cm2;(3)(3,0)或(6,33)或(0,33)【解析】【分析】(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED 全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即可解决问题;【详解】(1)如图①中,∵C(6,0),∴BC=6在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t<6时,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等边三角形,∴不论t如何变化,△DEF始终为等边三角形;(2)如图②中,作AH ⊥BC 于H ,则AH=AB•sin60°=33,∴S △AEC =12×33×(6﹣t )=33(6)2t -, ∵EQ ∥AB ,∴△CEQ ∽△ABC ,∴CEQABC S S V V =(CE CB )2=2(6)36t -,即S △CEQ =2(6)36t -S △ABC =2(6)36t -×93=23(6)t -, ∴S △AEQ =S △AEC ﹣S △CEQ =33(6)t -﹣23(6)t -=﹣3(t ﹣3)2+93, ∵a=﹣34<0, ∴抛物线开口向下,有最大值,∴当t=3时,△AEQ 的面积最大为93cm 2, (3)如图③中,由(2)知,E 点为BC 的中点,线段EQ 为△ABC 的中位线,当AD 为菱形的边时,可得P 1(3,0),P 3(6,3,当AD 为对角线时,P 2(0,3,综上所述,满足条件的点P 坐标为(3,0)或(6,3)或(0,3).【点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
山东省莱芜市2019-2020学年中考第二次大联考数学试卷含解析
山东省莱芜市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,是一个工件的三视图,则此工件的全面积是( )A .60πcm 2B .90πcm 2C .96πcm 2D .120πcm 22.如图,已知AB 和CD 是⊙O 的两条等弦.OM ⊥AB ,ON ⊥CD ,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中:①AB CD =n n;②OM=ON ;③PA=PC ;④∠BPO=∠DPO ,正确的个数是( )A .1B .2C .3D .43.关于x 的方程3x+2a=x ﹣5的解是负数,则a 的取值范围是( )A .a <52B .a >52C .a <﹣52D .a >﹣524.下列运算正确的是( )A .5ab ﹣ab=4B .a 6÷a 2=a 4C .112a b ab+= D .(a 2b )3=a 5b 3 5.一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是( )A .4B .5C .10D .116.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°7.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1 8.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和39.下列计算正确的是( )A .a 4+a 5=a 9B .(2a 2b 3)2=4a 4b 6C .﹣2a (a+3)=﹣2a 2+6aD .(2a ﹣b )2=4a 2﹣b 210.下列四个几何体,正视图与其它三个不同的几何体是( )A .B .C .D .11.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是( )A .2013年至2017年北京市国民生产总值逐年增加B .2017年第二产业生产总值为5 320亿元C .2017年比2016年的国民生产总值增加了10%D .若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33 880亿元12.计算(—2)2-3的值是( )A 、1B 、2C 、—1D 、—2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组32132xx x ->⎧⎪⎨≤⎪⎩的解是____. 14.解不等式组31524315x x x -<-⎧⎪⎨+≥-⎪⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为___________.15.一个n 边形的每个内角都为144°,则边数n 为______.16.抛物线y =﹣x 2+bx+c 的部分图象如图所示,则关于x 的一元二次方程﹣x 2+bx+c =0的解为_____.17.定义一种新运算:x*y=x y y +,如2*1=211+=3,则(4*2)*(﹣1)=_____. 18.如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在▱ABCD 中,过点A 作AE ⊥BC 于点E ,AF ⊥DC 于点F ,AE=AF .(1)求证:四边形ABCD 是菱形;20.(6分)如图,把两个边长相等的等边△ABC 和△ACD 拼成菱形ABCD ,点E 、F 分别是CB 、DC 延长上的动点,且始终保持BE=CF ,连结AE 、AF 、EF .求证:AEF 是等边三角形.21.(6分)如图,在平面直角坐标系中,已知△AOB 是等边三角形,点A 的坐标是(0,4),点B 在一象限,点P (t ,0)是x 轴上的一个动点,连接AP ,并把△AOP 绕着点A 按逆时针方向旋转,使边AO 与AB 重合,连接OD ,PD ,得△OPD 。
山东省2019年、2020年数学中考试题分类(4)——方程的解法与应用(含解析)
24.(2020•烟台)关于 x 的一元二次方程 (m −1)x2 + 2x −1 = 0 有两个不相等的实数根,则 m 的取值范围是 .
25. (2020•德州)菱形的一条对角线长为 8,其边长是方程 x2 − 9x + 20 = 0 的一个根,则该菱形的周长为 .
26.(2019•莱芜区)已知 x1 , x2 是方程 x2
− x
y −
= y
4.5 =1
D.
y 1 2
− x
x −
= y
4.5 =1
6.(2020•潍坊)关于 x 的一元二次方程 x2 + (k − 3)x + 1 − k = 0 根的情况,下列说法正确的是 ( )
A.有两个不相等的实数根 C.无实数根
B.有两个相等的实数根 D.无法确定
7.(2020•菏泽)等腰三角形的一边长是 3,另两边的长是关于 x 的方程 x2 − 4x + k = 0 的两个根,则 k 的值 为( )
量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余 4.5 尺.将绳子对折再量长
木,长木还剩余 1 尺,问木长多少尺,现设绳长 x 尺,木长 y 尺,则可列二元一次方程组为 ( )
y − x = 4.5
A.
y
−
1 2
x
=
1
x − y = 4.5
B.
y
−
1 2
x
=
1
C.
x 1 2
4
−1 的解是 (
)
A. x = 4
B. x = 5
C. x = 6
D. x = 7
15.(2019•淄博)解分式方程 1 − x = 1 − 2 时,去分母变形正确的是 (
山东省莱芜市2019-2020学年中考中招适应性测试卷数学试题(3)含解析
山东省莱芜市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③2.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>13.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+b D.6ab2÷2ab=3b4.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB 绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()A.B.C.D.5.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣2x的图象上,则()A .a <b <0B .b <a <0C .a <0<bD .b <0<a6.如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A .603 n mileB .602 n mileC .303 n mileD .302 n mile7.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[3]=1,[﹣2.5]=﹣3.现对82进行如下操作:821第次−−−−−→ [82⎡⎤⎢⎥⎣⎦]=92第次−−−−−→ [93]=33第次−−−−−→ [3]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .48.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A .32,31B .31,32C .31,31D .32,359.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .10.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( )A .x x 10060100-=B .x x 10010060-=C .x x 10060100+=D .x x 10010060+= 11.已知一组数据2、x 、8、1、1、2的众数是2,那么这组数据的中位数是( )A .3.1;B .4;C .2;D .6.1.12.一个几何体的三视图如图所示,该几何体是( )A.直三棱柱B.长方体C.圆锥D.立方体二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;14.如图,已知点C为反比例函数6yx=-上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.15.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.16.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.17.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .18.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-1100x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳1100x2元的附加费,月利润为W外(元).(1)若只在国内销售,当x=1000(件)时,y=(元/件);(2)分别求出W 内、W 外与x 间的函数关系式(不必写x 的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值.20.(6分)如图,PB 与⊙O 相切于点B ,过点B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连结PA ,AO ,AO 的延长线交⊙O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是⊙O 的切线;(2)若tan ∠BAD=23,且OC=4,求BD 的长.21.(6分)如图,一次函数y =-x +5的图象与反比例函数y =k x(k≠0)在第一象限的图象交于A(1,n)和B 两点.求反比例函数的解析式;在第一象限内,当一次函数y =-x +5的值大于反比例函数y =k x (k≠0)的值时,写出自变量x 的取值范围.22.(8分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.23.(8分)直角三角形ABC 中,BAC 90∠=o ,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE ∠∠=;()2若BAD 45o ∠=,AF 22=+,过点B 作BG FC ⊥于点G ,连接DG.依题意补全图形,并求四边形ABGD 的面积.24.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.25.(10分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m的值为____,表示“D 等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.26.(12分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.27.(12分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E 在边BC 上时,求证DE =EB ;(2)如图2,当点E 在△ABC 内部时,猜想ED 和EB 数量关系,并加以证明;(1)如图1,当点E 在△ABC 外部时,EH ⊥AB 于点H ,过点E 作GE ∥AB ,交线段AC 的延长线于点G ,AG =5CG ,BH =1.求CG 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点,∴AE=13CE , ∵AD ∥BC ,∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4, AEF BCE S S V V =(AF BC )2=19, ∴S △BCE =36;故②正确; ∵EF AE BE CE = =13, ∴AEF ABE S S V V =13, ∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.2.B【解析】【分析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.3.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.D【解析】∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴CG AC DH AD=,∵AC=CD=1,∴AD=2,∴12xDH=,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故选D.【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH. 5.A【解析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.6.B【解析】【分析】【详解】如图,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=22×60=302n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=602n mile.故选B.7.C【解析】分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.详解:1211211[]112[33[1 11113=== u u u u u x u u u u u u x u u u u u u x第次第次第次∴对121只需进行3次操作后变为1.故选C.点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.8.C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.9.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.10.B【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.11.A【解析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.12.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣3<x<1【解析】【分析】根据第四象限内横坐标为正,纵坐标为负可得出答案.【详解】∵点P(2x-6,x-5)在第四象限,∴解得-3<x<1.故答案为-3<x<1.【点睛】本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.14.1【解析】【详解】解:由于点C为反比例函数6yx=-上的一点,则四边形AOBC的面积S=|k|=1.故答案为:1.15.210.【解析】【分析】利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.【详解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.16.3 5【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019山东省莱芜中考数学真题及答案学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.在下列四个实数中,最大的数是()A.﹣1 B.﹣C.D.2.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.下列运算正确的是()A.a2•a3=a6B.a3﹣a2=a C.(a2)3=a5D.a3÷a2=a4.下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.5.如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=65°,则∠2的度数是()A.122.5°B.123°C.123.5°D.124°6.某企业为了推选代表队参加市职业技能大赛,对甲、乙两个车间进行了五次测试,其中甲车间五次成绩的平均数是90分,中位数是91分,方差是2.4;乙车间五次成绩的平均数是90分,中位数是89分,方差是4.4.下列说法正确的是()A.甲车间成绩的平均水平高于乙车间B.甲、乙两车间成绩一样稳定C.甲车间成绩优秀的次数少于乙车间(成绩不低于90分为优秀)D.若选派甲车间去参加比赛,取得好成绩的可能性更大7.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.138.为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A型“共享单车”,因为单车需求量增加,计划继续投放B型单车,B型单车的投放数量与A 型单车的投放数量相同,投资总费用减少20%,购买B型单车的单价比购买A型单车的单价少50元,则A型单车每辆车的价格是多少元?设A型单车每辆车的价格为x元,根据题意,列方程正确的是()A.=B.=C.=D.=9.如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()A.1 B.2 C.3 D.410.如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣11.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12 B.﹣或2 C.﹣12或2 D.﹣或﹣1212.如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF、有以下结论:①AN=EN②当AE=AF时,=2﹣③BE+DF=EF④存在点E、F,使得NF>DF其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共5小题)13.计算:(﹣)﹣1++|1﹣π|=.14.已知x1,x2是方程x2﹣x﹣3=0的两根,则+=﹣.15.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.16.如图,在矩形ABCD中,AB=4,BC=,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=,则CE=.17.定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是.(写出所有正确结论的序号)三、解答题(共7小题)18.先化简,再求值:(a﹣1)÷(a+﹣2),其中a=﹣1.19.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.20.公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线AB与AC的夹角为124°,凉亭顶盖边缘B、C到地面的距离为2.4米,石桌的高度DE为0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(A、E、D三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:sin62°≈0.88,tan42°≈0.90)21.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.22.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?23.如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.24.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC 相似?若存在,求点M的坐标;若不存在,请说明理由.2019莱芜数学中考题(解析版)参考答案一、单选题(共12小题)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵﹣<﹣1<<,∴四个实数中,最大的数是.故选:C.【知识点】算术平方根、实数大小比较2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.【知识点】科学记数法—表示较大的数3.【分析】根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵a3﹣a2≠a,∴选项B不符合题意;∵(a2)3=a6,∴选项C不符合题意;∵a3÷a2=a,∴选项D符合题意.故选:D.【知识点】同底数幂的除法、幂的乘方与积的乘方、合并同类项、同底数幂的乘法4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选:B.【知识点】轴对称图形、中心对称图形5.【分析】求出∠BEG,再利用平行线的性质即可解决问题.【解答】解:∵∠1=65°,∴∠BEF=180°﹣65°=115°,∵EG平分∠BEF,∴∠BEG=∠BEF=57.5°,∵AB∥CD,∴∠2+∠BEG=180°,∴∠2=180°﹣57.5°=122.5°,故选:A.【知识点】平行线的性质6.【分析】根据平均数、中位数以及方差的意义分别对每一项进行分析即可得出答案.【解答】解:A、甲车间成绩的平均水平和乙车间相同,故本选项错误;B、因为甲车间的方差是2.4,乙车间的方差是4.4,所以甲车间成绩比较稳定,故本选项错误;C、因为甲车间的中位数是91分,乙车间的中位数是89分,所以甲车间成绩优秀的次数多于乙车间(成绩不低于90分为优秀),故本选项错误;D、选派甲车间去参加比赛,取得好成绩的可能性更大,正确;故选:D.【知识点】中位数、算术平均数、方差、可能性的大小7.【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,然后求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故选:C.【知识点】多边形内角与外角8.【分析】设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x﹣50)元,依据“B型单车的投放数量与A型单车的投放数量相同”列出关于x的方程.【解答】解:设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x﹣50)元,根据题意,得=故选:A.【知识点】由实际问题抽象出分式方程9.【分析】作CD⊥x轴于D,设OB=a(a>0).由S△AOB=S△BOC,根据三角形的面积公式得出AB=BC.根据相似三角形性质即可表示出点C的坐标,把点C坐标代入反比例函数即可求得k.【解答】解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA=,∵CD∥OB,AB=BC,∴OD=OA=,CD=2OB=2a,∴C(,2a),∵反比例函数y=(x>0)的图象经过点C,∴k=×2a=4.故选:D.【知识点】反比例函数与一次函数的交点问题10.【分析】连接BC、OD、OB,先证△BOD是等边三角形,再根据阴影部分的面积是S扇形BOD﹣S△BOD计算可得.【解答】解:如图所示,连接BC、OD、OB,∵∠A=40°,AB=AC,∴∠ACB=70°,∵BD∥AC,∴∠ABD=∠A=40°,∴∠ACD=∠ABD=40°,∴∠BCD=30°,则∠BOD=2∠BCD=60°,又OD=OB,∴△BOD是等边三角形,则图中阴影部分的面积是S扇形BOD﹣S△BOD=﹣×22=π﹣,故选:B.【知识点】勾股定理、垂径定理、圆内接四边形的性质、扇形面积的计算、圆周角定理11.【分析】如图所示,过点B作直线y=2x+b,将直线向下平移到恰在点C处相切,则一次函数y=2x+b在这两个位置时,两个图象有3个交点,即可求解.【解答】解:如图所示,过点B的直线y=2x+b与新抛物线有三个公共点,将直线向下平移到恰在点C处相切,此时与新抛物线也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,△=49+4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.【知识点】一次函数的性质、抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、二次函数图象与几何变换12.【分析】①如图1,证明△AMN∽△BME和△AMB∽△NME,可得∠NAE=∠AEN=45°,则△AEN是等腰直角三角形可作判断;②先证明CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,表示AC的长为AO+OC可作判断;③如图3,将△ADF绕点A顺时针旋转90°得到△ABH,证明△AEF≌△AEH(SAS),则EF=EH=BE+BH=BE+DF,可作判断;④在△ADN中根据比较对角的大小来比较边的大小.【解答】解:①如图1,∵四边形ABCD是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt△CEF中,OC=EF=x,△EAF中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE,∵AE=AE,∴Rt△ABE≌Rt△AOE(HL),∴AO=AB=1,∴AC==AO+OC,∴1+x=,x=2﹣,∴===;故②不正确;③如图3,∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,∵∠EAF=45°=∠DAF+∠BAE=∠HAE,∵∠ABE=∠ABH=90°,∴H、B、E三点共线,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF,故③正确;④△ADN中,∠FND=∠ADN+∠NAD>45°,∠FDN=45°,∴DF>FN,故存在点E、F,使得NF>DF,故④不正确;故选:B.【知识点】全等三角形的判定与性质、正方形的性质二、填空题(共5小题)13.【分析】直接利用负指数幂的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=﹣3+4+π﹣1=π.故答案为:π.【知识点】负整数指数幂、实数的运算14.【分析】利用根与系数的关系可得出x1+x2=1,x1•x2=﹣3,将其代入+=中即可得出结论.【解答】解:∵x1,x2是方程x2﹣x﹣3=0的两根,∴x1+x2=1,x1•x2=﹣3,∴+===﹣.故答案为:﹣.【知识点】根与系数的关系15.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【知识点】圆锥的计算16.【分析】已知tan∠BAF=,可作辅助线构造直角三角形,设未知数,利用勾股定理可求出FM、BM,进而求出FN,再利用三角形相似和折叠的性质求出EC.【解答】解:过点F作MN∥AD,交AB、CD分别于点M、N,则MN⊥AB,MN⊥CD,由折叠得:EC=EF,BC=BF=,∠C=∠BFE=90°,∵sin∠BAF==,设FM=x,则AM=2x,BM=4﹣2x,在Rt△BFM中,由勾股定理得:x2+(4﹣2x)2=()2,解得:x1=1,x2=>2舍去,∴FM=1,AM=BM=2,∴FN=﹣1,易证△BMF∽△FNE,∴,即:,解得:EF==EC.故答案为:.【知识点】矩形的判定与性质、翻折变换(折叠问题)、解直角三角形17.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.【解答】解:①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a=2时,a2=2[a]=2;当a=时,a2=2[a]=2;原题说法是错误的.故答案为:①②③.【知识点】解一元一次不等式组三、解答题(共7小题)18.【分析】根据分式的加减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(a﹣1)÷(a+﹣2)=(a﹣1)÷=(a﹣1)=,当a=﹣1时,原式=.【知识点】分式的化简求值19.【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【解答】解:(1)12÷24%=50人故答案为50.(2)a=50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【知识点】统计表、扇形统计图、用样本估计总体20.【分析】连接BC、AE,交于点O,则AE⊥BC.解Rt△OBD,求出OB=≈=2.解Rt△OAB中,即可求出AB=.【解答】解:如图,连接BC、AE,交于点O,则AE⊥BC.由题意,可知OE=2.4﹣0.6=1.8,∠OBE=42°,∠BAO=∠BAC=62°.在Rt△OBD中,∵tan∠OBE=,∴OB=≈=2.在Rt△OAB中,∵sin∠OAB=,∴AB=≈≈2.3(m).答:圆锥形顶盖母线AB的长度约为2.3米.【知识点】解直角三角形的应用-坡度坡角问题21.【分析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠FAC=90°∴∠FAB=∠FAC﹣∠BAC=30°∴∠FAB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG【知识点】等边三角形的性质、全等三角形的判定与性质22.【分析】(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,根据“改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,根据改造时间不超过35天且改造费用不超过128万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各改造方案,再利用总价=单价×数量分别求出三种方案所需改造费用,比较后即可得出结论.【解答】解:(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:,解得:.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,依题意,得:,解得:≤m≤.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.【知识点】二元一次方程组的应用、一元一次不等式组的应用23.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.【知识点】相似三角形的判定与性质、圆周角定理、切线的判定与性质24.【分析】(1)利用待定系数法,然后将A、B、C的坐标代入解析式即可求得二次函数的解析式;(2))过P点作PQ垂直x轴,交AC于Q,把△APC分成两个△APQ与△CPQ,把PQ作为两个三角形的底,通过点A,C的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB,使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,∠AOM=∠CAB=45°,即OM为y=﹣x,若∠AOM=∠CBA,则OM为y=﹣3x+3,然后由直线解析式可求OM与AD的交点M.【解答】解:(1)把A(﹣3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c得,解得,所以抛物线的函数表达式为y=﹣x2﹣2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,﹣x2﹣2x+3.),则Q点坐标为(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△PAC=,∴,解得:x1=﹣1,x2=﹣2.当x=﹣1时,P点坐标为(﹣1,4),当x=﹣2时,P点坐标为(﹣2,3),综上所述:若△PAC面积为3,点P的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,∵D为抛物线y=﹣x2﹣2x+3的顶点,∴D点坐标为(﹣1,4),又∵A(﹣3,0),∴直线AD为y=2x+6,AF=2,DF=4,tan∠DAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直线BC解析式为y=﹣3x+3.∵AB=4,∴AE=AB•sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠PAB=2,∴∠ACB=∠PAB,∴使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM=∠CAB=45°时,△ABC∽△OMA,即OM为y=﹣x,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(﹣2,2).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直线BC解析式为y=﹣3x+3.∴直线OM为y=﹣3x,设直线OM与AD的交点M(x,y).则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与△ABC相似的点M,其坐标为(﹣2,2)或(,),【知识点】二次函数综合题。