系统分析和建模
软件工程中的系统建模与分析技术研究
软件工程中的系统建模与分析技术研究在软件工程领域,系统建模与分析技术是一项至关重要的研究课题。
随着信息技术的不断发展和应用的深入,软件系统的复杂性和规模不断增加,为此,需要有效的方法来帮助工程师更好地理解和管理系统。
系统建模与分析技术通过建立模型和分析技术可以帮助软件工程师提高软件系统的设计和开发能力,提升软件系统的质量和性能。
系统建模是软件系统设计的重要组成部分。
软件系统的复杂性使得简单的设计方法和技术难以满足系统的需求。
系统建模技术通过建立合适的模型来描述系统的结构和行为,帮助软件工程师更好地理解系统的复杂性,指导系统开发和管理。
常用的系统建模方法包括结构化方法、面向对象方法、UML等。
结构化方法是最早的系统建模方法之一,通过划分系统为不同的模块,描述模块之间的关系来进行系统设计。
这种方法有助于分解系统,清晰地描述系统的结构和功能,但对于复杂系统的描述能力较有限。
面向对象方法是一种更为先进的系统建模方法,通过对象的概念来描述系统,将系统分解为对象并描述对象之间的关系,能更好地满足系统的复杂性和变化。
UML是一种常用的面向对象建模语言,提供了丰富的图形符号和语法规则,帮助工程师更好地描述系统的结构和行为。
除了系统建模技术外,系统分析技术也是软件工程中的关键技术之一。
系统分析技术通过对系统的需求和行为进行深入分析,帮助软件工程师理清系统需求和功能,指导系统设计和开发。
常用的系统分析方法包括需求分析、功能分析、性能分析等。
需求分析是系统分析的第一步,通过对用户需求和系统功能进行分析,确立系统需求的准确性和完整性。
功能分析是系统分析的重要环节,通过对系统功能和交互进行分析,明确系统的功能和实现方法。
性能分析则是分析系统的性能需求和限制,指导系统的性能优化和测试。
通过系统分析技术,软件工程师可以更好地理解和控制系统的需求和行为,提高系统的质量和可靠性。
在系统建模与分析技术的研究中,还涌现了许多新的方法和技术,如建模语言、形式化方法、仿真技术等。
非线性系统的分析与建模方法
非线性系统的分析与建模方法一、引言非线性系统在自然界和工程领域中都具有广泛的应用。
与线性系统不同,非线性系统的行为更加复杂,因此需要采用特定的分析和建模方法来研究和描述其特性。
本文将介绍几种常用的非线性系统分析与建模方法,包括:物理建模法、数学建模法和仿真建模法。
二、物理建模法物理建模法是一种基于系统物理特性的建模方法。
它通过观察和理解系统的运动规律、力学关系等,将系统的动力学方程用物理定律进行描述。
这种建模方法对系统的结构具有较高的透明度,能够提供直观的物理解释。
以弹簧振子为例,我们可以建立基于胡克定律的弹簧振动方程,进而通过数值求解等方法来分析其非线性振动特性。
三、数学建模法数学建模法是基于数学模型的建模方法。
它通过将系统的运动规律、状态方程等用数学表达式进行描述,从而分析系统的稳定性、收敛性和动态响应等特性。
常见的数学建模方法包括微分方程、差分方程和迭代公式等。
例如,我们可以使用非线性微分方程来描述电路中的非线性元件,进而分析电路的响应特性。
四、仿真建模法仿真建模法是基于计算机模拟的建模方法。
它通过利用计算机软件来模拟非线性系统的运行过程,从而分析系统的行为和性能。
仿真建模法能够提供较为准确的系统响应结果,具有较高的灵活性和可重复性。
常用的仿真建模软件包括Matlab、Simulink等。
我们可以通过建立系统的状态空间模型,在仿真环境中进行参数调整和系统分析。
五、综合方法实际应用中,为了更准确地研究非线性系统,常常需要综合运用多种建模方法进行分析。
在具体建模过程中,可以从物理建模、数学建模和仿真建模等角度综合考虑系统的性质和特点。
例如,对于复杂的非线性电路系统,可以首先通过物理建模法确定电路中的非线性元件,然后利用数学建模法建立系统的方程,最后使用仿真建模法验证和分析系统的行为。
六、总结非线性系统的分析与建模是一个复杂而关键的任务。
本文介绍了物理建模法、数学建模法和仿真建模法等常用的方法。
控制系统中的系统建模与分析
控制系统中的系统建模与分析在控制系统中,建模分析是十分重要的一环。
通过对系统进行精细的建模,可以实现对系统的深刻理解,为控制系统的设计提供支持和依据。
本文将介绍控制系统中的系统建模与分析,帮助读者更好地理解和应用控制系统。
一、控制系统简介控制系统是一个涉及工程、数学、物理、计算机等多个学科的复杂系统,它的作用是在符合一定性能指标的前提下,使系统达到一定的预定目标。
常见的控制系统包括飞行器控制系统、汽车自动驾驶系统、机器人控制系统等。
二、系统建模1. 建模方式在控制系统中,系统建模有两种主要方式:基于物理方程(物理建模)和基于实验数据(数据建模)。
物理建模是通过物理学、力学、电学等学科,建立控制对象的系统模型,包括状态空间模型、传递函数模型等。
物理建模效果较好,其模型能够准确地反映控制对象的物理特性。
但是物理建模需要精通相关物理学原理和数学知识,建模难度较大。
数据建模是通过采集已知控制对象的实验数据,利用机器学习等方法,建立控制对象的模型。
数据建模对专业知识的要求相对较低,但是数据采集和处理需要耗费时间和精力,并且在建立模型中可能存在误差。
2. 建模过程系统建模的目的是利用数学模型描述和分析实际系统,从而实现对系统的控制。
建模过程可以分为以下几步:(1)收集系统信息:了解控制对象的系统结构、工作原理、性能指标等相关信息。
(2)选择建模方法:选择合适的建模方法,根据具体情况进行物理建模或数据建模。
(3)建立模型:针对控制对象的工作原理和性能指标,建立相应的数学模型。
(4)验证模型:对建立的模型进行测试和验证,检验其准确性和可靠性。
(5)优化模型:根据验证结果对模型进行调整和优化,实现对模型的完善和精细化。
三、系统分析1. 稳定性分析稳定性是控制系统中最基本的性质之一。
稳定性分析可分为稳定性判据和稳定性分析两方面。
稳定性判据是建立在数学理论基础上,针对控制系统建立一系列的稳定性判定定理,如Routh-Hurwitz准则、Nyquist准则等,根据这些判据来判断控制系统的稳定性。
系统需求分析与建模
系统需求分析与建模一、引言对于系统的设计与开发来说,需求分析与建模是至关重要的环节。
系统需求分析与建模可以帮助我们全面理解用户的需求,并将其转化为系统功能与特性的清晰描述。
本文将探讨系统需求分析与建模的基本概念、方法和工具,并介绍如何有效地进行需求分析与建模。
二、系统需求分析系统需求分析旨在识别和明确系统的功能、性能和约束条件。
以下是系统需求分析的几个主要步骤:1. 需求获取和理解需求获取是指通过与用户、业务分析师和相关利益相关者的沟通来收集和理解系统需求。
这可以通过面对面的会议、问卷调查、用户访谈等方式进行。
重要的是要确保获取到的需求能够准确反映用户的期望和业务的要求。
2. 需求分析和整理需求分析的目标是将收集到的需求进行分类、整理和整合。
可以使用流程图、数据流图、用例图等工具来分析和描述系统的功能和流程。
同时,需求分析还包括对需求的可行性和优先级进行评估。
3. 需求验证和确认在需求分析的最后阶段,需要与用户和相关利益相关者一起验证和确认需求的准确性和完整性。
这可以通过演示、原型展示或者文档审查等方式进行。
目的是确保需求可以满足用户和业务的期望,并且没有遗漏或冲突。
三、系统需求建模系统需求建模旨在将需求以图形化的方式进行描述和表达,以便于更好地理解和交流。
以下是系统需求建模的几个常用方法:1. 用例图用例图是描述系统与其用户之间交互的图形化表示。
用例图可以帮助我们理解系统的功能与角色,并识别各种场景及其对应的用例。
用例图可以用来指导后续的系统设计和开发工作。
2. 数据流图数据流图是描述系统内部数据流动和处理过程的图形化表示。
数据流图以数据流和处理器为中心,展示了系统的功能和数据流动的过程。
数据流图可以帮助我们识别系统的数据流向和处理逻辑。
3. 状态图状态图是描述系统各个对象的状态及其状态变化过程的图形化表示。
状态图可以帮助我们理解系统的行为和状态转换规则。
通过状态图,我们可以更好地描述系统的状态变化及其对应的操作和事件。
复杂系统的建模与分析方法
复杂系统的建模与分析方法复杂系统是由许多相互作用的元素组成的系统,这些元素可以是物理实体,也可以是抽象概念。
复杂系统的行为往往无法用简单的规律描述,因此需要借助数学模型来进行建模和分析。
在本文中,将介绍一些常见的复杂系统建模与分析方法。
一、网络分析网络分析是一种将复杂系统看作图结构进行分析的方法。
复杂系统中的元素可以用节点表示,它们之间的相互作用可以用边表示。
利用网络分析方法可以得到节点之间的关系、节点的重要性、网络的密度等信息。
其中,常用的网络指标包括度、聚类系数、介数中心性等。
网络分析方法被广泛应用于社交网络、生物学、交通网络等领域。
二、微观模拟微观模拟是一种基于元胞自动机、蒙特卡罗等方法的建模与分析方法。
这种方法将系统中的每个元素看作独立的个体,并针对其行为规则进行模拟。
微观模拟常用于交通流、城市规划、人群行为等方面。
它不仅能够分析系统的整体行为特征,还能够研究系统中每个元素的行为特征。
三、仿生学方法仿生学方法是一种模仿生物学系统进行建模与分析的方法。
它借鉴了生物系统中的很多优点,比如自适应、适应性、分布式控制等。
仿生学方法被广泛应用于控制系统、机器人技术、材料科学等领域。
四、系统动力学系统动力学是一种建模与分析方法,用于考虑复杂系统中不同元素之间的相互作用,并通过对系统中各个因素的量化分析,研究整个系统的演化过程。
它可以定量分析系统变化的趋势、敏感性、稳定性等特征,并提供准确的预测值和决策支持。
系统动力学常用于环境保护、企业管理等领域。
五、人工神经网络人工神经网络是一种基于人脑神经系统的结构和功能进行模拟的建模与分析方法。
其核心思想是通过模拟神经元之间的相互作用,建立神经网络模型,进而进行复杂系统建模和分析。
人工神经网络广泛应用于数据挖掘、故障诊断、优化设计等领域。
综上所述,复杂系统的建模与分析方法包括了网络分析、微观模拟、仿生学方法、系统动力学和人工神经网络等多种方法。
这些方法各有特点,应根据不同的实际情况选择适当的方法进行应用。
控制系统建模与分析
控制系统建模与分析控制系统建模与分析是自动控制领域中的重要内容。
通过对系统进行建模,可以模拟和分析控制系统的性能,以便优化系统设计和参数调整。
本文将介绍控制系统建模的基本原理和常用方法,并通过一个案例来说明。
一、控制系统建模的基本原理在控制系统中,建模是指将实际的物理系统以数学方式进行描述。
通过建立控制系统的数学模型,可以更好地理解系统的性质、预测系统的行为以及设计有效的控制策略。
建模的基本原理包括:1. 系统边界的确定:确定需要建模的系统的范围和界限,明确哪些部分对于控制系统的性能影响较大。
2. 变量的选择:选择适当的系统变量,可以是输入、输出或者中间变量,以便对系统进行分析和控制。
3. 建立数学方程:根据系统的物理特性、动力学行为和控制目标,建立系统的数学方程,可以是微分方程、差分方程或者状态空间方程。
4. 参数估计:通过实验或者仿真,对模型的参数进行估计和调整,使模型更加准确地反映实际系统的行为。
二、常用的控制系统建模方法在控制系统建模中,常用的方法包括:1. 传递函数法:通过输入和输出之间的关系,建立系统的传递函数,可以直接对系统进行频域分析和控制器设计。
2. 状态空间法:将系统表示为状态量和输入输出之间的关系,可以对系统进行状态观测、状态反馈和状态估计。
3. 神经网络法:利用神经网络的映射和学习能力,对系统进行建模和控制,适用于复杂、非线性系统。
4. 系统辨识法:通过对系统输入输出数据的分析,识别系统的数学模型和参数,适用于实际系统的建模。
三、控制系统分析的方法控制系统分析是指对建立的系统模型进行性能评估和分析,以确保系统的稳定性、鲁棒性和控制效果。
常用的控制系统分析方法包括:1. 稳定性分析:通过判断系统的极点位置,确定系统的稳定性,可以使用根轨迹法或者频域法进行分析。
2. 响应分析:分析系统对不同输入信号的响应,包括阶跃响应、脉冲响应和频率响应等,以评估系统的动态性能。
3. 鲁棒性分析:分析系统对参数变化或者干扰的鲁棒性能,可以使用辨识方法或者鲁棒控制理论进行分析。
UML系统需求分析建模实例包括业务建模
UML系统需求分析建模实例包括业务建模一、背景某公司为了提高内部管理效率,决定开发一个在线人事管理系统。
该系统主要目标是帮助公司员工和管理人员更好地进行人事管理工作,包括员工信息管理、薪资管理、请假管理等功能。
二、业务建模1. 参与者- 员工:具有查看和修改个人信息的权限。
- 人事部门:负责对员工信息进行管理、薪资管理和请假管理。
- 管理员:拥有所有功能权限。
2. 用例图用例图展示了系统的功能视图,包括主要的参与者和他们的交互。
(图1:用例图)3. 用例描述- 查看个人信息:员工可以查看自己的个人信息,包括个人资料、联系方式和工作历史。
- 修改个人信息:员工可以修改自己的个人信息,如联系方式和地址等。
- 管理员登陆:管理员可以使用管理员账号登陆系统。
- 管理员工信息:管理员可以查看和修改员工信息,包括添加员工、删除员工和修改员工信息等。
- 薪资管理:人事部门可以查看和修改员工薪资信息。
- 请假管理:人事部门可以管理员工的请假信息,包括请假申请和批准等。
4. 状态图状态图描述了系统中的一个对象或参与者的状态变化。
(图2:状态图)5. 类图类图展示了系统中的类以及它们之间的关联。
(图3:类图)三、系统分析1. 需求分析对于查看个人信息的用例,系统应该提供一个界面给员工输入自己的员工号,然后显示员工的个人信息。
对于修改个人信息的用例,系统应该提供一个界面给员工输入员工号和想修改的信息,然后保存修改后的信息。
对于管理员登陆的用例,系统应该提供一个界面给管理员输入管理员账号和密码进行登陆。
对于管理员工信息的用例,系统应该提供一个界面给管理员查看和修改员工信息,包括添加、删除和修改员工信息。
对于薪资管理的用例,系统应该提供一个界面给人事部门查看和修改员工薪资信息。
对于请假管理的用例,系统应该提供一个界面给人事部门管理员工的请假信息,包括请假申请和批准。
2. 非功能性需求- 界面友好:系统应该提供直观、易用的界面来满足用户的需求。
系统建模与分析
计算机模型的优点:
14
3.1.2系统模型的分类
表3.1.1 列出了系统模型的部分分类方法
分类原则 模型种类
抽象、实物 形象、类似、数学 观念性、数学、物理 理论、经验、混合 结构、性能、评价、最优化、网络 静态、动态 黑箱、白箱、 通用、专用 确定性、随机性、连续型、离散型 代数方程、微分方程、概率统计、逻辑
使用年数小于 1 年的冰箱数等于该年内所购新冰箱数,即
x ( k 1 ) u ( k ) 0
综合上面的分析可以得到如下的模型
k1 ) 0 0 0 k) 1 0 x x 0( 0( 0 0 0 x ( k 1 ) x ( k ) 1 0 0 1 x k1 ) 0 0 x k)0u (k) 2( 10 2( x (k) 0 x (k1 0 ) 0 0 n 1 n n
21
3.1.4系统建模的原则
1. 抓住主要矛盾;
2. 清晰; 3. 精度要求适当; 4. 尽量使用标准模型。
22Βιβλιοθήκη 3.2系统建模的主要方法针对不同的系统对象,可用以下方法建造系统的数学模型:
主 要 建 模 方 法
• 推理法——对白箱S • 实验法——对允许实验的黑箱或灰箱S • 统计分析法——对不允许实验的黑箱或灰 箱系统 • 类似法——依据不同事物具有的同型性, 建造原S的类似模型。 • 混合法——上述几种方法的综合运用。
26
建模的主要方法
图解法:
90
x2
最优生产计划为: A产品:20公斤 B产品:24公斤 最大获利为42800元
60
30
目标函数等值线: Z=7x1+12x2 0
学生成绩管理系统的建模与分析
7. 收获和体会
最常用的UML图包括:用例图,类图,顺序 图,状态图,活动图等,对我们来说最大的 收获就是自己动手实践进行UML统一建模,
掌握了面向对象UML统一建模语言
实现了"学生成绩管理系统"的设计和建模
随着教育信息化的不断深入,学校对学生成绩的管理需求日益增加 学生成绩管理系统必须能够处理大量的学生数据,提供快速的成绩录入、查询、修改和删 除功能 同时,系统还应当能够进行成绩的统计分析,为教师、学生和教务管理人员提供决策支持
功能需求主要包括 (1)学生拥有唯一的个人账户及密码 (2)教师对学生的成绩进行录入,查看学生的成绩 (3)教学管理员可以修改教师基本信息,修改学生基本信息,添加教师基本信 息,添加学生基本信息,删除教师基本信息,删除学生基本信息 对学生的成绩进行修改、删除
9
3.1 定义系统对象类
3.1 定义系统对象类
01
(1)学生类
02
(2)课程类
03
(1) 教师类
04
(2) 成绩类
05
(3) 系统管理员
类
10
3.2界面类
3.2界面类
(1)类MainWindow MainWindow是系统的主界面 (2)类studentDialog 界面类studentDialog是进行操作"添加学生"、"修改学生"或"删除学生"时所需的对话框
2.3.2 成绩录入的活动图
若成绩无效,系统会提示错误并要求重新录 入 有效则进入下一步 系统将录入的成绩数据保存至数据库,并可 能同步更新学生的总评成绩 成绩录入完成后,用户可以选择继续录入其 他课程的成绩或者退出成绩录入界面 整个成绩录入活动最终在所有操作结束后终 止于"结束"节点
系统建模与系统分析
第三章系统建模与系统分析( System Modeling & System Analysis )1、系统建模及其方法2、系统分析及其方法目的:了解系统模型及建模方法掌握系统分析的基本方法3.1 系统模型第三章系统建模与系统分一、系统模型的定义与特性1.定义系统模型是对一个系统以某种确定形式( 文字、符号、图表、实物、数学公式等)进行描述、模仿和抽象,它反映系统的物理本质与主要特征。
..同一个系统根据不同的研究目的,可以建立不同的系统模型..同一个模型可以描述不同的系统。
2.特征..它是现实系统的抽象或模仿..它是由反映系统本质或特征的主要因素构成的;..它集中体现了这些主要因素之间的关系。
例3-1 :耐用消费品新旧更替模型研究国家某类耐用消费品(冰箱、洗衣机等)拥有情况。
假设家庭购买新冰箱并一直使用到其损坏或者报废。
故任一时刻,全国有一个用了不同时间的冰箱拥有量的分布。
.假定以一年为单位考察不同使用年限的冰箱的拥有量。
.任何已使用了i年的冰箱至少还能使用一年的概率为仇.假设冰箱的最长寿命为n 年.第k 年新购买的冰箱数目为u(k).、为什么要用系统模型..经济、方便、快速、安全..可以对“思想”或“政策”试验..可以导致对科学规律、理论、原理的发现。
..系统模型的作用是局限的实际系统模型模型化实验、分析比较现实意义解释结论三、系统模型的分类1. 按模型的形式分类实体、比例、模拟模型解析、逻网络、图物理模型概念模型数学模型任务书、说明书技术报告物理模型数学模型物理模型数学模型概念模型网络模型图表模型逻辑模型解析模型比例模型模拟模型实体模型系统增加研究的速度现实性减修改的方便性建模时抽象性建模费2. 按其它方式分类按相似程度分同构模型同态模型按结构特性分形象模型模拟模型符号模型数学模型启发式模型按对对象的了解程度分白箱模型黑箱模型灰箱模型四、数学模型的优势数学模型——使用最广泛的模型..定量分析的基础;..它是系统预测和决策的工具..它可变性好,适应性强,分析问题速度快、省时、省钱,便于计算机处理。
系统建模与系统分析详解课件
第三章
如今,兰德公司的研究范围已从最初的 军事、外交事务扩大到经济、交通、通 讯等公共事务的各个方面。系统分析方 法也从改善武器装备系统,走向了经济 管理、社会发展等各个域。
第三章
3.3.1 系统分析的定义
目前对于系统分析的解释有广义与狭义之分。 广义的解释是把系统分析作为系统工程的同义 语,认为系统分析就是系统工程。 狭义的解释是把系统分析作为系统工程的一个 逻辑步骤,系统工程在处理大型复杂系统的规划、 研制和运用问题时,必须经过这个逻辑步骤。
第三章
步骤
明确 问题
确定 目标
探索 建立模型 方案
优化或 仿真 分析
系统 评价
Y
决策 (分析)
N
第三章
案例: 企业与系统管理案例—— 海尔OEC管理法
O—Overall;E—Everything, Everyone ,Everyday; C—Control and clear
OEC—全方位地对每个人每一天的所做的每 件事进行控制和清理,即“日事日毕,日 清日高”,总账不漏项,事事有人管,人 人都管事,管事凭效果,管人凭考核。
3.地位:模型的本质决定了它的作用的局限性。它不 能代替以客观系统内容的研究,只有在和对客体系统相 配合时,模型的作用才能充分发挥。
第三章
3.1.2 使用系统模型的必要性
人类认识和改造客观世界的研究方法,一 般来说主要有三种,即实验法、抽象法、模 型法。
第三章
三种系统研究方法对比
实验法 抽象法
模型法
目标
发展能源
手段 目标
发展能源生产
开发新能源 节能
手段 资源 基地 目标 勘探 建设
运输
太生 阳物 能能
微生物的系统生物学分析与建模
微生物的系统生物学分析与建模微生物是我们身体及整个生态系统中不可或缺的组成部分,它们不仅能够帮助人类维持身体健康,还能够影响整个地球生态环境。
因此,对微生物的研究一直是科学家们的关注焦点。
其中,微生物的系统生物学分析与建模是一个被广泛研究和应用的领域。
在本文中,我们将探讨微生物的系统生物学分析与建模的意义、方法和应用,以及它们的发展和前景。
一、微生物的系统生物学分析与建模的意义微生物的系统生物学分析与建模是以生物信息学和数学模型为基础,通过对微生物生命周期和代谢途径进行全面系统分析和建模,从而实现对微生物组成、生理代谢和功能等多方面的深入了解。
它的意义体现在以下几个方面:1. 促进微生物学研究的深入发展微生物的种类繁多,需通过研究它们的生命周期、代谢途径和遗传变异等因素来深入了解它们的特性和功能。
系统生物学分析和建模能够对微生物的生理代谢、生长过程和环境适应性进行多维度的深入研究,有助于揭示微生物的生命活动规律和发展特征,为微生物学研究的深入发展提供支持。
2. 为微生物应用研究提供理论支持微生物的应用范围十分广泛,如生物技术、医学、食品工业等领域。
在微生物应用研究中,系统生物学分析和建模能够为微生物产生相关产品、治疗疾病和解决环境问题等提供理论支持和实践指导。
3. 推动生态系统和环境研究进展微生物是生态系统和环境生态的重要组成部分。
通过对微生物的系统生物学分析和建模,可以深入了解微生物在生态系统和环境中的功能作用和影响机理,推动生态系统和环境研究的进展。
微生物的系统生物学分析与建模是一个复杂的过程,需要结合多种科学方法和技术手段。
下面分别从数据获取、数据处理、模型构建和模型验证四个方面介绍微生物的系统生物学分析与建模的方法。
1. 数据获取微生物的系统生物学分析与建模是基于数据的分析,关键在于获取多维度的数据。
微生物的数据获取包括基因组、转录组、蛋白质组和代谢组等方面的数据。
其中基因组数据是微生物系统分析的基础,转录组数据获取可以揭示基因表达的精细调控,蛋白质组和代谢组数据可以了解微生物生长过程和代谢途径的动态发展。
系统建模与系统分析课件
城市交通拥堵问题
案例二
气候变化问题
案例三
生态系统问题
04
离散事件系统建模
离散事件系统的基础知识
离散事件系统的定义
离散事件系统是由一系列离散事件驱 动的动态系统,这些事件在时间上相 互独立且具有确定的触发条件。
离散事件系统的特点
离散事件系统的分类
根据事件的触发条件和系统状态的变 化方式,离散事件系统可以分为同步 系统和异步系统、确定性系统和不确 定性系统等。
03
系统动力学建模
系统动力学的基本概念
01
系统动力学是研究系统行为变化的一种方法,通过建立系统模 型来分析系统的动态行为和性能。
02
系统动力学模型由变量、参数和结构组成,通过模拟和仿真来
预测系统的未来行为和性能。
系统动力学适用于研究复杂系统的行为变化,如经济、生态、
03
交通等领域的系统。
系统动力学建模步骤
确定系统边界和变量
明确系统的范围和关键变量,确定系统的输 入和输出。
设定系统参数
根据历史数据和实验数据,设定系统模型的 参数值。
建立系统结构模型
根据系统变量之间的关系,建立系统的结构 模型,包括因果关系图和流图。
进行系统仿真和预测
利用系统模型进行仿真和预测,分析系统的 动态行为和性能。
系统动力学建模案例分析
排队论的模型建立
建立排队论模型需要考虑顾客到达的 时间间隔和服务时间的概率分布,并 确定服务台的数量和服务规则。常见 的排队模型包括M/M/1、M/M/n、 M/D/1和D/M/n等。
03
排队论的应用
排队论广泛应用于生产和服务系统中 的资源分配、流程优化和质量控制等 领域,例如电话呼叫中心、银行取号 机、机场安检通道等场景。
动态系统的建模与分析方法
动态系统的建模与分析方法动态系统建模与分析是研究系统行为与性能的一种方法,它涉及到对系统的组成部分、关系和交互行为进行建模,并分析系统在不同条件下的动态变化。
通过建模和分析,可以更好地理解和预测系统的行为,为系统设计与优化提供依据。
在动态系统建模与分析方法中,有许多常用的方法和工具,包括状态图、过程图、面向对象建模(OO)、有限状态机、验证方法等。
1.状态图是一种表示系统状态和状态之间转移关系的图形化方法。
它由一系列状态和状态之间的转移条件组成。
状态图可以帮助我们直观地表示系统的工作流程和状态转移,更好地理解系统的动态行为。
2.过程图是一种用来描述系统内部处理逻辑的图形化方法。
它通过表示系统的各个处理过程和它们之间的交互来表示系统的动态行为。
过程图可以帮助我们更好地理解和分析系统的内部工作流程。
3.面向对象建模(OO)是一种建立系统模型的方法,它以对象作为系统的基本组成单位,通过描述对象之间的关系和交互来表示系统的动态行为。
通过面向对象建模,可以更好地表示系统的结构和行为,帮助我们理解和设计系统。
4.有限状态机是一种形式化的表示系统行为的方法,它由一组有限的状态和状态之间的转移关系组成。
有限状态机可以用来建模和分析系统的动态行为,包括系统的状态转换和外部事件触发。
5.验证方法是一种通过验证系统模型的正确性来验证系统行为的方法。
它通过形式化的推理和模型检测等技术,来检查系统模型是否满足一定的属性和约束条件。
验证方法可以帮助我们发现和解决系统设计中的问题,并提高系统的可靠性和安全性。
总之,动态系统建模与分析方法可以帮助我们更好地理解和预测系统的行为,为系统设计和优化提供指导。
在实际应用中,我们可以根据具体的问题和需求选择合适的方法和工具来进行建模和分析。
系统分析及软件建模
系统分析及软件建模如果眼光仅仅放在满足客户眼下的需求,当问题不断出现时再不断修补,头痛医头,脚痛医脚,甚至系统构架需要不断调整或重新设计,那么,很快就会陷入代码泥潭或坠入系统重复开发的无底深渊,当初项目完成时的成就感将被无止境的沮丧所代替。
系统分析决定系统开发的成败,软件建模使系统开发走向成熟。
一:系统分析在网站项目管理中的地位在进行了需求分析和业务流程分析并得到客户的认可之后,对项目进行系统分析是极其重要的。
系统分析是能体现整个系统的灵魂的文档,将客户的需求从具体到抽象的一个过程,并制定编码人员可实施的规范和标准。
由于Web应用技术发展的历史相对与软件的历史短得多,在开发网络应用系统尤其是网站制作的系统设计中设计人员往往对系统分析重视的不够,特别是设计一些初期比较简单的或交互及功能较少的网站时,主要原因通常为:客户初期的需求比较简单,忽略了客户潜在的巨大需求;项目实施周期短,初期阶段采用最快的而不是最合理的实现手段;经费有限,难以支付高质量的人力费用;Web编程技术手段多样,容易上手,设计人员参差不齐;从现实中来看,网站项目的开发与管理和实施远不如软件工程规范,在编程语言、数据库、通信协议、应用服务器等相关环境都在不断快速发展和完善的情况下,的确很难期望每一个设计师都能网站项目进行系统的合理的分析,从而制定一套跨平台、健壮的、易扩展和升级的系统方案。
但是,这并不能成为系统分析员逃避或懈怠的借口,如果把一个系统比做一部汽车,系统分析的工作相当于设计发动机,也许很容易就想像的出用125cc的摩托车发动机去牵引10吨重载卡车会是一个什么样的后果。
在系统分析的过程中需要对需求分析进行进一步的深化和分析,通常客户及业务人员在需求分析和流程分析的过程中比较注重功能上的表现和定义,即使是做出正规的用户界面原型,对系统的需求也是不完整的,处于非技术人员的缘故,很难苛求能提出完整清晰专业的性能需求,但不意味着这需求不存在,而且这隐藏的需求对编码人员来说是极其重要的。
系统分析之建模PPT课件
加工逻辑:
处理过程名:工资分配
输入数据:工资结算单(汇总表)
输出数据:工资费用分配表
处理逻辑:各车间根据工资结算单,按产品种类或批
别,分别分配管理人员工资和生产工人工资,并按比
例提取福利基金。
39
6、外部实体条目 条目格式如下:
关于命名
要对数据流、加工、数据存储等 命名,还要对加工进行编号
原则: (1)数据流和数据存储名应能反 映其具体内容,而不仅仅反映其 某些成分;切忌使用空洞缺乏含 义的名字(如数据、信息、输入 等); (2) 加工名要反映整个处 理的功能,最好由一个具体的及 物动词加宾语组成,避免用动词 作为名字; (3) 源点/终点采用 问题域习惯命名(如采购员14 ,学 生,领导等)
4、关系:各个数据对象的实例之间有关联。
如一个学生“张鹏”选修两门课程“软件工程”与 “计算机网络”,学生与课程的实例通过“选修”关44 联起来。
✓实例的关联有三种: ✓一对一(1:1); ✓一对多(1:m); ✓多对多(n:m)。
式——输入/输出/本地,条件值等。 控制信 息:来源,用户,使用它的程序,改变权, 使用权等。 分组信息:父结构,从属结构, 物理位置----记录、文件和数据库等。
33
1、数据元素条目 数据元素名: 类型: 长度:
取值范围:
数据项名:凭证号 类型:数值 长度:6位(含小数一位)
取值范围:1000.0~4999.9
✓ 分解度:一般每一个加工每次分解最多不要超
过7个子加工,应分解到基本加工为止。
16
▪ 子图与父图的“平衡”
✓父图中某加工的输入输出数据流应该同其
软件工程中的软件系统分析与建模
《软件设计模式》
系统总结常见的软件设计 模式,有助于提高软件质
量和可维护性
UML示例图
第24页 附录
测试报告范例
设计模式应用案例
展示UML建模在软件系统 分析与建模中的具体应用
场景
示范测试报告的撰写和分 析,提高软件测试的效率
和成果
实际案例展示设计模式在 软件开发中的应用,帮助
理解并应用于实践
设计和部署应用程序以最大限 度地利用云计算的优势
模块化
将系统拆分为独立模块
软件设计原则
高内聚低耦合
模块功能相关性紧密、耦合度低
可维护性
便于系统维护和更新
软件设计方法
软件设计方法是指在进行软件设计时应该采用的方 法。结构化设计是一种将系统划分为各个部分进行 设计的方法,面向对象设计则是以对象为中心进行 设计。数据驱动设计和事件驱动设计都是根据数据 或事件来进行软件设计的方法。不同的设计方法适 用于不同的场景,选择合适的方法对于软件设计至 关重要。
软件设计方法
软件设计方法是指在进行软件设计时采用的 一些具体方法论,包括结构化设计、面向对 象设计、数据驱动设计和事件驱动设计。结 构化设计是一种按照结构化原理进行软件设 计的方法,面向对象设计则是以对象作为设 计和实现的核心,数据驱动设计和事件驱动 设计则是在设计过程中以数据或事件驱动系
统行为和逻辑。
实体-关系图,描述数据实 体及其关系
需求变更管理
需求管理
需求跟踪管理
需求优先级管理
管理需求变更,确保系统 稳定性
追踪需求实现情况,保证 需求准确性
确定需求的优先级,合理 安排开发顺序
结语
软件需求分析是软件工程中至关重要的一部分,通 过分析用户需求、设计系统结构,能够为软件开发 过程奠定坚实的基础。合理的需求管理可以有效避 免项目中的需求风险,提高软件质量和用户满意度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3成员建模
成员名称 符号表 示
人
描述性说明
成员类型人是表达组织中人的社会角色,不同的 是人与系统以不同的方式进行交互;并受制于一 定的许可,系统中的人可以是客户,管理员,特 定用户,技术或者是业务专家等。 成员空间指的是系统中所有成员,交互以及活动 执行场合;一个常见的工作空间是所要构建的系 统本身。 成员智能体是人工角色,如系统构件等;它可以 使自主的,自适应的实体,自行负责执行一定的 职责或者作出决策。 成员服务指成员所具有的那些可以被执行的活动 或者活动等。 成员资源指各种数据库,知识库,配置库,模型 库,方法库等。
5.1面向组织系统分析任务与过程
(5)优化备选:对照形成的需求收集备选项,进行相关 对比分析与优化,从而确定最终需求项;可借助情景分析, 模型检查等进行优化与完善。 (6)需求建模:采用可视与形成建模方法对所确定的单元 构成单元进行表达。 (7)评价推荐:对最终需求选项进行评价,决定分析阶段 任务是否结束,是否继续妄下进行系统设计。 (8)转换机制:如果进行系统设计,确定从系统分析结 果向系统设计模块的转化与对应关系。
5.2集成建模理论——集成建模方法
7.形式建模 形式建模是概念建模的主要形式。形式建模采用形式化的规范, 定义被描述系统中各对象与类之间的关系。 8.可视建模 可视建模是对概念建模中形式建模的补充形式,可视建模采用图 形表达方式对系统中的对象以及关系进行描述。 9。集成建模 集成建模是将形式建模与可视建模有机的结合起来,二者相互补 充,从而形成技能准确表达被分析系统中的概念,实体,关系与 逻辑层次等,又能给用户展现生动具体,清晰可视的结构与关系 图。
5.2集成建模理论——集成建模方法
1.早期需求分析 早期需求分析旨在理解所要设计的软件系统最终应处于什么 样的组织背景与环境,提供什么样的功能等。在此基础上, 进行组织分解,整理出系统所包含的成员名单。 2.晚期需求分析 晚期需求分析定义所要设计的软件系统的模型构建,运行环 境,以及相关功能与品质要求。在面向智能体,组织与服务 的集成计算方法里,晚期需求分析按照组织抽象框架确定构 成成员,并针对上述模型与早期的需求分析所得进行情景分 析,连锁状态分析,服务品质分析等,以期获得早期分析一 致与完备的输出。 3.功能性需求分析 功能性需求分析定义系统应具备的基本功能,内在工作机制 和系统行为。
5.2集成建模理论——集成建模方法
可视建模 可视建模或者称为可是需求分析,是以图形化的方式将目标系统 中的相关对象实体与对象类等之间的关系表达给用户,由相关的 需求分析方法论,模型构件元件,构建过程支持等组成。 可视建模工具有通用性工具/领域专用性工具,如UML(unified modeling language,中文名:统一建模语言 ,主要用于地理学, 地理信息系统的建模中 )/SYsML(可视化建模的在系统工程应用领 域的延续和扩展),BPMN( 建模标注Business Process Modeling Notation) 可视建模方法论CASE( Computer Aided Software Engineering计 算机辅助软件工程)方法以及相关的USE CASE用例工具。应用这 些工具时进行系统系统建模时,通常建立多种用例图,如类图, 活动图,序列图。 采用CASE工具辅助开发并不是一种真正意义上的方法,它必须依 赖于某一种具体的开发方法,如结构化方法、原型方法、面向对 象方法等,一般大型的CASE工具都可以支持。
对于algoid:agentid.CheckPlugID(algoid)>apid,existed()=True Pluginperson向系统注册所要插入的算法或者功能组件。该智能 体执行此角色时先后执行协议CheckAlgorithmValiddity(检查算 法的有效性) ApplyRegisterration(实施注册)以及 FillinAlgoRegisterOntologies(存储算法注册本体项),如果 这些协议被顺利执行,就接着执行协议 SubmitAlgoPluginRequest提交算法插入请求,完成算法插入申 请。
第五章-开放复杂智能系统分析
——5.1面向组织系统分析任务与过程 ——5.2集成建模理论
——5.3成员建模
5.1面向组织系统分析任务与过程
两个基本过程: 实施早期需求分析; 实施晚期需求分析; (1)收集信息:抽取所要构建的开放复杂智能体系统中关于 业务目标,技术目标,利益相关者,规则,环境等的基本信息; 获取关于精神状态信息,如信念,意图与期望等。 (2)定义需求:获取功能性与非功能性需求,功能性需求包 括利益相关者,规则,环境等;非功能性需求包括全局特性要 求等。 (3)筛选需求:对获取的需求进行整理,精炼,排序与筛选 等,形成基础需求清单。 (4)构建原型:基于所筛选的需求,进行快速原型设计,从 而进一步精炼与确定可信需求清单,检查充分性与必要性。
实例
客户
工作空间
一个金融决 策支持系统 接口智能体
智能体
服务
本体服务
资源
知识库
5.3成员建模
角色模型
名称 载体成员 属性 说明 该角色归属哪个成员 该角色以什么属性加以描述
协议
许可 职责 活动 积极事务
该角色的载体成员所执行,需要与其他成员进行交互的活动
表明在执行角色时哪些不能做 角色所期望承担的行为 成员所执行的一个动作单元,该动作不涉及与其他成员的交互 与角色有关的,在给定条件下该成员必然导致的事件状态,这 些事情对于角色实施是积极有利的(“something good happens”) 与角色相关的不利的消极的事务,必须加以处理(“nothing bad happens”)
5.2集成建模理论——集成建模方法
形式建模 形式建模有两种基本的形式化策略,即基于逻辑的形式化与 基于非逻辑的形式化 描述逻辑中的属性构造符 时序操作符 形式描述中的操作符的目的为采用形式化的技术规范, 被描述系统中各对象与类之间的相互关系。
5.3成员建模
成员建模 在组织框架里,,成员可以从成员类型,成员角色,角色, 特征,以及属性等维度加以描述。 成员类型包括如下几种:智能体,服务,人,工作空间, 资源等。
5.2集成建模理论——集成建模方法
形式概念语言, 连带表达语言以 设定规则与约束 形式规范 集成建模 非形式图形标记、 最少的语法,具 有或者没有本体 与与语义 可视建模 组织模型,包质量,如灵 活性,可用性, 安全与适用性等。
面向目标的需求
面向业务的需求
消极事务
5.3成员建模
成员的形式化描述 Actor Actor_type Role:human/workspace,agent/service/resource Attribute Activity Property Property_type Property_mode
5.3成员建模
Actor Agent algoPluginAgent Role Pluginperson Attribute constant agenttid:AgentCode Attribute constant fathertid:AgentCode Attribute constant childid:AgentCode Attribute constant algoid:AgentCode Attribute constant apid:AgentCode Protocol Read AlgoID Protocol CheckPlugID Permissions
5.2集成建模理论——集成建模方法
4.非功能性需求 非功能需求定义对系统设计与实施的约束,对成本与可靠性的要 求等。 5.面向目标建模 面向目标建模将目标这个概念年作为需求获取与规范化的关键词 之一。目标或手段设计一些基本的问题,如“为什么”“怎么 样”“其他如何”等,目标建模保目标定义,分解,层次划分, 实现目标的手段,实现目标的利益相关者,目标精炼等。 6.面向业务建模 面向业务建模定义系统所应满足的业务需求与特点,并符合业务 约束,包括业务期望目标,适应业务过程分析,业务逻辑,业务 规范,相关业务部门(用户),业务中被动角色等,并体现领域 约束,数据约束,业务评价约束,系统提交越是等。